OBSERWACJE SKŁADOWYCH TENSORA GRAWITACYJNEGO Z MISJI GOCE W DZIEDZINIE CZASU
|
|
- Bogumił Grzybowski
- 7 lat temu
- Przeglądów:
Transkrypt
1 OBSERWCJE SKŁDOWYCH ENSOR GRWICYJNEGO Z MISJI GOCE W DZIEDZINIE CZSU nrej Bobojć nrej Drożner Kter stronomii i Geonmiki Uniwerstet Wrmińsko-Murski e-mil: nrej.bobojc@gmil.com roner@uwm.eu.pl Stelitrne Meto Wncni Pocji w Geoeji i Nwigcji Wrocłw - cerwc 0
2 MISJ GOCE (Grvit Fiel n Ste-Stte Ocen Circultion Eplorer Mission) Misj ESpocątek: 7 mrc 009 r. Cs trwni 0 miesięc - prełużono o końc 0 r. Stelit: Źróło: orbit: prwie kołow snchronicn e Słońcem h 55 km i 9.5 o kompenscj sił niegrwitcjnch i momentów obrotowch główne instrument: -- griometr; pomir grientów grwitcjnch -- obiornik GPS; pomir SS-hl; pocjonownie stelit. Segment niemn stcj Kirun (Swecj); poskiwnie nch ES-ESOC (Niemc); nór n misją sterownie stelitą ES-ESRIN (Włoch); pretwrnie rchiwicj nch monitorownie iłni misji
3 CELE MISJI Moel geopotencjłu o stopni i ręu ~ 00 współcnników hrmonik sfercnch Centmetrow geoi - spoiewn okłność wnceń nomlii grwitcjnch: - mgl - spoiewn roielcość prestrenn moelu geopotencjłu i geoi: 00 km ZSOSOWNI: Pierws moel geoi uskn n postwie wumiesięcnch obserwcji (listop-gruień 009) elipsoi oniesieni: GRS80 Źróło: - geoej; ulepson globln wsokościow sstem oniesieni - mechnik nieb; orbit stelitów - ocenogrfi; crkulcj ocenu - fik wnętr Ziemi; litosfer płsc - wncnie ms i grubości wrstw loów polrnch - nwigcj inercjln
4 OBSERWCJE MISJI GOCE: - SS hl (Stellite-to-Stellite rcking high-low moe); pomir koowo-fowe o konstelcji stelitów GPS - SGG (Stellite Grvit Griometr); pomir skłowch tensor grwitcjnego grientów grwitcjnch ENSOR GRWICYJNY Włsności: - smetri; ij = ji i j ij j i V - równnie Lplce ; + + = 0 (w prestreni ewnętrnej j 3 i V potencjł ł grwitcjn n skłow tensor grwitcjnego grient grwitcjn współręne krtejńskie 3 wglęem źrół potencjłu)
5 BDNY SZEREG CZSOWY OBSERWCJI ENSOR GRWICYJNEGO Z MISJI GOCE - źróło: Europejsk gencj Kosmicn (ES) - interwł: ~ 9.9 ni epoki pomirowe ostępem -sekunowm - epok pocątkow: h 9 m s UC - epok końcow: h 38 m s UC - pomir tensor grwitcjnego w 3 brkującch epokch uupełnione pr użciu interpolcji wielominowej - skłowe poiomu b (Lb); - wncone w miennm polu bęącm wpkową : sttcnego pol grwitcjnego Ziemi płwów skorup iemskiej płwów ocenicnch płwów bepośrenich (bepośrenie oiłwnie n stelitę Słońc Księżc i plnet) płwu biegunowego (generownego pre siłę ośrokową w wiąku ruchem biegun) oiłwń niepłwowch (min rokłu ms tmosfercno-ocenicnch prśpiesenie reltwistcne) seonowch i rocnch min pol grwitcjnego Ziemi restkowch sił niegrwitcjnch (wnikjącch nieokłności sstemu kompenscji or np. min położeni śrok ms stelit spowoownch użciem pliw ) innch mniej ncącch sił
6 - ukł griometru GRF (Griometer Reference Frme): Źróło: ES SERCO/DM Consortium; GOCE Lb Proucts User Hnbook. ES echnicl Note issue nominlnie: pocątek w śroku griometru (śroku ms stelit) osie wncone śroki trech pr kcelerometrów : - oś OZ GRF skierown prwie rilnie o śrok Ziemi - oś OX GRF skierown w prbliżeniu gonie wektorem prękości stelit - oś OY GRF uupełni ukł o prwoskrętnego prwie prostopł o płscn chwilowej orbit - stą skłowe opowienio w prbliżeniu: tngencjln trnswersln i riln
7 SKŁDOWE ENSOR GRWICYJNEGO W UKŁDZIE GRDIOMERU: - połow różnic prspieseń pomieronch pre kcelerometr włuż osi OX GRF - różnic współręnch śroków kcelerometrów - skłowe wektor prękości kątowej wncne pre cłkownie po csie skłowch wektor prśpieseni kątowego (wnconego n postwie obserwownch różnic prśpieseń) uwglęnieniem nch ot. orientcji stelit sukc gwi ) ( ) ( 5 5 ) (
8 PRMERY SYSYCZNE BDNEGO SZEREGU CZSOWEGO ENSOR GRWICYJNEGO SKŁDOW ŚREDNI [/s ] ODCHYLENIE SNDRDOWE [/s ] RMS SZUM [/s ] (RMS SZUM / ŚREDNI ) 00% RMS SZUM mir sumu nej skłowej; wrtość bewglęn śreniej różnic pomię pomirmi w wóch kolejnch epokch N cłkowit licb epok pomirowch RMS SZUM N n ij n N ij n njwięks wrtość bewglęn śreniej mimo wglęnie użego sumu njmniejse min wglęem śreniej or njwiękse w sensie wrtości jen njmniejsch wrtości stosunku sumu o sgnłu o rą więks sum o poostłch skłowch - mniejs o około rę wielkości precj pomiru włuż jenej trech osi kcelerometrów njmniejs wrt. bewgl. śreniej or njwiękse min wglęem śreniej wglęnie uż wrtość bewglęn śreniej n poiomie skłowej ; tego smego ręu co ; pre błę pomirowe i procesu wncni ukł oniesieni (GRF)?
9 PRZEBIEGI CZSOWE SKŁDOWYCH ENSOR GRWICYJNEGO okres min: ~ min (~ okres obiegu stelit) rosnąc tren wrtości bewglęnej wricje krótkookresowe okresem orbitlnm niejenoroności pol grwitcjnego ewolucj w csie wiąn precesją pł.orbit - min ślu postelitrnego w okresie orbitlnm w minim wrt. bewgl. oielone wom mksimmi
10 -7 0 ni 0 3 okres min: ~ 89.5 min (~ okres obiegu stelit) mlejąc tren wrtości bewglęnej w okresie orbitlnm w minim wrt. bewgl. oielone wom mksimmi
11 3 okres min: ~ 89.5 min (~ okres obiegu stelit) rosnąc tren wrtości bewglęnej w okresie orbitlnm w mksim wrt.bewgl. oielone wom minimmi
12 3 okres min: ~ 90 min (~ okres obiegu stelit) rosnąc liniow tren wrtości bewglęnej wrźnie wiocn sum w okresie orbitlnm w minim wrt.bewgl. oielone trem mksimmi
13 3 okres min: ~ 89.3 min (~ okres obiegu stelit) be wrźnego trenu - mniejsjące się osclcje wokół śreniej w okresie orbitlnm w minim wrt. bewgl. oielone jenm lub wom mienijącmi się mksimmi
14 3 okres min: ~ 89.5 min (~ okres obiegu stelit) rosnąc liniow tren wrtości bewglęnej w okresie orbitlnm w minim wrt. bewgl. oielone trem mksimmi (po koniec interwłu jenm)
15 PODSUMOWNIE W seregu csowm tensor grwitcjnego misji GOCE; skłowe poiomu b mienne pole grwitcjne interwł 9.9 ni roielcość csow sek.: skłow njwięks wrtość bewglęn śreniej ok s - ; o rą więks o kolejnej njwięksej wrtości bewglęnej śreniej (skłow ); wglęnie mł stosunek sumu o sgnłu skłowe ; o rą więks sum o poostłch e wglęu n konstrukcję griometru ; propgcj tego sumu n poostłe skłowe pr trnsformcji tensor o innego ukłu oniesieni stosunkowo uż wrtość bewglęn śreniej sum skłowch igonlnch ręu 0 - s - ; n poiomie wrtości bewglęnch śrenich skłowch ; możliwe prcn: błę pomirowe ukł GRF obserwowne okres min csowch: ~ 89.5 min ~ okres obiegu stelit ~ oiłwń płwowch mienijące się profile wricji krótkookresowch (okres obiegu stellit) n skutek min topologii pol grwitcjnego or ewolucji orbit ( węrując śl postelitrn) tren min wrtości bewglęnch skłowch : mlejąc skłow rosnąc skłowe be wrźnego trenu skłow możliwe prcn: min włsności pol grwitcjnego min orbit (o bni)
Tensor liniowa jednorodna funkcja: wektor wektor b=f(a) a ( ˆ) [ˆ ( ˆ) ˆ ( ˆ) ˆ. Równanie b=f(a) można więc zapisać w postaci
ensor f liniow jenoron funkj: wektor wektor =f f f f W nm ukłie współręnh i,j,k - tensor jko mier f ˆ ˆ i j kˆ f ˆ i f ˆ j f kˆ le f iˆ [ˆ if ˆ i ˆjf ˆ i kf ˆ ˆ] i ˆ [ˆ ˆ ˆ ˆ ˆ f j if j jf j kf ˆ] j f
Ż ć Ó Ś Ó ć Ę Ó Ś ź Ż Ż Ó Ż ź Ó ÓŚ Ć Ó ź Ó ź Ó Ź ć Ę Ó Ś Ż Ó Ó Ń Ą ź ź Ź Ś Ą Ą Ś Ą Ś ć ć ź ź Ó Ó Ę Ź Ą Ź Ę ĘŚ ć ź Ę Ę ź Ę ć Ś Ś Ę Ż Ż ć Ść ć ć Ń Ż Ś ć Ż Ż Ż Ż Ż Ó Ą Ę Ę Ę Ą Ż Ż Ż Ź Ż ć Ś Ż Ż Ż Ż Ż ć Ś
Warunki zaliczenia przedmiotu: Uzyskanie zaliczenia z ćwiczeń rachunkowych oraz zdany egzamin (część pisemna i ustna).
Wkłowc: r Brr Oleś Wkł 1 Brr Oleś, PK, WIEiK Informk 2011/12 Telefon: 637 06 66 wew.41 e-mil: pk.uor@gmil.com Insu Fiki PK, p.117 Pln wkłu: 1. Posw mechniki klscnej. 2. Drgni i jwisk flowe. Akusk. 3. Wrne
Rozdział 1. Nazwa i adres Zamawiającego Rozdział 2. Informacja o trybie i stosowaniu przepisów Rozdział 3. Przedmiot zamówienia
Z n a k s p r a w y G O S I R D Z P I 2 7 1 0 1 0 2 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f S p r z» t a n i e i u t r z y m a n i e c z y s t o c i g d y
- Wydział Fizyki Zestaw nr 5. Powierzchnie 2-go stopnia
1 Algebr Liniow z Geometri - Wydził Fizyki Zestw nr 5 Powierzchnie -go stopni 1 N sferze 1 + + 3 = 4 znleźć punkt, którego odległość od punktu p = (, 6, 3) byłby njmniejsz Wyznczyć osie elipsy powstłej
WEKTORY skalary wektory W ogólnym przypadku, aby określić wektor, należy znać:
WEKTORY Wśród wielkości fizycznych występujących w fizyce możn wyróżnić sklry i wektory. Aby określić wielkość sklrną, wystrczy podć tylko jedną liczbę. Wielkościmi tkimi są ms, czs, tempertur, objętość
ŚĆ Ć ć ż ć ń Ę Ę ż ż Ą ń ż ć ż Ę ż Ę Ę Ć ż Ę ż Ś ż ż ż ż ż Ł ż ż Ę ż ĘŚ ż ć ć ŚĆ ć ń Ś ź ć ć ć ć ć ć ć ń ć Ę Ę ć ć ć Ł Ę Ą ź Ą Ę Ę Ł ć ć ż ć ż ż ć ż ż ż Ł ć ń ż Ł ż ń ń ż ż ć ż Ę ż Ę ć ż ż Ą ĘŚ ń ż ź Ę
WEKTORY skalary wektory W ogólnym przypadku, aby określić wektor, należy znać:
WEKTORY Wśród wielkości fizycznych występujących w fizyce możn wyróżnić sklry i wektory. Aby określić wielkość sklrną, wystrczy podć tylko jedną liczbę. Wielkościmi tkimi są ms, czs, tempertur, objętość
1. Podstawy rachunku wektorowego
1 Postaw rachunku wektorowego Wektor Wektor est wielkością efiniowaną pre ługość (mouł) kierunek iałania ora wrot Dwa wektor o tm samm moule kierunku i wrocie są sobie równe Wektor presunięt równolegle
1 LWM. Defektoskopia ultradźwiękowa. Sprawozdanie powinno zawierać:
L Defetosoia ultraźwięowa Srawozanie owinno zawierać:. Króti ois aaratury i metoy.. Rysune słua z zwymiarowanym ołożeniem wa. L Elastootya ynii baań elastootycznych Rzą izochromy m Siła na ońcu źwigni
2. Tensometria mechaniczna
. Tensometri mechniczn Wstęp Tensometr jk wskzywłby jego nzw to urządzenie służące do pomiru nprężeń. Jk jednk widomo, nprężeni nie są wielkościmi mierzlnymi i stnowią jedynie brdzo wygodne pojęcie mechniki
Ł Ł Ę Ż ć ć ą Ź ą Ś Ę ą Ź Ą Ż Ą ą ź ą Ł Ą Ś Ą ą
ą Ł Ó ą Ą ą ą Ó Ś Ó ą Ż ą Ś Ą Ł Ł Ę Ż ć ć ą Ź ą Ś Ę ą Ź Ą Ż Ą ą ź ą Ł Ą Ś Ą ą ć Ś ą ą ą ć ą ą ć ą ą Ź ą ćś ą ą ą Ż ą ą ć ą ć ą ć ą ą ć ć ą ą Ż ą ą ć Ł ĘŚĆ Ź Ść ą ą ą ą ŚŚ ć ą ą Ż Ź ą ć ć ć ą ą ąą ą ć ą
Trapez. w trapezie przynamniej jedna para boków jest równoległa δ γ a, b podstawy trapezu. c h d c, d - ramiona trapezu α β h wysokość trapezu
9. 5. WŁASNOŚCI MIAROWE CZWOROKĄTÓW Trpez w trpezie przynmniej jen pr oków jest równoległ δ γ, postwy trpezu c h c, - rmion trpezu α β h wysokość trpezu + 80 α δ β + γ 80 x `Ocinek łączący śroki rmion
temperatura
tempertur 2.3 3.3 Rys. 9. Przestrzenny rozkłd dnych: powierzchni geosttystyczn (rozkłd tempertury powierzchni morz zrejestrowny przez stelitę jest rezulttem dziłni prw fizyki; powierzchni sttystyczn (zwierjąc
Wykład z fizyki Budownictwo I BB-ZI. Dr Andrzej Bąk
Wkłd fiki udownictwo I -ZI Dr ndrej ąk Dlcego wrto się ucć fiki? Powsechność jwisk ficnch W świecie, któr ns otc chodi mnóstwo jwisk ficnch, np.: jwisk meteorologicne: opd descu, śniegu, mgł, tęc, włdowni
Sposób opisu symetrii figur lub brył skończonych
Wkłd drugi - smetri Smetri (gr. συμμετρια podobn mir) dl figur lub brł - istnienie nietrwilnego prekstłceni, które odworowuje obiekt w smego siebie minie mogą ulegć współrędne prestrenne, cs, kolor itp.
Ą Ą ć Ó Ó Ó Ś Ź Ź Ó ż Ź Ź Ś Ś ż Ę ĘŚ ń ń ć Ś Ą Ę ż ć Ś ć ć Ć Ó Ó ć ć Ó ć Ó ć ć ń ć Ą Ó Ó Ó Ą Ć ń ń Ź Ó ń ć Ó ć ć ć ń ż ć ć Ć Ć ć ż ć Ź Ó ć ć ć ć Ó ć ĘŚ ń ń ż ć Ś ć Ą Ó ń ć ć Ś ć Ę Ć Ę Ó Ó ń ż ź Ó Ó Ś ń
Ó ź ę ę ś Ą Ą Ę Ę Ł ę ę ź Ę ę ę ś ś Ł ę ś ś ę Ą ź ę ś ś ś ś ę ś ę ę ź ę ę ś ę ś ę ę ś Ś ś ę ę ś ś ę ę ę ś ę ę ę ę ś ę ź Ł Ą Ę Ł ę ś ź ść ś ę ę ę ę ę ę ś ś ś ę ę ś ę ę ś ę ź Ć ŚĆ ć ś ś ć ę ś ś ę ś ś ź ś
Ł Ą Ę Ń ć Ź ź ĘŚ ÓŁ Ę Ę ń ń ź Ę ń Ż ć ć ń ń ń Ę ń Ę ń ń Ę ń Ę ń ń ć ć ń Ę Ą Ś ń Ę Ą Ł ź ć Ś ć ć ć Ź Ł Ś ć ć ć ć ć Ł ć ć ź ń ń ń ń ń ń ń ź ź ć ń ć ć ć ź Ł ń Ę ÓŁ ń ź ź ź ń ć ć ć ń ń ń Ą ń ń ń ń ń Ś Ę
Ruch kulisty bryły. Kąty Eulera. Precesja regularna
Ruch kulist brł. Kąt Eulera. Precesja regularna Ruchem kulistm nawam ruch, w casie którego jeden punktów brł jest stale nieruchom. Ruch kulist jest obrotem dookoła chwilowej osi obrotu (oś ta mienia swoje
Sumy algebraiczne i funkcje wymierne
Sumy lgebriczne i funkcje wymierne Moduł - dził -temt Zkres treści Sumy lgebriczne 1 definicj jednominu, sumy lgebricznej, wyrzów podobnych pojęcie współczynnik jednominu Dodwnie i odejmownie sum lgebricznych
Wymagania edukacyjne matematyka klasa 2 zakres podstawowy 1. SUMY ALGEBRAICZNE
Wymgni edukcyjne mtemtyk kls 2 zkres podstwowy 1. SUMY ALGEBRAICZNE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje jednominy i sumy lgebriczne oblicz wrtości liczbowe wyrżeń lgebricznych
- Badanie ruchu ciał pod wpływem działających na nie sił. - Badanie stanów równowagi. KINEMATYKA PUNKTU MATERIALNEGO
MECHANIKA Mechnk klsycn Knemyk Dynmk Kneyk Syk - Dł fyk jmujący sę ruchem, równowgą oływnem cł. - Oper sę n rech sch ynmk Newon b ruchy cł mkroskopowych (mechnk newonowsk). - Nuk o ruchu be uwglęnen wywołujących
cz.2 Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321
Wkład 8: Brła stwna c. Dr inż. Zbigniew Sklarski Katedra Elektroniki, paw. C-, pok.3 skla@agh.edu.pl http://laer.uci.agh.edu.pl/z.sklarski/ 05.04.08 Wdiał nformatki, Elektroniki i Telekomunikacji - Teleinformatka
Dynamika punktu materialnego. Ciało o znanych właściwościach Otoczenie Warunki początkowe (prędkość) Jaki będzie ruch ciała? masa ciężar ilość materii
Dnik punku eilnego iło o nnch łściościch Oocenie Wunki pocąkoe pękość Jki ęie uch cił? s cięż ilość eii sił Sił nie jes poen o uni cił uchu le o jego in. 564-64 64-77 IZYKA - 6 W-5 hp://.if.p.lo.pl/ogn.oloski/
I n f o r m a c j e n a t e m a t p o d m i o t u k t ó r e m u z a m a w i a j» c y p o w i e r z y łk p o w i e r z y l i p r o w a d z e p o s t p
A d r e s s t r o n y i n t e r n e t o w e j, n a k t ó r e j z a m i e s z c z o n a b d z i e s p e c y f i k a c j a i s t o t n y c h w a r u n k ó w z a m ó w i e n i a ( j e e ld io t y c z y )
ω a, ω - prędkości kątowe członów czynnego a i biernego b przy
Prekłne Mechncne PRZEKŁADNIE MECHANICZNE Prekłne mechncne są wykle mechnmm kołowym prenconym o prenesen npęu o włu slnk wykonuącego ruch orotowy o cłonu npęowego msyny rooce, mechnmu wykonwcego lu wprost
Ł Ż Ó Ó Ż Ó Ę Ó Ó Ó Ó Ó Ę Ą Ż Ż Ż Ż Ż Ź Ó Ż Ó Ż Ż Ż Ą Ą Ż Ą ć Ż Ż Ó Ą Ó Ż Ó Ó Ą Ó Ż Ą Ż Ó Ó Ó Ę Ó Ż Ż Ż Ż Ż Ó Ą Ó Ą Ż Ź Ó Ż Ó Ó ÓŹ Ż Ć Ó Ó Ż Ź Ż Ó Ó Ą Ó Ź Ż Ż ź ź Ż ć ć Ó Ż Ó Ó Ż ź ć ź Ź ź Ż ź ć ć Ó ź
ż Ś ń ń ć Ś ć ó ó ń ń ń ó Ś ń ó ń Ś ź ó ź ń Ś ń ń ó ó ń ó ó ó ż ó Ź ó ó ó ó ó ó ó ż ń ó ż ó ć ó ć ó ń ń ó ć ó ź ć Ó ć ć ż ó ó ź ó Ś ć Ó ó ń ć ż ć ó ó ć ń ć ó ó ć ż Ó ó ń ć ń ń ż ó Ś ć ó ó ż ń ó ż ń ż ó
Ó Ó Ó Ś Ó Ą Ż ć Ą Ś Ś Ś Ł ć Ż Ż Ó ć Ę Ś Ó Ł Ę Ę Ż Ś Ł Ś Ó Ó Ó ź Ż Ó Ą Ę Ź ź Ą Ę Ó Ę Ż Ż ź Ó Ść Ż Ś Ś Ź Ż Ó Ś ŚĆ ć Ó Ż Ć Ó Ś Ż Ó Ę ć Ę ć Ó ć Ą Ó Ś Ł Ś ć Ż ź Ż Ó Ó Ż Ś Ó ć ć Ń Ę Ść Ó Ó Ó ÓŹ ź Ś Ś Ś ć Ś Ś
Ś Ł Ś Ł Ś Ś Ę Ą Ó Ś Ó Ś Ę Ł Ś Ł Ś Ż ć ć Ż Ć Ó Ó ż Ó Ż Ó Ó ć Ś Ź Ó Ó ć Ó Ą Ó Ó Ó Ą Ó Ś Ę Ż ż Ń Ń ż ć Ę Ć Ń Ś Ź ż ż Ó ż Ó Ó Ó Ś Ż Ó Ś Ń Ś Ź Ą Ę Ł Ż Ż Ó Ż Ż Ó Ż Ó Ś Ę Ó Ą Ż ÓŻ Ó Ż Ś Ó Ó ż Ą ż Ś Ć Ł Ś Ó Ą
Ę ć Ć Ś Ó Ó Ś Ł Ą Ą Ż ż Ł Ł Ż Ż ż Óż Ż ż ż Ę ż Ó ż Ę ć ż Ę Ź ż Ż ż ż ż ń ń ć ć ż ż Ż Ż Ś ż ż ń ż ń ż ż ń ż Ą ż ż Ę ć ć ć ż ń Ż Ż Ż ż Ę Ż ć ń Ż Ż ć Ę Ą Ą ć ć Ł Ą Ę Ą ć ż ć ż ć ć ż ć ć ż Ż ć Ą ż ć Ą Ą Ż
Ś Ó Ą Ą Ą Ą Ż Ć Ł Ś ć ż Ł ż Ł ź Ś Ą Ł Ś Ż ź Ó Ś Ą Ó Ś ź Ł Ł ź Ł ź ć Ć Ą Ą Ą Ą ć ź Ą Ą Ż ż ć ć Ć Ą Ą Ą Ł Ó Ż Ó Ź Ń ź Ń ź Ą Ś Ż Ą Ł ż Ś Ś Ó ź ź Ń Ł ź Ż ź ź Ą ż ż Ą Ś Ą Ą Ą Ą Ą ź Ą Ą Ó ź Ś Ł Ł Ł ź
Ń ź Ś Ó Ó ć Ś Ś ć ć Ę ć ć ć ć ć ć Ś ć ć Ś ć Ó ć ć Ść Ść Ś Ś ć Ć ć ć Ó Ą ć Ć ć Ź ć Ź ć Ź Ł Ł ć Ó Ó ć Ó Ó ć ć ć ć ć ć ć ć Ź Ś ć Ę ć ć ć ć Ł Ł ć Ź Ą Ę Ł Ó Ś Ą Ł Ł Ó Ć Ś Ś Ą Ź ć Ź Ś Ś Ś ć Ś Ś ć ć ć ć ć ć ź
Ą Ą Ś Ą Ł ż ż Ł Ł Ł Ł Ą ć ź Ą ż ż ć ć Ą ć ć Ł ź ż ż Ł Ł ź ź ż ż ć ć ż ż ż ż ć ż ż ż ż ć ż ż ż Ą ż ż ż ż ż ć ż ć ć Ł ż ż ż ż ż Ą ż ż ć ż ć ć ć Ó Ł ć ż Ł Ś Ś Ą Ł ź ć Ł ć Ś ź ż ć ź ź ź ż ż ź ż ż ć ż ć ż ć
ż Ó ż ć ż Ź Ż ć Ż Ż Ż ż Ó ć Ż ć ż ż ć ż Ó ż ć ż ż ć Ż Ż Ą ć ć ć Ż ć Ż Ż ć ć ż Ż ć ć ć Ż Ż ć Ł ć Ą ć ć ć ć ć ć ć ż ż ć ć ć ÓŻ ć ć Ż ć Ó ć ć ć ć ć ć ć Ł ć ć Ż Ż ż Ą ć ć ć Ż ć Ż Ą ć Ż ć Ż Ż ć Ż Ż ż Ż ż ć
Ś ÓŹ ż Ś ń Ś Ś Óż Ż Ś Ś Ś Ś Ś Ś ń Ó Ó Ż ż Ż ń Ż Ś Ó ń Ś Ą Ą Ą Ś Ś Ź ń Ż ż Ż Ż Ę ż Ś Ś ż ń ń ń ż Ó Ż Ż ż ń ż ż Ż ż Ó ż ń ż ń ń Ż Ż Ś ń ń ż ż ń ń Ź Ż ń ż Ż Ę ń Ż ż Ź Ź ń ż Ź ż Ź ż ż Ż Ż Ó Ż Ż Ź ż Ż Ż Ż Ę
ć Ó Ó Ń ź Ą Ą Ć Ż Ń Ą Ó Ó Ó Ą Ż Ć Ż ć ć Ż Ó Ó Ć ć Ą Ą Ó Ą Ó Ź ć Ó Ó Ó Ż ć ń ń ń ć Ż Ź ć ń ó ó Ź Ó Ó Ó Ż Ó Ó ć Ó Ó Ż Ż Ż Ó Ż Ó Ą Ó Ó Ź Ż Ó Ą Ź ć Ą Ż Ż Ó Ń Ż Ó Ó Ź Ó Ó Ó Ó Ó Ó Ó Ó Ó Ó Ó Ó Ó Ż Ó Ż Ż Ą
Ę ó ó ó Ó ź óź óź ó ć ó ó ó ó ń ó ń ć ó ć ń ó ć ó ć ó Ł ó ó ó Ą Ę ó ó ó ń ó ó ó ŚĆ ó ó ó ó ć ó ó ó ć ń ó ó ć ć ó ó ó ź ó ń ó ó ó ó ć ó ó ń ć ó ó ó ń ć ó ó ć ó ó ć ń ć ó ó ć ó ó ó ó ć ó ó ó ó ó ć ó ó ć
Ó ż ż ż ż ż ż ż ż ć Ń Ą ż ż Ó Ź Ó Ą Ń ć ż ż ż ć ż ć ż ż ż ż ć ć ż ż ć Ą ż ż ć ć ż Ż Ą ż ć ź ć ć Ą ć ć ć Ą ć Ą ż Ł ż Ó ć ć Ź ż ć ż ź ż ż Ż ć Ó Ź Ó Ą ż Ó Ą ć Ą ż ć Ą Ó ż Ś Ś Ż Ś Ł Ń Ś ź Ó ć ż Ś ż ć ź Ś Ś
Ą Ń Ż ź Ń Ą Ń Ą Ą ź ź Ó Ż ź ź Ó Ó Ć Ó Ó Ó Ć Ć ź ź Ż ź Ą Ź ź Ć Ć Ć Ó Ó Ó Ó Ó Ó ź Ó Ę Ó Ó Ę Ó Óź ź ź Ó Ó Ó Ó Ó Ó Ń Ź Ę ź ź Ó ź Ń Ę Ę Ę Ń ź Ę Ź Ó Ó Ó ź Ó Ę Ą Ó ź ź Ó Ó Ó Ó Ó ź Ó Ń Ó Ę ź Ż Ó Ó Ó Ę Ę Ó Ę Ć
Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych
Klucz odpowiedzi do zdń zmkniętc i scemt ocenini zdń otwrtc Klucz odpowiedzi do zdń zmkniętc 4 7 9 0 4 7 9 0 D D D Scemt ocenini zdń otwrtc Zdnie (pkt) Rozwiąż nierówność x x 0 Oliczm wróżnik i miejsc
Dokumentacja techniczna IQ3 Sterownik z dostępem poprzez Internet IQ3 Sterownik z dostępem poprzez Internet Opis Charakterystyka
UŻYWANIE SUBSTANCJI PSYCHOAKTYWNYCH PRZEZ MŁODZIEŻ 2005
Jnusz Sierosłwski, Piotr Jbłoński Instytut Psychitrii i Neurologii Krjowe Biuro s. Przeciwziłni Nrkomnii UŻYWANIE SUBSTANCJI PSYCHOAKTYWNYCH PRZEZ MŁODZIEŻ 25 BADANIA ANKIETOWE W SZKOŁACH NA TEMAT UŻYWANIA
Ę Ź ś ś ść ś ść ś ś ś ś Ż ż Ś ś Ę Ś ś śś Ł
ś Ą ś Ż Ż Ł ź Ś Ż ż Ż ż ż Ó Ż Ę ś Ę Ę Ę ś ś Ł Ą Ę Ź ś ś ść ś ść ś ś ś ś Ż ż Ś ś Ę Ś ś śś Ł ż Ą ś ś ś ś ś ś ć ść Ę ś ś Ą Ę Ą ż Ę ś śś Ę ś ś ś ś ż Ę ć ś ć ż ć Óź Ę Ę Ę Ą ś ś ś Ś ś Ż Ż Ż żć ś ś ź Ę Ę ś ś
Ruch obrotowy bryły sztywnej. Bryła sztywna - ciało, w którym odległości między poszczególnymi punktami ciała są stałe
Ruch obrotowy bryły sztywnej Bryła sztywna - ciało, w którym odległości między poszczególnymi punktami ciała są stałe Ruch obrotowy ruch po okręgu P, t 1 P 1, t 1 θ 1 θ Ruch obrotowy ruch po okręgu P,
Struktura energetyczna ciał stałych-cd. Fizyka II dla Elektroniki, lato
Struktur energetyczn cił stłych-cd Fizyk II dl Elektroniki, lto 011 1 Fizyk II dl Elektroniki, lto 011 Przybliżenie periodycznego potencjłu sieci krystlicznej model Kronig- Penney potencjł rzeczywisty
F u l l H D, I P S D, I P F u l l H D, I P 5 M P,
Z a ł» c z n i k n r 6 d o S p e c y f i k a c j i I s t o t n y c h W a r u n k ó w Z a m ó w i e n i a Z n a k s p r a w yg O S I R D Z P I 2 7 1 02 4 2 0 1 5 W Z Ó R U M O W Y z a w a r t a w G d y
J. Szantyr - Wykład 7 Ruch ogólny elementu płynu
J. Santr - Wkład 7 Rch ogóln element płn Rch ogóln ciała stwnego można predstawić jako smę premiescenia liniowego i obrot. Ponieważ płn nie mają stwności postaciowej, w rch płn dochodi dodatkowo do odkstałcenia
2.1. Określenie i rodzaje wektorów. Mnożenie wektora przez skalar
2.1. kreślenie i rodje wektorów. Mnożenie wektor pre sklr Wielkości ficne wstępujące w mechnice i innch diłch fiki możn podielić n sklr i wektor. A określić wielkość sklrną, wstrc podć tlko jedną licę.
Modelowanie i obliczenia techniczne. Metody numeryczne w modelowaniu: Różniczkowanie i całkowanie numeryczne
Modelownie i obliczeni techniczne Metody numeryczne w modelowniu: Różniczkownie i cłkownie numeryczne Pochodn unkcji Pochodn unkcji w punkcie jest deiniown jko grnic ilorzu różnicowego (jeżeli istnieje):
Izba Rozliczeniowa. Fundusz Rozliczeniowy. projekt wersja 2.c r.
Izb Rozliczeniow Fnsz Rozliczeniowy projekt wersj 2.c 25-06-2009r. Spis treści Spis treści... 2 Wstęp... 3 1 Obliczeni ryzyk niepokrytego... 4 2 Obliczeni wrtości fnsz i wpłty... 5 2.1 Aktlizcj fnsz rozliczeniowego...
Identyfikacja parametrów modelu maszyny synchronicznej jawnobiegunowej
Akemi Górniczo-Hutnicz im. Stniłw Stzic w Krkowie Wyził Elektrotechniki, Automtyki, Inormtyki i Elektroniki KATEA MASZYN ELEKTYCZNYCH Stuenckie Koło Nukowe Mzyn Elektrycznych Ientyikcj prmetrów moelu mzyny
Wymagania na ocenę dopuszczającą z matematyki klasa II Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS 4015-99/02
Wymgni n ocenę dopuszczjącą z mtemtyki kls II Mtemtyk - Bbiński, Chńko-Now Er nr prog. DKOS 4015-99/02 Temt lekcji Zkres treści Osiągnięci uczni WIELOMIANY 1. Stopień i współczynniki wielominu 2. Dodwnie
Wymagania edukacyjne matematyka klasa 2b, 2c, 2e zakres podstawowy rok szkolny 2015/2016. 1.Sumy algebraiczne
Wymgni edukcyjne mtemtyk kls 2b, 2c, 2e zkres podstwowy rok szkolny 2015/2016 1.Sumy lgebriczne N ocenę dopuszczjącą: 1. rozpoznje jednominy i sumy lgebriczne 2. oblicz wrtości liczbowe wyrżeń lgebricznych
ć Ż ż ć ż ć Ż ć ć ć ć Ż źń ż ć ć Ż ż Ż Ę ć ź Ż
Ż Ż ć ż ć ż Ż ć ż ć Ż ż ć ż ć Ż ć ć ć ć Ż źń ż ć ć Ż ż Ż Ę ć ź Ż Ż ż ń Ź ÓŻ ń ż ź Ą ń ż ć Ź ć ż ż ż ż ń ż ż ż ż ż Ż ż ń Ó ż ń ć ć ż Ć Ż ć ź Ż Ż ć Ż ż Ż Ę ż Ó Ć ć Ł Ę Ą Ł ĘŚ ż Ż Ż ć ć ć Ć Ą Ć ć ć ć ć ż
2. FUNKCJE WYMIERNE Poziom (K) lub (P)
Kls drug poziom podstwowy 1. SUMY ALGEBRAICZNE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje jednominy i sumy lgebriczne oblicz wrtości liczbowe wyrżeń lgebricznych redukuje wyrzy
Płaska fala monochromatyczna
Płaska fala onochroatcna Fala płaska propagująca się w owoln kierunku s P s s - fragent coła fali płaskiej propagującej się w kierunku efiniowan pre wersor s O r,, prawoskrętn ukła współręnch kartejańskich
18. Siły bezwładności Siła bezwładności w ruchu postępowych Siła odśrodkowa bezwładności Siła Coriolisa
Kinematyka 1. Podstawowe własności wektorów 5 1.1 Dodawanie (składanie) wektorów 7 1.2 Odejmowanie wektorów 7 1.3 Mnożenie wektorów przez liczbę 7 1.4 Wersor 9 1.5 Rzut wektora 9 1.6 Iloczyn skalarny wektorów
Macierzy rzadkie symetryczne
Mcierzy rzkie symetryczne Istnieje wielu problemów technicznych i nukowych, w których zstosownie formlizcji mtemtycznej oprowzi o ziłń n mcierzmi rzkimi symetrycznymi. To są zni mechniki, hyromechniki,
Temat lekcji Zakres treści Osiągnięcia ucznia
ln wynikowy kls 2c i 2e - Jolnt jąk Mtemtyk 2. dl liceum ogólnoksztłcącego, liceum profilownego i technikum. sztłcenie ogólne w zkresie podstwowym rok szkolny 2015/2016 Wymgni edukcyjne określjące oceny:
WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ
ĆWICZENIE 9 WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ Opis kł pomirowego A) Wyzzie ogiskowej sozewki skpijąej z pomir oległośi przemiot i obrz o sozewki Szzególie proste, rówoześie
Algebra liniowa z geometrią analityczną. WYKŁAD 11. PRZEKSZTAŁCENIE LINIOWE WARTOŚCI I WEKTORY WŁASNE Przekształcenie liniowe
lgbr liio gomtrią litcą / WYKŁD. PRZEKSZTŁCENIE LINIOWE WRTOŚCI I WEKTORY WŁSNE Prkstłci liio Diicj Prporądkoi ktorom R ktoró k R, : jst prkstłcim liiom td i tlko td gd: k k k k c c c c c Postć prkstłci
mechanika analityczna 2 nierelatywistyczna L.D.Landau, E.M.Lifszyc Krótki kurs fizyki teoretycznej
mechnik nlityczn niereltywistyczn L.D.Lndu, E.M.Lifszyc Krótki kurs fizyki teoretycznej ver-8.06.07 środek msy w różnych ukłdch inercjlnych v = v ' u m v = P= P ' u m v ' m m u trnsformcj pędu istnieje
2. Kinematyka. Wektor położenia
Kinemk Wekor położeni Wekorem położeni lub wekorem woącm r punku P nwm wekor kórego pocąek njuje się w pocąku ukłu współręnch nomis koniec wnc położenie punku P (Rs 1) P( ) r () r () r( ) k O i j Rs 1
2.3.1. Iloczyn skalarny
2.3.1. Ilon sklrn Ilonem sklrnm (sklrowm) dwóh wektorów i nwm sklr równ ilonowi modułów ou wektorów pre kosinus kąt wrtego międ nimi. α O Rs. 2.8. Ilustrj do definiji ilonu sklrnego Jeżeli kąt międ wektormi
RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ
RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ Wykład 6 2016/2017, zima 1 MOMENT PĘDU I ENERGIA KINETYCZNA W RUCHU PUNKTU MATERIALNEGO PO OKRĘGU Definicja momentu pędu L=mrv=mr 2 ω L=Iω I= mr 2 p L r ω Moment
Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2.
Z n a k s p r a w y G O S I R D Z P I 2 7 1 03 3 2 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f U d o s t p n i e n i e t e l e b i m ó w i n a g ł o n i e n i
RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ
RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ Wykład 7 2012/2013, zima 1 MOMENT PĘDU I ENERGIA KINETYCZNA W RUCHU PUNKTU MATERIALNEGO PO OKRĘGU Definicja momentu pędu L=mrv=mr 2 ω L=Iω I= mr 2 p L r ω Moment
x) / m, gdzie x nie jest wcale znane, a jedynie
Wkł 8 Równni ruchu Bjąc ruch mienn ilnsowliśm min pęu. Bilns okłn w csie skońconm rko jes możliw. Np. erjące się ciło nje uernm cąskom powojoną wrość włsnej prękości le sm prękość włśnie wskuek ego mleje.
Ćwiczenie M-6 Pomiar modułu sprężystości metalu metodą ugięcia pręta. I. Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. Fi Rys 1.
Pomir moułu sprężstości metu metoą ugięci pręt.. Ce ćwiceni: wncenie moułu sprężstości połużnej E (moułu Young ) że, uminium i mosiąu. Porównnie ugięć prętów wkonnch tego smego mteriłu o różnch kstłtch
Metody określania macierzy przemieszczeń w modelowaniu przewozów pasażerskich. mgr inż. Szymon Klemba Warszawa, r.
Metody określni mcierzy przemieszczeń w modelowniu przewozów psżerskich mgr inż. Szymon Klemb Wrszw, 2.07.2013r. SPIS TREŚCI 1 Podstwy teoretyczne 2 Rol mcierzy przemieszczeń 3 Metody wyznczni mcierzy
2 7k 0 5k 2 0 1 5 S 1 0 0 P a s t w a c z ł o n k o w s k i e - Z a m ó w i e n i e p u b l i c z n e n a u s ł u g- i O g ł o s z e n i e o z a m ó w i e n i u - P r o c e d u r a o t w a r t a P o l
FUNKCJA KWADRATOWA. Moduł - dział -temat Lp. Zakres treści. z.p. z.r Funkcja kwadratowa - powtórzenie PLANIMETRIA 1
FUNKCJA KWADRATOWA Moduł - dził -temt Funkcj kwdrtow - powtórzenie Lp Lp z.p. z.r. 1 1 Równni kwdrtowe 2 Postć iloczynow funkcji kwdrtowej 3 Równni sprowdzlne do równń kwdrtowych Nierówności kwdrtowe 5
Ruch pod wpływem sił zachowawczych
Ruch pod wpływem sił zachowawczych Fizyka I (B+C) Wykład XV: Energia potencjalna Siły centralne Ruch w polu grawitacyjnym Pole odpychajace Energia potencjalna Równania ruchu Znajomość energii potencjalnej
Matematyka I. WYKŁAD 8. UKŁADY RÓWNAŃ LINIOWYCH II Macierzowa Postać Eliminacji Gaussa. gdzie
Mtemtk I /9 WYKŁD 8. UKŁDY RÓWNŃ LINIOWYCH II Mcierow ostć limincji Guss B gdie nn n n n B n Metod elimincji: () Odejmownie od pewnego równni wielokrotności (nieerowej) wrnego innego równni, nie mienijąc
Fizyka 1 (mechanika) AF14. Wykład 9
Fizyka 1 (mechanika) 1100-1AF14 Wykład 9 Jerzy Łusakowski 05.12.2016 Plan wykładu Żyroskopy, bąki, etc. Toczenie się koła Ruch w polu sił centralnych Żyroskopy, bąki, etc. Niezrównoważony żyroskop L m
Praca domowa nr 2. Kinematyka. Dynamika. Nieinercjalne układy odniesienia.
Praca domowa nr 2. Kinematyka. Dynamika. Nieinercjalne układy odniesienia. Grupa 1. Kinematyka 1. W ciągu dwóch sekund od wystrzelenia z powierzchni ziemi pocisk przemieścił się o 40 m w poziomie i o 53
usuwa niewymierność z mianownika wyrażenia typu
Wymgni edukcyjne n poszczególne oceny z mtemtyki Kls pierwsz zkres podstwowy. LICZBY RZECZYWISTE podje przykłdy liczb: nturlnych, cłkowitych, wymiernych, niewymiernych, pierwszych i złożonych orz przyporządkowuje
Wymagania kl. 2. Uczeń:
Wymgni kl. 2 Zkres podstwowy Temt lekcji Zkres treści Osiągnięci uczni. SUMY ALGEBRAICZNE. Sumy lgebriczne definicj jednominu pojęcie współczynnik jednominu porządkuje jednominy pojęcie sumy lgebricznej
Wyznacznik macierzy. - wyznacznik macierzy A
Wzncznik mcierz Uwg Wzncznik definiujem tlko dl mcierz kwdrtowch:,,,,,, =,,,,,, n n n n nn n,,, det = n,,, n n nn - mcierz - wzncznik mcierz Wzncznik mcierz to wzncznik n wektorów, które stnowią kolumn
Opis i zakres czynności sprzątania obiektów Gdyńskiego Centrum Sportu
O p i s i z a k r e s c z y n n o c is p r z» t a n i a o b i e k t ó w G d y s k i e g o C e n t r u m S p o r t u I S t a d i o n p i ł k a r s k i w G d y n i I A S p r z» t a n i e p r z e d m e c
Instrukcja zarządzania systemem informatycznym przetwarzającym dane osobowe w Chorągwi Dolnośląskiej ZHP Spis treści
C h o r ą g i e w D o l n o l ą s k a Z H P Z a ł ą c z n i k 5 d o U c h w a ł y n r 2 2 / I X / 2 0 1 5 K o m e n d y C h o r ą g w i D o l n o 6 l ą s k i e j Z H P z d n i a 0 8. 0 62. 0 1 5 r. I n