Transport zanieczyszczeń. Mykola Shopa

Wielkość: px
Rozpocząć pokaz od strony:

Download "Transport zanieczyszczeń. Mykola Shopa"

Transkrypt

1 Transport zanieczyszczeń Mykola Shopa

2 Kilka jeszcze słów o aerozolach Rodzaje Pył Sól morska Siarczany Węgiel Organiczne związki Azotany Sól morskat kurz pył wulkaniczny Pył wulkaniczny Pyłek Sól morska Sadza

3 Kurz Pochodzi głównie z pustyń Cząstki stałe Głównie pochodzenia naturalnego Wkład antropogeniczny związany z uprawą rolną Albedo wynosi około 0.5 Wpływa na bilans energetyczny

4 Soł morska Głównym źródłem są oceany Cząstki stałe ale mogą również zawierać wodę Przeważnie naturalnego pochodzenia Powodują ochłodzenie klimatu

5 Siarczany (również azotany) Emisja wtórna Źródłem jest SO 2 lub siarczan dimetylu (C 2 H 6 O 4 S) Antropogeniczne Przez spalanie paliw Albedo wynosi 0.99 Ochładzanie

6 Czarny węgiel Spalanie biomasy lub paliw Ma kolor czarny Tzn. że albedo jest bliskie 0 Powoduje ocieplenie (szczególnie w obszarach lodowców)

7 Związki organiczne Duża różnorodność Pochodzenia naturalnego lub antropogenicznego Terpeny drzew, roślinności Spalanie paliw czy biomasy Emisja wtórna jak i pierwotna

8 Wpływ zdrowotny aerozoli Wyższa śmiertelność, krążeniowe, oddechowe oraz alergiczne choroby Astma, zapalenie oskrzeli, rak, itd Zwiększona toksyczność płuc Bardzo małe cząstki mogą przez płuca trafiać nawet do krwi i potem do bezpośrednio do mózgu Tłumienie mechanizmów odpornościowych

9 Aerozole i zmiany klimatyczne Ocieplanie czy schładzanie? Węgiel Ociepla Siarczany Schładzają

10 Transport zanieczyszczeń Co można zrobić? a) metodami chemicznymi, biologocznymi lub przez napromieniowanie zmienić zanieczyszczenia w substancje nieszkodliwe b) Rozcieńczyć zanieczyszczenia do stężeń uważanych za nieszkodliwe c) Magazynować substancje szkodliwe w bezpiecznym miejscu tak, aby nie mogły przeniknąć do środowiska naturalnego

11 Transport zanieczyszczeń Do rozcieńczania można wykorzystać przepływy turbulente (przepływy burzliwe), powszechnie spotykane w przyrodzie. Magazynując substancje szkodliwe, musimy badać procesy, które mogą doprowadzic do ich uwalniania, na przykład przepływy wód gruntowych. Tymi zjawiskami zajmuje się fizyka procesów transportu: a) Transport materii w przepływach i w ośrodkach będących w spoczynku b) Transport energii, szczególnie cieplnej c) Transport pędu w przepływach spowodowany lepkoscią lub zawirowaniami

12 Procesy transportu Ażeby móc omówić procesy transportu, należy wprowadzić pewne pojęcia. Są nimi strumień cząstek, średnia droga swobodna i przekrój czynny na zderzenie. Strumień cząstek Chcemy określić liczbę cząstek przechodzących przez jednostkową powierzchnię da w ciągu jednostki czasu. Załóżmy, że mamy do czynienia z cząstkami podlegającymi statystyce Maxwella Bolzmana. Zgodnie z tą statystyką część cząstek posiadająca prędkości pomiędzy v a v + dv jest równa; dnv 2 m 2 2 mv / 2kT v e f ( v) dv n kt

13 x da z v y Liczba molekuł na jednostkową objętość posiadających prędkości pomiędzy v a v + dv test równa f(v)ndv. Część molekuł docierających do płaszczyzny xy z kierunku,, jest dana przez: r sin d rd sin d d 2 4 r 4 W czasie dt w powierzchnię da uderzy następująca część molekuł:

14 W czasie dt w powierzchnię da uderzy następująca część molekuł: gdzie, ( da cos)v dt dn v v dt oznacza odległość przebytą w czasie t, da cos oznacza część da prostopadłą do kierunku v, dn v oznacza liczbę molekuł na jednostkę prędkości, objętości i kąta bryłowego, przy czym dn v f ( v) n dv sin d 4 d W wyniku tego liczba molekuł uderzających w powierzchnię da w czasie dt jest dana przez; f ( v) n dv ( dacos) v dt sin d 4 d

15 Strumień molekuł padający na jednostkę powierzchni w czasie jednostkowym otrzymamy w wyniku całkowania ostatniego wyrażenia po wszystkich kierunkach i prędkościach. N n 2 v m kt 3 2 v 2 e mv 2 / 2 kt sin cos d d dv W wyniku całkowania otrzymuje się, że Skorzystaliśmy z faktu, że N nv 4 0 x 3 e ax a 2

16 v oznacza średnią prędkość jonów i jest równa: v 8kT m W wykonanych obliczeniach nie braliśmy pod uwagę zderzeń pomiędzy cząstkami. Uwzględnienie tych zderzeń nie zmieni jednak otrzymanego wyniku. 1 2

17 Średnia droga swobodna Aby poprawnie opisać zjawiska transportu, należy uwzględnić zderzenia pomiędzy cząstkami. Chcemy obliczyć średnią odległość przebywaną przez cząsteczkę przed zderzeniem z inną. Załóżmy, że mamy szereg molekuł w spoczynku, a porusza się jedna o średnicy d mająca prędkość v. v d d 2 v dt

18 Liczba zderzeń będzie równa liczbie molekuł w objętości d 2 v dt. = d 2 nazywamy przekrojem czynnym. Inaczej przekrój czynny definiujemy jako stosunek liczby zderzeń dn do liczby cząstek padających N, gęstości cząstek w tarczy n i grubości tarczy x. dn N n x Częstość zdarzeń określamy jako liczbę zdarzeń zachodzących na jednostkę czasu. nv

19 Dla cząsteczek o prędkości średniej, częstość zdarzeń wynosi: nv Droga przebyta w czasie t, jest równa vt, a liczba zderzeń w tym czasie t = n vt. Średnia odległość pomiędzy zderzeniami będzie więc wynosiła: vt nvt 1 n Uwzględniając ruch wszystkich cząstek, oraz fakt, że prędkości cząstek dane są przez rozkład Maxwella, otrzymujemy na średnią drogę swobodną wartość: 1 2 n

20 Można również policzyć, że średnia wartość odległości od płaszczyzny x-y do miejsca, w którym cząsteczki miały ostatnie zderzenie przed przejściem przez powierzchnię da wynosi; z 2 3 Uogólniony współczynnik transportu Zdefiniowane do tej pory zależności pozwolą nam opisać zjawiska transportu cząstek. Załóżmy, że mamy pole cząstek o jednorodnej gęstości n = const. W tym polu cząsteczek istnieje również gradient pewnej własności w kierunku osi z.

21 może oznaczać energię, pęd, stężenie cząstek, ładunek, itp. z Transport wielkości przez powierzchnię da jest zależny od zmiany w kierunku z. W pobliżu powierzchni da możemy napisać: x da y z0 d dz z0 dz Zależność ta jest ważna w odległości kilku dróg swobodnych od z = 0. Transport w dół wielkości przez powierzchnię da otrzymuje się przez przemnożenie strumienia cząstek przechodzących przez powierzchnię da, przez wartość

22 wielkości w miejscu ostatniego zderzenia przed da, czyli w odległości 2/3. da 2/3 2/3 0 J 1 d 2 J nv z z nv 0 0 d dz dz

23 Wypadkowy transport wielkości w kierunku dodatniej osi z jest sumą dwóch podanych strumieni; Czynnik 1/ 3nv J Przewodnictwo cieplne 1 3 d nv dz (11.6) nazywamy uogólnionym współczynnikiem transportu. Przewodnictwo cieplne jest zdefiniowane przez relację daną przez prawo Fouriera; J J Q Q K K T z T K gradt

24 Współczynnik K jest stałą przewodnictwa cieplnego. Druga część równania dotyczy transportu w dowolnym kierunku. Wielkością transportowaną jest energia cząsteczek. Transport ten zachodzi zawsze w kierunku od wyższej do niższej temperatury. Pamiętamy, że cząsteczki charakteryzują się kilkoma rodzajami energii. Możemy energię cząsteczek wyrazić przez liczbę stopni swobody f. i f 2 kt Wtedy zgodnie z równaniem mamy; 1 d f J Q nv 3 dz 2 kt Z porównania ostatniego równania z równaniem (11.7) mamy;

25 K 1 3 nv f 2 k Równanie to da się również przedstawić w następującej postaci: K 1 3 nv c N 1 v 0 3 vcv N 0 Ostatnią postać równania uzyskaliśmy w oparciu o zależność pomiędzy średnią drogą swobodną a przekrojem czynnym.

26 Związek przewodnictwa cieplnego z elektrycznym Równanie transportu prądu elektrycznego jest dane przez prawo Ohma. r j r grad el W ostatnim równaniu jest potencjałem skalarnym pola elektrycznego, a el współczynnikiem przewodności elektrycznej. Podobieństwo tego wzoru z wzorem na przewodnictwo cieplne jest widoczne natychmiast. Fakt ten został sformułowany w prawie Wiedermanna-Franza; gdzie L = 1/3 (k/e) 2. K L el T

27 Przy transporcie ciepła należy pamiętać, że wypadkowe ciepło wpływające do elementu objętości musi być równe czasowej zmianie energii wewnętrznej. Prowadzi to do równania przewodnictwa cieplnego: T t K c w 2 T 2 z W równaniu tym oznacza gęstość, a c w ciepło właściwe ośrodka. Współczynnik K/c w określa zdolność przewodzenia ciepła. Lepkość dynamiczna Jedną z bardzo częstych transportowanych wielkości fizycznych jest pęd. Z transportem tej wielkości związana jest lepkość.

28 z F/A = = η du/dz u Współczynnik Tarcia wewnętrznego Pęd jest transportowany z obszarów o dużej prędkości do obszarów o małej prędkości, przy czym p = mu. J p 1 3 ( mu) nv z 1 3 nv m u z

29 Z drugiej strony mamy, że: J p u z Otrzymujemy wobec tego na współczynnik lepkości wartość: 1 3 n mv Należy jeszcze zaznaczyć, że wypadkowy transport pędu jest ujemny dla u/z dodatniego. Istnieje również związek pomiędzy przewodnictwem ciepła a lepkością. K c v mn 0

30 Współczynniki ten można powiązać z tzw. Liczbą Prandtla Pr c p K c v K gdzie =c p /c v. Dla gazu idealnego pod ciśnieniem 1 at liczba Prandtla wynosi 1.667, dla He 0.69, dla O

31 Dyfuzja Dyslokacja jako defekt liniowy wywołuje pole naprężeń, co ułatwia przemieszczanie się atomów. Tak np. dyslokacja krawędziowa powoduje pole rozciągające pod ekstra płaszczyzną w wyniku czego tworzy się obszar rozszerzony zwany rurą dyslokacyjną. Atomy dostające się do takiej "rury" mogą znacznie łatwiej przenikać niż przez sieć, co ułatwia dyfuzję. Dyslokacje jako drogi łatwej dyfuzji uaktywniają się dopiero w zakresie niższych temperatur, gdyż w pobliżu temperatury topnienia amplitudy drgań termicznych atomów są tak duże, iż indywidualność dyslokacji jako ukierunkowanych defektów sieci zanika.

32 Dyfuzja po granicach ziarn Granice ziarn stanowią defekty powierzchniowe i powodują, że gęstość ułożenia atomów w ich obszarze jest mniejsza niż w sieci, co ułatwia przeskoki atomów. Rola granic ziarn jako dróg łatwej dyfuzji jest jednak uzależniona od typu granicy. Im większa jest energia granicy (a więc wysoki stopień atomowego niedopasowania), tym niższa jest energia aktywacji dyfuzji granicznej i mniejszy współczynnik dyfuzji, czyli dyfuzja jest szybsza. Do granic, które są najbardziej efektywnymi drogami dyfuzji należą granice ziarn dużego kąta, a najmniej granice bliźniacze i specjalne. Granice ziarn, podobnie jak dyslokacje, uaktywniają się jako drogi łatwej dyfuzji dopiero w zakresie niższych temperatur (< 0,5-0,6 T top ). Przy wyższych temperaturach szybkość dyfuzji po granicach ziarn jest mniejsza od szybkości dyfuzji objętościowej.

33 Dyfuzja reaktywna Dyfuzja reaktywna ma miejsce wówczas, gdy istnieje tendencja do tworzenia związków międzymetalicznych pomiędzy dyfundującymi składnikami. Związek tworzy się na granicy styku składników, bez uprzedniego powstawania roztworów stałych, które tworzą się dopiero w drugiej kolejności. Dyfuzja reaktywna podlega prawu parabolicznemu t.j. x 2 kt gdzie: x - grubość utworzonej fazy, t - czas, k - stała, zależna wykładniczo od temperatury. Przykładem dyfuzji reaktywnej jest dyfuzja występująca w procesie utlenianie metali.

34 Temperatura Tammanna Przy doborze temperatury reakcji stosuje się często tzw. regułę Tammana: Reakcja w fazie stałej będzie przebiegać dopiero, w temperaturze równej około 2/3 temperatury topnienia minimum jednego ze składników. W materiałach polikrystalicznych proces dyfuzji zachodzi dużo szybciej niż w materiałach monokrystalicznych. Mechanizm procesu transportu w ciałach stałych w zakresie temperatury poniżej temperatury Tammanna (2/3 temperatury topnienia) jest sterowany Procesem dyfuzji powierzchniowej wzdłuż dróg łatwej dyfuzji czyli po granicach ziaren. W przypadku wyższej temperatury coraz bardziej znaczącą rolę w procesie transportu materii zaczyna odgrywać dyfuzja objętościowa. Powyżej temperatury Tammanna zaczyna przeważać dyfuzja sieciowa.

35 Szybkośc dyfuzji Temperatura wiąże się z drganiami termicznymi atomów. Drgania te dostarczają energii koniecznej do przeskoku atomu z jednego węzła do drugiego. Czas t, - średnia droga kwadratowa dyfundującego atomu rośnie z upływem czasu. x 2 t 2Dt Wzrost gęstości defektów w sieci sprzyja wzrostowi współczynnika dyfuzji D. Wzrost ciśnienia całkowitego obniża współczynnik dyfuzji (odgrywa znacząca rolę przy dużych ciśnieniach).

36 Mechanizm dyfuzji Atomy w ciałach stałych są w ciągłym ruchu, stale zmieniają swoje położenia. Dyfuzja to stopniowa migracja atomów z jednego położenia sieci krystalicznej w inne. Warunki przeskoku atomu: a) wolne położenie w sieci krystalicznej w sąsiedztwie atomu b) atom posiada wystarczającą energię aktywacji Drgania atomów w sieci: każdy atom drga z dużą częstotliwością wokół swojego położenia w sieci krystalicznej (w temperaturze powyżej zera bezwzględnego) w tym samym czasie nie wszystkie atomy drgają z ta samą częstotliwością i amplitudą atomy mają różną energię ten sam atom może mieć różną energię w różnym czasie energia wzrasta wraz z temperaturą

37 Dyfuzja wzajemna Dyfuzja wzajemna - w stopach, atomy różnych metali mieszają się.

38 Dyfuzja własna Dyfuzja własna - bezładny ruch defektów w krysztale wywołany przez drgania termiczne sieci krystalicznej, wszystkie migrujące atomy są tego samego typu. Proces dyfuzji może zachodzić pod wpływem gradientu stężeń defektów lub innego rodzaju pola sił składającego się na gradient potencjału elektrochemicznego w układzie.

39 Prawa dyfuzji: I prawo Ficka I prawo Ficka opisuje szybkość dyfuzji (strumień dyfundujących atomów) j D c x gdzie: j strumień dyfundującego składnika w kierunku x, c stężenie składnika w płaszczyźnie przepływu, dc/dx gradient stężenia prostopadły do płaszczyzny przepływu D współczynnik dyfuzji [m 2 /s]

40 x c D x t c Gdy D nie zależy od położenia: 2 2 x c D t c II prawo Ficka opisuje przebieg dyfuzji w czasie: Prawa dyfuzji: II prawo Ficka

41 Zanieczyszczenie powietrza? (Pollution)

42 Dyfuzja i dyspersja

43 43

44 44

45 Klasy atmosferycznej stabilności Jakie są klasy? A = bardzo niestabilna B = niestabilna C = lekko niestabilna D = neutralna E = lekko stabilna F = średnio stabilna Jaki związek ma stabilność z zanieczyszczeniem powietrza? Niestabilna Zanieczyszczenia silnie dyfundują w pionie Stabilna Zanieczyszczenia słabo dyfundują w pionie

46

47 Przykład smugi. Jaki to przypadek?

48 Inny przykład

49 Cleveland, 1973 NYC, 1970s What is pollution? China, 2012 Pittsburgh, 1940s

50 Inne zanieczyszczenia Zanieczyszczenie środowiska może dotyczyć nie tylko powietrza Zanieczyszczenie gleby Ścieki Odpady chemiczne czy promieniotwórcze Zanieczyszczenie powietrza Emisja Dym, kurz Kwaśny deszcz Opary Zanieczyszczenie wody Pestycydy, nawozy Ropa Ścieki Mydło, płyny chłodnicze, oleje Chemikalia domowe

51 Krótkie fakty zanieczyszczenie powietrza Średnio osoba dorosła oddycha zanieczyszczonym powietrzem objętości ponad 10 m 3 dziennie Spaliny samochodowe stanowią około 60% emisji tlenku węgla (nawet do 95% w dużych miastach). Dane dla Stanów Zjednoczonych. Londyńki Wielki Smog ("Great Smog ) w 1952 był najgorszą katastrofą związaną z zanieczyszczeniem powietrza w historii: Ponad 4,000 osób zginęło w ciągu 6 dni Naukowcy z Harvard School of Public Health w 2010 roku opublikowali badania że przyczyną około 4% śmierci w Stanach Zjednoczonych w pewien sposób związanych jest z zanieczyszczeniem powietrza

52 Źródła zanieczyszczeń? Wood burning Fireplaces Wood stoves Land-clearing fires Burning toxic substances Garbage Plastics Air conditioners, refrigerators, fire extinguishers Fossil fuel burning Cars, trucks, etc Boats Trains Gas-powered tools Household products Paints Printer ink Hairspray, air fresheners Stirring up dust Building, driving, any way we change the landscape

53 Efekty zdrowotne zanieczyszczeń Zawierają składniki rakotwórcze Przenikają w płuca i osiadają w przestrzeniach powietrznych Kichanie/Kasłanie Astma (przyczyniają się do pojawy lub zwiększenia częstości występowania) Choroby serca Przewlekłe zapalenie oskrzeli Rozedma płuc Zapalenie płuc Wczesny poród/mała masa ciała noworodka Więcej zgłoszeń do pogotowia Więcej hospitalizacji Więcej zwolnień lekarskich

54 Przykład- pylica płuc Rozwija się po tym jak małe cząstki pyłowe gromadzą się wewnątrz płuc Choroba śmiertelna, długi okres rozwoju Prawie nieuleczalna

55 Wpływ zdrowotny ozonu troposferycznego Podrażnia oczy, nos, gardło Zapalenie płuc i dróg oddechowych Kasłanie Astma Zapalenie oskrzeli Ból w klatce piersiowej Trudności z oddychaniem Podatność na choroby płuc Uszkodzenie tkanek płuc Szybsze starzenie się płuc Przewlekłość chorób płuc

56 Wpływ zdrowotny tlenku węgla Trucizna!!! Małe ilości CO wywołują odczycie zmęczenia i ból w klatce piersiowej Większe ilości zaburzają wzrok oraz koordynacje, wywołuje ból głowy, zawroty głowy, mdłości Duża koncentracja jest śmiertelna

57 Wpływ zdrowotny lotnych związków Rak Niska odporność Zaburzenia układu nerwowego Negatywny wpływ na rozwój dzieci

58 Zanieczyszczenia i zmiany klimatyczne Małe cząstki Zmniejszają ruch opadów z spowodowany wiatrem Zmniejszają aktywność fotosyntezy roślin Zmieniają współczynnik odbicia chmur Zanieczyszczenia mogą wpływać na wydajność i przetrwanie roślin Siarczany i azotany powodują ochłodzenie Zwiększenie lokalnej koncentracji ozonu troposferycznego Wysoka koncentracja ozonu zwiększa transpirację i obniża odporność drzew na suszę Zwiększone niebezpieczeństwo pożarów

59 Jak walczą w Stanach? Obowiązkowa ustawa Clean Air Act (prawo federalne) 19 regulacji Cząstki, dym, tlenek węgla, siarczany Kontrola odoru Emisji zanieczyszczeń Pożarów leśnych Organicznych zwiazków lotnych Dostosowanie komunikacji Inspekcja silników samochodowych Regulacji CFC (freon) Piasek i kurz na ulicach Deszcze kwaśne Farby ołowiane

60 Jak walczą? Pekin, 2008 Przed i po w Pekinie Chiński rząd wprowadził nowe zaostrzone przepisy co do jakosci powietrza przed igrzyskami w 2008 Co zrobili Fabryki zanieczyszczające zostały zamknięte lub zmodernizowane Wprowadzono oczyszczanie ścieków Zwiększono nasadzenia w miescie Nowe składy komunikacji miejskiej o lepszych parametrach Stare taksówki zostały zastąpione nowymi Mniej sztywne godziny pracy aby zmniejszyć natężenie ruchu w szczycie

61 Jak walczą? Pekin, 2008 Nowe badania w czasopismie American Medical Association co do jakości powietrza w Pekinie wskazują na to jak zanieczyszczenia powietrza zwiekszają niebezpieczeństwo chorób serca u młodych i zdrowych ludzi. What a difference... these photos were taken just 24 hours apart, on Sunday and yesterday / Pics: Michael Dodge Source: The Daily Telegraph (August 5, 2008) Beijing air quality throughout the Olympics

62 Jak walczą? Pekin, 2008 Badania pokazują że poziom tlenku węgla znacznie spadł między 2007 a 2008, po ograniczeniu ruchu samochodowego w związku z Igrzyskami w 2008

63 Jak walczą? Londyn, Olympics might bring the worst air quality in Europe Mapa jakosci powietrza w Londynie

64 Zanieczyszczenie powietrza w Polsce

65 Zanieczyszczenie powietrza w Polsce

66 Zanieczyszczenie powietrza w Trójmieście

Transport zanieczyszceń. Mykola Shopa

Transport zanieczyszceń. Mykola Shopa Transport zanieczyszceń Mykola Shopa Transport zanieczyszczeń Co można zrobić? a) metodami chemicznymi, biologocznymi lub przez napromieniowanie zmienić zanieczyszczenia w substancje nieszkodliwe b) Rozcieńczyć

Bardziej szczegółowo

Termodynamika. Część 12. Procesy transportu. Janusz Brzychczyk, Instytut Fizyki UJ

Termodynamika. Część 12. Procesy transportu. Janusz Brzychczyk, Instytut Fizyki UJ Termodynamika Część 12 Procesy transportu Janusz Brzychczyk, Instytut Fizyki UJ Zjawiska transportu Zjawiska transportu są typowymi procesami nieodwracalnymi zachodzącymi w przyrodzie. Zjawiska te polegają

Bardziej szczegółowo

Wykład 3 Zjawiska transportu Dyfuzja w gazie, przewodnictwo cieplne, lepkość gazu, przewodnictwo elektryczne

Wykład 3 Zjawiska transportu Dyfuzja w gazie, przewodnictwo cieplne, lepkość gazu, przewodnictwo elektryczne Wykład 3 Zjawiska transportu Dyfuzja w gazie, przewodnictwo cieplne, lepkość gazu, przewodnictwo elektryczne W3. Zjawiska transportu Zjawiska transportu zachodzą gdy układ dąży do stanu równowagi. W zjawiskach

Bardziej szczegółowo

Nauka o Materiałach. Wykład XI. Właściwości cieplne. Jerzy Lis

Nauka o Materiałach. Wykład XI. Właściwości cieplne. Jerzy Lis Nauka o Materiałach Wykład XI Właściwości cieplne Jerzy Lis Nauka o Materiałach Treść wykładu: 1. Stabilność termiczna materiałów 2. Pełzanie wysokotemperaturowe 3. Przewodnictwo cieplne 4. Rozszerzalność

Bardziej szczegółowo

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Zajęcia wyrównawcze z fizyki -Zestaw 4 -eoria ermodynamika Równanie stanu gazu doskonałego Izoprzemiany gazowe Energia wewnętrzna gazu doskonałego Praca i ciepło w przemianach gazowych Silniki cieplne

Bardziej szczegółowo

Czym jest prąd elektryczny

Czym jest prąd elektryczny Prąd elektryczny Ruch elektronów w przewodniku Wektor gęstości prądu Przewodność elektryczna Prawo Ohma Klasyczny model przewodnictwa w metalach Zależność przewodności/oporności od temperatury dla metali,

Bardziej szczegółowo

Zaburzenia periodyczności sieci krystalicznej

Zaburzenia periodyczności sieci krystalicznej Zaburzenia periodyczności sieci krystalicznej Defekty liniowe dyslokacja krawędziowa dyslokacja śrubowa dyslokacja mieszana Defekty punktowe obcy atom w węźle luka w sieci (defekt Schottky ego) obcy atom

Bardziej szczegółowo

wymiana energii ciepła

wymiana energii ciepła wymiana energii ciepła Karolina Kurtz-Orecka dr inż., arch. Wydział Budownictwa i Architektury Katedra Dróg, Mostów i Materiałów Budowlanych 1 rodzaje energii magnetyczna kinetyczna cieplna światło dźwięk

Bardziej szczegółowo

dn dt C= d ( pv ) = d dt dt (nrt )= kt Przepływ gazu Pompowanie przez przewód o przewodności G zbiornik przewód pompa C A , p 1 , S , p 2 , S E C B

dn dt C= d ( pv ) = d dt dt (nrt )= kt Przepływ gazu Pompowanie przez przewód o przewodności G zbiornik przewód pompa C A , p 1 , S , p 2 , S E C B Pompowanie przez przewód o przewodności G zbiornik przewód pompa C A, p 2, S E C B, p 1, S C [W] wydajność pompowania C= d ( pv ) = d dt dt (nrt )= kt dn dt dn / dt - ilość cząstek przepływających w ciągu

Bardziej szczegółowo

Stany równowagi i zjawiska transportu w układach termodynamicznych

Stany równowagi i zjawiska transportu w układach termodynamicznych Stany równowagi i zjawiska transportu w układach termodynamicznych dr hab. Jerzy Nakielski Katedra Biofizyki i Biologii Komórki plan wykładu: 1. Funkcje stanu dla termodynamicznego układu otwartego 2.

Bardziej szczegółowo

Sonochemia. Schemat 1. Strefy reakcji. Rodzaje efektów sonochemicznych. Oscylujący pęcherzyk gazu. Woda w stanie nadkrytycznym?

Sonochemia. Schemat 1. Strefy reakcji. Rodzaje efektów sonochemicznych. Oscylujący pęcherzyk gazu. Woda w stanie nadkrytycznym? Schemat 1 Strefy reakcji Rodzaje efektów sonochemicznych Oscylujący pęcherzyk gazu Woda w stanie nadkrytycznym? Roztwór Znaczne gradienty ciśnienia Duże siły hydrodynamiczne Efekty mechanochemiczne Reakcje

Bardziej szczegółowo

3. Równania konstytutywne

3. Równania konstytutywne 3. Równania konstytutywne 3.1. Strumienie w zjawiskach transportowych Podczas poprzednich zajęć wprowadziliśmy pojęcie strumienia masy J. W większości zjawisk transportowych występuje analogiczna wielkość

Bardziej szczegółowo

Układ termodynamiczny Parametry układu termodynamicznego Proces termodynamiczny Układ izolowany Układ zamknięty Stan równowagi termodynamicznej

Układ termodynamiczny Parametry układu termodynamicznego Proces termodynamiczny Układ izolowany Układ zamknięty Stan równowagi termodynamicznej termodynamika - podstawowe pojęcia Układ termodynamiczny - wyodrębniona część otaczającego nas świata. Parametry układu termodynamicznego - wielkości fizyczne, za pomocą których opisujemy stan układu termodynamicznego,

Bardziej szczegółowo

I. PROMIENIOWANIE CIEPLNE

I. PROMIENIOWANIE CIEPLNE I. PROMIENIOWANIE CIEPLNE - lata '90 XIX wieku WSTĘP Widmo promieniowania elektromagnetycznego zakres "pokrycia" różnymi rodzajami fal elektromagnetycznych promieniowania zawartego w danej wiązce. rys.i.1.

Bardziej szczegółowo

Materiały pomocnicze do laboratorium z przedmiotu Metody i Narzędzia Symulacji Komputerowej

Materiały pomocnicze do laboratorium z przedmiotu Metody i Narzędzia Symulacji Komputerowej Materiały pomocnicze do laboratorium z przedmiotu Metody i Narzędzia Symulacji Komputerowej w Systemach Technicznych Symulacja prosta dyszy pomiarowej Bendemanna Opracował: dr inż. Andrzej J. Zmysłowski

Bardziej szczegółowo

Przedmiot: Chemia budowlana Zakład Materiałoznawstwa i Technologii Betonu

Przedmiot: Chemia budowlana Zakład Materiałoznawstwa i Technologii Betonu Przedmiot: Chemia budowlana Zakład Materiałoznawstwa i Technologii Betonu Ćw. 4 Kinetyka reakcji chemicznych Zagadnienia do przygotowania: Szybkość reakcji chemicznej, zależność szybkości reakcji chemicznej

Bardziej szczegółowo

Definicja OC

Definicja OC OBRÓBKA CIEPLNA Podstawy teoretyczne Zakres tematyczny 1 Definicja OC Obróbka cieplna jest to zespół zabiegów wywołujących polepszenie właściwości mechanicznych oraz fizyko-chemicznych metali i stopów,

Bardziej szczegółowo

Natężenie prądu elektrycznego

Natężenie prądu elektrycznego Natężenie prądu elektrycznego Wymuszenie w przewodniku różnicy potencjałów powoduje przepływ ładunków elektrycznych. Powszechnie przyjmuje się, że przepływający prąd ma taki sam kierunek jak przepływ ładunków

Bardziej szczegółowo

WOJSKOWA AKADEMIA TECHNICZNA Wydział Mechaniczny Katedra Pojazdów Mechanicznych i Transportu LABORATORIUM TERMODYNAMIKI TECHNICZNEJ

WOJSKOWA AKADEMIA TECHNICZNA Wydział Mechaniczny Katedra Pojazdów Mechanicznych i Transportu LABORATORIUM TERMODYNAMIKI TECHNICZNEJ WOJSKOWA AKADEMIA TECHNICZNA Wydział Mechaniczny Katedra Pojazdów Mechanicznych i Transportu LABORATORIUM TERMODYNAMIKI TECHNICZNEJ Instrukcja do ćwiczenia T-06 Temat: Wyznaczanie zmiany entropii ciała

Bardziej szczegółowo

Właściwości kryształów

Właściwości kryształów Właściwości kryształów Związek pomiędzy właściwościami, strukturą, defektami struktury i wiązaniami chemicznymi Skład i struktura Skład materiału wpływa na wszystko, ale głównie na: właściwości fizyczne

Bardziej szczegółowo

Niska emisja SPOTKANIE INFORMACYJNE GMINA RABA WYŻNA

Niska emisja SPOTKANIE INFORMACYJNE GMINA RABA WYŻNA Niska emisja SPOTKANIE INFORMACYJNE GMINA RABA WYŻNA Obniżenie emisji dwutlenku węgla w Gminie Raba Wyżna poprzez wymianę kotłów opalanych biomasą, paliwem gazowym oraz węglem Prowadzący: Tomasz Lis Małopolska

Bardziej szczegółowo

1. BILANSOWANIE WIELKOŚCI FIZYCZNYCH

1. BILANSOWANIE WIELKOŚCI FIZYCZNYCH 1. BILANSOWANIE WIELKOŚCI FIZYCZNYCH Ośrodki materialne charakteryzują dwa rodzaje różniących się zasadniczo od siebie wielkości fizycznych: globalne (ekstensywne) przypisane obszarowi przestrzeni fizycznej,

Bardziej szczegółowo

Zanieczyszczenia powietrza w Polsce. Zagrożenia zdrowotne

Zanieczyszczenia powietrza w Polsce. Zagrożenia zdrowotne Zanieczyszczenia powietrza w Polsce Zagrożenia zdrowotne Health and Environment Alliance, 2015 Główne źródła zanieczyszczeń powietrza Do głównych źródeł zanieczyszczeń powietrza w Polsce zaliczamy: Emisje

Bardziej szczegółowo

WŁASNOŚCI CIAŁ STAŁYCH I CIECZY

WŁASNOŚCI CIAŁ STAŁYCH I CIECZY WŁASNOŚCI CIAŁ STAŁYCH I CIECZY Polimery Sieć krystaliczna Napięcie powierzchniowe Dyfuzja 2 BUDOWA CIAŁ STAŁYCH Ciała krystaliczne (kryształy): monokryształy, polikryształy Ciała amorficzne (bezpostaciowe)

Bardziej szczegółowo

gazów lub cieczy, wywołanym bądź różnicą gęstości (różnicą temperatur), bądź przez wymuszenie czynnikami zewnętrznymi.

gazów lub cieczy, wywołanym bądź różnicą gęstości (różnicą temperatur), bądź przez wymuszenie czynnikami zewnętrznymi. WYMIANA (TRANSPORT) CIEPŁA Trzy podstawowe mechanizmy transportu ciepła (wymiany ciepła): 1. PRZEWODZENIIE - przekazywanie energii od jednej cząstki do drugiej, za pośrednictwem ruchu drgającego tych cząstek.

Bardziej szczegółowo

Zjawiska transportu 22-1

Zjawiska transportu 22-1 Zjawiska transport - Zjawiska transport Zjawiska transport są zjawiskai, które występją jeżeli kład terodynaiczny nie jest w stanie równowagi: i v! const - w kładzie występje akroskopowy przepływ gaz lb

Bardziej szczegółowo

SMOG: co to takiego? Dlatego

SMOG: co to takiego? Dlatego Kampania społeczna SMOG: co to takiego? Smog to zjawisko atmosferyczne powstałe w wyniku wymieszania się powietrza z dymem i spalinami. Jest toksyczne i nienaturalne. Etymologia pojęcia smog wskazuje na

Bardziej szczegółowo

FIZYKA I ASTRONOMIA RUCH JEDNOSTAJNIE PROSTOLINIOWY RUCH PROSTOLINIOWY JEDNOSTAJNIE PRZYSPIESZONY RUCH PROSTOLINIOWY JEDNOSTAJNIE OPÓŹNIONY

FIZYKA I ASTRONOMIA RUCH JEDNOSTAJNIE PROSTOLINIOWY RUCH PROSTOLINIOWY JEDNOSTAJNIE PRZYSPIESZONY RUCH PROSTOLINIOWY JEDNOSTAJNIE OPÓŹNIONY FIZYKA I ASTRONOMIA RUCH JEDNOSTAJNIE PROSTOLINIOWY Każdy ruch jest zmienną położenia w czasie danego ciała lub układu ciał względem pewnego wybranego układu odniesienia. v= s/t RUCH

Bardziej szczegółowo

WYMAGANIA NA POSZCZEGÓLNE STOPNIE SZKOLNE Z CHEMII klasa I

WYMAGANIA NA POSZCZEGÓLNE STOPNIE SZKOLNE Z CHEMII klasa I WYMAGANIA NA POSZCZEGÓLNE STOPNIE SZKOLNE Z CHEMII klasa I Aby uzyskać ocenę wyższą niż dana ocena, uczeń musi opanować wiadomości i umiejętności dotyczące danej oceny oraz ocen od niej niższych. Dział:

Bardziej szczegółowo

WYZWANIA EKOLOGICZNE XXI WIEKU

WYZWANIA EKOLOGICZNE XXI WIEKU WYZWANIA EKOLOGICZNE XXI WIEKU ZA GŁÓWNE ŹRÓDŁA ZANIECZYSZCZEŃ UWAŻANE SĄ: -przemysł -transport -rolnictwo -gospodarka komunalna Zanieczyszczenie gleb Przyczyny zanieczyszczeń gleb to, np.: działalność

Bardziej szczegółowo

Podstawy fizyki wykład 8

Podstawy fizyki wykład 8 Podstawy fizyki wykład 8 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Ładunek elektryczny Grecy ok. 600 r p.n.e. odkryli, że bursztyn potarty o wełnę przyciąga inne (drobne) przedmioty. słowo

Bardziej szczegółowo

Podstawy Procesów i Konstrukcji Inżynierskich. Dynamika

Podstawy Procesów i Konstrukcji Inżynierskich. Dynamika Podstawy Procesów i Konstrukcji Inżynierskich Dynamika Prowadzący: Kierunek Wyróżniony przez PKA Mechanika klasyczna Mechanika klasyczna to dział mechaniki w fizyce opisujący : - ruch ciał - kinematyka,

Bardziej szczegółowo

Zasada zachowania energii

Zasada zachowania energii Zasada zachowania energii Fizyka I (B+C) Wykład XIV: Praca, siły zachowawcze i energia potencjalna Energia kinetyczna i zasada zachowania energii Zderzenia elastyczne dr P F n Θ F F t Praca i energia Praca

Bardziej szczegółowo

Wykład 1 i 2. Termodynamika klasyczna, gaz doskonały

Wykład 1 i 2. Termodynamika klasyczna, gaz doskonały Wykład 1 i 2 Termodynamika klasyczna, gaz doskonały dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 1 stycznia 2017 dr hab. A. Fronczak (Wydział Fizyki PW) Wykład: Elementy fizyki

Bardziej szczegółowo

Kryteria oceniania z chemii kl VII

Kryteria oceniania z chemii kl VII Kryteria oceniania z chemii kl VII Ocena dopuszczająca -stosuje zasady BHP w pracowni -nazywa sprzęt laboratoryjny i szkło oraz określa ich przeznaczenie -opisuje właściwości substancji używanych na co

Bardziej szczegółowo

Dyfuzyjny transport masy

Dyfuzyjny transport masy listopad 2013 Koagulacja w ruchach Browna, jako stacjonarna, niejednorodna reakcja, kontrolowana przez dyfuzję Promień sfery zderzeń r i + r j możemy utożsamić z promieniem a. Każda cząstka typu j, która

Bardziej szczegółowo

Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie

Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie napisał Michał Wierzbicki Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie Prędkość grupowa paczki falowej Paczka falowa jest superpozycją fal o różnej częstości biegnących wzdłuż osi z.

Bardziej szczegółowo

1. Wprowadzenie: dt q = - λ dx. q = lim F

1. Wprowadzenie: dt q = - λ dx. q = lim F PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W PILE INSTYTUT POLITECHNICZNY Zakład Budowy i Eksploatacji Maszyn PRACOWNIA TERMODYNAMIKI TECHNICZNEJ INSTRUKCJA Temat ćwiczenia: WYZNACZANIE WSPÓŁCZYNNIKA PRZEWODNOŚCI

Bardziej szczegółowo

Wstęp do astrofizyki I

Wstęp do astrofizyki I Wstęp do astrofizyki I Wykład 13 Tomasz Kwiatkowski Uniwersytet im. Adama Mickiewicza w Poznaniu Wydział Fizyki Instytut Obserwatorium Astronomiczne Tomasz Kwiatkowski, OA UAM Wstęp do astrofizyki I, Wykład

Bardziej szczegółowo

Momentem dipolowym ładunków +q i q oddalonych o 2a (dipola) nazwamy wektor skierowany od q do +q i o wartości:

Momentem dipolowym ładunków +q i q oddalonych o 2a (dipola) nazwamy wektor skierowany od q do +q i o wartości: 1 W stanie równowagi elektrostatycznej (nośniki ładunku są w spoczynku) wewnątrz przewodnika natężenie pola wynosi zero. Cały ładunek jest zgromadzony na powierzchni przewodnika. Tuż przy powierzchni przewodnika

Bardziej szczegółowo

= = Budowa materii. Stany skupienia materii. Ilość materii (substancji) n - ilość moli, N liczba molekuł (atomów, cząstek), N A

= = Budowa materii. Stany skupienia materii. Ilość materii (substancji) n - ilość moli, N liczba molekuł (atomów, cząstek), N A Budowa materii Stany skupienia materii Ciało stałe Ciecz Ciała lotne (gazy i pary) Ilość materii (substancji) n N = = N A m M N A = 6,023 10 mol 23 1 n - ilość moli, N liczba molekuł (atomów, cząstek),

Bardziej szczegółowo

1) Rozmiar atomu to około? Która z odpowiedzi jest nieprawidłowa? a) 0, m b) 10-8 mm c) m d) km e) m f)

1) Rozmiar atomu to około? Która z odpowiedzi jest nieprawidłowa? a) 0, m b) 10-8 mm c) m d) km e) m f) 1) Rozmiar atomu to około? Która z odpowiedzi jest nieprawidłowa? a) 0,0000000001 m b) 10-8 mm c) 10-10 m d) 10-12 km e) 10-15 m f) 2) Z jakich cząstek składają się dodatnio naładowane jądra atomów? (e

Bardziej szczegółowo

EFEKT CIEPLARNIANY. Efekt cieplarniany występuje, gdy atmosfera zawiera gazy pochłaniające promieniowanie termiczne (podczerwone).

EFEKT CIEPLARNIANY. Efekt cieplarniany występuje, gdy atmosfera zawiera gazy pochłaniające promieniowanie termiczne (podczerwone). Efekt cieplarniany występuje, gdy atmosfera zawiera gazy pochłaniające promieniowanie termiczne (podczerwone). Promieniowanie termiczne emitowane z powierzchni planety nie może wydostać się bezpośrednio

Bardziej szczegółowo

Szczegółowy rozkład materiału z fizyki dla klasy II gimnazjum zgodny z nową podstawą programową.

Szczegółowy rozkład materiału z fizyki dla klasy II gimnazjum zgodny z nową podstawą programową. Szczegółowy rozkład materiału z fizyki dla klasy gimnazjum zgodny z nową podstawą programową. Lekcja organizacyjna. Omówienie programu nauczania i przypomnienie wymagań przedmiotowych Tytuł rozdziału w

Bardziej szczegółowo

Funkcja rozkładu Fermiego-Diraca w różnych temperaturach

Funkcja rozkładu Fermiego-Diraca w różnych temperaturach Funkcja rozkładu Fermiego-Diraca w różnych temperaturach 1 f FD ( E) = E E F exp + 1 kbt Styczna do krzywej w punkcie f FD (E F )=0,5 przecina oś energii i prostą f FD (E)=1 w punktach odległych o k B

Bardziej szczegółowo

Podstawy fizyki sezon 1 III. Praca i energia

Podstawy fizyki sezon 1 III. Praca i energia Podstawy fizyki sezon 1 III. Praca i energia Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha F.Żarnecki Praca Rozważamy

Bardziej szczegółowo

Ćwiczenie IX KATALITYCZNY ROZKŁAD WODY UTLENIONEJ

Ćwiczenie IX KATALITYCZNY ROZKŁAD WODY UTLENIONEJ Wprowadzenie Ćwiczenie IX KATALITYCZNY ROZKŁAD WODY UTLENIONEJ opracowanie: Barbara Stypuła Celem ćwiczenia jest poznanie roli katalizatora w procesach chemicznych oraz prostego sposobu wyznaczenia wpływu

Bardziej szczegółowo

Departament Zrównoważonego Rozwoju Biuro Ochrony Przyrody i Klimatu

Departament Zrównoważonego Rozwoju Biuro Ochrony Przyrody i Klimatu Departament Zrównoważonego Rozwoju Zanieczyszczenia powietrza Zanieczyszczenia powietrza to wszelkie substancje (gazy, ciecze, ciała stałe), które znajdują się w powietrzu atmosferycznym, ale nie są jego

Bardziej szczegółowo

MAGNETYZM, INDUKCJA ELEKTROMAGNETYCZNA. Zadania MODUŁ 11 FIZYKA ZAKRES ROZSZERZONY

MAGNETYZM, INDUKCJA ELEKTROMAGNETYCZNA. Zadania MODUŁ 11 FIZYKA ZAKRES ROZSZERZONY MODUŁ MAGNETYZM, INDUKCJA ELEKTROMAGNETYCZNA OPRACOWANE W RAMACH PROJEKTU: FIZYKA ZAKRES ROZSZERZONY WIRTUALNE LABORATORIA FIZYCZNE NOWOCZESNĄ METODĄ NAUCZANIA. PROGRAM NAUCZANIA FIZYKI Z ELEMENTAMI TECHNOLOGII

Bardziej szczegółowo

Podstawy Procesów i Konstrukcji Inżynierskich. Praca, moc, energia INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA

Podstawy Procesów i Konstrukcji Inżynierskich. Praca, moc, energia INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA Podstawy Procesów i Konstrukcji Inżynierskich Praca, moc, energia Energia Energia jest to wielkość skalarna, charakteryzująca stan, w jakim znajduje się jedno lub wiele ciał. Energia jest miarą różnych

Bardziej szczegółowo

Wnikanie ciepła przy konwekcji swobodnej. 1. Wstęp

Wnikanie ciepła przy konwekcji swobodnej. 1. Wstęp Wnikanie ciepła przy konwekcji swobodnej 1. Wstęp Współczynnik wnikania ciepła podczas konwekcji silnie zależy od prędkości czynnika. Im prędkość czynnika jest większa, tym współczynnik wnikania ciepła

Bardziej szczegółowo

Zanieczyszczenia pyłowe i gazowe : podstawy obliczenia i sterowania. poziomem emisji / Ryszard Marian Janka. Warszawa, 2014 Spis treści

Zanieczyszczenia pyłowe i gazowe : podstawy obliczenia i sterowania. poziomem emisji / Ryszard Marian Janka. Warszawa, 2014 Spis treści Zanieczyszczenia pyłowe i gazowe : podstawy obliczenia i sterowania poziomem emisji / Ryszard Marian Janka. Warszawa, 2014 Spis treści Przedmowa Wykaz waŝniejszych oznaczeń i symboli IX XI 1. Emisja zanieczyszczeń

Bardziej szczegółowo

Podstawy fizyki sezon 1 VII. Ruch drgający

Podstawy fizyki sezon 1 VII. Ruch drgający Podstawy fizyki sezon 1 VII. Ruch drgający Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Ruch skutkiem działania

Bardziej szczegółowo

S ścianki naczynia w jednostce czasu przekazywany

S ścianki naczynia w jednostce czasu przekazywany FIZYKA STATYSTYCZNA W ramach fizyki statystycznej przyjmuje się, że każde ciało składa się z dużej liczby bardzo małych cząstek, nazywanych cząsteczkami. Cząsteczki te znajdują się w ciągłym chaotycznym

Bardziej szczegółowo

Wzrost fazy krystalicznej

Wzrost fazy krystalicznej Wzrost fazy krystalicznej Wydzielenie nowej fazy może różnić się of fazy pierwotnej : składem chemicznym strukturą krystaliczną orientacją krystalograficzną... faza pierwotna nowa faza Analogia elektryczna

Bardziej szczegółowo

LABORATORIUM PODSTAW BUDOWY URZĄDZEŃ DLA PROCESÓW MECHANICZNYCH

LABORATORIUM PODSTAW BUDOWY URZĄDZEŃ DLA PROCESÓW MECHANICZNYCH LABORATORIUM PODSTAW BUDOWY URZĄDZEŃ DLA PROCESÓW MECHANICZNYCH Temat: Badanie cyklonu ZAKŁAD APARATURY PRZEMYSŁOWEJ POLITECHNIKA WARSZAWSKA WYDZIAŁ BMiP 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie

Bardziej szczegółowo

FIZYKA Podręcznik: Fizyka i astronomia dla każdego pod red. Barbary Sagnowskiej, wyd. ZamKor.

FIZYKA Podręcznik: Fizyka i astronomia dla każdego pod red. Barbary Sagnowskiej, wyd. ZamKor. DKOS-5002-2\04 Anna Basza-Szuland FIZYKA Podręcznik: Fizyka i astronomia dla każdego pod red. Barbary Sagnowskiej, wyd. ZamKor. WYMAGANIA NA OCENĘ DOPUSZCZAJĄCĄ DLA REALIZOWANYCH TREŚCI PROGRAMOWYCH Kinematyka

Bardziej szczegółowo

POLITECHNIKA GDAŃSKA WYDZIAŁ MECHANICZNY

POLITECHNIKA GDAŃSKA WYDZIAŁ MECHANICZNY POLITECHNIKA GDAŃSKA WYDZIAŁ MECHANICZNY Techniki niskotemperaturowe w Inżynierii Mechaniczno Medycznej Zmiana własności ciał w temperaturach kriogenicznych Prowadzący: dr inż. Waldemar Targański Emilia

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 6 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15

Bardziej szczegółowo

Zasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd

Zasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd Zasady dynamiki Newtona Ilość ruchu, stan ruchu danego ciała opisuje pęd Siły - wektory Ilość ruchu, stan ruchu danego ciała opisuje pęd Zasady dynamiki Newtona I Każde ciało trwa w stanie spoczynku lub

Bardziej szczegółowo

MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 12 Zasady pracy i energii Prowadzący: dr Krzysztof Polko WEKTOR POLA SIŁ Wektor pola sił możemy zapisać w postaci: (1) Prawa strona jest gradientem funkcji Φ, czyli (2) POTENCJAŁ

Bardziej szczegółowo

Zadania treningowe na kolokwium

Zadania treningowe na kolokwium Zadania treningowe na kolokwium 3.12.2010 1. Stan układu binarnego zawierającego n 1 moli substancji typu 1 i n 2 moli substancji typu 2 parametryzujemy za pomocą stężenia substancji 1: x n 1. Stabilność

Bardziej szczegółowo

Wykład FIZYKA I. 11. Fale mechaniczne. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 11. Fale mechaniczne.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 11. Fale mechaniczne Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html FALA Falą nazywamy każde rozprzestrzeniające

Bardziej szczegółowo

CHEMIA I GIMNAZJUM WYMAGANIA PODSTAWOWE

CHEMIA I GIMNAZJUM WYMAGANIA PODSTAWOWE WYMAGANIA PODSTAWOWE wskazuje w środowisku substancje chemiczne nazywa sprzęt i szkło laboratoryjne opisuje podstawowe właściwości substancji będących głównymi składnikami stosowanych na co dzień produktów

Bardziej szczegółowo

Wykład Temperatura termodynamiczna 6.4 Nierówno

Wykład Temperatura termodynamiczna 6.4 Nierówno ykład 8 6.3 emperatura termodynamiczna 6.4 Nierówność Clausiusa 6.5 Makroskopowa definicja entropii oraz zasada wzrostu entropii 6.6 Entropia dla czystej substancji 6.8 Cykl Carnota 6.7 Entropia dla gazu

Bardziej szczegółowo

Fizyka statystyczna Fenomenologia przejść fazowych. P. F. Góra

Fizyka statystyczna Fenomenologia przejść fazowych. P. F. Góra Fizyka statystyczna Fenomenologia przejść fazowych P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2015 Przejście fazowe transformacja układu termodynamicznego z jednej fazy (stanu materii) do innej, dokonywane

Bardziej szczegółowo

Plan Zajęć. Ćwiczenia rachunkowe

Plan Zajęć. Ćwiczenia rachunkowe Plan Zajęć 1. Termodynamika, 2. Grawitacja, Kolokwium I 3. Elektrostatyka + prąd 4. Pole Elektro-Magnetyczne Kolokwium II 5. Zjawiska falowe 6. Fizyka Jądrowa + niepewność pomiaru Kolokwium III Egzamin

Bardziej szczegółowo

Termodynamika Część 7 Trzecia zasada termodynamiki Metody otrzymywania niskich temperatur Zjawisko Joule'a Thomsona Chłodzenie magnetyczne

Termodynamika Część 7 Trzecia zasada termodynamiki Metody otrzymywania niskich temperatur Zjawisko Joule'a Thomsona Chłodzenie magnetyczne Termodynamika Część 7 Trzecia zasada termodynamiki Metody otrzymywania niskich temperatur Zjawisko Joule'a Thomsona Chłodzenie magnetyczne Janusz Brzychczyk, Instytut Fizyki UJ Postulat Nernsta (1906):

Bardziej szczegółowo

ZADANIE 28. Wyznaczanie przewodnictwa cieplnego miedzi

ZADANIE 28. Wyznaczanie przewodnictwa cieplnego miedzi ZADANIE 28 Wyznaczanie przewodnictwa cieplnego miedzi Wstęp Pomiędzy ciałami ogrzanymi do różnych temperatur zachodzi wymiana ciepła. Ciało o wyższej temperaturze traci ciepło, a ciało o niższej temperaturze

Bardziej szczegółowo

- prędkość masy wynikająca z innych procesów, np. adwekcji, naprężeń itd.

- prędkość masy wynikająca z innych procesów, np. adwekcji, naprężeń itd. 4. Równania dyfuzji 4.1. Prawo zachowania masy cd. Równanie dyfuzji jest prostą konsekwencją prawa zachowania masy, a właściwie to jest to prawo zachowania masy zapisane dla procesu dyfuzji i uwzględniające

Bardziej szczegółowo

Świadomi dla czystego powietrza

Świadomi dla czystego powietrza Świadomi dla czystego powietrza Szkolenia z zakresu przeciwdziałania niskiej emisji Zanieczyszczenia powietrza w Polsce Zanieczyszczeniem powietrza atmosferycznego jest wprowadzenie do powietrza substancji

Bardziej szczegółowo

WYKŁAD 12 ENTROPIA I NIERÓWNOŚĆ THERMODYNAMICZNA 1/10

WYKŁAD 12 ENTROPIA I NIERÓWNOŚĆ THERMODYNAMICZNA 1/10 WYKŁAD 12 ENROPIA I NIERÓWNOŚĆ HERMODYNAMICZNA 1/10 ENROPIA PŁYNU IDEALNEGO W PRZEPŁYWIE BEZ NIECIĄGŁOŚCI Załóżmy, że przepływ płynu idealnego jest gładki, tj. wszystkie pola wielkości kinematycznych i

Bardziej szczegółowo

MECHANIKA II. Praca i energia punktu materialnego

MECHANIKA II. Praca i energia punktu materialnego MECHANIKA II. Praca i energia punktu materialnego Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/ daniel.lewandowski@pwr.edu.pl

Bardziej szczegółowo

Definicja smogu i jego rodzaje.

Definicja smogu i jego rodzaje. Smog Początki Historia smogu sięga połowy XIX wieku. Zaobserwowano go wówczas w silnie uprzemysłowionych miastach Europy. Dziś też daje się we znaki w różnych zakątkach świata smog kwaśny obserwowano w

Bardziej szczegółowo

Elektrostatyka. Prawo Coulomba Natężenie pola elektrycznego Energia potencjalna pola elektrycznego

Elektrostatyka. Prawo Coulomba Natężenie pola elektrycznego Energia potencjalna pola elektrycznego Elektrostatyka Prawo Coulomba Natężenie pola elektrycznego Energia potencjalna pola elektrycznego 1 Prawo Coulomba odpychanie naelektryzowane szkło nie-naelektryzowana miedź F 1 4 0 q 1 q 2 r 2 0 8.85

Bardziej szczegółowo

Wstęp do Geofizyki. Hanna Pawłowska Instytut Geofizyki, Wydział Fizyki, Uniwersytet Warszawski

Wstęp do Geofizyki. Hanna Pawłowska Instytut Geofizyki, Wydział Fizyki, Uniwersytet Warszawski Wstęp do Geofizyki Hanna Pawłowska Instytut Geofizyki, Wydział Fizyki, Uniwersytet Warszawski Wykład 3 Wstęp do Geofizyki - Fizyka atmosfery 2 /43 Powietrze opisuje się równaniem stanu gazu doskonałego,

Bardziej szczegółowo

Ruch drgający. Ruch harmoniczny prosty, tłumiony i wymuszony

Ruch drgający. Ruch harmoniczny prosty, tłumiony i wymuszony Ruch drgający Ruch harmoniczny prosty, tłumiony i wymuszony Ruchem drgającym nazywamy ruch ciała zachodzący wokół stałego położenia równowagi. Ruchy drgające dzielimy na ruchy: okresowe, nieokresowe. Ruch

Bardziej szczegółowo

Podstawowe pojęcia Masa atomowa (cząsteczkowa) - to stosunek masy atomu danego pierwiastka chemicznego (cząsteczki związku chemicznego) do masy 1/12

Podstawowe pojęcia Masa atomowa (cząsteczkowa) - to stosunek masy atomu danego pierwiastka chemicznego (cząsteczki związku chemicznego) do masy 1/12 Podstawowe pojęcia Masa atomowa (cząsteczkowa) - to stosunek masy atomu danego pierwiastka chemicznego (cząsteczki związku chemicznego) do masy 1/12 atomu węgla 12 C. Mol - jest taką ilością danej substancji,

Bardziej szczegółowo

Zasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd

Zasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd Zasady dynamiki Newtona Ilość ruchu, stan ruchu danego ciała opisuje pęd Zasady dynamiki Newtona I Każde ciało trwa w stanie spoczynku lub porusza się ruchem prostoliniowym i jednostajnym, jeśli siły przyłożone

Bardziej szczegółowo

Atmosfera. struktura i skład chemiczny; zmiany stanu atmosfery kluczowe dla życia na Ziemi

Atmosfera. struktura i skład chemiczny; zmiany stanu atmosfery kluczowe dla życia na Ziemi Atmosfera struktura i skład chemiczny; zmiany stanu atmosfery kluczowe dla życia na Ziemi Składniki stałe Ziemia Mars Wenus Nitrogen (N2) Oxygen (O2) Argon (Ar) Neon, Helium, Krypton 78.08% 20.95% 0.93%

Bardziej szczegółowo

STATYKA I DYNAMIKA PŁYNÓW (CIECZE I GAZY)

STATYKA I DYNAMIKA PŁYNÓW (CIECZE I GAZY) STTYK I DYNMIK PŁYNÓW (CIECZE I GZY) Ciecz idealna: brak sprężystości postaci (czyli brak naprężeń ścinających) Ciecz rzeczywista małe naprężenia ścinające - lepkość F s F n Nawet najmniejsza siła F s

Bardziej szczegółowo

MECHANIKA PŁYNÓW Płyn

MECHANIKA PŁYNÓW Płyn MECHANIKA PŁYNÓW Płyn - Każda substancja, która może płynąć, tj. pod wpływem znikomo małych sił dowolnie zmieniać swój kształt w zależności od naczynia, w którym się znajduje, oraz może swobodnie się przemieszczać

Bardziej szczegółowo

Q t lub precyzyjniej w postaci różniczkowej. dq dt Jednostką natężenia prądu jest amper oznaczany przez A.

Q t lub precyzyjniej w postaci różniczkowej. dq dt Jednostką natężenia prądu jest amper oznaczany przez A. Prąd elektryczny Dotychczas zajmowaliśmy się zjawiskami związanymi z ładunkami spoczywającymi. Obecnie zajmiemy się zjawiskami zachodzącymi podczas uporządkowanego ruchu ładunków, który często nazywamy

Bardziej szczegółowo

Załącznik nr 2 do uchwały nr 94/17 Sejmiku Województwa Mazowieckiego z dnia 20 czerwca 2017 r.

Załącznik nr 2 do uchwały nr 94/17 Sejmiku Województwa Mazowieckiego z dnia 20 czerwca 2017 r. Załącznik nr 2 do uchwały nr 94/17 Sejmiku Województwa Mazowieckiego z dnia 20 czerwca 2017 r. Opis stanu jakości powietrza w strefie miasto Radom dotyczy roku 2015 1. Lista substancji w powietrzu, ze

Bardziej szczegółowo

Warunki izochoryczno-izotermiczne

Warunki izochoryczno-izotermiczne WYKŁAD 5 Pojęcie potencjału chemicznego. Układy jednoskładnikowe W zależności od warunków termodynamicznych potencjał chemiczny substancji czystej definiujemy następująco: Warunki izobaryczno-izotermiczne

Bardziej szczegółowo

Szkła specjalne Przejście szkliste i jego termodynamika Wykład 5. Ryszard J. Barczyński, 2017 Materiały edukacyjne do użytku wewnętrznego

Szkła specjalne Przejście szkliste i jego termodynamika Wykład 5. Ryszard J. Barczyński, 2017 Materiały edukacyjne do użytku wewnętrznego Szkła specjalne Przejście szkliste i jego termodynamika Wykład 5 Ryszard J. Barczyński, 2017 Materiały edukacyjne do użytku wewnętrznego Czy przejście szkliste jest termodynamicznym przejściem fazowym?

Bardziej szczegółowo

S. Baran - Podstawy fizyki materii skondensowanej Gaz Fermiego elektronów swobodnych. Gaz Fermiego elektronów swobodnych

S. Baran - Podstawy fizyki materii skondensowanej Gaz Fermiego elektronów swobodnych. Gaz Fermiego elektronów swobodnych Gaz Fermiego elektronów swobodnych charakter idea Teoria metali Paula Drudego Teoria metali Arnolda (1900 r.) Sommerfelda (1927 r.) klasyczna kwantowa elektrony przewodnictwa elektrony przewodnictwa w

Bardziej szczegółowo

Wymiana ciepła. Ładunek jest skwantowany. q=n. e gdzie n = ±1, ±2, ±3 [1C = 6, e] e=1, C

Wymiana ciepła. Ładunek jest skwantowany. q=n. e gdzie n = ±1, ±2, ±3 [1C = 6, e] e=1, C Wymiana ciepła Ładunek jest skwantowany ładunek elementarny ładunek pojedynczego elektronu (e). Każdy ładunek q (dodatni lub ujemny) jest całkowitą wielokrotnością jego bezwzględnej wartości. q=n. e gdzie

Bardziej szczegółowo

Bryła sztywna. Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka

Bryła sztywna. Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka Bryła sztywna Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka Moment bezwładności Prawa ruchu Energia ruchu obrotowego Porównanie ruchu obrotowego z ruchem postępowym Przypomnienie Równowaga bryły

Bardziej szczegółowo

Tadeusz Lesiak. Dynamika punktu materialnego: Praca i energia; zasada zachowania energii

Tadeusz Lesiak. Dynamika punktu materialnego: Praca i energia; zasada zachowania energii Mechanika klasyczna Tadeusz Lesiak Wykład nr 4 Dynamika punktu materialnego: Praca i energia; zasada zachowania energii Energia i praca T. Lesiak Mechanika klasyczna 2 Praca Praca (W) wykonana przez stałą

Bardziej szczegółowo

Pomiar przewodności cieplnej i elektrycznej metali

Pomiar przewodności cieplnej i elektrycznej metali ĆWICZENIE 27 Pomiar przewodności cieplnej i elektrycznej metali Cel ćwiczenia: wyznaczenia współczynnika przewodzenia ciepła pręta metalowego metodą statyczną, wyznaczanie ciepła właściwego badanych materiałów

Bardziej szczegółowo

DYNAMIKA dr Mikolaj Szopa

DYNAMIKA dr Mikolaj Szopa dr Mikolaj Szopa 17.10.2015 Do 1600 r. uważano, że naturalną cechą materii jest pozostawanie w stanie spoczynku. Dopiero Galileusz zauważył, że to stan ruchu nie zmienia się, dopóki nie ingerujemy I prawo

Bardziej szczegółowo

MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 12 Zasady pracy i energii Prowadzący: dr Krzysztof Polko WEKTOR POLA SIŁ Wektor pola sił możemy zapisać w postaci: (1) Prawa strona jest gradientem funkcji Φ, czyli (2) POTENCJAŁ

Bardziej szczegółowo

IX. MECHANIKA (FIZYKA) KWANTOWA

IX. MECHANIKA (FIZYKA) KWANTOWA IX. MECHANIKA (FIZYKA) KWANTOWA IX.1. OPERACJE OBSERWACJI. a) klasycznie nie ważna kolejność, w jakiej wykonujemy pomiary. AB = BA A pomiar wielkości A B pomiar wielkości B b) kwantowo wartość obserwacji

Bardziej szczegółowo

Statyka Cieczy i Gazów. Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał

Statyka Cieczy i Gazów. Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał Statyka Cieczy i Gazów Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał 1. Podstawowe założenia teorii kinetyczno-molekularnej budowy ciał: Ciała zbudowane są z cząsteczek. Pomiędzy cząsteczkami

Bardziej szczegółowo

TERMODYNAMIKA PROCESOWA

TERMODYNAMIKA PROCESOWA TERMODYNAMIKA PROCESOWA Wykład III Podstawy termodynamiki nierównowagowej Prof. Antoni Kozioł Wydział Chemiczny Politechniki Wrocławskiej Uwagi ogólne Większość zagadnień związanych z przemianami różnych

Bardziej szczegółowo

Zagadnienia do pracy klasowej: Kinetyka, równowaga, termochemia, chemia roztworów wodnych

Zagadnienia do pracy klasowej: Kinetyka, równowaga, termochemia, chemia roztworów wodnych Zagadnienia do pracy klasowej: Kinetyka, równowaga, termochemia, chemia roztworów wodnych 1. Równanie kinetyczne, szybkość reakcji, rząd i cząsteczkowość reakcji. Zmiana szybkości reakcji na skutek zmiany

Bardziej szczegółowo

TERMODYNAMIKA I TERMOCHEMIA

TERMODYNAMIKA I TERMOCHEMIA TERMODYNAMIKA I TERMOCHEMIA Termodynamika - opisuje zmiany energii towarzyszące przemianom chemicznym; dział fizyki zajmujący się zjawiskami cieplnymi. Termochemia - dział chemii zajmujący się efektami

Bardziej szczegółowo