Cwiczenie 3 - Rozkłady empiryczne i. teoretyczne
|
|
- Sławomir Małek
- 6 lat temu
- Przeglądów:
Transkrypt
1 Cwiczenie 3 - Rozkłady empiryczne i teoretyczne Michał Marosz 35 listopada
2 Spis treści Rozkład empiryczny i dystrybuanta empiryczna 6 Estymacja parametrów rozkładów teoretycznych 8 Zmienne dyskretne - rozkłady teoretyczne 15 Rozkład Bernouli ego Rozkład Poisson a Zmienne ciągłe - rozkłady teoretyczne 19 Rozkład Gauss a Rozkład Gamma Rozkład Weibull a Rozkład GEV (Generalized Extreme Value) Rozklady wykorzystywane często we wnioskowaniu statystycznym 20 Rozkład t-studenta Rozklad χ Rozkład Fishera-Snedecora Przykład analizy z wykorzytaniem rozkładu Weibull a 21 2
3 Analiza właściwości zmiennych jest jednym z podstawowych zadan z jakimi przyjdzie sie Wam zmierzyć, w trakcie analizy danych. Dlatego rozpoczniemy od analizy rozkładów empirycznych a nastepnie wrowadzimy pojęcia i praktyczne zastosowanie dostepnych w R rozkladów teoretycznych, które najczęściej znajduja zastosowanie w analizach z zakresu Klimatologii. W R dostępnych jest cala gama rozkladów teoretycznych. Wystarczy w pomocy Rstudio wpisac distributions i otrzymamy dostęp do do informacji z tego zakresu. Istotnym jest aby nauczyć sie zadawać R odpowiednie pytania w analizach rozkladów. I tak, jeżeli chcemy uzyskać informację o wartości gęstości prawdopodobieństwa w określonym rozkładzie i dla konkretnej wartości skrót nazwy rozkładu poprzedzimy literą d (od Density) np. wpisując: dnorm(3, 2, 1.5) ## [1] jako rezultat otrzymamy prawdopodobieństwo wystapienia wartości zmiennej 3, jeżeli ma ona rozklad normalny (Gauss a) o µ = 2 i σ = 1.5. Można to graficznie przedstawic w sposob nastepujący: curve(dnorm(x, 2, 1.5), xlim=c(-3, 7), col=2, lwd=2, add=f) abline(v=3, h=dnorm(3, 2, 1.5), lty=3) box(lwd=2) 3
4 dnorm(x, 2, 1.5) x Kolejną informację której możemy pożądać stanowi wartość prawdopodobieństwa, że przy założeniu okreslonego rozkładu przekroczona zostanie (lub też nie), określona wartość. Wówczas posłuzymy się przedrostkiem p np.: pnorm(3, 2, 1.5) ## [1] udzieli nam to odpowiedzi na pytanie jakie jest prawdopodobieństwo że w rozkładzie normalnym o µ = 2 i σ = 1.5 wartość będzie niższa od 3. Jeżeli natomiast interesuje nas to, czy będzie ona wieksza uzyjemy dodatkowego argumentu lower.tail=false np.: pnorm(3, 2, 1.5, lower.tail = FALSE) ## [1] można oczywiście wykorzystac poprzedni kod ale wynik trzeba odjąc od 1. 4
5 1-pnorm(3, 2, 1.5) ## [1] Np. analizzujemy rozkład wartości średniej dobowej temperatury powietrza dla jednego z miesięcy letnich. Załóżmy, ze jest to rozkład normalny o µ = 15 i σ = 3.2. jakie jest prawdopodobieństwo, że średnia dobowa temperatura powietrza spadnie poniżej 10 pnorm(10, 15, 3.2) ## [1] albo ze przekroczy 22 pnorm(22, 15, 3.2, lower.tail = FALSE) ## [1] Można oczywiście przemnożyc wynik przez 100 i ladnie zaokrąglić, aby otrzymac wartość w % round(100*pnorm(22, 15, 3.2, lower.tail = FALSE), digits=1) ## [1] 1.4 Kolejnym z pytań które można zadawać R odnosi się do wartości o konkretnym prawdopodobieństwie przekroczenia, czyli innymi słowy poszukujemy wartości kwantyla. W tym wyapdku nasz predrostek to q a dla rozkładu normalnego o µ = 15 i σ = 3.2 o wartość której prawdopodobieństwo przekroczenia wynosi 1% można zapytać się w sposób nastepujący: 5
6 qnorm(0.99, 15, 3.2) ## [1] lub z uwgzlędnieniem argumentu lower.tail qnorm(0.01, 15, 3.2, lower.tail = FALSE) ## [1] Rozkład empiryczny i dystrybuanta empiryczna Rozkład empiryczny zazwyczaj przedstawia sie z wykorzystaniem histogramu natomiast dystrybuante empiryczną z wykorzystaniem funkcji ecdf Utwórznmy wektor 100 losowych wartości o rozkładzie normalnym o µ = 15 i σ = 3.2 set.seed(1000) data=rnorm(50, 15, 3.2) hist(data, prob=t) 6
7 Histogram of data Density data Aby dodać do powyższego histogramu dystrybuantę empiryczną posłużymy sie funkcją ecdf hist(data, prob=t, ylim=c(0,1)) plot(ecdf(data), vertical=false, pch="", add=t, lwd=2) ## Warning in segments(ti.l, y, ti.r, y, col = col.hor, lty = lty, lwd = ## lwd, : 'vertical' nie jest parametrem graficznym 7
8 Histogram of data Density data Estymacja parametrów rozkładów teoretycznych W przypadku rozkładu normalnego (Gauss a) estymacja parametrów nie nastręcza większych problemów. Średnia µ oraz odchylenie standardowe σ są wysttarczająco dorymi estymatorami parametrów rozkladu normalnego. Jednak dla pozostałych rozkladów niezbędne jest posłużenie sie dodatkowymi funkcjami pozwalającymi na dopasowanie parametrów rozkładów w tym celu niezbędne jest zainstalowanie paczki fitdistplus Dopasujmy parametry rozkładu Gaussa za pomocą funkcji fitdist do temperatur powietrza w kwietniu. dane=read.table("air.txt", header=t) attach(dane) temp04=temp[which(mc==4)] hist(temp04) 8
9 Histogram of temp04 Frequency temp04 policzmy wartość średnią µ oraz odchylenie standardowe σ mean(temp04) ## [1] sd(temp04) ## [1] Teraz spawwdzmy jakie wartości parametrów dopasuje funkcja fitdis z wykorzystaniem metody najwiekszej wiarygodności (mle), będącej standardem we współczesnych analizach. Wpiszmy nastepujący kod: 9
10 library("fitdistrplus", lib.loc="~/r/x86_64-pc-linux-gnu-library/3.2") ## Loading required package: MASS normal_fit = fitdist(temp04, dnorm, method = "mle") Zwróćcie uwagę wynik analiz jest obiektem, ktory można poddać dalszej analizie w celu oceny dopadowania np.: plot(normal_fit) Empirical and theoretical dens. Q Q plot Density Empirical quantiles Data Theoretical quantiles CDF Empirical and theoretical CDFs Empirical probabilities P P plot Data Theoretical probabilities Można również wyciągnąc wartości parametrów ze zmiennej estimate będącej jedna ze składowych obiektu. 10
11 normal_fit$estimate ## mean sd ## Teraz możemy wykreślic ponownie histogram i dodac do niego krzywą rozkładu normalnego wykreslona na podstawie dopasowanych parametrów. Wypreparujmy je najpierw z obiektu mean04=as.numeric(normal_fit$estimate[1]) sd04=as.numeric(normal_fit$estimate[2]) hist(temp04, prob=t, xlim=c(0,14)) curve(dnorm(x, mean04, sd04), add=t, col=2, lwd=2) Histogram of temp04 Density temp04 Istnieje również klasa wykresów przeznaczona specjalnie do wizualnego porównywania rozkadów empirycznych z teoretycznym normalnym: qqnorm 11
12 qqnorm(temp04) qqline(temp04, col=2, lwd=2) Normal Q Q Plot Sample Quantiles Theoretical Quantiles Weryfikację jakości dopasowania można przeprowadzić wizualnie za pomocą uprzednio wywołanej funkcji plot/qqnorm lub zaprząc do tego nieco bardziej sformalizowane testy np.: Shapiro-Wilk a shapiro.test shapiro.test(temp04) ## ## Shapiro-Wilk normality test ## ## data: temp04 ## W = , p-value = Dla jasności wygenerujmy dane o rozkładzie innym niż normalny i sprawdzmy wykresy oraz wartości z powyższego testu. 12
13 set.seed(1000) dane_weibull=rweibull(1000, 1.3, 2.5) hist(dane_weibull, prob=t, xlim=c(-5, 12)) curve(dnorm(x, mean(dane_weibull), sd(dane_weibull)), col=2, lwd=2, add=t) Histogram of dane_weibull Density dane_weibull qqplot(dane_weibull, rnorm(1000, mean(dane_weibull), sd(dane_weibull))) abline(0,1, col=2, lwd=2) 13
14 rnorm(1000, mean(dane_weibull), sd(dane_weibull)) dane_weibull shapiro.test(dane_weibull) ## ## Shapiro-Wilk normality test ## ## data: dane_weibull ## W = , p-value < 2.2e-16 14
15 Zmienne dyskretne - rozkłady teoretyczne Rozkład Bernouli ego Prawdopodobieństo osiągnięcia dokładnie k sukcesów w n próbach jest okreslone jako f(k; n, p) = Pr(X = k) = ( ) n p k (1 p) n k k dla k = 0, 1, 2,..., n, gdzie: ( ) n = k n! k!(n k)! Na przykład jeżeli prawdopodobieństwo jednostkowego sukcesu wynosi 0.3 to wówczas PDF oraz CDF dla 10 prób wyglądają następująco: barplot(dbinom(0:10, 10, 0.3), names=0:10, col="black", ylim=c(0, 1)) barplot(pbinom(0:10, 10, 0.3), names=0:10,add=t, col=rgb(1,0,0,0.5)) Zadanie: Załóżmy, że posiadamy 150 letnią serię informacji o zamarzaniu akwenu X. W tym czasie wystąpiło 17 lat w których zamarzł on całkowicie uniemożliwiając żegluge. Wykorzystując rozklad dwumianowy oblicz 15
16 a) że zamarznie on w ciągu dekady 3 razy lub więcej b) że zamarznie on conajwyżej 2 razy Rozkład Poisson a f(k, λ) = λk e λ k! gdzie: e jest podstawą logarytmu naturalnego (e = 2, ) k jest liczbą wystąpień zdarzenia - prawdopodobieństwo, dane funkcją k! jest silnią k λ jest dodatnią liczbą rzeczywistą, równą oczekiwanej liczbie zdarzeń w danym przedziale czasu plot(dpois(0:20, 1), ylim=c(0,0.40), type="l", lwd=2, ylab="pdf", xlab="liczba wystąpień") lines(dpois(0:20, 4), col=2, lwd=2) lines(dpois(0:20, 10), col=3, lwd=2) legend(15, 0.4, legend=c("lambda=1", "lambda=4", "lambda=10"), lwd=c(2,2,2), col=c(1,2,3), box.lty = 0) 16
17 PDF lambda=1 lambda=4 lambda= Liczba wystąpień plot(ppois(0:20, 1), ylim=c(0,1), type="l", lwd=2, ylab="cdf", xlab="liczba wystąpień") lines(ppois(0:20, 4), col=2, lwd=2) lines(ppois(0:20, 10), col=3, lwd=2) legend(15, 0.8, legend=c("lambda=1", "lambda=4", "lambda=10"), lwd=c(2,2,2), col=c(1,2,3), box.lty = 0) 17
18 CDF lambda=1 lambda=4 lambda= Liczba wystąpień Zadanie: Załóżmy że obserwacje wykazały, iż przeciętnie w sezonie letnim (VI-VIII) wystepuje 5,4 burze. Wykorzystując funkcje dostepne w R oblicz jakie jest prawdopodobieństwo, że w sezonie letnim wystapi ponad 10 burz. 18
19 Zmienne ciągłe - rozkłady teoretyczne Rozkład Gauss a f(x µ, σ) = 1 σ (x µ) 2 2π e 2σ 2 Rozkład Gamma f(x; k, θ) = xk 1 e x θ θ k Γ(k) for x > 0 and k, θ > 0. Rozkład Weibull a ( ) k 1 k x λ λ e (x/λ) k x 0, f(x; λ, k) = 0 x < 0, Rozkład GEV (Generalized Extreme Value) 19
20 Rozklady wykorzystywane często we wnioskowaniu statystycznym Rozkład t-studenta Rozklad χ 2 Rozkład Fishera-Snedecora 20
21 Przykład analizy z wykorzytaniem rozkładu Weibull a Załóżmy, że naszym zadaniem jest dopasowanie parametrów rozkładu Wiebull a do danych odnoszących się do prędkości wiatru w określonym punkcie. Wczytajmy dane dane = read.table("data.txt", header=t) Dołączmy obiekt dane w celu łatwiejszego korzystania z zawartych w nim zmiennych attach(dane) ## Następujący obiekt został zakryty z dane (pos = 5): ## ## MC Zobaczmy jak wygląda rozklad empiryczny danych hist(vel) 21
22 Histogram of VEL Frequency oraz wykres liniowy VEL plot(vel, type="l") VEL Index Cykl roczny danych 22
23 boxplot(vel~mc) Nauczmy się rysowac osobne histogramy dla pór roku z wykorzsytaniem pętli for par(mfrow=c(2,2)) for(i in c("zima", "WIOSNA", "LATO", "JESIEN")) { hist(vel[which(season == i)], prob=t, main= i, xlab=expression(ms^-1), breaks=seq(0, 40, 2.5), col=2 ) } 23
24 ZIMA WIOSNA Density Density ms 1 ms 1 LATO JESIEN Density Density ms 1 ms 1 Dokonajmy przykładowego dopasowania i jego analizy dla sezonu zimowego. Wczytajmy teraz bibliotekę fitdistplus w celu estymacji parametrów rozkladu Weibull a. Sprawdzmy uprzedimo w helpie jakie parametry będziemy estymować fit_wei_djf = fitdist(vel[which(season== "ZIMA")], distr = "weibull", method = "mle") plot(fit_wei_djf) 24
25 Empirical and theoretical dens. Q Q plot Density Empirical quantiles Data Theoretical quantiles CDF Empirical and theoretical CDFs Empirical probabilities P P plot Data Theoretical probabilities Odczytanie parametrów odbywa się poprzez zapytanie odnośnie jednego z obiektów w dopasowanym modelu (obiekcie: fit_wei_djf). Jeżeli rozwiniecie szczegóły zobaczycie, że jest tam obiekt estimate który składa się z dwóch liczb. Liczby te to dopasowane parametry rozkładu Weibull a fit_wei_djf$estimate ## shape scale ## Jak widać mamy dwa parametry: shape - kształtu oraz scale - skali. aby wykorzystać je jako wartości liczbowe, np. w kresleniu dopasowanego rozkładu na histogramie, lub określaniu wartości kwantyli należy wykorzytac polecenie as.numeric 25
26 parametry_djf = as.numeric(fit_wei_djf$estimate) do tego obiektu możemy odwoływac sie juz bezpośrednio parametry_djf ## [1] Wykreślmy histogram z dopadowanym rozkładem Weibulla, resetując uprzednio parametry graficzne R. dev.off() ## null device ## 1 hist(vel[which(season== "ZIMA")], prob=t, xlab=expression(ms^-1), main="zima") curve(dweibull(x, parametry_djf[1], parametry_djf[2]), add=t, col=2, lwd=2) ZIMA Density ms 1 26
27 Jak widac, dopasowanie jest bardzo dobre. Obliczmy w takim razie wartości kwantyli o okreslonym prawdopodobieństwie przekroczenia. Np. 1% qweibull(0.99, parametry_djf[1], parametry_djf[2]) ## [1] Interpretacja: raz na sto przypadków prędkość wiatru przekroczy w sezonie zimowym 24ms-1.. Nalezy przy tym uwzględnić rozdzielczość czasową danych (w tym wyapdku 6h). Czyli w miesiącu mamy 124 (31 dniowy) lub 120 (30 dniowy) pomiarów. Tak więc takie wartości będa przekraczane przynajniej raz w miesiącu. Można oczywiście obliczyć kwantyle wyższych rzędów np.: 0.999, Mozna to wykonać za jednym zamachem wpisując określone wartości bezpośrednio w funkcji qweibull(c(0.99, 0.999, ), parametry_djf[1], parametry_djf[2]) ## [1] Otrzymamy wowczas wartości kwantyli o prawdopodobieństwie przekroczenia: 1%, 0.1% oraz 0.01% czyli takich które wystapią 1/100, 1/1000 oraz 1/10000 pomiarów. Zadanie: Na podstawie otrzymanych danych. Dopasuj parametry rozkladu Weibull a dla poszczególnych miesięcy oraz dokonaj analizy wystepowania ekstremalnych wartości prędkości wiatru w cyklu rocznym. Wykorzystaj R, przygotuj wykresy i tabele, a analize graficzną okraś opisem na 2000 znaków. 27
Cwiczenie 3 - Rozkłady empiryczne i. teoretyczne
Cwiczenie 3 - Rozkłady empiryczne i teoretyczne Michał Marosz 31 października 2015 1 Spis treści Rozkład empiryczny i dystrybuanta empiryczna 6 Estymacja parametrów rozkładów teoretycznych 8 Zmienne dyskretne
Wnioskowanie Statystyczne - Ćwiczenia Michał Marosz Monday, February 23, 2015
Wnioskowanie Statystyczne - Ćwiczenia Michał Marosz Monday, February 23, 2015 Zadanie 1 Załaduj do R dane udostepnione na poprzednich zajęciach i wyświetl podstwowe informacje o zawartych tam danych setwd("d:/!climate/pulpit")
g) wartość oczekiwaną (przeciętną) i wariancję zmiennej losowej K.
TEMAT 1: WYBRANE ROZKŁADY TYPU SKOKOWEGO ROZKŁAD DWUMIANOWY (BERNOULLIEGO) Zadanie 1-1 Prawdopodobieństwo nieprzekroczenia przez pewien zakład pracy dobowego limitu zużycia energii elektrycznej (bez konieczności
Estymacja parametrów w modelu normalnym
Estymacja parametrów w modelu normalnym dr Mariusz Grządziel 6 kwietnia 2009 Model normalny Przez model normalny będziemy rozumieć rodzine rozkładów normalnych N(µ, σ), µ R, σ > 0. Z Centralnego Twierdzenia
Wykład 15. Metody nieparametryczne. Elementy analizy wielowymiarowej Weryfikacja założenia o normalności rozkładu populacji
Wykład 15. Metody nieparametryczne. Elementy analizy wielowymiarowej. 9.06.08 Weryfikacja założenia o normalności rozkładu populacji Dane są obserwacje x 1, x 2,..., x n. Czy można założyć, że x 1, x 2,...,
STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE
STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE 1 W trakcie badania obliczono wartości średniej (15,4), mediany (13,6) oraz dominanty (10,0). Określ typ asymetrii rozkładu. 2 Wymień 3 cechy rozkładu Gauss
Modele i wnioskowanie statystyczne (MWS), sprawozdanie z laboratorium 1
Modele i wnioskowanie statystyczne (MWS), sprawozdanie z laboratorium 1 Konrad Miziński, nr albumu 233703 1 maja 2015 Zadanie 1 Parametr λ wyestymowano jako średnia z próby: λ = X n = 3.73 Otrzymany w
W4 Eksperyment niezawodnościowy
W4 Eksperyment niezawodnościowy Henryk Maciejewski Jacek Jarnicki Jarosław Sugier www.zsk.iiar.pwr.edu.pl Badania niezawodnościowe i analiza statystyczna wyników 1. Co to są badania niezawodnościowe i
7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej
7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej Definicja 1 n-elementowa losowa próba prosta nazywamy ciag n niezależnych zmiennych losowych o jednakowych rozkładach
Środowisko R Założenie normalności metody nieparametryczne Wykład R4; 4.06.07 Weryfikacja założenia o normalności rozkładu populacji
Środowisko R Założenie normalności metody nieparametryczne Wykład R4; 4.06.07 Weryfikacja założenia o normalności rozkładu populacji Dane są obserwacje x 1, x 2,..., x n. Czy można założyć, że x 1, x 2,...,
Wykład 7 Testowanie zgodności z rozkładem normalnym
Wykład 7 Testowanie zgodności z rozkładem normalnym Wrocław, 05 kwietnia 2017 Rozkład normalny Niech X = (X 1, X 2,..., X n ) będzie próbą z populacji o rozkładzie normalnym określonym przez dystrybuantę
1 Estymacja przedziałowa
1 Estymacja przedziałowa 1. PRZEDZIAŁY UFNOŚCI DLA ŚREDNIEJ (a) MODEL I Badana cecha ma rozkład normalny N(µ, σ) o nieznanym parametrze µ i znanym σ. Przedział ufności: [ ( µ x u 1 α ) ( σn ; x + u 1 α
Metody matematyczne w analizie danych eksperymentalnych - sygnały, cz. 2
Metody matematyczne w analizie danych eksperymentalnych - sygnały, cz. 2 Dr hab. inż. Agnieszka Wyłomańska Faculty of Pure and Applied Mathematics Hugo Steinhaus Center Wrocław University of Science and
Rozkład zmiennej losowej Polega na przyporządkowaniu każdej wartości zmiennej losowej prawdopodobieństwo jej wystąpienia.
Rozkład zmiennej losowej Polega na przyporządkowaniu każdej wartości zmiennej losowej prawdopodobieństwo jej wystąpienia. D A R I U S Z P I W C Z Y Ń S K I 2 2 ROZKŁAD ZMIENNEJ LOSOWEJ Polega na przyporządkowaniu
Środowisko R wprowadzenie c.d. Wykład R2; 21.05.07 Struktury danych w R c.d.
Środowisko R wprowadzenie c.d. Wykład R2; 21.05.07 Struktury danych w R c.d. Oprócz zmiennych i wektorów strukturami danych w R są: macierze; ramki (ang. data frames); listy; klasy S3 1 Macierze Macierze
Generowanie ciągów pseudolosowych o zadanych rozkładach przykładowy raport
Generowanie ciągów pseudolosowych o zadanych rozkładach przykładowy raport Michał Krzemiński Streszczenie Projekt dotyczy metod generowania oraz badania własności statystycznych ciągów liczb pseudolosowych.
Spis treści 3 SPIS TREŚCI
Spis treści 3 SPIS TREŚCI PRZEDMOWA... 1. WNIOSKOWANIE STATYSTYCZNE JAKO DYSCYPLINA MATEMATYCZNA... Metody statystyczne w analizie i prognozowaniu zjawisk ekonomicznych... Badania statystyczne podstawowe
R ozkład norm alny Bardzo często używany do modelowania symetrycznych rozkładów zmiennych losowych ciągłych
R ozkład norm alny Bardzo często używany do modelowania symetrycznych rozkładów zmiennych losowych ciągłych Przykłady: Błąd pomiarowy Wzrost, wydajność Temperatura ciała Zawartość różnych składników we
Kwantyle. Kwantyl rzędu p rozkładu prawdopodobieństwa to taka liczba x p. , że. Możemy go obliczyć z dystrybuanty: P(X x p.
Kwantyle Kwantyl rzędu p rozkładu prawdopodobieństwa to taka liczba x p, że P(X x p ) p P(X x p ) 1 p Możemy go obliczyć z dystrybuanty: Jeżeli F(x p ) = p, to x p jest kwantylem rzędu p Jeżeli F(x p )
Weryfikacja hipotez statystycznych
Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta
Rozkład normalny. Marcin Zajenkowski. Marcin Zajenkowski () Rozkład normalny 1 / 26
Rozkład normalny Marcin Zajenkowski Marcin Zajenkowski () Rozkład normalny 1 / 26 Rozkład normalny Krzywa normalna, krzywa Gaussa, rozkład normalny Rozkłady liczebności wielu pomiarów fizycznych, biologicznych
METODY ESTYMACJI PUNKTOWEJ. nieznanym parametrem (lub wektorem parametrów). Przez X będziemy też oznaczać zmienną losową o rozkładzie
METODY ESTYMACJI PUNKTOWEJ X 1,..., X n - próbka z rozkładu P θ, θ Θ, θ jest nieznanym parametrem (lub wektorem parametrów). Przez X będziemy też oznaczać zmienną losową o rozkładzie P θ. Definicja. Estymatorem
Temat: Zmienna losowa. Rozkład skokowy. Rozkład ciągły. Kody kolorów: Ŝółty nowe pojęcie pomarańczowy uwaga. Anna Rajfura, Matematyka
Temat: Zmienna losowa. Rozkład skokowy. Rozkład ciągły Kody kolorów: Ŝółty nowe pojęcie pomarańczowy uwaga 1 Zagadnienia 1. Przypomnienie wybranych pojęć rachunku prawdopodobieństwa. Zmienna losowa. Rozkład
Statystyka w przykładach
w przykładach Tomasz Mostowski Zajęcia 10.04.2008 Plan Estymatory 1 Estymatory 2 Plan Estymatory 1 Estymatory 2 Własności estymatorów Zazwyczaj w badaniach potrzebujemy oszacować pewne parametry na podstawie
Statystyka matematyczna. Wykład VI. Zesty zgodności
Statystyka matematyczna. Wykład VI. e-mail:e.kozlovski@pollub.pl Spis treści 1 Testy zgodności 2 Test Shapiro-Wilka Test Kołmogorowa - Smirnowa Test Lillieforsa Test Jarque-Bera Testy zgodności Niech x
Metody Statystyczne. Metody Statystyczne.
gkrol@wz.uw.edu.pl #4 1 Sprawdzian! 5 listopada (ok. 45-60 minut): - Skale pomiarowe - Zmienne ciągłe i dyskretne - Rozkład teoretyczny i empiryczny - Miary tendencji centralnej i rozproszenia - Standaryzacja
Prawdopodobieństwo i statystyka
Wykład II: Zmienne losowe i charakterystyki ich rozkładów 13 października 2014 Zmienne losowe Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Definicja zmiennej losowej i jej
Eksploracja Danych. Testowanie Hipotez. (c) Marcin Sydow
Testowanie Hipotez Wprowadzenie Testy statystyczne: pocz. XVII wieku (prace J.Arbuthnotta, liczba urodzeń noworodków obu płci w Londynie) Testowanie hipotez: Karl Pearson (pocz. XX w., testowanie zgodności,
Weryfikacja hipotez statystycznych za pomocą testów statystycznych
Weryfikacja hipotez statystycznych za pomocą testów statystycznych Weryfikacja hipotez statystycznych za pomocą testów stat. Hipoteza statystyczna Dowolne przypuszczenie co do rozkładu populacji generalnej
MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ
MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ Opracowała: Milena Suliga Wszystkie pliki pomocnicze wymienione w treści
Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki
Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Przetwarzanie Sygnałów Studia Podyplomowe, Automatyka i Robotyka. Wstęp teoretyczny Zmienne losowe Zmienne losowe
Matematyka z el. statystyki, # 6 /Geodezja i kartografia II/
Matematyka z el. statystyki, # 6 /Geodezja i kartografia II/ Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Głęboka 28, bud. CIW, p. 221 e-mail: zdzislaw.otachel@up.lublin.pl
Statystyka opisowa. Robert Pietrzykowski.
Statystyka opisowa Robert Pietrzykowski email: robert_pietrzykowski@sggw.pl www.ekonometria.info 2 Na dziś Sprawy bieżące Przypominam, że 14.11.2015 pierwszy sprawdzian Konsultacje Sobota 9:00 10:00 pok.
Zad. 4 Należy określić rodzaj testu (jedno czy dwustronny) oraz wartości krytyczne z lub t dla określonych hipotez i ich poziomów istotności:
Zadania ze statystyki cz. 7. Zad.1 Z populacji wyłoniono próbę wielkości 64 jednostek. Średnia arytmetyczna wartość cechy wyniosła 110, zaś odchylenie standardowe 16. Należy wyznaczyć przedział ufności
Zwiększenie wartości zmiennej losowej o wartość stałą: Y=X+a EY=EX+a D 2 Y=D 2 X
Własności EX, D 2 X i DX przy przekształceniach liniowych Zwiększenie wartości zmiennej losowej o wartość stałą: Y=X+a EY=EX+a D 2 Y=D 2 X Przemnożenie wartości zmiennej losowej przez wartość stałą: Y=a*X
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 3 - model statystyczny, podstawowe zadania statystyki matematycznej
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 3 - model statystyczny, podstawowe zadania statystyki matematycznej Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 3 1 / 8 ZADANIE z rachunku
W3 - Niezawodność elementu nienaprawialnego
W3 - Niezawodność elementu nienaprawialnego Henryk Maciejewski Jacek Jarnicki Jarosław Sugier www.zsk.iiar.pwr.edu.pl Niezawodność elementu nienaprawialnego 1. Model niezawodności elementu nienaprawialnego
Statystyka. Magdalena Jakubek. kwiecień 2017
Statystyka Magdalena Jakubek kwiecień 2017 1 Nauka nie stara się wyjaśniać, a nawet niemal nie stara się interpretować, zajmuje się ona głównie budową modeli. Model rozumiany jest jako matematyczny twór,
Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory
Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl
Rozkłady prawdopodobieństwa
Tytuł Spis treści Wersje dokumentu Instytut Matematyki Politechniki Łódzkiej 10 grudnia 2011 Spis treści Tytuł Spis treści Wersje dokumentu 1 Wartość oczekiwana Wariancja i odchylenie standardowe Rozkład
Rozkłady statystyk z próby
Rozkłady statystyk z próby Rozkłady statystyk z próby Przypuśćmy, że wykonujemy serię doświadczeń polegających na 4 krotnym rzucie symetryczną kostką do gry, obserwując liczbę wyrzuconych oczek Nr kolejny
Estymacja punktowa i przedziałowa
Temat: Estymacja punktowa i przedziałowa Kody znaków: żółte wyróżnienie nowe pojęcie czerwony uwaga kursywa komentarz 1 Zagadnienia 1. Statystyczny opis próby. Idea estymacji punktowej pojęcie estymatora
ANALIZA STATYSTYCZNA WYNIKÓW BADAŃ
ANALIZA STATYSTYCZNA WYNIKÓW BADAŃ Dopasowanie rozkładów Dopasowanie rozkładów- ogólny cel Porównanie średnich dwóch zmiennych 2 zmienne posiadają rozkład normalny -> test parametryczny (t- studenta) 2
Instytut Fizyki Politechniki Łódzkiej Laboratorium Metod Analizy Danych Doświadczalnych Ćwiczenie 3 Generator liczb losowych o rozkładzie Rayleigha.
Instytut Fizyki Politechniki Łódzkiej Laboratorium Metod Analizy Danych Doświadczalnych Generator liczb losowych o rozkładzie Rayleigha. Generator liczb losowych o rozkładzie Rayleigha. 1. Cel ćwiczenia
Niezawodność diagnostyka systemów laboratorium. Ćwiczenie 2
dr inż. Jacek Jarnicki doc. PWr Niezawodność diagnostyka systemów laboratorium Ćwiczenie 2 1. Treść ćwiczenia Generowanie realizacji zmiennych losowych i prezentacja graficzna wyników losowania. Symulacja
Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładach wykładniczych, przy czym Y EX = 4 i EY = 6. Rozważamy zmienną losową Z =.
Prawdopodobieństwo i statystyka 3..00 r. Zadanie Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładach wykładniczych, przy czym Y EX 4 i EY 6. Rozważamy zmienną losową Z. X + Y Wtedy (A) EZ 0,
Statystyka matematyczna. Wykład III. Estymacja przedziałowa
Statystyka matematyczna. Wykład III. e-mail:e.kozlovski@pollub.pl Spis treści Rozkłady zmiennych losowych 1 Rozkłady zmiennych losowych Rozkład χ 2 Rozkład t-studenta Rozkład Fischera 2 Przedziały ufności
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 11 i 12 - Weryfikacja hipotez statystycznych
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 11 i 12 - Weryfikacja hipotez statystycznych Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 11 i 12 1 / 41 TESTOWANIE HIPOTEZ - PORÓWNANIE
Prawdopodobieństwo i statystyka
Wykład VII: Rozkład i jego charakterystyki 22 listopada 2016 Uprzednio wprowadzone pojęcia i ich własności Definicja zmiennej losowej Zmienna losowa na przestrzeni probabilistycznej (Ω, F, P) to funkcja
HISTOGRAM. Dr Adam Michczyński - METODY ANALIZY DANYCH POMIAROWYCH Liczba pomiarów - n. Liczba pomiarów - n k 0.5 N = N =
HISTOGRAM W pewnych przypadkach interesuje nas nie tylko określenie prawdziwej wartości mierzonej wielkości, ale także zbadanie całego rozkład prawdopodobieństwa wyników pomiarów. W takim przypadku wyniki
PODSTAWOWE ROZKŁADY ZMIENNYCH LOSOWYCH
PODSTAWOWE ROZKŁADY ZMIENNYCH LOSOWYCH Szkic wykładu 1 Podstawowe rozkłady zmiennej losowej skokowej Rozkład dwupunktowy Rozkład dwumianowy Rozkład Poissona 2 Rozkład dwupunktowy Rozkład dwumianowy Rozkład
Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki
Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Spis treści I. Wzory ogólne... 2 1. Średnia arytmetyczna:... 2 2. Rozstęp:... 2 3. Kwantyle:... 2 4. Wariancja:... 2 5. Odchylenie standardowe:...
Statystyka matematyczna dla leśników
Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 2013/2014 Wykład 3 Zmienna losowa i jej rozkłady Zdarzenia losowe Pojęcie prawdopodobieństwa
1 Podstawy rachunku prawdopodobieństwa
1 Podstawy rachunku prawdopodobieństwa Dystrybuantą zmiennej losowej X nazywamy prawdopodobieństwo przyjęcia przez zmienną losową X wartości mniejszej od x, tzn. F (x) = P [X < x]. 1. dla zmiennej losowej
Rozkłady prawdopodobieństwa zmiennych losowych
Rozkłady prawdopodobieństwa zmiennych losowych Rozkład dwumianowy Rozkład normalny Marta Zalewska Zmienna losowa dyskretna (skokowa) jest to zmienna, której zbór wartości jest skończony lub przeliczalny.
Statystyka matematyczna. Wykład IV. Weryfikacja hipotez statystycznych
Statystyka matematyczna. Wykład IV. e-mail:e.kozlovski@pollub.pl Spis treści 1 2 3 Definicja 1 Hipoteza statystyczna jest to przypuszczenie dotyczące rozkładu (wielkości parametru lub rodzaju) zmiennej
Biostatystyka, # 3 /Weterynaria I/
Biostatystyka, # 3 /Weterynaria I/ dr n. mat. Zdzisław Otachel Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Głęboka 28, p. 221 bud. CIW, e-mail: zdzislaw.otachel@up.lublin.pl
STATYSTYKA POWTORZENIE. Dr Wioleta Drobik-Czwarno
STATYSTYKA POWTORZENIE Dr Wioleta Drobik-Czwarno Populacja Próba Parametry EX, µ Statystyki średnia D 2 X, δ 2 S 2 wnioskowanie DX, δ p ρ S w r...... JAK POWSTAJE MODEL MATEMATYCZNY Dane eksperymentalne
Matematyka z el. statystyki, # 3 /Geodezja i kartografia II/
Matematyka z el. statystyki, # 3 /Geodezja i kartografia II/ Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Akademicka 15, p.211a bud. Agro II, e-mail: zdzislaw.otachel@up.lublin.pl
Estymacja parametrów rozkładu cechy
Estymacja parametrów rozkładu cechy Estymujemy parametr θ rozkładu cechy X Próba: X 1, X 2,..., X n Estymator punktowy jest funkcją próby ˆθ = ˆθX 1, X 2,..., X n przybliżającą wartość parametru θ Przedział
Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16
Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego
OBLICZENIE PRZEPŁYWÓW MAKSYMALNYCH ROCZNYCH O OKREŚLONYM PRAWDOPODOBIEŃSTWIE PRZEWYŻSZENIA. z wykorzystaniem programu obliczeniowego Q maxp
tel.: +48 662 635 712 Liczba stron: 15 Data: 20.07.2010r OBLICZENIE PRZEPŁYWÓW MAKSYMALNYCH ROCZNYCH O OKREŚLONYM PRAWDOPODOBIEŃSTWIE PRZEWYŻSZENIA z wykorzystaniem programu obliczeniowego Q maxp DŁUGIE
Estymacja przedziałowa - przedziały ufności dla średnich. Wrocław, 5 grudnia 2014
Estymacja przedziałowa - przedziały ufności dla średnich Wrocław, 5 grudnia 2014 Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja Przedziałem ufności dla paramertu
PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA. Piotr Wiącek
PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA Piotr Wiącek ROZKŁAD PRAWDOPODOBIEŃSTWA Jest to miara probabilistyczna określona na σ-ciele podzbiorów borelowskich pewnej przestrzeni metrycznej. σ-ciało podzbiorów
Podstawowe modele probabilistyczne
Wrocław University of Technology Podstawowe modele probabilistyczne Maciej Zięba maciej.zieba@pwr.edu.pl Rozpoznawanie Obrazów, Lato 2018/2019 Pojęcie prawdopodobieństwa Prawdopodobieństwo reprezentuje
STATYSTYKA MATEMATYCZNA WYKŁAD 4. WERYFIKACJA HIPOTEZ PARAMETRYCZNYCH X - cecha populacji, θ parametr rozkładu cechy X.
STATYSTYKA MATEMATYCZNA WYKŁAD 4 WERYFIKACJA HIPOTEZ PARAMETRYCZNYCH X - cecha populacji, θ parametr rozkładu cechy X. Wysuwamy hipotezy: zerową (podstawową H ( θ = θ i alternatywną H, która ma jedną z
LABORATORIUM Populacja Generalna (PG) 2. Próba (P n ) 3. Kryterium 3σ 4. Błąd Średniej Arytmetycznej 5. Estymatory 6. Teoria Estymacji (cz.
LABORATORIUM 4 1. Populacja Generalna (PG) 2. Próba (P n ) 3. Kryterium 3σ 4. Błąd Średniej Arytmetycznej 5. Estymatory 6. Teoria Estymacji (cz. I) WNIOSKOWANIE STATYSTYCZNE (STATISTICAL INFERENCE) Populacja
Testowanie hipotez statystycznych.
Bioinformatyka Wykład 6 Wrocław, 7 listopada 2011 Temat. Weryfikacja hipotez statystycznych dotyczących proporcji. Test dla proporcji. Niech X 1,..., X n będzie próbą statystyczną z 0-1. Oznaczmy odpowiednio
TESTY NIEPARAMETRYCZNE. 1. Testy równości średnich bez założenia normalności rozkładu zmiennych: Manna-Whitney a i Kruskala-Wallisa.
TESTY NIEPARAMETRYCZNE 1. Testy równości średnich bez założenia normalności rozkładu zmiennych: Manna-Whitney a i Kruskala-Wallisa. Standardowe testy równości średnich wymagają aby badane zmienne losowe
Definicja 1 Statystyką nazywamy (mierzalną) funkcję obserwowalnego wektora losowego
Rozdział 1 Statystyki Definicja 1 Statystyką nazywamy (mierzalną) funkcję obserwowalnego wektora losowego X = (X 1,..., X n ). Uwaga 1 Statystyka jako funkcja wektora zmiennych losowych jest zmienną losową
Zmienne losowe ciągłe i ich rozkłady
Statystyka i opracowanie danych W3 Zmienne losowe ciągłe i ich rozkłady Dr Anna ADRIAN Paw B5, pok47 adan@agh.edu.pl Plan wykładu Rozkład Poissona. Zmienna losowa ciągła Dystrybuanta i funkcja gęstości
Zestaw 2: Zmienne losowe. 0, x < 1, 2, 2 x, 1 1 x, 1 x, F 9 (x) =
Zestaw : Zmienne losowe. Które z poniższych funkcji są dystrybuantami? Odpowiedź uzasadnij. Wskazówka: naszkicuj wykres. 0, x 0,, x 0, F (x) = x, F (x) = x, 0 x
Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa. Diagnostyka i niezawodność robotów
Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa Diagnostyka i niezawodność robotów Laboratorium nr 3 Generacja realizacji zmiennych losowych Prowadzący: mgr inż. Marcel Luzar Cele ćwiczenia: Generowanie
Ekonometria. Modelowanie zmiennej jakościowej. Jakub Mućk. Katedra Ekonomii Ilościowej
Ekonometria Modelowanie zmiennej jakościowej Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Ćwiczenia 8 Zmienna jakościowa 1 / 25 Zmienna jakościowa Zmienna ilościowa może zostać zmierzona
Modele i wnioskowanie statystyczne (MWS), sprawozdanie z laboratorium 3
Modele i wnioskowanie statystyczne (MWS), sprawozdanie z laboratorium 3 Konrad Miziński, nr albumu 233703 26 maja 2015 Zadanie 1 Wartość krytyczna c, niezbędna wyliczenia mocy testu (1 β) wyznaczono za
Komputerowa analiza danych doświadczalnych
Komputerowa analiza danych doświadczalnych Wykład 9 27.04.2018 dr inż. Łukasz Graczykowski lukasz.graczykowski@pw.edu.pl Semestr letni 2017/2018 Metoda największej wiarygodności ierównosć informacyjna
Wykład 10 Estymacja przedziałowa - przedziały ufności dla średn
Wykład 10 Estymacja przedziałowa - przedziały ufności dla średniej Wrocław, 21 grudnia 2016r Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja 10.1 Przedziałem
Zmienne losowe zadania na sprawdzian
Zmienne losowe zadania na sprawdzian Zad. 1. Podane poniżej dane dotyczą zawartości suchej masy (w %) i sosu (w %) w 24 konserwach ze śledzia w pomidorach: Zawartość suchej masy: 12,0 13,0 14,5 14,0 12,0
PODSTAWY BIOSTATYSTYKI ĆWICZENIA
PODSTAWY BIOSTATYSTYKI ĆWICZENIA FILIP RACIBORSKI FILIP.RACIBORSKI@WUM.EDU.PL ZAKŁAD PROFILAKTYKI ZAGROŻEŃ ŚRODOWISKOWYCH I ALERGOLOGII WUM PRZYPOMNIENIE ROZKŁAD NORMALNY http://www.zarz.agh.edu.pl/bsolinsk/statystyka.html
Metoda momentów i kwantyli próbkowych. Wrocław, 7 listopada 2014
Metoda momentów i kwantyli próbkowych Wrocław, 7 listopada 2014 Metoda momentów Momenty zmiennych losowych X 1, X 2,..., X n - próba losowa. Momenty zmiennych losowych X 1, X 2,..., X n - próba losowa.
Rozkład Gaussa i test χ2
Rozkład Gaussa jest scharakteryzowany dwoma parametramiwartością oczekiwaną rozkładu μ oraz dyspersją σ: METODA 2 (dokładna) polega na zmianie zmiennych i na obliczeniu pk jako różnicy całek ze standaryzowanego
Temat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT. Anna Rajfura 1
Temat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT Anna Rajfura 1 Przykład wprowadzający Wiadomo, Ŝe 40% owoców ulega uszkodzeniu podczas pakowania automatycznego.
STATYSTYKA MATEMATYCZNA WYKŁAD października 2009
STATYSTYKA MATEMATYCZNA WYKŁAD 4 26 października 2009 Rozkład N(µ, σ). Estymacja σ σ 2 = 1 σ 2π + = E µ,σ (X µ) 2 { (x µ) 2 exp 1 ( ) } x µ 2 dx 2 σ Rozkład N(µ, σ). Estymacja σ σ 2 = 1 σ 2π + = E µ,σ
Modelowanie systemów liczacych. Ćwiczenie 2.
Modelowanie systemów liczacych. Ćwiczenie 2. 1. Rozkłady i dystrybuanty w programie MATLAB Do odczytywania wartości prawdopodobieństwa typu P(X = X a ) przy ustalonym rozkładzie oraz zadanej wartości zmiennej
Jednowymiarowa zmienna losowa
1 Jednowymiarowa zmienna losowa Przykład Doświadczenie losowe - rzut kostką do gry. Obserwujemy ilość wyrzuconych oczek. Teoretyczny model eksperymentu losowego - przestrzeń probabilistyczna (Ω, S, P ),
Weryfikacja hipotez statystycznych za pomocą testów statystycznych
Weryfikacja hipotez statystycznych za pomocą testów statystycznych Weryfikacja hipotez statystycznych za pomocą testów stat. Hipoteza statystyczna Dowolne przypuszczenie co do rozkładu populacji generalnej
Excel: niektóre rozkłady ciągłe (1)
MS Ecel niektóre rozkłady ciągłe (1) Ecel: niektóre rozkłady ciągłe (1) 1. ROZKŁAD.BETA (tylko dystrybuanta)...1 2. ROZKŁAD.BETA.ODW (kwantyl w rozkładzie beta)...3 3. ROZKŁAD.LIN.GAMMA (to nie jest żaden
Przykład 1 W przypadku jednokrotnego rzutu kostką przestrzeń zdarzeń elementarnych
Rozdział 1 Zmienne losowe, ich rozkłady i charakterystyki 1.1 Definicja zmiennej losowej Niech Ω będzie przestrzenią zdarzeń elementarnych. Definicja 1 Rodzinę S zdarzeń losowych (zbiór S podzbiorów zbioru
Statystyka w analizie i planowaniu eksperymentu
21 marca 2011 Zmienna losowa - wst ep Przeprowadzane w praktyce badania i eksperymenty maja bardzo różnorodny charakter, niemniej jednak wiaż a sie one z rejestracja jakiś sygna lów (danych). Moga to być
Na A (n) rozważamy rozkład P (n) , który na zbiorach postaci A 1... A n określa się jako P (n) (X n, A (n), P (n)
MODELE STATYSTYCZNE Punktem wyjścia w rozumowaniu statystycznym jest zmienna losowa (cecha) X i jej obserwacje opisujące wyniki doświadczeń bądź pomiarów. Zbiór wartości zmiennej losowej X (zbiór wartości
Ćwiczenia 3 ROZKŁAD ZMIENNEJ LOSOWEJ JEDNOWYMIAROWEJ
Ćwiczenia 3 ROZKŁAD ZMIENNEJ LOSOWEJ JEDNOWYMIAROWEJ Zadanie 1. Zmienna losowa przyjmuje wartości -1, 0, 1 z prawdopodobieństwami równymi odpowiednio: ¼, ½, ¼. Należy: a. Wyznaczyć rozkład prawdopodobieństwa
Kolokwium ze statystyki matematycznej
Kolokwium ze statystyki matematycznej 28.05.2011 Zadanie 1 Niech X będzie zmienną losową z rozkładu o gęstości dla, gdzie 0 jest nieznanym parametrem. Na podstawie pojedynczej obserwacji weryfikujemy hipotezę
Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna.
Wykład 4 Rozkłady i ich dystrybuanty Dwa typy zmiennych losowych Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x, x 2,...}, to mówimy, że jest to zmienna dyskretna.
Zawartość. Zawartość
Opr. dr inż. Grzegorz Biesok. Wer. 2.05 2011 Zawartość Zawartość 1. Rozkład normalny... 3 2. Rozkład normalny standardowy... 5 3. Obliczanie prawdopodobieństw dla zmiennych o rozkładzie norm. z parametrami
Generowanie ciągów pseudolosowych o zadanych rozkładach wstęp do projektu
Generowanie ciągów pseudolosowych o zadanych rozkładach wstęp do projektu Michał Krzemiński Streszczenie Projekt dotyczy metod generowania oraz badania własności statystycznych ciągów liczb pseudolosowych.
Wykład 4. Plan: 1. Aproksymacja rozkładu dwumianowego rozkładem normalnym. 2. Rozkłady próbkowe. 3. Centralne twierdzenie graniczne
Wykład 4 Plan: 1. Aproksymacja rozkładu dwumianowego rozkładem normalnym 2. Rozkłady próbkowe 3. Centralne twierdzenie graniczne Przybliżenie rozkładu dwumianowego rozkładem normalnym Niech Y ma rozkład
Komputerowa analiza danych doświadczalnych
Komputerowa analiza danych doświadczalnych Wykład 4.03.06 dr inż. Łukasz Graczykowski lgraczyk@if.pw.edu.pl Semestr letni 05/06 Zmienne losowe, jednowymiarowe rozkłady zmiennych losowych Pomiar jako zdarzenie
... i statystyka testowa przyjmuje wartość..., zatem ODRZUCAMY /NIE MA POD- STAW DO ODRZUCENIA HIPOTEZY H 0 (właściwe podkreślić).
Egzamin ze Statystyki Matematycznej, WNE UW, wrzesień 016, zestaw B Odpowiedzi i szkice rozwiązań 1. Zbadano koszt 7 noclegów dla 4-osobowej rodziny (kwatery) nad morzem w sezonie letnim 014 i 015. Wylosowano
Testowanie hipotez statystycznych.
Bioinformatyka Wykład 9 Wrocław, 5 grudnia 2011 Temat. Test zgodności χ 2 Pearsona. Statystyka χ 2 Pearsona Rozpatrzmy ciąg niezależnych zmiennych losowych X 1,..., X n o jednakowym dyskretnym rozkładzie
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 4 - zagadnienie estymacji, metody wyznaczania estymatorów
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 4 - zagadnienie estymacji, metody wyznaczania estymatorów Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 4 1 / 23 ZAGADNIENIE ESTYMACJI Zagadnienie