Wnioskowanie Statystyczne - Ćwiczenia Michał Marosz Monday, February 23, 2015
|
|
- Jolanta Kurek
- 8 lat temu
- Przeglądów:
Transkrypt
1 Wnioskowanie Statystyczne - Ćwiczenia Michał Marosz Monday, February 23, 2015 Zadanie 1 Załaduj do R dane udostepnione na poprzednich zajęciach i wyświetl podstwowe informacje o zawartych tam danych setwd("d:/!climate/pulpit") dane=read.table("dane.txt", header=t) attach(dane) summary(dane) ## ROK A B C ## Min. :1951 Min. : Min. : Min. : ## 1st Qu.:1976 1st Qu.: st Qu.: st Qu.: ## Median :2000 Median : Median : Median : ## Mean :2000 Mean : Mean : Mean : ## 3rd Qu.:2025 3rd Qu.: rd Qu.: rd Qu.: ## Max. :2050 Max. : Max. : Max. : ## D ## Min. :3.700 ## 1st Qu.:5.700 ## Median :6.400 ## Mean :6.323 ## 3rd Qu.:6.925 ## Max. :8.500 Zastosowanie funkcji attach pozwala na odnoszenie się bezpośrednio do zmiennych wczytanych z nagłówka (np. A) zamiast wpisywania dane$a. Przypominam, że ten poprzez ten sposób ładowania danych obiekt dane jest ramką danych (dataframe). Można to zweryfikować nastepującą komendą: is.data.frame(dane) ## [1] TRUE 1
2 Zadanie 2 Zapoznaj się z podstawowymi charakterystykami statystycznymi dostepnymi w R a wymienionymi w skrypcie Łukasza Komsty. Dokonaj obliczenia dla zmiennej B. Poniżej podano przykładowe ich zastosowanie dla zmiennej A. max maksymalna wartość z wektora max(a) ## [1] 11.3 min wartość minimalna min(a) ## [1] 2.6 mean średnia arytmetyczna. Jeśli podamy dodatkowy parametr trim, to funkcja policzy średnią po odrzuceniu określonego odsetka wartości skrajnych, np. mean(x,trim=0.1) to średnia z x po odrzuceniu 10% wartości skrajnych mean(a) ## [1] median mediana median(a) ## [1] 6.7 mad medianowe odchylenie bezwzględne (median absolute deviation) mad(a) ## [1] quantile dowolny kwantyl, np. quantile(a, 0.5) to mediana z x. Poniżej przedstawiono przykładowy sposób okreslenia kwartyli (1-go, 2-go oraz 3-go). Polecenia w jednej linii ale oddzielone od siebie ; są traktowane osobno. 2
3 quantile(a, 0.25); quantile(a, 0.5); quantile(a, 0.75) ## 25% ## 6.1 ## 50% ## 6.7 ## 75% ## sd odchylenie standardowe var wariancja length długość wektora (liczba elementów) sum suma elementów wektora sort daje wektor z wartościami uporządkowanymi rosnąco which daje wektor zawierający indeksy, przy których argument ma wartość TRUE. Tutaj wypada na chwilę pochylić się nad funkcją which. Jest ona niezmiernie użyteczna w analizach, ponieważ pozwala w latwy sposób pracowac na podzbiorach wyznaczanych przez okreslone warunki (np. na wybranych wieloleciach). Przykladowo swórzmy nastepujący wektor x. x=c(2, 4, 8, 9, 12, 15, 21) Za pomocą funkcji which możemy wybrać np. elementy które są większe od 10. which(x>10) ## [1] Nastepnie, w połaczeniu z indeksowanie za pomocą [] można wykonywać funkcje na tylko na wybranym podzbiorze. mean(x[which(x>10)]) ## [1] 16 3
4 Rozklady teoretyczne beta dbeta binomial dbinom. For the Cauchy distribution see dcauchy. For the chi-squared distribution see dchisq. For the exponential distribution see dexp. For the F distribution see df. For the gamma distribution see dgamma. For the geometric distribution see dgeom. (This is also a special case of the negative binomial.) For the hypergeometric distribution see dhyper. For the log-normal distribution see dlnorm. For the multinomial distribution see dmultinom. For the negative binomial distribution see dnbinom. For the normal distribution see dnorm. For the Poisson distribution see dpois. For the Student s t distribution see dt. For the uniform distribution see dunif. For the Weibull distribution see dweibull. f=rnorm(1000, 7.9, 1.5) hist(f) 4
5 Histogram of f Frequency f mean(f) ## [1] sd(f) ## [1] Dystrybuanta empiryczna hist(f, prob=t, main="", xlim=c(min(f)-1, max(f)+1), ylim=c(0,1)) lines(density(f), col=2, lwd=2) lines(ecdf(f), col=3, lwd=3) 5
6 Density f Kreślenie rozkładu teoretycznego hist(f, prob=t, main="", xlim=c(min(f)-1, max(f)+1), ylim=c(0,1)) x=seq(min(f)-1, max(f)+1, 0.01) lines(x, dnorm(x,mean(f), sd(f)), col=4, lwd=2) 6
7 Density f Kreślenie dystrybuanty teoretycznej na podstawie oszacowanych parametrów rozkładu hist(f, prob=t, main="", xlim=c(min(f)-1, max(f)+1), ylim=c(0,1)) x=seq(min(f)-1, max(f)+1, 0.01) lines(x, pnorm(x,mean(f), sd(f)), col=4, lwd=2) 7
8 Density f Załóżny, że chcemy sprawdzić jaki odsetek przypadkow w rozkładzie normalnym opisanym parametrami zmiennej f będzie mniejszy od 6 pnorm(6, mean(f), sd(f)) ## [1] hist(f, prob=t, main="", xlim=c(min(f)-1, max(f)+1), ) curve(dnorm(x,mean(f), sd(f)), add=t, col=2, lwd=2) abline(v=6) 8
9 Density f Ładniej graficznie wygląda to tak: hist(f, prob=t, main="", xlim=c(min(f)-1, max(f)+1), ) curve(dnorm(x, mean(f), sd(f)), add=t, lwd=2) x <- seq(min(f)-1, 6, len = 100) y <- dnorm(x, mean(f), sd(f)) polygon(c(x[1], x, x[100]), c(0, y, 0), col = rgb(1,0,0,0.7), border = NA) curve(dnorm(x, mean(f), sd(f)), add=t, lwd=2) 9
10 Density f Lub od 10 pnorm(10, mean(f), sd(f)) ## [1] hist(f, prob=t, main="", xlim=c(min(f)-1, max(f)+1), ) curve(dnorm(x, mean(f), sd(f)), add=t, lwd=2) x <- seq(min(f)-1, 10, len = 100) y <- dnorm(x, mean(f), sd(f)) polygon(c(x[1], x, x[100]), c(0, y, 0), col = rgb(1,0,0,0.7), border = NA) curve(dnorm(x, mean(f), sd(f)), add=t, lwd=2) 10
11 Density f Lub między 7 a 11 pnorm(11, mean(f), sd(f))-pnorm(7, mean(f), sd(f)) ## [1] hist(f, prob=t, main="", xlim=c(min(f)-1, max(f)+1), ylim=c(0,1)) curve(dnorm(x, mean(f), sd(f)), add=t, lwd=2) x <- seq(7, 11, len = 100) y <- dnorm(x, mean(f), sd(f)) polygon(c(x[1], x, x[100]), c(0, y, 0), col = rgb(1,0,0,0.7), border = NA) curve(dnorm(x, mean(f), sd(f)), add=t, lwd=2) 11
12 Density f 12
13 Rozklady dla zmiennych ciagłych RozKlad Normalny Rozklad Weibull a Rozkład Gamma Rozklad χ 2 Rozkład F-Snedecora Rozkłady dla zmiennych dyskretnych Rozkład dwumianowy Rozkład Poisson a Rozklad normalny - zadania Wykonaj poniższe zadania korzystając z R i wbudowanych dystrybuant teoretycznych. Praktyczne korzystanie z rozkładów teoretycznych (na przykładzie normalnego bo w przypadku innych rozkładów należy sprawdzić ich parametry) dnorm(x, mean = 0, sd = 1, log = FALSE) - funkcja gęstości prawdopodobieństwa pnorm(q, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE) - dystrybuanta qnorm(p, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE) - wartość kwantyla na podstawie prawdopodobieństwa rnorm(n, mean = 0, sd = 1) - generowanie liczb losowych o określonym rozkładzie teoretycznym x, q - kwantyle p - prawdopodobieństwo n - liczba obserwacji mean - średnia sd - odchylenie standardowe lower.tail - wartość logiczna; jeżeli TRUE (default), obliczane jest prawdopodobieństwo z dolnego ogona rozkładu. Dopasowywanie parametrów rozkładu - tutaj na przykładzie rozkładu normalnego 13
14 #install.packages("fitdistrplus") library("fitdistrplus", lib.loc="~/r/win-library/3.1") f=rnorm(1000, 7.9, 1.5) fitnorm=fitdist(f, distr="norm", method="mle") fitnorm ## Fitting of the distribution ' norm ' by maximum likelihood ## Parameters: ## estimate Std. Error ## mean ## sd Gdybyśmy potrzebowali konkretnych wartości do dalszych obliczeń fitnorm$estimate ## mean sd ## as.numeric(fitnorm$estimate) ## [1] as.numeric(fitnorm$estimate[1]) ## [1] as.numeric(fitnorm$estimate[2]) ## [1] Zadanie 3 Poszukaj w pomocy R informacji odnośnie rozkładu Weibulla, sprawdz jakie parametry musisz estymować nastepnie wczytaj do R dane odnośnie prędkości wiatru. Wykreśl histogram i dystrybuantę empiryczną rozkładu a następnie dopasuj rozkład teoretyczny. Wykonaj wykres. Odpowiedz na pytanie a) jakie jest prawdopodobieństwo że prędkość wiatru przekroczy 20ms 1 b) prędkośc wiatru będzie miała wartośc między 10 a 20ms 1 14
15 Zadanie 4 Wykonaj nastepujące zadania I. 1) Zmienna losowa Z ma µ = oraz σ =. 2) P (0 < z < 1.53) = 3) P (z > 2.18) = 4) Określ wartość z_o, takie że P ( z o < z < z o ) = ) Określ wartość zo, takie że P(z < zo) = II. Zmienna losowa X ma rozkład normalny ze średnią 80 I odchyleniem standardowym 12 1) Jakie jest prawdopodobieństwo, że wartość zmiennej X będzie między 65 i 95? 2) Jakie jest prawdopodobieństwo, ze wartość losowo wybranej zmiennej X będzie mniejsza od 74? III. Zmienna losowa X ma rozkład normalny ze średnią 65 I odchyleniem standardowym 15. Określ x0 takie że P(x > xo) =
16 IV. Wyniki testu maja rozkład normalny ze średnia 400 i odchyleniem standardowym 45 1) Jaki odsetek osób podchodzących do egzaminu będzie miała wynik 310 lub wyższy? 2) Jaki odsetek osób podchodzących do egzaminu będzie miało wynik między 445 a 490? V. Opracowano test, którego zadaniem było zmierzenie poziomu motywacji w liceum. Wyniki poziomu motywacji maja rozkład normalny ze średnią 25 i odchyleniem standardowym 6. Im wyższa wartość tym większa motywacja. 1) Jaki odsetek uczniów biorących udział w badaniu będzie miał wynik poniżej 10? 2) Jan usłyszał, że 35% uczniów ma większą motywację niż on. Jaki jest poziom motywacji Jana? VI. Rozkład Poisson a 1) Jeżeli 3% żarówek produkowanych przez fabrykę jest uszkodzonych, określ prawdopodobieństwo że w próbie 100 żarówek dokładnie 5 jest uszkodzonych (e-3 = ). 2) Wiadomo na podstawie przeszłych doświadczeń, że w fabryce zdarzają się średnio 4 wypadki na miesiąc. Oblicz prawdopodobieństwo, że w miesiącu będą mniej niż 3 wypadki. VII. Dwumianowy 1) Rzucamy jednocześnie ośmioma monetami. Jakie jest prawdopodobieństwo wyrzucenia co najmniej sześciu orłów 2) Rzucamy dwiema kośćmi do gry 5 razy. Wyrzucenie takiej samej liczby oczek jest uznawane za sukces. Określ prawdopodobieństwo dwóch sukcesów. 3) Prawdopodobieństwo, że student ukończy szkołę wyższą wynosi 0,5. Określ prawdopodobieństwo, że z 7 studentów (i) żaden nie ukończy (ii) jeden ukończy (iii) przynajmniej jeden ukończy studia 4) Równocześnie rzucamy dziesięcioma monetami. Określ prawdopodobieństwo, że otrzymamy: 16
17 a. Przynajmniej 7 orłów b. Dokładnie 7 orłów c. Co najwyżej 7 orłów 5) Podczas wojny średnio 2 z 10 statków tonęło w trakcie konwoju. Jakie jest prawdopodobieństwo, że przynajmniej 4 z 5 statków bezpiecznie dopłynie do portu przeznaczenia. 17
Cwiczenie 3 - Rozkłady empiryczne i. teoretyczne
Cwiczenie 3 - Rozkłady empiryczne i teoretyczne Michał Marosz 31 października 2015 1 Spis treści Rozkład empiryczny i dystrybuanta empiryczna 6 Estymacja parametrów rozkładów teoretycznych 8 Zmienne dyskretne
Generowanie ciągów pseudolosowych o zadanych rozkładach przykładowy raport
Generowanie ciągów pseudolosowych o zadanych rozkładach przykładowy raport Michał Krzemiński Streszczenie Projekt dotyczy metod generowania oraz badania własności statystycznych ciągów liczb pseudolosowych.
Cwiczenie 3 - Rozkłady empiryczne i. teoretyczne
Cwiczenie 3 - Rozkłady empiryczne i teoretyczne Michał Marosz 35 listopada 2015 1 Spis treści Rozkład empiryczny i dystrybuanta empiryczna 6 Estymacja parametrów rozkładów teoretycznych 8 Zmienne dyskretne
Zestaw 2: Zmienne losowe. 0, x < 1, 2, 2 x, 1 1 x, 1 x, F 9 (x) =
Zestaw : Zmienne losowe. Które z poniższych funkcji są dystrybuantami? Odpowiedź uzasadnij. Wskazówka: naszkicuj wykres. 0, x 0,, x 0, F (x) = x, F (x) = x, 0 x
STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE
STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE 1 W trakcie badania obliczono wartości średniej (15,4), mediany (13,6) oraz dominanty (10,0). Określ typ asymetrii rozkładu. 2 Wymień 3 cechy rozkładu Gauss
Kwantyle. Kwantyl rzędu p rozkładu prawdopodobieństwa to taka liczba x p. , że. Możemy go obliczyć z dystrybuanty: P(X x p.
Kwantyle Kwantyl rzędu p rozkładu prawdopodobieństwa to taka liczba x p, że P(X x p ) p P(X x p ) 1 p Możemy go obliczyć z dystrybuanty: Jeżeli F(x p ) = p, to x p jest kwantylem rzędu p Jeżeli F(x p )
STATYSTYKA POWTORZENIE. Dr Wioleta Drobik-Czwarno
STATYSTYKA POWTORZENIE Dr Wioleta Drobik-Czwarno Populacja Próba Parametry EX, µ Statystyki średnia D 2 X, δ 2 S 2 wnioskowanie DX, δ p ρ S w r...... JAK POWSTAJE MODEL MATEMATYCZNY Dane eksperymentalne
MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ
MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ Opracowała: Milena Suliga Wszystkie pliki pomocnicze wymienione w treści
Środowisko R wprowadzenie c.d. Wykład R2; 21.05.07 Struktury danych w R c.d.
Środowisko R wprowadzenie c.d. Wykład R2; 21.05.07 Struktury danych w R c.d. Oprócz zmiennych i wektorów strukturami danych w R są: macierze; ramki (ang. data frames); listy; klasy S3 1 Macierze Macierze
TABLICE PODSTAWOWYCH ROZKŁADÓW PRAWDOPODOBIEŃSTWA. T4. Tablica kwantyli rozkładu chi-kwadrat (I część - poziomy kwantyli 0,5)
TABLICE PODSTAWOWYCH ROZKŁADÓW PRAWDOPODOBIEŃSTWA T1. Tablica dystrybuanty standardowego normalnego rozkładu N(0,1) T2. Tablica kwantyli standardowego normalnego rozkładu N(0,1) T3. Tablica kwantyli rozkładu
Temat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT. Anna Rajfura 1
Temat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT Anna Rajfura 1 Przykład wprowadzający Wiadomo, Ŝe 40% owoców ulega uszkodzeniu podczas pakowania automatycznego.
Funkcja sample, domyślnie generuje dane bez powtórzeń.
Generowanie danych Generowanie dowolnych danych Funkcja sample, domyślnie generuje dane bez powtórzeń. Generowanie danych Generowanie dowolnych danych W R znajdują się pewne predefiniowane wektory, z których
Funkcja sample() Funkcja sample(), domyślnie generuje dane bez powtórzeń.
Generowanie dowolnych danych Funkcja sample() Funkcja sample(), domyślnie generuje dane bez powtórzeń. Predefiniowane wektory W R znajdują się pewne predefiniowane wektory, z których możemy losować elementy
Rozkłady statystyk z próby
Rozkłady statystyk z próby Rozkłady statystyk z próby Przypuśćmy, że wykonujemy serię doświadczeń polegających na 4 krotnym rzucie symetryczną kostką do gry, obserwując liczbę wyrzuconych oczek Nr kolejny
Komputerowa analiza danych doświadczalnych
Komputerowa analiza danych doświadczalnych Wykład 4.03.06 dr inż. Łukasz Graczykowski lgraczyk@if.pw.edu.pl Semestr letni 05/06 Zmienne losowe, jednowymiarowe rozkłady zmiennych losowych Pomiar jako zdarzenie
1 Podstawy rachunku prawdopodobieństwa
1 Podstawy rachunku prawdopodobieństwa Dystrybuantą zmiennej losowej X nazywamy prawdopodobieństwo przyjęcia przez zmienną losową X wartości mniejszej od x, tzn. F (x) = P [X < x]. 1. dla zmiennej losowej
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 3 - model statystyczny, podstawowe zadania statystyki matematycznej
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 3 - model statystyczny, podstawowe zadania statystyki matematycznej Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 3 1 / 8 ZADANIE z rachunku
Rozkłady zmiennych losowych
Rozkłady zmiennych losowych Wprowadzenie Badamy pewną zbiorowość czyli populację pod względem występowania jakiejś cechy. Pobieramy próbę i na podstawie tej próby wyznaczamy pewne charakterystyki. Jeśli
Statystyka matematyczna dla leśników
Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 2013/2014 Wykład 3 Zmienna losowa i jej rozkłady Zdarzenia losowe Pojęcie prawdopodobieństwa
L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 3 ZADANIA - ZESTAW 3
ZADANIA - ZESTAW 3 Zadanie 3. L Prawdopodobieństwo trafienia celu w jednym strzale wynosi 0,6. Do celu oddano niezależnie 0 strzałów. Oblicz prawdopodobieństwo, że cel został trafiony: a) jeden raz, b)
Projekt Nowa oferta edukacyjna Uniwersytetu Wrocławskiego odpowiedzią na współczesne potrzeby rynku pracy i gospodarki opartej na wiedzy
Projekt Nowa oferta edukacyjna Uniwersytetu Wrocławskiego odpowiedzią na współczesne potrzeby rynku pracy i gospodarki opartej na wiedzy Dane: Eksploracja (mining) Problemy: Jedna zmienna 2000 najwi ększych
Rozkład zajęć, statystyka matematyczna, Rok akademicki 2015/16, semestr letni, Grupy dla powtarzających (C15; C16)
Rozkład zajęć, statystyka matematyczna, Rok akademicki 05/6, semestr letni, Grupy powtarzających (C5; C6) Lp Grupa C5 Grupa C6 Liczba godzin 0046 w godz 600-000 C03 0046 w godz 600-000 B05 4 6046 w godz
Temat: Zmienna losowa. Rozkład skokowy. Rozkład ciągły. Kody kolorów: Ŝółty nowe pojęcie pomarańczowy uwaga. Anna Rajfura, Matematyka
Temat: Zmienna losowa. Rozkład skokowy. Rozkład ciągły Kody kolorów: Ŝółty nowe pojęcie pomarańczowy uwaga 1 Zagadnienia 1. Przypomnienie wybranych pojęć rachunku prawdopodobieństwa. Zmienna losowa. Rozkład
STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA
STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA Zadanie 0.1 Zmienna losowa X ma rozkład określony funkcją prawdopodobieństwa: x k 0 4 p k 1/3 1/6 1/ obliczyć EX, D X. (odp. 4/3;
Statystyka opisowa. Robert Pietrzykowski.
Statystyka opisowa Robert Pietrzykowski email: robert_pietrzykowski@sggw.pl www.ekonometria.info 2 Na dziś Sprawy bieżące Przypominam, że 14.11.2015 pierwszy sprawdzian Konsultacje Sobota 9:00 10:00 pok.
Temat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT. Anna Rajfura 1
Temat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT Anna Rajfura 1 Przykład wprowadzający Wiadomo, że 40% owoców ulega uszkodzeniu podczas pakowania automatycznego.
STATYSTYKA MATEMATYCZNA. rachunek prawdopodobieństwa
STATYSTYKA MATEMATYCZNA rachunek prawdopodobieństwa treść Zdarzenia losowe pojęcie prawdopodobieństwa prawo wielkich liczb zmienne losowe rozkłady teoretyczne zmiennych losowych Zanim zajmiemy się wnioskowaniem
Zmienne losowe zadania na sprawdzian
Zmienne losowe zadania na sprawdzian Zad. 1. Podane poniżej dane dotyczą zawartości suchej masy (w %) i sosu (w %) w 24 konserwach ze śledzia w pomidorach: Zawartość suchej masy: 12,0 13,0 14,5 14,0 12,0
Korzystanie z podstawowych rozkładów prawdopodobieństwa (tablice i arkusze kalkulacyjne)
Korzystanie z podstawowych rozkładów prawdopodobieństwa (tablice i arkusze kalkulacyjne) Przygotował: Dr inż. Wojciech Artichowicz Katedra Hydrotechniki PG Zima 2014/15 1 TABLICE ROZKŁADÓW... 3 ROZKŁAD
R ozkład norm alny Bardzo często używany do modelowania symetrycznych rozkładów zmiennych losowych ciągłych
R ozkład norm alny Bardzo często używany do modelowania symetrycznych rozkładów zmiennych losowych ciągłych Przykłady: Błąd pomiarowy Wzrost, wydajność Temperatura ciała Zawartość różnych składników we
Zmienne losowe skokowe
Zmienne losowe skokowe 1.1 Rozkład prawdopodobieństwa i dystrybuanta Zad.1 Niech zmienna losowa X przyjmuje wartości równe liczbie wyrzuconych oczek przy pojedynczym rzucie kostką do gry, czyli =1,2,3,,6.
Literatura. Leitner R., Zacharski J., Zarys matematyki wyŝszej dla studentów, cz. III.
Literatura Krysicki W., Bartos J., Dyczka W., Królikowska K, Wasilewski M., Rachunek Prawdopodobieństwa i Statystyka Matematyczna w Zadaniach, cz. I. Leitner R., Zacharski J., Zarys matematyki wyŝszej
Statystyka Opisowa z Demografią oraz Biostatystyka. Zmienne losowe. Aleksander Denisiuk. denisjuk@euh-e.edu.pl
Statystyka Opisowa z Demografią oraz Biostatystyka Zmienne losowe Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2 82-300 Elblag oraz Biostatystyka p.
Wykład 7 Testowanie zgodności z rozkładem normalnym
Wykład 7 Testowanie zgodności z rozkładem normalnym Wrocław, 05 kwietnia 2017 Rozkład normalny Niech X = (X 1, X 2,..., X n ) będzie próbą z populacji o rozkładzie normalnym określonym przez dystrybuantę
Przestrzeń probabilistyczna
Przestrzeń probabilistyczna (Ω, Σ, P) Ω pewien niepusty zbiór Σ rodzina podzbiorów tego zbioru P funkcja określona na Σ, zwana prawdopodobieństwem. Przestrzeń probabilistyczna (Ω, Σ, P) Ω pewien niepusty
Komputerowa analiza danych doświadczalnych
Komputerowa analiza danych doświadczalnych Wykład 3.03.07 dr inż. Łukasz Graczykowski lgraczyk@if.pw.edu.pl Semestr letni 06/07 Zmienne losowe, jednowymiarowe rozkłady zmiennych losowych Pomiar jako zdarzenie
Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki
Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Spis treści I. Wzory ogólne... 2 1. Średnia arytmetyczna:... 2 2. Rozstęp:... 2 3. Kwantyle:... 2 4. Wariancja:... 2 5. Odchylenie standardowe:...
PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA. Piotr Wiącek
PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA Piotr Wiącek ROZKŁAD PRAWDOPODOBIEŃSTWA Jest to miara probabilistyczna określona na σ-ciele podzbiorów borelowskich pewnej przestrzeni metrycznej. σ-ciało podzbiorów
Wykład 10 (12.05.08). Testowanie hipotez w rodzinie rozkładów normalnych przypadek nieznanego odchylenia standardowego
Wykład 10 (12.05.08). Testowanie hipotez w rodzinie rozkładów normalnych przypadek nieznanego odchylenia standardowego Przykład Cena metra kwadratowego (w tys. zł) z dla 14 losowo wybranych mieszkań w
Zadania zestaw 1: Zadania zestaw 2
Zadania zestaw 1: Zadania zestaw 2 Zadania zestaw 3. 1 Rozkład zmiennej losowej skokowej X przedstawia tabela. x i m 0 n p i 0,4 0,3 0,3 a) Wyznacz m i n jeśli: są całkowite, m
Generowanie ciągów pseudolosowych o zadanych rozkładach wstęp do projektu
Generowanie ciągów pseudolosowych o zadanych rozkładach wstęp do projektu Michał Krzemiński Streszczenie Projekt dotyczy metod generowania oraz badania własności statystycznych ciągów liczb pseudolosowych.
Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki
Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Przetwarzanie Sygnałów Studia Podyplomowe, Automatyka i Robotyka. Wstęp teoretyczny Zmienne losowe Zmienne losowe
ANALIZA STATYSTYCZNA WYNIKÓW BADAŃ
ANALIZA STATYSTYCZNA WYNIKÓW BADAŃ Dopasowanie rozkładów Dopasowanie rozkładów- ogólny cel Porównanie średnich dwóch zmiennych 2 zmienne posiadają rozkład normalny -> test parametryczny (t- studenta) 2
WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 4 Przekształcenia zmiennej losowej, momenty
WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 4 Przekształcenia zmiennej losowej, momenty Agata Boratyńska Agata Boratyńska Rachunek prawdopodobieństwa, wykład 4 / 9 Przekształcenia zmiennej losowej X
Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory
Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl
Rozkłady prawdopodobieństwa zmiennych losowych
Rozkłady prawdopodobieństwa zmiennych losowych Rozkład dwumianowy Rozkład normalny Marta Zalewska Zmienna losowa dyskretna (skokowa) jest to zmienna, której zbór wartości jest skończony lub przeliczalny.
Niezawodność diagnostyka systemów laboratorium
Doc. dr inż. Jacek Jarnicki Niezawodność diagnostyka systemów laboratorium 1. Zajęcia wprowadzające treść ćwiczenia Informacje wstępne, cel zajęć, organizacja zajęć, materiały dydaktyczne, sprawozdania,
Dokładne i graniczne rozkłady statystyk z próby
Dokładne i graniczne rozkłady statystyk z próby Przypomnijmy Populacja Próba Wielkość N n Średnia Wariancja Odchylenie standardowe 4.2 Rozkład statystyki Mówimy, że rozkład statystyki (1) jest dokładny,
Estymacja przedziałowa - przedziały ufności dla średnich. Wrocław, 5 grudnia 2014
Estymacja przedziałowa - przedziały ufności dla średnich Wrocław, 5 grudnia 2014 Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja Przedziałem ufności dla paramertu
Prawdopodobieństwo i statystyka
Wykład II: Zmienne losowe i charakterystyki ich rozkładów 13 października 2014 Zmienne losowe Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Definicja zmiennej losowej i jej
a)dane są wartości zmiennej losowej: 2, 4, 2, 1, 1, 3, 2, 1. Obliczyć wartość średnią i wariancję.
Zad Rozkład zmiennej losowej dyskretnej : a)dane są wartości zmiennej losowej: 2, 4, 2,,, 3, 2,. Obliczyć wartość średnią i wariancję. b)oceny z pracy klasowej w tabeli: Ocena 2 3 4 5 6 Liczba uczniów
Prawdopodobieństwo i statystyka
Wykład VII: Rozkład i jego charakterystyki 22 listopada 2016 Uprzednio wprowadzone pojęcia i ich własności Definicja zmiennej losowej Zmienna losowa na przestrzeni probabilistycznej (Ω, F, P) to funkcja
b) Niech: - wśród trzech wylosowanych opakowań jest co najwyżej jedno o dawce 15 mg. Wówczas:
ROZWIĄZANIA I ODPOWIEDZI Zadanie A1. Można założyć, że przy losowaniu trzech kul jednocześnie kolejność ich wylosowania nie jest istotna. A więc: Ω = 20 3. a) Niech: - wśród trzech wylosowanych opakowań
Excel: niektóre rozkłady ciągłe (1)
MS Ecel niektóre rozkłady ciągłe (1) Ecel: niektóre rozkłady ciągłe (1) 1. ROZKŁAD.BETA (tylko dystrybuanta)...1 2. ROZKŁAD.BETA.ODW (kwantyl w rozkładzie beta)...3 3. ROZKŁAD.LIN.GAMMA (to nie jest żaden
Instalacja Pakietu R
Instalacja Pakietu R www.r-project.org wybór źródła wybór systemu operacyjnego: Download R for Windows opcja: install R for the first time opcja: Download R 3.3.3 for Windows uruchomienie R-3.3.3-win MAGDA
Komputerowa analiza danych doświadczalnych
Komputerowa analiza danych doświadczalnych Wykład.03.08 dr inż. Łukasz Graczykowski lukasz.graczykowski@pw.edu.pl Semestr letni 07/08 Zmienne losowe, jednowymiarowe rozkłady zmiennych losowych Pomiar jako
Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r
Statystyka matematyczna Testowanie hipotez i estymacja parametrów Wrocław, 18.03.2016r Plan wykładu: 1. Testowanie hipotez 2. Etapy testowania hipotez 3. Błędy 4. Testowanie wielokrotne 5. Estymacja parametrów
1 Estymacja przedziałowa
1 Estymacja przedziałowa 1. PRZEDZIAŁY UFNOŚCI DLA ŚREDNIEJ (a) MODEL I Badana cecha ma rozkład normalny N(µ, σ) o nieznanym parametrze µ i znanym σ. Przedział ufności: [ ( µ x u 1 α ) ( σn ; x + u 1 α
Niezawodność diagnostyka systemów laboratorium. Ćwiczenie 2
dr inż. Jacek Jarnicki doc. PWr Niezawodność diagnostyka systemów laboratorium Ćwiczenie 2 1. Treść ćwiczenia Generowanie realizacji zmiennych losowych i prezentacja graficzna wyników losowania. Symulacja
4,5. Dyskretne zmienne losowe (17.03; 31.03)
4,5. Dyskretne zmienne losowe (17.03; 31.03) Definicja 1 Zmienna losowa nazywamy dyskretna (skokowa), jeśli zbiór jej wartości x 1, x 2,..., można ustawić w ciag. Zmienna losowa X, która przyjmuje wszystkie
Wykład 10 Estymacja przedziałowa - przedziały ufności dla średn
Wykład 10 Estymacja przedziałowa - przedziały ufności dla średniej Wrocław, 21 grudnia 2016r Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja 10.1 Przedziałem
Ćwiczenia 3 ROZKŁAD ZMIENNEJ LOSOWEJ JEDNOWYMIAROWEJ
Ćwiczenia 3 ROZKŁAD ZMIENNEJ LOSOWEJ JEDNOWYMIAROWEJ Zadanie 1. Zmienna losowa przyjmuje wartości -1, 0, 1 z prawdopodobieństwami równymi odpowiednio: ¼, ½, ¼. Należy: a. Wyznaczyć rozkład prawdopodobieństwa
Dyskretne zmienne losowe
Dyskretne zmienne losowe dr Mariusz Grządziel 16 marca 2009 Definicja 1. Zmienna losowa nazywamy dyskretna (skokowa), jeśli zbiór jej wartości x 1, x 2,..., można ustawić w ciag. Zmienna losowa X, która
LABORATORIUM Populacja Generalna (PG) 2. Próba (P n ) 3. Kryterium 3σ 4. Błąd Średniej Arytmetycznej 5. Estymatory 6. Teoria Estymacji (cz.
LABORATORIUM 4 1. Populacja Generalna (PG) 2. Próba (P n ) 3. Kryterium 3σ 4. Błąd Średniej Arytmetycznej 5. Estymatory 6. Teoria Estymacji (cz. I) WNIOSKOWANIE STATYSTYCZNE (STATISTICAL INFERENCE) Populacja
Statystyka w przykładach
w przykładach Tomasz Mostowski Zajęcia 10.04.2008 Plan Estymatory 1 Estymatory 2 Plan Estymatory 1 Estymatory 2 Własności estymatorów Zazwyczaj w badaniach potrzebujemy oszacować pewne parametry na podstawie
Laboratorium nr 7. Zmienne losowe typu skokowego.
Laboratorium nr 7. Zmienne losowe typu skokowego.. Zmienna losowa X ma rozkład dany tabelką: - 0 3 0, 0,3 0, 0,3 0, Naszkicować dystrybuantę zmiennej X. Obliczyć EX oraz VarX.. Zmienna losowa ma rozkład
Modelowanie systemów liczacych. Ćwiczenie 2.
Modelowanie systemów liczacych. Ćwiczenie 2. 1. Rozkłady i dystrybuanty w programie MATLAB Do odczytywania wartości prawdopodobieństwa typu P(X = X a ) przy ustalonym rozkładzie oraz zadanej wartości zmiennej
KURS PRAWDOPODOBIEŃSTWO
KURS PRAWDOPODOBIEŃSTWO Lekcja 6 Ciągłe zmienne losowe ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Zmienna losowa ciągła jest
Estymacja punktowa i przedziałowa
Temat: Estymacja punktowa i przedziałowa Kody znaków: żółte wyróżnienie nowe pojęcie czerwony uwaga kursywa komentarz 1 Zagadnienia 1. Statystyczny opis próby. Idea estymacji punktowej pojęcie estymatora
Statystyka matematyczna
Statystyka matematyczna Wykład 5 Magdalena Alama-Bućko 1 kwietnia 2019 Magdalena Alama-Bućko Statystyka matematyczna 1 kwietnia 2019 1 / 19 Rozkład Poissona Po(λ), λ > 0 - parametr tzw. rozkład zdarzeń
Lista 5. Zadanie 3. Zmienne losowe X i (i = 1, 2, 3, 4) są niezależne o tym samym
Lista 5 Zadania na zastosowanie nierównosci Markowa i Czebyszewa. Zadanie 1. Niech zmienna losowa X ma rozkład jednostajny na odcinku [0, 1]. Korzystając z nierówności Markowa oszacować od góry prawdopodobieństwo,
Aleksander Adamowski (s1869) zmienn ą losow ą T o rozkładzie wykładniczym o średniej 5 minut.
Zadanie Statystyczna Analiza Danych - Zadania 6 Aleksander Adamowski (s869) W pewnym biurze czas losowo wybranej rozmowy telefonicznej jest zmienn ą losow ą T o rozkładzie wykładniczym o średniej 5 minut.
Rozkłady prawdopodobieństwa
Tytuł Spis treści Wersje dokumentu Instytut Matematyki Politechniki Łódzkiej 10 grudnia 2011 Spis treści Tytuł Spis treści Wersje dokumentu 1 Wartość oczekiwana Wariancja i odchylenie standardowe Rozkład
Charakterystyki liczbowe (estymatory i parametry), które pozwalają opisać właściwości rozkładu badanej cechy (zmiennej)
Charakterystyki liczbowe (estymatory i parametry), które pozwalają opisać właściwości rozkładu badanej cechy (zmiennej) 1 Podział ze względu na zakres danych użytych do wyznaczenia miary Miary opisujące
Elementy Rachunek prawdopodobieństwa
Elementy rachunku prawdopodobieństwa Rachunek prawdopodobieństwa zajmuje się analizą praw rządzących zdarzeniami losowymi Pojęciami pierwotnymi są: zdarzenie elementarne ω oraz zbiór zdarzeń elementarnych
Prawdopodobieństwo Odp. Odp. 6 Odp. 1/6 Odp. 1/3. Odp. 0, 75.
Prawdopodobieństwo 2.1. Rzucamy dwukrotnie kostką do gry. Obliczyć prawdopodobieństwo, że suma oczek będzie większa od 9, jeżeli za pierwszym razem wypadło 6 oczek? Odp. 1 2. 2.2. W skrzyni znajduje się
Wykład 1. Podstawowe pojęcia Metody opisowe w analizie rozkładu cechy
Wykład Podstawowe pojęcia Metody opisowe w analizie rozkładu cechy Zbiorowość statystyczna - zbiór elementów lub wyników jakiegoś procesu powiązanych ze sobą logicznie (tzn. posiadających wspólne cechy
Wykład 10 Testy jednorodności rozkładów
Wykład 10 Testy jednorodności rozkładów Wrocław, 16 maja 2018 Test Znaków test jednorodności rozkładów nieparametryczny odpowiednik testu t-studenta dla prób zależnych brak normalności rozkładów Test Znaków
07DRAP - Zmienne losowe: dyskretne i ciągłe
07DRAP - Zmienne losowe: dyskretne i ciągłe Słynne rozkłady dyskretne Rozkład parametry P (X = k dla k = E(X Var(X uwagi ( dwumianowy n, p n k p k ( p n k 0,,, n np np( p liczba sukcesów w n próbach Bernoulliego
ZMIENNE LOSOWE. Zmienna losowa (ZL) X( ) jest funkcją przekształcającą przestrzeń zdarzeń elementarnych w zbiór liczb rzeczywistych R 1 tzn. X: R 1.
Opracowała: Joanna Kisielińska ZMIENNE LOSOWE Zmienna losowa (ZL) X( ) jest funkcją przekształcającą przestrzeń zdarzeń elementarnych w zbiór liczb rzeczywistych R tzn. X: R. Realizacją zmiennej losowej
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 4 - zagadnienie estymacji, metody wyznaczania estymatorów
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 4 - zagadnienie estymacji, metody wyznaczania estymatorów Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 4 1 / 23 ZAGADNIENIE ESTYMACJI Zagadnienie
Statystyka matematyczna. Wykład VI. Zesty zgodności
Statystyka matematyczna. Wykład VI. e-mail:e.kozlovski@pollub.pl Spis treści 1 Testy zgodności 2 Test Shapiro-Wilka Test Kołmogorowa - Smirnowa Test Lillieforsa Test Jarque-Bera Testy zgodności Niech x
Mariusz Kaszubowski Katedra Statystyki Wydział Zarządzania i Ekonomii Politechnika Gdańska. Statystyka Mariusz Kaszubowski
Mariusz Kaszubowski Katedra Statystyki Wydział Zarządzania i Ekonomii Politechnika Gdańska Zmienna losowa i jej rozkład Statystyka matematyczna Podstawowe pojęcia Zmienna losowa (skokowa, ciągła) Rozkład
Wprowadzenie do Pakietu R dla kierunku Zootechnika. Dr Magda Mielczarek Katedra Genetyki Uniwersytet Przyrodniczy we Wrocławiu
Wprowadzenie do Pakietu R dla kierunku Zootechnika Dr Magda Mielczarek Katedra Genetyki Uniwersytet Przyrodniczy we Wrocławiu Instalacja Pakietu R www.r-project.org wybór źródła wybór systemu operacyjnego:
Elektrotechnika II [ Laboratorium Grupa 1 ] 2016/2017 Zimowy. [ Laboratorium Grupa 2 ] 2016/2017 Zimowy
Elektrotechnika II [ Laboratorium Grupa ] 206/207 Zimowy Lp Numer indeksu Pkt Kol Suma Popr Ocena Data Uwagi 97574 6 7 Db + 2 9758 ++0,9 5 7,9 Db + 3 99555 0,9+0,9 2,8 Dst + 4 97595 0,8++ 0 2,8 Dst + 5
Statystyka matematyczna dla leśników
Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 03/04 Wykład 5 Testy statystyczne Ogólne zasady testowania hipotez statystycznych, rodzaje
Rachunek prawdopodobieństwa i statystyka
Rachunek prawdopodobieństwa i statystyka Przestrzeń probabilistyczna Niech Ω będzie dowolnym zbiorem, zwanym przestrzenią zdarzeń elementarnych. Elementy ω tej przestrzeni nazywamy zdarzeniami elementarnymi.
Zwiększenie wartości zmiennej losowej o wartość stałą: Y=X+a EY=EX+a D 2 Y=D 2 X
Własności EX, D 2 X i DX przy przekształceniach liniowych Zwiększenie wartości zmiennej losowej o wartość stałą: Y=X+a EY=EX+a D 2 Y=D 2 X Przemnożenie wartości zmiennej losowej przez wartość stałą: Y=a*X
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 11 i 12 - Weryfikacja hipotez statystycznych
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 11 i 12 - Weryfikacja hipotez statystycznych Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 11 i 12 1 / 41 TESTOWANIE HIPOTEZ - PORÓWNANIE
Wykład 4. Plan: 1. Aproksymacja rozkładu dwumianowego rozkładem normalnym. 2. Rozkłady próbkowe. 3. Centralne twierdzenie graniczne
Wykład 4 Plan: 1. Aproksymacja rozkładu dwumianowego rozkładem normalnym 2. Rozkłady próbkowe 3. Centralne twierdzenie graniczne Przybliżenie rozkładu dwumianowego rozkładem normalnym Niech Y ma rozkład
Rozkład zmiennej losowej Polega na przyporządkowaniu każdej wartości zmiennej losowej prawdopodobieństwo jej wystąpienia.
Rozkład zmiennej losowej Polega na przyporządkowaniu każdej wartości zmiennej losowej prawdopodobieństwo jej wystąpienia. D A R I U S Z P I W C Z Y Ń S K I 2 2 ROZKŁAD ZMIENNEJ LOSOWEJ Polega na przyporządkowaniu
Z poprzedniego wykładu
PODSTAWY STATYSTYKI 1. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5. Testy parametryczne
Zmienne losowe dyskretne i Zmienne losowe ciągłe Rozkład Normalny
Zmienne losowe dyskretne i Zmienne losowe ciągłe Rozkład Normalny 1. Wyprodukowanie określonej liczby wyrobów przez jednego pracownika w ciągu godziny jest zmienną losową o następującym rozkładzie prawdopodobieństwa:
Wykład 1 Zmienne losowe, statystyki próbkowe - powtórzenie materiału
Wykład 1 Zmienne losowe, statystyki próbkowe - powtórzenie materiału Magdalena Frąszczak Wrocław, 22.02.2017r Zasady oceniania Ćwiczenia 2 kolokwia (20 punktów każde) 05.04.2017 oraz 31.05.2017 2 kartkówki
Zmienne losowe. dr Mariusz Grzadziel. rok akademicki 2016/2017 semestr letni. Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu
Zmienne losowe dr Mariusz Grzadziel Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu rok akademicki 2016/2017 semestr letni Definicja 1 Zmienna losowa nazywamy dyskretna (skokowa), jeśli zbiór
Zmienna losowa. Rozkład skokowy
Temat: Zmienna losowa. Rozkład skokowy Kody kolorów: żółty nowe pojęcie pomarańczowy uwaga * - materiał nadobowiązkowy Anna Rajfura, Matematyka i statystyka matematyczna na kierunku Rolnictwo SGGW 1 Zagadnienia
LISTA 4. 7.Przy sporządzaniu skali magnetometru dokonano 10 niezależnych pomiarów
LISTA 4 1.Na pewnym obszarze dokonano 40 pomiarów grubości warstwy piasku otrzymując w m.: 54, 58, 64, 69, 61, 56, 41, 48, 56, 61, 70, 55, 46, 57, 70, 55, 47, 62, 55, 60, 54,57,65,60,53,54, 49,58,62,59,55,50,58,
Outlier to dana (punkt, obiekt, wartośd w zbiorze) znacznie odstająca od reszty. prezentacji punktów odstających jest rysunek poniżej.
Temat: WYKRYWANIE ODCHYLEO W DANYCH Outlier to dana (punkt, obiekt, wartośd w zbiorze) znacznie odstająca od reszty. prezentacji punktów odstających jest rysunek poniżej. Przykładem Box Plot wygodną metodą
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI. Test zgodności i analiza wariancji Analiza wariancji
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI Test zgodności i analiza wariancji Analiza wariancji Test zgodności Chi-kwadrat Sprawdza się za jego pomocą ZGODNOŚĆ ROZKŁADU EMPIRYCZNEGO Z PRÓBY Z ROZKŁADEM HIPOTETYCZNYM
II WYKŁAD STATYSTYKA. 12/03/2014 B8 sala 0.10B Godz. 15:15
II WYKŁAD STATYSTYKA 12/03/2014 B8 sala 0.10B Godz. 15:15 WYKŁAD 2 Rachunek prawdopodobieństwa zdarzenia elementarne zdarzenia losowe zmienna losowa skokowa i ciągła prawdopodobieństwo i gęstość prawdopodobieństwa