Oprogramowanie dla GWAS
|
|
- Bożena Żurek
- 6 lat temu
- Przeglądów:
Transkrypt
1 BIOINFORMATYKA 1. Wykład wstępny 2. Bazy danych: projektowanie i struktura 3. Równowaga Hardyego-Weinberga, wsp. rekombinacji 4. Analiza asocjacyjna 5. Analiza asocjacyjna 6. Sekwencjonowanie nowej generacji 7. Sekwencjonowanie nowej generacji 8. Funkcjonalna adnotacja polimorfizmów 9. Funkcjonalna adnotacja polimorfizmów 10. Wybrane algorytmy 11. Wybrane algorytmy 12. Literatura Literatura Literatura Literatura
2 WSTĘP Oprogramowanie dla GWAS 1. PLINK Struktura plików wsadowych Wykonanie programu Interpretacja wyników 2. GCTA Struktura plików wsadowych Wykonanie programu Interpretacja wyników 3. Przykłady innych programów
3 WSTĘP Tworzenie własnych programów 4. R Kod programu Wykonanie programu Interpretacja wyników 5. SAS Kod programu Wykonanie programu Interpretacja wyników
4 PLINK
5 PLINK
6 PLINK 1. Darmowy 2. Dobra dokumentacja 3. Różne systemy operacyjne Linia komend Interfejs graficzny (Java)
7 PLINK Zastosowanie Edycja danych: proste manipulacje na zbiorach danych, detekcja błędnych obserwacji, zmiany formatów, Podstawowe statystyki opisowe: brakujące dane, średnia, frekwencje alleli Obliczanie spokrewnienia IBD / IBS Analiza asocjacyjna: cechy ciągłe i dyskretne, różne struktury danych Permutacje danych Obliczanie LD Identyfikacja haplotypów Imputacja uzupełnienie brakujących genotypów...
8 PLINK plik wsadowy *.ped: genotypy, pochodzenie, cechy nr rodziny nr osobnika nr ojca nr matki płeć cecha genotypy markerów (tylko bialleliczne = SNP)
9 PLINK plik wsadowy *.map: mapa markerów 1 rs rs rs rs rs rs rs rs rs rs chromosom nazwa markera SNP położenie [ M ] 0=nieznane położenie [ bp ] 0=nieznane
10 PLINK wykonanie programu z linii komend plink --noweb --file test --assoc nazwa zbiorów danych *.map, *.ped test.map, test.ped opcja analizy asocjacyjnej
11 PLINK plik plink.qassoc: wyniki CHR SNP BP NMISS BETA SE R2 T P 1 rs rs NA NA NA NA NA 1 rs rs rs rs chromosom nazwa markera lokalizacja [ bp ] liczba zaobserwowanych danych współczynnik regresji liniowej b 1 odchylenie standardowe b 1 R 2 wartość testu Walda a T
12 PLINK regresja liniowa efekt SNP y 0 1 x wartość cechy kod genotypu SNP
13 PLINK regresja liniowa jaka część obserwowanej zmienności została wyjaśniona przez równanie regresji R 2 n i 1 n y y i i 1 yˆ i y 2 2
14 PLINK test Walda W ˆ 0 1 ~ ˆ 1 t n p
15 PLINK test Walda H 0 : SNP nie wykazuje powiązania z cechą i = 0 H 1 : SNP wykazuje powiązanie z cechą i 0 maksymalny błąd I-go rodzaju a MAX = 0.01 SNP1 = a T = SNP2 = NA NA SNP3 = a T = SNP4 = a T = SNP5 = a T = SNP6 = a T = SNP7 = a T = SNP8 = a T = SNP9 = a T = SNP10 = a T = H 0 : SNP1, SNP3, SNP4, SNP5, SNP8, SNP9, SNP10 H 1 : SNP6, SNP7 W bp Copyright 2017 Joanna Szyda
16 PLINK literatura DOI:
17 PLINK publikacja Copyright 2017 Joanna Szyda
18 GCTA
19 GCTA
20 GCTA 1. Genome-wide Complex Trait Analysis 2. Darmowy 3. Różne systemy operacyjne 4. Wersja wykonawcza oraz kod źródłowy 5. Często uaktualniany 6. Słaba dokumentacja Copyright 201,7 Joanna Szyda
21 GCTA Zastosowanie analiza danych GREML estymacja wariancji genetycznej determinowanej przez SNP GWAS vróżne modele LD obliczanie i analiza Genetyka populacji F st, PCA
22 GCTA genotypy, pochodzenie, cechy *.ped nr rodziny nr osobnika nr ojca nr matki płeć cecha genotypy markerów (tylko bialleliczne = SNP)
23 GCTA fenotypy *.phen nr rodziny nr osobnika wartość cechy
24 GCTA wykonanie programu z linii komend gcta64 --mlma --bfile test --pheno test.phen --out test opcja analizy modeli mieszanych y = Xb + Zu + e y u b e X Z fenotyp połączony efekt wszystkich SNP inne efekty np. wiek błąd macierz wystąpień dla b macierz wystąpień dla u var u = Gσ u 2 var e = Iσ e 2
25 GCTA wykonanie programu Jak uzyskać efekty poszczególnych SNP (g) z modelu: g = W G 1 u W macierz wystąpień dla genotypów
26 GCTA wyniki 1 s A T s C T s C G s T A s A G s G C s C A chromosom nr SNP pz allel referencyjny allele alternatywny frekwencja allelu referencyjnego efekt allelu referencyjnego błąd standardowy P
27 GCTA literatura DOI:
28 GCTA publikacja Copyright 2017 Joanna Szyda
29 Inne programy
30 GVCBLUP Copyright 2017 Joanna Szyda
31 GenABEL Copyright 2017 Joanna Szyda
32 R
33 SAS - dane krów Jersey 2. Cechy: wydajność mleka-, białka-, tłuszczu 3. Geny: leptyna, receptor leptynhy, dgat1 Copyright 2017 Joanna Szyda
34 GWAS dane wejściowe fenotypy
35 GWAS dane wejściowe genotypy
36 GWAS kod R PHEN <- read.table("c:/asia/class/bioinformatics2/data/laktacjejersey.prn", col.names=c("iid","bdate","cdate","parity","dim","my","fy","fp","py","pp")) PHEN1 <- PHEN[PHEN$PARITY==1,] GEN <- read.table("c:/asia/class/bioinformatics2/data/genotypejerseyc.txt", col.names=c("iid","snp1","snp2","snp3")) ALLDAT <- merge(phen1, GEN, by="iid", all=false) REGSNP1 = lm(my ~ SNP1, data=alldat) summary(regsnp1) results=matrix(0,3,3) for (i in 1:3) { model=summary(lm(alldat$my ~ ALLDAT[,i+10])) results[i,1]=model$coef[2,1] results[i,2]=model$coef[2,3] results[i,3]=model$coef[2,4] } results=as.data.frame(results) colnames(results)=c("effect","t-test","p-value") rownames(results)=c("snp1","snp2","snp3") results
37 GWAS wyniki effect t-test P-value SNP SNP SNP
38 SAS
39 SAS kod programu *************************************************************/ /* J.Szyda */ /* program fitts various linear mixed repeatability models */ /* to jersey data */ /*************************************************************/ options obs=max; options ls=70; %let INFILE1 ='C:/ASIA/CLASS/bioinformatics2/data/genotypejerseyC.txt' ; %let INFILE2 ='C:/ASIA/CLASS/bioinformatics2/data/laktacjejersey.prn' ; * read phenotypes ; data PHEN ; infile "&INFILE2" ; input IID BDAY 9-10 BMONTH BYEAR CDAY CMONTH CYEAR PARITY DIM MY FY FP PY PP ; if PARITY ne 1 then delete ; run ; proc sort data=phen nodupkey ; by IID ; run ;
40 SAS kod programu * read genotypes ; data GEN ; infile "&INFILE1" ; input IID LEPR DGAT LEP ; if LEP=9 then LEP=. ; if LEPR=9 then LEPR=. ; if DGAT=9 then DGAT=. ; run ; proc sort data=gen nodupkey ; by IID ; run ; data ALL ; merge PHEN (in=a) GEN (in=b) ; by IID ; if A and B ; run ; * fitting models ; proc reg data=all ; eq1: model MY = DIM LEPR ; eq2: model MY = DIM LEP ; eq2: model MY = DIM DGAT ; run ;
41 SAS wyniki Parameter Estimates eq1 VariableDF Parameter Standard t Value Pr > t Estimate Error Intercept DIM <.0001 LEPR Parameter Estimates eq2 VariableDF Parameter Standard t Value Pr > t Estimate Error Intercept DIM <.0001 LEP Parameter Estimates eq3 VariableDF Parameter Standard t Value Pr > t Estimate Error Intercept DIM <.0001 DGAT
42 1. PLINK 2. GCTA 3. Przykłady innych programów 4. R 5. SAS
WSTĘP Oprogramowanie dla GWAS
ANALIZA DANYCH 1. Wykład wstępny 2. Charakterystyka danych 3. Analiza wstępna genomiczna charakterystyka cech 4. Prezentacje grup roboczych analiza wstępna 5. Prezentacje grup roboczych analiza wstępna
1. Analiza asocjacyjna. Cechy ciągłe. Cechy binarne. Analiza sprzężeń. Runs of homozygosity. Signatures of selection
BIOINFORMATYKA 1. Wykład wstępny 2. Bazy danych: projektowanie i struktura 3. Równowaga Hardyego-Weinberga, wsp. rekombinacji 4. Analiza asocjacyjna 5. Analiza asocjacyjna 6. Sekwencjonowanie nowej generacji
PAKIETY STATYSTYCZNE
. Wykład wstępny PAKIETY STATYSTYCZNE 2. SAS, wprowadzenie - środowisko Windows, Linux 3. SAS, elementy analizy danych edycja danych 4. SAS, elementy analizy danych regresja liniowa, regresja nieliniowa
PAKIETY STATYSTYCZNE
1. Wykład wstępny PAKIETY STATYSTYCZNE 2. SAS, wprowadzenie - środowisko Windows, Linux 3. SAS, elementy analizy danych edycja danych 4. SAS, elementy analizy danych regresja liniowa, regresja nieliniowa
1. Symulacje komputerowe Idea symulacji Przykład. 2. Metody próbkowania Jackknife Bootstrap. 3. Łańcuchy Markova. 4. Próbkowanie Gibbsa
BIOINFORMATYKA 1. Wykład wstępny 2. Bazy danych: projektowanie i struktura 3. Równowaga Hardyego-Weinberga, wsp. rekombinacji 4. Analiza asocjacyjna 5. Analiza asocjacyjna 6. Sekwencjonowanie nowej generacji
PAKIETY STATYSTYCZNE
1. Wykład wstępny PAKIETY STATYSTYCZNE 2. SAS, wprowadzenie - środowisko Windows, Linux 3. SAS, elementy analizy danych edycja danych 4. SAS, elementy analizy danych regresja liniowa, regresja nieliniowa
PAKIETY STATYSTYCZNE
1. Wykład wstępny PAKIETY STATYSTYCZNE 2. SAS, wprowadzenie - środowisko Windows, Linux 3. SAS, elementy analizy danych edycja danych 4. SAS, elementy analizy danych regresja liniowa, regresja nieliniowa
WSTĘP. Copyright 2011, Joanna Szyda
BIOINFORMATYKA 1. Wykład wstępny 2. Struktury danych w badaniach bioinformatycznych 3. Bazy danych: projektowanie i struktura 4. Bazy danych: projektowanie i struktura 5. Równowaga Hardyego-Weinberga,
ANALIZA DANYCH POCHODZĄCYCH Z SEKWENCJONOWANIA NASTĘPNEJ GENERACJI
ANALIZA DANYCH POCHODZĄCYCH Z SEKWENCJONOWANIA NASTĘPNEJ GENERACJI Joanna Szyda Magdalena Frąszczak Magda Mielczarek WSTĘP 1. Katedra Genetyki 2. Pracownia biostatystyki 3. Projekty NGS 4. Charakterystyka
Modelowanie danych hodowlanych
Modelowanie danych hodowlanych 1. Wykład wstępny. Algebra macierzowa 3. Wykorzystanie różnych źródeł informacji w predykcji wartości hodowlanej 4. Kowariancja genetyczna pomiędzy spokrewnionymi osobnikami
PODSTAWY BIOINFORMATYKI 11 BAZA DANYCH HAPMAP
PODSTAWY BIOINFORMATYKI 11 BAZA DANYCH HAPMAP WSTĘP 1. SNP 2. haplotyp 3. równowaga sprzężeń 4. zawartość bazy HapMap 5. przykłady zastosowań Copyright 2013, Joanna Szyda HAPMAP BAZA DANYCH HAPMAP - haplotypy
INFORMATYKA W SELEKCJI
INFORMATYKA W SELEKCJI INFORMATYKA W SELEKCJI - zagadnienia 1. Dane w pracy hodowlanej praca z dużym zbiorem danych (Excel) 2. Podstawy pracy z relacyjną bazą danych w programie MS Access 3. Systemy statystyczne
METODY STATYSTYCZNE W BIOLOGII
METODY STATYSTYCZNE W BIOLOGII 1. Wykład wstępny 2. Populacje i próby danych 3. Testowanie hipotez i estymacja parametrów 4. Planowanie eksperymentów biologicznych 5. Najczęściej wykorzystywane testy statystyczne
BIOINFORMATYKA. Copyright 2011, Joanna Szyda
BIOINFORMATYKA 1. Wykład wstępny 2. Struktury danych w badaniach bioinformatycznych 3. Bazy danych: projektowanie i struktura 4. Bazy danych: projektowanie i struktura 5. Powiązania pomiędzy genami: równ.
ANALIZA DANYCH POCHODZĄCYCH Z SEKWENCJONOWANIA NASTĘPNEJ GENERACJI
ANALIZA DANYCH POCHODZĄCYCH Z SEKWENCJONOWANIA NASTĘPNEJ GENERACJI JOANNA SZYDA MAGDALENA FRĄSZCZAK MAGDA MIELCZAREK WSTĘP 1. Katedra Genetyki 2. Pracownia biostatystyki 3. Projekty NGS 4. Charakterystyka
PAKIETY STATYSTYCZNE 5. SAS wprowadzenie - środowisko Windows
PAKIETY STATYSTYCZNE 1. Wykład wstępny 2. Statistica wprowadzenie 3. Statistica elementy analizy danych 4. Statistica wykresy 5. SAS wprowadzenie - środowisko Windows 6. SAS wprowadzenie - środowisko Linux
BIOINFORMATYKA 8. Analiza asocjacyjna - teoria
IOINFORMTYK 1. Wykład wstępny 2. Struktury danych w adaniach ioinformatycznych 3. azy danych: projektowanie i struktura 4. azy danych: projektowanie i struktura 5. Powiązania pomiędzy genami: równ. Hardyego-Weinerga,
BIOMETRIA 3. Wprowadzenie do pakietu SAS
BIOMETRIA 1. Wykład wstępny 2. Opis danych przeznaczonych do analizy 3. Wprowadzenie do pakietu SAS 4. SAS Wykresy 5. SAS Test t 6. SAS Test c2 7. SAS Regresja liniowa 8. SAS Analiza wariancji 9. Wprowadzenie
Postępy w realizacji polskiego programu selekcji genomowej buhajów MASinBULL Joanna Szyda
Postępy w realizacji polskiego programu selekcji genomowej buhajów MASinBULL Joanna Szyda Uniwersytet Przyrodniczy we Wrocławiu Katedra Genetyki, Pracownia Biostatystyki 1. MASinBULL 2. Metody oceny genomowej
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5.
PODSTAWY BIOINFORMATYKI 6 BAZA DANYCH NCBI - II
PODSTAWY BIOINFORMATYKI 6 BAZA DANYCH NCBI - II BAZA DANYCH NCBI 1. NCBI 2. Dane gromadzone przez NCBI 3. Przegląd baz danych NCBI: Publikacje naukowe Projekty analizy genomów OMIM: fenotypy człowieka
STATYSTYKA MATEMATYCZNA WYKŁAD 1
STATYSTYKA MATEMATYCZNA WYKŁAD 1 Wykład wstępny Teoria prawdopodobieństwa Magda Mielczarek wykłady, ćwiczenia Copyright 2017, J. Szyda & M. Mielczarek STATYSTYKA MATEMATYCZNA? ASHG 2011 Writing Workshop;
PODSTAWY BIOINFORMATYKI 12 MIKROMACIERZE
PODSTAWY BIOINFORMATYKI 12 MIKROMACIERZE WSTĘP 1. Mikromacierze ekspresyjne tworzenie macierzy przykłady zastosowań 2. Mikromacierze SNP tworzenie macierzy przykłady zastosowań MIKROMACIERZE EKSPRESYJNE
STATYSTYKA MATEMATYCZNA WYKŁAD 4. Testowanie hipotez Estymacja parametrów
STATYSTYKA MATEMATYCZNA WYKŁAD 4 Testowanie hipotez Estymacja parametrów WSTĘP 1. Testowanie hipotez Błędy związane z testowaniem hipotez Etapy testowana hipotez Testowanie wielokrotne 2. Estymacja parametrów
Szacowanie wartości hodowlanej. Zarządzanie populacjami
Szacowanie wartości hodowlanej Zarządzanie populacjami wartość hodowlana = wartość cechy? Tak! Przy h 2 =1 ? wybitny ojciec = wybitne dzieci Tak, gdy cecha wysokoodziedziczalna. Wartość hodowlana genetycznie
SYSTEMY INFORMATYCZNE WSPOMAGAJĄCE HODOWLĘ MAGDALENA FRĄSZCZAK
SYSTEMY INFORMATYCZNE WSPOMAGAJĄCE HODOWLĘ Prowadzący: JOANNA SZYDA MAGDALENA FRĄSZCZAK WSTĘP 1. Systemy informatyczne w hodowli -??? 2. Katedra Genetyki 3. Pracownia biostatystyki - wykorzystanie narzędzi
Badania asocjacyjne w skali genomu (GWAS)
Badania asocjacyjne w skali genomu (GWAS) Część 2 LD, PCA Bioinżynieria, I mgr Bioinformatyczna analiza danych Wykład 3 Dr Wioleta Drobik-Czwarno Katedra Genetyki i Ogólnej Hodowli Zwierząt Analiza głównych
ADNOTACJE WARIANTÓW GENETYCZNYCH
ADNOTACJE WARIANTÓW GENETYCZNYCH WSTĘP 1. Adnotacja? 2. Klasyfikacja wariantów 3. Sequence Ontology terms 4. Variant Effect Predictor online skrypt 5. Inne źródła adnotacji ADNOTACJA WARIANTÓW 1. Edycja
PAKIETY STATYSTYCZNE JOANNA SZYDA TOMASZ SUCHOCKI
PAKIETY STATYSTYCZNE JOANNA SZYDA TOMASZ SUCHOCKI WSTĘP 1. Katedra Genetyki 2. Pracownia biostatystyki - projekt 3. Charakterystyka przedmiotu 4. Kontakt 5. Literatura Copyright 2017 Joanna Szyda KATEDRA
Pytania i odpowiedzi
Pytania i odpowiedzi Czy kontrola jakości płytek w programach analizy danych jest dostosowywana do przeprowadzanego badania, czy też przyjmuje się jednakową jej wartość dla różnych analiz? We wstępnym
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA 1. Wykład wstępny 2. Teoria prawdopodobieństwa i elementy kombinatoryki 3. Zmienne losowe 4. Populacje i próby danych 5. Testowanie hipotez i estymacja parametrów 6. Test t 7. Test
PAKIETY STATYSTYCZNE
1. Wykład wstępny PAKIETY STATYSTYCZNE 2. SAS, wprowadzenie - środowisko Windows, Linux 3. SAS, elementy analizy danych edycja danych 4. SAS, elementy analizy danych regresja liniowa, regresja nieliniowa
STATYSTYKA MATEMATYCZNA WYKŁAD 3. Populacje i próby danych
STATYSTYKA MATEMATYCZNA WYKŁAD 3 Populacje i próby danych POPULACJA I PRÓBA DANYCH POPULACJA population Obserwacje dla wszystkich osobników danego gatunku / rasy PRÓBA DANYCH sample Obserwacje dotyczące
Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r
Statystyka matematyczna Testowanie hipotez i estymacja parametrów Wrocław, 18.03.2016r Plan wykładu: 1. Testowanie hipotez 2. Etapy testowania hipotez 3. Błędy 4. Testowanie wielokrotne 5. Estymacja parametrów
Mapowanie genów cz owieka. podstawy
Mapowanie genów czowieka podstawy Sprzężenie Geny leżące na różnych chromosomach spełniają II prawo Mendla Dla 2 genów: 4 równoliczne klasy gamet W. S Klug, M.R Cummings Concepts of Genetics 8 th edition,
CECHY ILOŚCIOWE PARAMETRY GENETYCZNE
CECHY ILOŚCIOWE PARAMETRY GENETYCZNE Zarządzanie populacjami zwierząt, ćwiczenia V Dr Wioleta Drobik Rodzaje cech Jakościowe o prostym dziedziczeniu uwarunkowane zwykle przez kilka genów Słaba podatność
Badania asocjacyjne w skali genomu (GWAS)
Badania asocjacyjne w skali genomu (GWAS) Wstęp do GWAS Część 1 - Kontrola jakości Bioinformatyczna analiza danych Wykład 2 Dr Wioleta Drobik-Czwarno Katedra Genetyki i Ogólnej Hodowli Zwierząt Badania
PODSTAWY BIOINFORMATYKI WYKŁAD 4 ANALIZA DANYCH NGS
PODSTAWY BIOINFORMATYKI WYKŁAD 4 ANALIZA DANYCH NGS SEKWENCJONOWANIE GENOMÓW NEXT GENERATION METODA NOWEJ GENERACJI Sekwencjonowanie bardzo krótkich fragmentów 50-700 bp DNA unieruchomione na płytce Szybkie
INFORMATYKA W SELEKCJI
INFORMATYKA W SELEKCJI INFORMATYKA W SELEKCJI - zagadnienia 1. Dane w pracy hodowlanej praca z dużym zbiorem danych (Excel) 2. Podstawy pracy z relacyjną bazą danych w programie MS Access 3. Systemy statystyczne
Modelowanie danych hodowlanych
Modelowanie danych hodowlanych 1. Wykład wstępny 2. Algebra macierzowa 3. Wykorzystanie różnych źródeł informacji w predykcji wartości hodowlanej 4. Kowariancja genetyczna pomiędzy spokrewnionymi osobnikami
Dziedziczenie poligenowe
Dziedziczenie poligenowe Dziedziczenie cech ilościowych Dziedziczenie wieloczynnikowe Na wartość cechy wpływa Komponenta genetyczna - wspólne oddziaływanie wielu (najczęściej jest to liczba nieznana) genów,
PRZYGODY DGV. historia programu selekcji genomowej w Polsce. Joanna Szyda, Andrzej Żarnecki
PRZYGODY DGV historia programu selekcji genomowej w Polsce Joanna Szyda, Andrzej Żarnecki Co to DGV? DGV Direct Genomic Value bezpośrednia genomowa wartość hodowlana suma addytywnych efektów markerów SNP
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez statystycznych
Informatyka w selekcji - Wykªad 4
Informatyka w selekcji - Wykªad 4 Plan wykªadu SAS 1. Praca z programem 2. Edycja danych 3. Procedury graczne 4. Analiza w pakiecie SAS na»ywo, Wykªad 5 2/36 Praca z programem, Wykªad 5 3/36 Praca z programem
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5.
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5.
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA 1. Wykład wstępny 2. Zmienne losowe i teoria prawdopodobieństwa 3. Populacje i próby danych 4. Testowanie hipotez i estymacja parametrów 5. Najczęściej wykorzystywane testy statystyczne
PODSTAWY GENETYKI. Prowadzący wykład: prof. dr hab. Jarosław Burczyk
PODSTAWY GENETYKI Prawa Mendla (jako punkt wyjścia) Epistaza (interakcje między genami) Sprzężenia genetyczne i mapowanie genów Sprzężenie z płcią Analiza rodowodów Prowadzący wykład: prof. dr hab. Jarosław
Zarządzanie populacjami zwierząt. Parametry genetyczne cech
Zarządzanie populacjami zwierząt Parametry genetyczne cech Teoria ścieżki zależność przyczynowo-skutkowa X p 01 Z Y p 02 p 01 2 + p 02 2 = 1 współczynniki ścieżek miary związku między przyczyną a skutkiem
Tomasz Suchocki Kacper Żukowski, Magda Mielczarek, Joanna Szyda
Tomasz Suchocki Kacper Żukowski, Magda Mielczarek, Joanna Szyda Uniwersytet Przyrodniczy we Wrocławiu, Pracownia Biostatystyki Instytut Zootechniki Państwowy Instytut Badawczy 2 > 76 000 osobników w bazie
Ekologia molekularna. wykład 3
Ekologia molekularna wykład 3 Dziedziczenie mendlowskie Grzegorz Mendel 1822-1884 Darwin + Mendel = Ronald Fisher 1890-1962 wykład 3/2 Prawo Hardy'ego-Weinberga A A gamety możliwe genotypy potomstwa genotyp
Spokrewnienie prawdopodobieństwo, że dwa losowe geny od dwóch osobników są genami IBD. IBD = identical by descent, geny identycznego pochodzenia
prawdopodobieństwo, że dwa losowe geny od dwóch osobników są genami ID. Relationship Relatedness Kinship Fraternity ID = identical by descent, geny identycznego pochodzenia jest miarą względną. Przyjmuje
BADANIE ZALEśNOŚCI CECHY Y OD CECHY X - ANALIZA REGRESJI PROSTEJ
WYKŁAD 3 BADANIE ZALEśNOŚCI CECHY Y OD CECHY X - ANALIZA REGRESJI PROSTEJ Było: Przykład. Z dziesięciu poletek doświadczalnych zerano plony ulw ziemniaczanych (cecha X) i oznaczono w nich procentową zawartość
ZARZĄDZANIE POPULACJAMI ZWIERZĄT
ZARZĄDZANIE POPULACJAMI ZWIERZĄT Ćwiczenia 1 mgr Magda Kaczmarek-Okrój magda_kaczmarek_okroj@sggw.pl 1 ZAGADNIENIA struktura genetyczna populacji obliczanie frekwencji genotypów obliczanie frekwencji alleli
Podstawy genetyki człowieka. Cechy wieloczynnikowe
Podstawy genetyki człowieka Cechy wieloczynnikowe Dziedziczenie Mendlowskie - jeden gen = jedna cecha np. allele jednego genu decydują o barwie kwiatów groszku Bardziej złożone - interakcje kilku genów
Z poprzedniego wykładu
PODSTAWY STATYSTYKI 1. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5. Testy parametryczne
Zadania do cz. II (z frekwencji i prawa Hardy ego-weinberga)
Zadania do cz. II (z frekwencji i prawa Hardy ego-weinberga) Autor: Grzegorz Góralski ggoralski.com Zadanie 1 Populacja składa się z osobników: 200 o genotypie AA; 400 Aa; 400 aa. Oblicz: frekwencje allelu
PORÓWNYWANIE POPULACJI POD WZGLĘDEM STRUKTURY
PORÓWNYWANIE POPULACJI POD WZGLĘDEM STRUKTURY obliczanie dystansu dzielącego grupy (subpopulacje) wyrażonego za pomocą indeksu F Wrighta (fixation index) w modelu jednego locus 1 Ćwiczenia III Mgr Kaczmarek-Okrój
GENETYKA POPULACJI. Ćwiczenia 1 Biologia I MGR /
GENETYKA POPULACJI Ćwiczenia 1 Biologia I MGR 1 ZAGADNIENIA struktura genetyczna populacji obliczanie frekwencji genotypów obliczanie frekwencji alleli przewidywanie struktury następnego pokolenia przy
Wprowadzenie do genetyki medycznej i sądowej
Genetyka medyczno-sądowa Wprowadzenie do genetyki medycznej i sądowej Kierownik Pracowni Genetyki Medycznej i Sądowej Ustalanie tożsamości zwłok Identyfikacja sprawców przestępstw Identyfikacja śladów
INFORMATYKA W SELEKCJI 9 MODELE MIESZANE
INFORMATYKA W SELEKCJI 9 MODELE MIESZANE SAS WYKORYSTANIE PAKIETU SAS DO ESTYMACJI EFEKTÓW MODELI MIESZANYCH. Modl stały, a modl miszany. Macirz spokrwniń addytywni polignicznych 3. Przygotowani danych
1 Podstawowe pojęcia z zakresu genetyki. 2 Podstawowy model dziedziczenia
Rachunek Prawdopodobieństwa MAP8 Wydział Matematyki, Matematyka Stosowana Projekt - zastosowania rachunku prawdopodobieństwa w genetyce Opracowanie: Antonina Urbaniak Podstawowe pojęcia z zakresu genetyki
Dryf genetyczny i jego wpływ na rozkłady próbek z populacji - modele matematyczne. Adam Bobrowski, IM PAN Katowice
Dryf genetyczny i jego wpływ na rozkłady próbek z populacji - modele matematyczne Adam Bobrowski, IM PAN Katowice 1 Tematyka cyklu referatów Dryf genetyczny Matematyczne modele równowagi między mutacja
Genetyka Populacji http://ggoralski.com
Genetyka Populacji http://ggoralski.com Frekwencje genotypów i alleli Frekwencja genotypów Frekwencje genotypów i alleli Zadania P AA = 250/500 = 0,5 P Aa = 100/500 = 0,2 P aa = 150/500 = 0,3 = 1 Frekwencje
SAS Podstawowe informacje przed ćwiczeniem 1
SAS Podstawowe informacje przed ćwiczeniem 1 Zasady tworzenia programów każda instrukcja zakończona się średnikiem małe i duże litery nie są rozróżniane instrukcje mogą być kontynuowane w następnej linii
Ćwiczenie 12. Diagnostyka molekularna. Poszukiwanie SNPs Odczytywanie danych z sekwencjonowania. Prof. dr hab. Roman Zieliński
Ćwiczenie 12 Diagnostyka molekularna. Poszukiwanie SNPs Odczytywanie danych z sekwencjonowania Prof. dr hab. Roman Zieliński 1. Diagnostyka molekularna 1.1. Pytania i zagadnienia 1.1.1. Jak definiujemy
Mapowanie genów cz owieka i badania asocjacji. podstawy
Mapowanie genów czowieka i badania asocjacji podstawy Sprzężenie Geny leżące na różnych chromosomach spełniają II prawo Mendla Dla 2 genów: 4 równoliczne klasy gamet W. S Klug, M.R Cummings Concepts of
Analiza sprzężeń u człowieka. Podstawy
Analiza sprzężeń u człowieka Podstawy Badanie relacji genotyp-fenotyp u człowieka Analiza sprzężeń - poszukiwanie rejonów chromosomu położonych blisko genu determinującego daną cechę Analiza asocjacji
Ocena wartości hodowlanej. Dr Agnieszka Suchecka
Ocena wartości hodowlanej Dr Agnieszka Suchecka Wartość hodowlana genetycznie uwarunkowane możliwości zwierzęcia do ujawnienia określonej produkcyjności oraz zdolność przekazywania ich potomstwu (wartość
weryfikacja hipotez dotyczących parametrów populacji (średnia, wariancja)
PODSTAWY STATYSTYKI. Teoria prawdopodobieństwa i elementy kombinatoryki. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5. Testy parametryczne (na
Zmienność. środa, 23 listopada 11
Zmienność http://ggoralski.com Zmienność Zmienność - rodzaje Zmienność obserwuje się zarówno między poszczególnymi osobnikami jak i między populacjami. Różnice te mogą mieć jednak różne podłoże. Mogą one
Anna Szewczyk. Wydział Geodezji Górniczej i InŜynierii środowiska AGH
Anna Szewczyk Wydział Geodezji Górniczej i InŜynierii środowiska AGH Zastosowania biblioteki Genetics programu R The genetics Package Tytuł: Populacja genetyczna Wersja:1.2.0 Data utworzenia: 2005-11-09
Testowanie hipotez statystycznych.
Bioinformatyka Wykład 9 Wrocław, 5 grudnia 2011 Temat. Test zgodności χ 2 Pearsona. Statystyka χ 2 Pearsona Rozpatrzmy ciąg niezależnych zmiennych losowych X 1,..., X n o jednakowym dyskretnym rozkładzie
SYSTEMY INFORMATYCZNE WSPOMAGAJĄCE HODOWLĘ
SYSTEMY INFORMATYCZNE WSPOMAGAJĄCE HODOWLĘ Struktura efektywnej bazy danych Zastosowanie pakietu MS Excel do tworzenia baz danych WSTĘP 1. Dane Przykłady Edycja Zarządzanie 2. Bazy danych Definicje Przykłady
Czynniki genetyczne sprzyjające rozwojowi otyłości
Czynniki genetyczne sprzyjające rozwojowi otyłości OTYŁOŚĆ Choroba charakteryzująca się zwiększeniem masy ciała ponad przyjętą normę Wzrost efektywności terapii Czynniki psychologiczne Czynniki środowiskowe
Analiza sprzężeń u człowieka. Podstawy
Analiza sprzężeń u człowieka Podstawy Badanie relacji genotyp-fenotyp u człowieka Analiza sprzężeń - poszukiwanie rejonów chromosomu położonych blisko genu determinującego daną cechę Analiza asocjacji
WSTĘP DO REGRESJI LOGISTYCZNEJ. Dr Wioleta Drobik-Czwarno
WSTĘP DO REGRESJI LOGISTYCZNEJ Dr Wioleta Drobik-Czwarno REGRESJA LOGISTYCZNA Zmienna zależna jest zmienną dychotomiczną (dwustanową) przyjmuje dwie wartości, najczęściej 0 i 1 Zmienną zależną może być:
Zarządzanie populacjami zwierząt. Ocena wartości hodowlanej Wykład 7
Zarządzanie populacjami zwierząt Ocena wartości odowlanej Wykład 7 Wartość fenotypowa Ceca ilościowa G GE E D I GE E E p E t,d,i addytywna, dominacyjna, interakcyjna (epistatyczna) część wartości genotypowej
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA 1. Wykład wstępny 2. Zmienne losowe i teoria prawdopodobieństwa 3. Populacje i próby danych 4. Testowanie hipotez i estymacja parametrów 5. Najczęściej wykorzystywane testy statystyczne
Opis wykonanych badań naukowych oraz uzyskanych wyników
Opis wykonanych badań naukowych oraz uzyskanych wyników 1. Analiza danych (krok 2 = uwzględnienie epistazy w modelu): detekcja QTL przy wykorzystaniu modeli dwuwymiarowych z uwzględnieniem różnych modeli
a) Zapisz genotyp tego mężczyzny... oraz zaznacz poniżej (A, B, C lub D), jaki procent gamet tego mężczyzny będzie miało genotyp ax b.
W tomie 2 zbioru zadań z biologii z powodu nieprawidłowego wprowadzenia komendy przenoszenia spójników i przyimków do następnej linii wystąpiła zamiana samotnych dużych liter (A, I, W, U) na małe litery.
Regresja liniowa wprowadzenie
Regresja liniowa wprowadzenie a) Model regresji liniowej ma postać: gdzie jest zmienną objaśnianą (zależną); są zmiennymi objaśniającymi (niezależnymi); natomiast są parametrami modelu. jest składnikiem
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA 1. Wykład wstępny 2. Teoria prawdopodobieństwa i elementy kombinatoryki 3. Zmienne losowe 4. Populacje i próby danych 5. Testowanie hipotez i estymacja parametrów 6. Test t 7. Test
Ekologia molekularna. wykład 14. Genetyka ilościowa
Ekologia molekularna wykład 14 Genetyka ilościowa Dziedziczenie mendlowskie wykład 14/2 Cechy wieloczynnikowe (ilościowe) wzrost masa ciała kolor skóry kolor oczu itp wykład 14/3 Rodzaje cech ilościowych
Testowanie hipotez dla dwóch zmiennych zależnych. Moc testu. Minimalna liczność próby; Regresja prosta; Korelacja Pearsona;
LABORATORIUM 4 Testowanie hipotez dla dwóch zmiennych zależnych. Moc testu. Minimalna liczność próby; Regresja prosta; Korelacja Pearsona; dwie zmienne zależne mierzalne małe próby duże próby rozkład normalny
METODY STATYSTYCZNE W BIOLOGII
METODY STATYSTYCZNE W BIOLOGII 1. Wykład wstępny 2. Populacje i próby danych 3. Testowanie hipotez i estymacja parametrów 4. Planowanie eksperymentów biologicznych 5. Najczęściej wykorzystywane testy statystyczne
Konspekt do zajęć z przedmiotu Genetyka dla kierunku Położnictwo dr Anna Skorczyk-Werner Katedra i Zakład Genetyki Medycznej
Seminarium 1 część 1 Konspekt do zajęć z przedmiotu Genetyka dla kierunku Położnictwo dr Anna Skorczyk-Werner Katedra i Zakład Genetyki Medycznej Genom człowieka Genomem nazywamy całkowitą ilość DNA jaka
METODY STATYSTYCZNE W BIOLOGII
METODY STATYSTYCZNE W BIOLOGII 1. Wykład wstępny 2. Populacje i próby danych 3. Testowanie hipotez i estymacja parametrów 4. Planowanie eksperymentów biologicznych 5. Najczęściej wykorzystywane testy statystyczne
EGZAMIN MAGISTERSKI, Biomatematyka
Biomatematyka 90...... Zadanie 1. (8 punktów) Załóżmy, że w diploidalnej populacji, dla której zachodzi prawo Hardy ego- Weinberga dla loci o dwóch allelach A i a proporcja osobników o genotypie AA wynosi
Definicja. Odziedziczalność. Definicja. w potocznym rozumieniu znaczy tyle co dziedziczenie. Fenotyp( P)=Genotyp(G)+Środowisko(E) V P = V G + V E
Odziedziczalność w potocznym rozumieniu znaczy tyle co dziedziczenie...ale ma ścisłą techniczną definicję. Definicja Fenotyp( P)=Genotyp(G)+Środowisko(E) V P = V G + V E H 2 (w szerszym sensie) = V G /
1. KEGG 2. GO. 3. Klastry
ANALIZA DANYCH 1. Wykład wstępny 2. Charakterystyka danych 3. Analiza wstępna genomiczna charakterystyka cech 4. Prezentacje grup roboczych analiza wstępna 5. Prezentacje grup roboczych analiza wstępna
Rozdział 8. Regresja. Definiowanie modelu
Rozdział 8 Regresja Definiowanie modelu Analizę korelacji można traktować jako wstęp do analizy regresji. Jeżeli wykresy rozrzutu oraz wartości współczynników korelacji wskazują na istniejąca współzmienność
Przedziały ufności i testy parametrów. Przedziały ufności dla średniej odpowiedzi. Interwały prognoz (dla przyszłych obserwacji)
Wkład 1: Prosta regresja liniowa Statstczn model regresji liniowej Dane dla prostej regresji liniowej Przedział ufności i test parametrów Przedział ufności dla średniej odpowiedzi Interwał prognoz (dla
Bliskie Spotkanie z Biologią. Genetyka populacji
Bliskie Spotkanie z Biologią Genetyka populacji Plan wykładu 1) Częstości alleli i genotypów w populacji 2) Prawo Hardy ego-weinberga 3) Dryf genetyczny 4) Efekt założyciela i efekt wąskiego gardła 5)
Zmodyfikowane wg Kadowaki T in.: J Clin Invest. 2006;116(7):1784-92
Magdalena Szopa Związek pomiędzy polimorfizmami w genie adiponektyny a wybranymi wyznacznikami zespołu metabolicznego ROZPRAWA DOKTORSKA Promotor: Prof. zw. dr hab. med. Aldona Dembińska-Kieć Kierownik
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2017/2018 CZĘŚĆ 2. PRZEDMIOTY PRZYRODNICZE
EGZAMIN W KLASIE TRZEIEJ GIMNAZJUM W ROKU SZKOLNYM 2017/2018 ZĘŚĆ 2. PRZEDMIOTY PRZYRODNIZE ZASADY OENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZE: GM-PX1, GM-P2, GM-P4, GM-P7 KWIEIEŃ 2018 Zadanie 1. (0 1) III. Poszukiwanie,
Modelowanie danych hodowlanych
Modelowanie danych hodowlanych 1. Wykład wstępny 2. Algebra macierzowa 3. Wykorzystanie różnych źródeł informacji w predykcji wartości hodowlanej 4. Kowariancja genetyczna pomiędzy spokrewnionymi osobnikami
METODOLOGICZNE ASPEKTY BADAŃ W BIOLOGII CZŁOWIEKA. WYJAŚNIANIE STRATEGII ADAPTACYJNEJ CZŁOWIEKA METODAMI GENETYKI ILOŚCIOWEJ.
METODOLOGICZNE ASPEKTY BADAŃ W BIOLOGII CZŁOWIEKA. WYJAŚNIANIE STRATEGII ADAPTACYJNEJ CZŁOWIEKA METODAMI GENETYKI ILOŚCIOWEJ Joachim Cieślik, Uniwersytet im. A. Mickiewicza w Poznaniu, Instytut Antropologii
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki 3. Zmienne losowe 4. Populacje i próby danych 5. Testowanie hipotez i estymacja parametrów 6. Test t 7. Test
BioTe21, Pracownia Kryminalistyki i Badań Ojcostwa.
Bio Kraków, dnia... EKSPERTYZA Z BADAŃ GENETYCZNYCH POKREWIEŃSTWA Nr ekspertyzy:... Badania wykonano w: Bio, Ojcostwa. Na zlecenie:... Typ wybranego testu: TIG3-16 Zlecenie z dnia:... Data otrzymania mat.