Oprogramowanie dla GWAS

Wielkość: px
Rozpocząć pokaz od strony:

Download "Oprogramowanie dla GWAS"

Transkrypt

1 BIOINFORMATYKA 1. Wykład wstępny 2. Bazy danych: projektowanie i struktura 3. Równowaga Hardyego-Weinberga, wsp. rekombinacji 4. Analiza asocjacyjna 5. Analiza asocjacyjna 6. Sekwencjonowanie nowej generacji 7. Sekwencjonowanie nowej generacji 8. Funkcjonalna adnotacja polimorfizmów 9. Funkcjonalna adnotacja polimorfizmów 10. Wybrane algorytmy 11. Wybrane algorytmy 12. Literatura Literatura Literatura Literatura

2 WSTĘP Oprogramowanie dla GWAS 1. PLINK Struktura plików wsadowych Wykonanie programu Interpretacja wyników 2. GCTA Struktura plików wsadowych Wykonanie programu Interpretacja wyników 3. Przykłady innych programów

3 WSTĘP Tworzenie własnych programów 4. R Kod programu Wykonanie programu Interpretacja wyników 5. SAS Kod programu Wykonanie programu Interpretacja wyników

4 PLINK

5 PLINK

6 PLINK 1. Darmowy 2. Dobra dokumentacja 3. Różne systemy operacyjne Linia komend Interfejs graficzny (Java)

7 PLINK Zastosowanie Edycja danych: proste manipulacje na zbiorach danych, detekcja błędnych obserwacji, zmiany formatów, Podstawowe statystyki opisowe: brakujące dane, średnia, frekwencje alleli Obliczanie spokrewnienia IBD / IBS Analiza asocjacyjna: cechy ciągłe i dyskretne, różne struktury danych Permutacje danych Obliczanie LD Identyfikacja haplotypów Imputacja uzupełnienie brakujących genotypów...

8 PLINK plik wsadowy *.ped: genotypy, pochodzenie, cechy nr rodziny nr osobnika nr ojca nr matki płeć cecha genotypy markerów (tylko bialleliczne = SNP)

9 PLINK plik wsadowy *.map: mapa markerów 1 rs rs rs rs rs rs rs rs rs rs chromosom nazwa markera SNP położenie [ M ] 0=nieznane położenie [ bp ] 0=nieznane

10 PLINK wykonanie programu z linii komend plink --noweb --file test --assoc nazwa zbiorów danych *.map, *.ped test.map, test.ped opcja analizy asocjacyjnej

11 PLINK plik plink.qassoc: wyniki CHR SNP BP NMISS BETA SE R2 T P 1 rs rs NA NA NA NA NA 1 rs rs rs rs chromosom nazwa markera lokalizacja [ bp ] liczba zaobserwowanych danych współczynnik regresji liniowej b 1 odchylenie standardowe b 1 R 2 wartość testu Walda a T

12 PLINK regresja liniowa efekt SNP y 0 1 x wartość cechy kod genotypu SNP

13 PLINK regresja liniowa jaka część obserwowanej zmienności została wyjaśniona przez równanie regresji R 2 n i 1 n y y i i 1 yˆ i y 2 2

14 PLINK test Walda W ˆ 0 1 ~ ˆ 1 t n p

15 PLINK test Walda H 0 : SNP nie wykazuje powiązania z cechą i = 0 H 1 : SNP wykazuje powiązanie z cechą i 0 maksymalny błąd I-go rodzaju a MAX = 0.01 SNP1 = a T = SNP2 = NA NA SNP3 = a T = SNP4 = a T = SNP5 = a T = SNP6 = a T = SNP7 = a T = SNP8 = a T = SNP9 = a T = SNP10 = a T = H 0 : SNP1, SNP3, SNP4, SNP5, SNP8, SNP9, SNP10 H 1 : SNP6, SNP7 W bp Copyright 2017 Joanna Szyda

16 PLINK literatura DOI:

17 PLINK publikacja Copyright 2017 Joanna Szyda

18 GCTA

19 GCTA

20 GCTA 1. Genome-wide Complex Trait Analysis 2. Darmowy 3. Różne systemy operacyjne 4. Wersja wykonawcza oraz kod źródłowy 5. Często uaktualniany 6. Słaba dokumentacja Copyright 201,7 Joanna Szyda

21 GCTA Zastosowanie analiza danych GREML estymacja wariancji genetycznej determinowanej przez SNP GWAS vróżne modele LD obliczanie i analiza Genetyka populacji F st, PCA

22 GCTA genotypy, pochodzenie, cechy *.ped nr rodziny nr osobnika nr ojca nr matki płeć cecha genotypy markerów (tylko bialleliczne = SNP)

23 GCTA fenotypy *.phen nr rodziny nr osobnika wartość cechy

24 GCTA wykonanie programu z linii komend gcta64 --mlma --bfile test --pheno test.phen --out test opcja analizy modeli mieszanych y = Xb + Zu + e y u b e X Z fenotyp połączony efekt wszystkich SNP inne efekty np. wiek błąd macierz wystąpień dla b macierz wystąpień dla u var u = Gσ u 2 var e = Iσ e 2

25 GCTA wykonanie programu Jak uzyskać efekty poszczególnych SNP (g) z modelu: g = W G 1 u W macierz wystąpień dla genotypów

26 GCTA wyniki 1 s A T s C T s C G s T A s A G s G C s C A chromosom nr SNP pz allel referencyjny allele alternatywny frekwencja allelu referencyjnego efekt allelu referencyjnego błąd standardowy P

27 GCTA literatura DOI:

28 GCTA publikacja Copyright 2017 Joanna Szyda

29 Inne programy

30 GVCBLUP Copyright 2017 Joanna Szyda

31 GenABEL Copyright 2017 Joanna Szyda

32 R

33 SAS - dane krów Jersey 2. Cechy: wydajność mleka-, białka-, tłuszczu 3. Geny: leptyna, receptor leptynhy, dgat1 Copyright 2017 Joanna Szyda

34 GWAS dane wejściowe fenotypy

35 GWAS dane wejściowe genotypy

36 GWAS kod R PHEN <- read.table("c:/asia/class/bioinformatics2/data/laktacjejersey.prn", col.names=c("iid","bdate","cdate","parity","dim","my","fy","fp","py","pp")) PHEN1 <- PHEN[PHEN$PARITY==1,] GEN <- read.table("c:/asia/class/bioinformatics2/data/genotypejerseyc.txt", col.names=c("iid","snp1","snp2","snp3")) ALLDAT <- merge(phen1, GEN, by="iid", all=false) REGSNP1 = lm(my ~ SNP1, data=alldat) summary(regsnp1) results=matrix(0,3,3) for (i in 1:3) { model=summary(lm(alldat$my ~ ALLDAT[,i+10])) results[i,1]=model$coef[2,1] results[i,2]=model$coef[2,3] results[i,3]=model$coef[2,4] } results=as.data.frame(results) colnames(results)=c("effect","t-test","p-value") rownames(results)=c("snp1","snp2","snp3") results

37 GWAS wyniki effect t-test P-value SNP SNP SNP

38 SAS

39 SAS kod programu *************************************************************/ /* J.Szyda */ /* program fitts various linear mixed repeatability models */ /* to jersey data */ /*************************************************************/ options obs=max; options ls=70; %let INFILE1 ='C:/ASIA/CLASS/bioinformatics2/data/genotypejerseyC.txt' ; %let INFILE2 ='C:/ASIA/CLASS/bioinformatics2/data/laktacjejersey.prn' ; * read phenotypes ; data PHEN ; infile "&INFILE2" ; input IID BDAY 9-10 BMONTH BYEAR CDAY CMONTH CYEAR PARITY DIM MY FY FP PY PP ; if PARITY ne 1 then delete ; run ; proc sort data=phen nodupkey ; by IID ; run ;

40 SAS kod programu * read genotypes ; data GEN ; infile "&INFILE1" ; input IID LEPR DGAT LEP ; if LEP=9 then LEP=. ; if LEPR=9 then LEPR=. ; if DGAT=9 then DGAT=. ; run ; proc sort data=gen nodupkey ; by IID ; run ; data ALL ; merge PHEN (in=a) GEN (in=b) ; by IID ; if A and B ; run ; * fitting models ; proc reg data=all ; eq1: model MY = DIM LEPR ; eq2: model MY = DIM LEP ; eq2: model MY = DIM DGAT ; run ;

41 SAS wyniki Parameter Estimates eq1 VariableDF Parameter Standard t Value Pr > t Estimate Error Intercept DIM <.0001 LEPR Parameter Estimates eq2 VariableDF Parameter Standard t Value Pr > t Estimate Error Intercept DIM <.0001 LEP Parameter Estimates eq3 VariableDF Parameter Standard t Value Pr > t Estimate Error Intercept DIM <.0001 DGAT

42 1. PLINK 2. GCTA 3. Przykłady innych programów 4. R 5. SAS

WSTĘP Oprogramowanie dla GWAS

WSTĘP Oprogramowanie dla GWAS ANALIZA DANYCH 1. Wykład wstępny 2. Charakterystyka danych 3. Analiza wstępna genomiczna charakterystyka cech 4. Prezentacje grup roboczych analiza wstępna 5. Prezentacje grup roboczych analiza wstępna

Bardziej szczegółowo

1. Analiza asocjacyjna. Cechy ciągłe. Cechy binarne. Analiza sprzężeń. Runs of homozygosity. Signatures of selection

1. Analiza asocjacyjna. Cechy ciągłe. Cechy binarne. Analiza sprzężeń. Runs of homozygosity. Signatures of selection BIOINFORMATYKA 1. Wykład wstępny 2. Bazy danych: projektowanie i struktura 3. Równowaga Hardyego-Weinberga, wsp. rekombinacji 4. Analiza asocjacyjna 5. Analiza asocjacyjna 6. Sekwencjonowanie nowej generacji

Bardziej szczegółowo

PAKIETY STATYSTYCZNE

PAKIETY STATYSTYCZNE . Wykład wstępny PAKIETY STATYSTYCZNE 2. SAS, wprowadzenie - środowisko Windows, Linux 3. SAS, elementy analizy danych edycja danych 4. SAS, elementy analizy danych regresja liniowa, regresja nieliniowa

Bardziej szczegółowo

PAKIETY STATYSTYCZNE

PAKIETY STATYSTYCZNE 1. Wykład wstępny PAKIETY STATYSTYCZNE 2. SAS, wprowadzenie - środowisko Windows, Linux 3. SAS, elementy analizy danych edycja danych 4. SAS, elementy analizy danych regresja liniowa, regresja nieliniowa

Bardziej szczegółowo

1. Symulacje komputerowe Idea symulacji Przykład. 2. Metody próbkowania Jackknife Bootstrap. 3. Łańcuchy Markova. 4. Próbkowanie Gibbsa

1. Symulacje komputerowe Idea symulacji Przykład. 2. Metody próbkowania Jackknife Bootstrap. 3. Łańcuchy Markova. 4. Próbkowanie Gibbsa BIOINFORMATYKA 1. Wykład wstępny 2. Bazy danych: projektowanie i struktura 3. Równowaga Hardyego-Weinberga, wsp. rekombinacji 4. Analiza asocjacyjna 5. Analiza asocjacyjna 6. Sekwencjonowanie nowej generacji

Bardziej szczegółowo

PAKIETY STATYSTYCZNE

PAKIETY STATYSTYCZNE 1. Wykład wstępny PAKIETY STATYSTYCZNE 2. SAS, wprowadzenie - środowisko Windows, Linux 3. SAS, elementy analizy danych edycja danych 4. SAS, elementy analizy danych regresja liniowa, regresja nieliniowa

Bardziej szczegółowo

PAKIETY STATYSTYCZNE

PAKIETY STATYSTYCZNE 1. Wykład wstępny PAKIETY STATYSTYCZNE 2. SAS, wprowadzenie - środowisko Windows, Linux 3. SAS, elementy analizy danych edycja danych 4. SAS, elementy analizy danych regresja liniowa, regresja nieliniowa

Bardziej szczegółowo

WSTĘP. Copyright 2011, Joanna Szyda

WSTĘP. Copyright 2011, Joanna Szyda BIOINFORMATYKA 1. Wykład wstępny 2. Struktury danych w badaniach bioinformatycznych 3. Bazy danych: projektowanie i struktura 4. Bazy danych: projektowanie i struktura 5. Równowaga Hardyego-Weinberga,

Bardziej szczegółowo

ANALIZA DANYCH POCHODZĄCYCH Z SEKWENCJONOWANIA NASTĘPNEJ GENERACJI

ANALIZA DANYCH POCHODZĄCYCH Z SEKWENCJONOWANIA NASTĘPNEJ GENERACJI ANALIZA DANYCH POCHODZĄCYCH Z SEKWENCJONOWANIA NASTĘPNEJ GENERACJI Joanna Szyda Magdalena Frąszczak Magda Mielczarek WSTĘP 1. Katedra Genetyki 2. Pracownia biostatystyki 3. Projekty NGS 4. Charakterystyka

Bardziej szczegółowo

Modelowanie danych hodowlanych

Modelowanie danych hodowlanych Modelowanie danych hodowlanych 1. Wykład wstępny. Algebra macierzowa 3. Wykorzystanie różnych źródeł informacji w predykcji wartości hodowlanej 4. Kowariancja genetyczna pomiędzy spokrewnionymi osobnikami

Bardziej szczegółowo

PODSTAWY BIOINFORMATYKI 11 BAZA DANYCH HAPMAP

PODSTAWY BIOINFORMATYKI 11 BAZA DANYCH HAPMAP PODSTAWY BIOINFORMATYKI 11 BAZA DANYCH HAPMAP WSTĘP 1. SNP 2. haplotyp 3. równowaga sprzężeń 4. zawartość bazy HapMap 5. przykłady zastosowań Copyright 2013, Joanna Szyda HAPMAP BAZA DANYCH HAPMAP - haplotypy

Bardziej szczegółowo

INFORMATYKA W SELEKCJI

INFORMATYKA W SELEKCJI INFORMATYKA W SELEKCJI INFORMATYKA W SELEKCJI - zagadnienia 1. Dane w pracy hodowlanej praca z dużym zbiorem danych (Excel) 2. Podstawy pracy z relacyjną bazą danych w programie MS Access 3. Systemy statystyczne

Bardziej szczegółowo

METODY STATYSTYCZNE W BIOLOGII

METODY STATYSTYCZNE W BIOLOGII METODY STATYSTYCZNE W BIOLOGII 1. Wykład wstępny 2. Populacje i próby danych 3. Testowanie hipotez i estymacja parametrów 4. Planowanie eksperymentów biologicznych 5. Najczęściej wykorzystywane testy statystyczne

Bardziej szczegółowo

BIOINFORMATYKA. Copyright 2011, Joanna Szyda

BIOINFORMATYKA. Copyright 2011, Joanna Szyda BIOINFORMATYKA 1. Wykład wstępny 2. Struktury danych w badaniach bioinformatycznych 3. Bazy danych: projektowanie i struktura 4. Bazy danych: projektowanie i struktura 5. Powiązania pomiędzy genami: równ.

Bardziej szczegółowo

ANALIZA DANYCH POCHODZĄCYCH Z SEKWENCJONOWANIA NASTĘPNEJ GENERACJI

ANALIZA DANYCH POCHODZĄCYCH Z SEKWENCJONOWANIA NASTĘPNEJ GENERACJI ANALIZA DANYCH POCHODZĄCYCH Z SEKWENCJONOWANIA NASTĘPNEJ GENERACJI JOANNA SZYDA MAGDALENA FRĄSZCZAK MAGDA MIELCZAREK WSTĘP 1. Katedra Genetyki 2. Pracownia biostatystyki 3. Projekty NGS 4. Charakterystyka

Bardziej szczegółowo

PAKIETY STATYSTYCZNE 5. SAS wprowadzenie - środowisko Windows

PAKIETY STATYSTYCZNE 5. SAS wprowadzenie - środowisko Windows PAKIETY STATYSTYCZNE 1. Wykład wstępny 2. Statistica wprowadzenie 3. Statistica elementy analizy danych 4. Statistica wykresy 5. SAS wprowadzenie - środowisko Windows 6. SAS wprowadzenie - środowisko Linux

Bardziej szczegółowo

BIOINFORMATYKA 8. Analiza asocjacyjna - teoria

BIOINFORMATYKA 8. Analiza asocjacyjna - teoria IOINFORMTYK 1. Wykład wstępny 2. Struktury danych w adaniach ioinformatycznych 3. azy danych: projektowanie i struktura 4. azy danych: projektowanie i struktura 5. Powiązania pomiędzy genami: równ. Hardyego-Weinerga,

Bardziej szczegółowo

BIOMETRIA 3. Wprowadzenie do pakietu SAS

BIOMETRIA 3. Wprowadzenie do pakietu SAS BIOMETRIA 1. Wykład wstępny 2. Opis danych przeznaczonych do analizy 3. Wprowadzenie do pakietu SAS 4. SAS Wykresy 5. SAS Test t 6. SAS Test c2 7. SAS Regresja liniowa 8. SAS Analiza wariancji 9. Wprowadzenie

Bardziej szczegółowo

Postępy w realizacji polskiego programu selekcji genomowej buhajów MASinBULL Joanna Szyda

Postępy w realizacji polskiego programu selekcji genomowej buhajów MASinBULL Joanna Szyda Postępy w realizacji polskiego programu selekcji genomowej buhajów MASinBULL Joanna Szyda Uniwersytet Przyrodniczy we Wrocławiu Katedra Genetyki, Pracownia Biostatystyki 1. MASinBULL 2. Metody oceny genomowej

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5.

Bardziej szczegółowo

PODSTAWY BIOINFORMATYKI 6 BAZA DANYCH NCBI - II

PODSTAWY BIOINFORMATYKI 6 BAZA DANYCH NCBI - II PODSTAWY BIOINFORMATYKI 6 BAZA DANYCH NCBI - II BAZA DANYCH NCBI 1. NCBI 2. Dane gromadzone przez NCBI 3. Przegląd baz danych NCBI: Publikacje naukowe Projekty analizy genomów OMIM: fenotypy człowieka

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA WYKŁAD 1

STATYSTYKA MATEMATYCZNA WYKŁAD 1 STATYSTYKA MATEMATYCZNA WYKŁAD 1 Wykład wstępny Teoria prawdopodobieństwa Magda Mielczarek wykłady, ćwiczenia Copyright 2017, J. Szyda & M. Mielczarek STATYSTYKA MATEMATYCZNA? ASHG 2011 Writing Workshop;

Bardziej szczegółowo

PODSTAWY BIOINFORMATYKI 12 MIKROMACIERZE

PODSTAWY BIOINFORMATYKI 12 MIKROMACIERZE PODSTAWY BIOINFORMATYKI 12 MIKROMACIERZE WSTĘP 1. Mikromacierze ekspresyjne tworzenie macierzy przykłady zastosowań 2. Mikromacierze SNP tworzenie macierzy przykłady zastosowań MIKROMACIERZE EKSPRESYJNE

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA WYKŁAD 4. Testowanie hipotez Estymacja parametrów

STATYSTYKA MATEMATYCZNA WYKŁAD 4. Testowanie hipotez Estymacja parametrów STATYSTYKA MATEMATYCZNA WYKŁAD 4 Testowanie hipotez Estymacja parametrów WSTĘP 1. Testowanie hipotez Błędy związane z testowaniem hipotez Etapy testowana hipotez Testowanie wielokrotne 2. Estymacja parametrów

Bardziej szczegółowo

Szacowanie wartości hodowlanej. Zarządzanie populacjami

Szacowanie wartości hodowlanej. Zarządzanie populacjami Szacowanie wartości hodowlanej Zarządzanie populacjami wartość hodowlana = wartość cechy? Tak! Przy h 2 =1 ? wybitny ojciec = wybitne dzieci Tak, gdy cecha wysokoodziedziczalna. Wartość hodowlana genetycznie

Bardziej szczegółowo

SYSTEMY INFORMATYCZNE WSPOMAGAJĄCE HODOWLĘ MAGDALENA FRĄSZCZAK

SYSTEMY INFORMATYCZNE WSPOMAGAJĄCE HODOWLĘ MAGDALENA FRĄSZCZAK SYSTEMY INFORMATYCZNE WSPOMAGAJĄCE HODOWLĘ Prowadzący: JOANNA SZYDA MAGDALENA FRĄSZCZAK WSTĘP 1. Systemy informatyczne w hodowli -??? 2. Katedra Genetyki 3. Pracownia biostatystyki - wykorzystanie narzędzi

Bardziej szczegółowo

Badania asocjacyjne w skali genomu (GWAS)

Badania asocjacyjne w skali genomu (GWAS) Badania asocjacyjne w skali genomu (GWAS) Część 2 LD, PCA Bioinżynieria, I mgr Bioinformatyczna analiza danych Wykład 3 Dr Wioleta Drobik-Czwarno Katedra Genetyki i Ogólnej Hodowli Zwierząt Analiza głównych

Bardziej szczegółowo

ADNOTACJE WARIANTÓW GENETYCZNYCH

ADNOTACJE WARIANTÓW GENETYCZNYCH ADNOTACJE WARIANTÓW GENETYCZNYCH WSTĘP 1. Adnotacja? 2. Klasyfikacja wariantów 3. Sequence Ontology terms 4. Variant Effect Predictor online skrypt 5. Inne źródła adnotacji ADNOTACJA WARIANTÓW 1. Edycja

Bardziej szczegółowo

PAKIETY STATYSTYCZNE JOANNA SZYDA TOMASZ SUCHOCKI

PAKIETY STATYSTYCZNE JOANNA SZYDA TOMASZ SUCHOCKI PAKIETY STATYSTYCZNE JOANNA SZYDA TOMASZ SUCHOCKI WSTĘP 1. Katedra Genetyki 2. Pracownia biostatystyki - projekt 3. Charakterystyka przedmiotu 4. Kontakt 5. Literatura Copyright 2017 Joanna Szyda KATEDRA

Bardziej szczegółowo

Pytania i odpowiedzi

Pytania i odpowiedzi Pytania i odpowiedzi Czy kontrola jakości płytek w programach analizy danych jest dostosowywana do przeprowadzanego badania, czy też przyjmuje się jednakową jej wartość dla różnych analiz? We wstępnym

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STATYSTYKA MATEMATYCZNA 1. Wykład wstępny 2. Teoria prawdopodobieństwa i elementy kombinatoryki 3. Zmienne losowe 4. Populacje i próby danych 5. Testowanie hipotez i estymacja parametrów 6. Test t 7. Test

Bardziej szczegółowo

PAKIETY STATYSTYCZNE

PAKIETY STATYSTYCZNE 1. Wykład wstępny PAKIETY STATYSTYCZNE 2. SAS, wprowadzenie - środowisko Windows, Linux 3. SAS, elementy analizy danych edycja danych 4. SAS, elementy analizy danych regresja liniowa, regresja nieliniowa

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA WYKŁAD 3. Populacje i próby danych

STATYSTYKA MATEMATYCZNA WYKŁAD 3. Populacje i próby danych STATYSTYKA MATEMATYCZNA WYKŁAD 3 Populacje i próby danych POPULACJA I PRÓBA DANYCH POPULACJA population Obserwacje dla wszystkich osobników danego gatunku / rasy PRÓBA DANYCH sample Obserwacje dotyczące

Bardziej szczegółowo

Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r

Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r Statystyka matematyczna Testowanie hipotez i estymacja parametrów Wrocław, 18.03.2016r Plan wykładu: 1. Testowanie hipotez 2. Etapy testowania hipotez 3. Błędy 4. Testowanie wielokrotne 5. Estymacja parametrów

Bardziej szczegółowo

Mapowanie genów cz owieka. podstawy

Mapowanie genów cz owieka. podstawy Mapowanie genów czowieka podstawy Sprzężenie Geny leżące na różnych chromosomach spełniają II prawo Mendla Dla 2 genów: 4 równoliczne klasy gamet W. S Klug, M.R Cummings Concepts of Genetics 8 th edition,

Bardziej szczegółowo

CECHY ILOŚCIOWE PARAMETRY GENETYCZNE

CECHY ILOŚCIOWE PARAMETRY GENETYCZNE CECHY ILOŚCIOWE PARAMETRY GENETYCZNE Zarządzanie populacjami zwierząt, ćwiczenia V Dr Wioleta Drobik Rodzaje cech Jakościowe o prostym dziedziczeniu uwarunkowane zwykle przez kilka genów Słaba podatność

Bardziej szczegółowo

Badania asocjacyjne w skali genomu (GWAS)

Badania asocjacyjne w skali genomu (GWAS) Badania asocjacyjne w skali genomu (GWAS) Wstęp do GWAS Część 1 - Kontrola jakości Bioinformatyczna analiza danych Wykład 2 Dr Wioleta Drobik-Czwarno Katedra Genetyki i Ogólnej Hodowli Zwierząt Badania

Bardziej szczegółowo

PODSTAWY BIOINFORMATYKI WYKŁAD 4 ANALIZA DANYCH NGS

PODSTAWY BIOINFORMATYKI WYKŁAD 4 ANALIZA DANYCH NGS PODSTAWY BIOINFORMATYKI WYKŁAD 4 ANALIZA DANYCH NGS SEKWENCJONOWANIE GENOMÓW NEXT GENERATION METODA NOWEJ GENERACJI Sekwencjonowanie bardzo krótkich fragmentów 50-700 bp DNA unieruchomione na płytce Szybkie

Bardziej szczegółowo

INFORMATYKA W SELEKCJI

INFORMATYKA W SELEKCJI INFORMATYKA W SELEKCJI INFORMATYKA W SELEKCJI - zagadnienia 1. Dane w pracy hodowlanej praca z dużym zbiorem danych (Excel) 2. Podstawy pracy z relacyjną bazą danych w programie MS Access 3. Systemy statystyczne

Bardziej szczegółowo

Modelowanie danych hodowlanych

Modelowanie danych hodowlanych Modelowanie danych hodowlanych 1. Wykład wstępny 2. Algebra macierzowa 3. Wykorzystanie różnych źródeł informacji w predykcji wartości hodowlanej 4. Kowariancja genetyczna pomiędzy spokrewnionymi osobnikami

Bardziej szczegółowo

Dziedziczenie poligenowe

Dziedziczenie poligenowe Dziedziczenie poligenowe Dziedziczenie cech ilościowych Dziedziczenie wieloczynnikowe Na wartość cechy wpływa Komponenta genetyczna - wspólne oddziaływanie wielu (najczęściej jest to liczba nieznana) genów,

Bardziej szczegółowo

PRZYGODY DGV. historia programu selekcji genomowej w Polsce. Joanna Szyda, Andrzej Żarnecki

PRZYGODY DGV. historia programu selekcji genomowej w Polsce. Joanna Szyda, Andrzej Żarnecki PRZYGODY DGV historia programu selekcji genomowej w Polsce Joanna Szyda, Andrzej Żarnecki Co to DGV? DGV Direct Genomic Value bezpośrednia genomowa wartość hodowlana suma addytywnych efektów markerów SNP

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez statystycznych

Bardziej szczegółowo

Informatyka w selekcji - Wykªad 4

Informatyka w selekcji - Wykªad 4 Informatyka w selekcji - Wykªad 4 Plan wykªadu SAS 1. Praca z programem 2. Edycja danych 3. Procedury graczne 4. Analiza w pakiecie SAS na»ywo, Wykªad 5 2/36 Praca z programem, Wykªad 5 3/36 Praca z programem

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5.

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5.

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STATYSTYKA MATEMATYCZNA 1. Wykład wstępny 2. Zmienne losowe i teoria prawdopodobieństwa 3. Populacje i próby danych 4. Testowanie hipotez i estymacja parametrów 5. Najczęściej wykorzystywane testy statystyczne

Bardziej szczegółowo

PODSTAWY GENETYKI. Prowadzący wykład: prof. dr hab. Jarosław Burczyk

PODSTAWY GENETYKI. Prowadzący wykład: prof. dr hab. Jarosław Burczyk PODSTAWY GENETYKI Prawa Mendla (jako punkt wyjścia) Epistaza (interakcje między genami) Sprzężenia genetyczne i mapowanie genów Sprzężenie z płcią Analiza rodowodów Prowadzący wykład: prof. dr hab. Jarosław

Bardziej szczegółowo

Zarządzanie populacjami zwierząt. Parametry genetyczne cech

Zarządzanie populacjami zwierząt. Parametry genetyczne cech Zarządzanie populacjami zwierząt Parametry genetyczne cech Teoria ścieżki zależność przyczynowo-skutkowa X p 01 Z Y p 02 p 01 2 + p 02 2 = 1 współczynniki ścieżek miary związku między przyczyną a skutkiem

Bardziej szczegółowo

Tomasz Suchocki Kacper Żukowski, Magda Mielczarek, Joanna Szyda

Tomasz Suchocki Kacper Żukowski, Magda Mielczarek, Joanna Szyda Tomasz Suchocki Kacper Żukowski, Magda Mielczarek, Joanna Szyda Uniwersytet Przyrodniczy we Wrocławiu, Pracownia Biostatystyki Instytut Zootechniki Państwowy Instytut Badawczy 2 > 76 000 osobników w bazie

Bardziej szczegółowo

Ekologia molekularna. wykład 3

Ekologia molekularna. wykład 3 Ekologia molekularna wykład 3 Dziedziczenie mendlowskie Grzegorz Mendel 1822-1884 Darwin + Mendel = Ronald Fisher 1890-1962 wykład 3/2 Prawo Hardy'ego-Weinberga A A gamety możliwe genotypy potomstwa genotyp

Bardziej szczegółowo

Spokrewnienie prawdopodobieństwo, że dwa losowe geny od dwóch osobników są genami IBD. IBD = identical by descent, geny identycznego pochodzenia

Spokrewnienie prawdopodobieństwo, że dwa losowe geny od dwóch osobników są genami IBD. IBD = identical by descent, geny identycznego pochodzenia prawdopodobieństwo, że dwa losowe geny od dwóch osobników są genami ID. Relationship Relatedness Kinship Fraternity ID = identical by descent, geny identycznego pochodzenia jest miarą względną. Przyjmuje

Bardziej szczegółowo

BADANIE ZALEśNOŚCI CECHY Y OD CECHY X - ANALIZA REGRESJI PROSTEJ

BADANIE ZALEśNOŚCI CECHY Y OD CECHY X - ANALIZA REGRESJI PROSTEJ WYKŁAD 3 BADANIE ZALEśNOŚCI CECHY Y OD CECHY X - ANALIZA REGRESJI PROSTEJ Było: Przykład. Z dziesięciu poletek doświadczalnych zerano plony ulw ziemniaczanych (cecha X) i oznaczono w nich procentową zawartość

Bardziej szczegółowo

ZARZĄDZANIE POPULACJAMI ZWIERZĄT

ZARZĄDZANIE POPULACJAMI ZWIERZĄT ZARZĄDZANIE POPULACJAMI ZWIERZĄT Ćwiczenia 1 mgr Magda Kaczmarek-Okrój magda_kaczmarek_okroj@sggw.pl 1 ZAGADNIENIA struktura genetyczna populacji obliczanie frekwencji genotypów obliczanie frekwencji alleli

Bardziej szczegółowo

Podstawy genetyki człowieka. Cechy wieloczynnikowe

Podstawy genetyki człowieka. Cechy wieloczynnikowe Podstawy genetyki człowieka Cechy wieloczynnikowe Dziedziczenie Mendlowskie - jeden gen = jedna cecha np. allele jednego genu decydują o barwie kwiatów groszku Bardziej złożone - interakcje kilku genów

Bardziej szczegółowo

Z poprzedniego wykładu

Z poprzedniego wykładu PODSTAWY STATYSTYKI 1. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5. Testy parametryczne

Bardziej szczegółowo

Zadania do cz. II (z frekwencji i prawa Hardy ego-weinberga)

Zadania do cz. II (z frekwencji i prawa Hardy ego-weinberga) Zadania do cz. II (z frekwencji i prawa Hardy ego-weinberga) Autor: Grzegorz Góralski ggoralski.com Zadanie 1 Populacja składa się z osobników: 200 o genotypie AA; 400 Aa; 400 aa. Oblicz: frekwencje allelu

Bardziej szczegółowo

PORÓWNYWANIE POPULACJI POD WZGLĘDEM STRUKTURY

PORÓWNYWANIE POPULACJI POD WZGLĘDEM STRUKTURY PORÓWNYWANIE POPULACJI POD WZGLĘDEM STRUKTURY obliczanie dystansu dzielącego grupy (subpopulacje) wyrażonego za pomocą indeksu F Wrighta (fixation index) w modelu jednego locus 1 Ćwiczenia III Mgr Kaczmarek-Okrój

Bardziej szczegółowo

GENETYKA POPULACJI. Ćwiczenia 1 Biologia I MGR /

GENETYKA POPULACJI. Ćwiczenia 1 Biologia I MGR / GENETYKA POPULACJI Ćwiczenia 1 Biologia I MGR 1 ZAGADNIENIA struktura genetyczna populacji obliczanie frekwencji genotypów obliczanie frekwencji alleli przewidywanie struktury następnego pokolenia przy

Bardziej szczegółowo

Wprowadzenie do genetyki medycznej i sądowej

Wprowadzenie do genetyki medycznej i sądowej Genetyka medyczno-sądowa Wprowadzenie do genetyki medycznej i sądowej Kierownik Pracowni Genetyki Medycznej i Sądowej Ustalanie tożsamości zwłok Identyfikacja sprawców przestępstw Identyfikacja śladów

Bardziej szczegółowo

INFORMATYKA W SELEKCJI 9 MODELE MIESZANE

INFORMATYKA W SELEKCJI 9 MODELE MIESZANE INFORMATYKA W SELEKCJI 9 MODELE MIESZANE SAS WYKORYSTANIE PAKIETU SAS DO ESTYMACJI EFEKTÓW MODELI MIESZANYCH. Modl stały, a modl miszany. Macirz spokrwniń addytywni polignicznych 3. Przygotowani danych

Bardziej szczegółowo

1 Podstawowe pojęcia z zakresu genetyki. 2 Podstawowy model dziedziczenia

1 Podstawowe pojęcia z zakresu genetyki. 2 Podstawowy model dziedziczenia Rachunek Prawdopodobieństwa MAP8 Wydział Matematyki, Matematyka Stosowana Projekt - zastosowania rachunku prawdopodobieństwa w genetyce Opracowanie: Antonina Urbaniak Podstawowe pojęcia z zakresu genetyki

Bardziej szczegółowo

Dryf genetyczny i jego wpływ na rozkłady próbek z populacji - modele matematyczne. Adam Bobrowski, IM PAN Katowice

Dryf genetyczny i jego wpływ na rozkłady próbek z populacji - modele matematyczne. Adam Bobrowski, IM PAN Katowice Dryf genetyczny i jego wpływ na rozkłady próbek z populacji - modele matematyczne Adam Bobrowski, IM PAN Katowice 1 Tematyka cyklu referatów Dryf genetyczny Matematyczne modele równowagi między mutacja

Bardziej szczegółowo

Genetyka Populacji http://ggoralski.com

Genetyka Populacji http://ggoralski.com Genetyka Populacji http://ggoralski.com Frekwencje genotypów i alleli Frekwencja genotypów Frekwencje genotypów i alleli Zadania P AA = 250/500 = 0,5 P Aa = 100/500 = 0,2 P aa = 150/500 = 0,3 = 1 Frekwencje

Bardziej szczegółowo

SAS Podstawowe informacje przed ćwiczeniem 1

SAS Podstawowe informacje przed ćwiczeniem 1 SAS Podstawowe informacje przed ćwiczeniem 1 Zasady tworzenia programów każda instrukcja zakończona się średnikiem małe i duże litery nie są rozróżniane instrukcje mogą być kontynuowane w następnej linii

Bardziej szczegółowo

Ćwiczenie 12. Diagnostyka molekularna. Poszukiwanie SNPs Odczytywanie danych z sekwencjonowania. Prof. dr hab. Roman Zieliński

Ćwiczenie 12. Diagnostyka molekularna. Poszukiwanie SNPs Odczytywanie danych z sekwencjonowania. Prof. dr hab. Roman Zieliński Ćwiczenie 12 Diagnostyka molekularna. Poszukiwanie SNPs Odczytywanie danych z sekwencjonowania Prof. dr hab. Roman Zieliński 1. Diagnostyka molekularna 1.1. Pytania i zagadnienia 1.1.1. Jak definiujemy

Bardziej szczegółowo

Mapowanie genów cz owieka i badania asocjacji. podstawy

Mapowanie genów cz owieka i badania asocjacji. podstawy Mapowanie genów czowieka i badania asocjacji podstawy Sprzężenie Geny leżące na różnych chromosomach spełniają II prawo Mendla Dla 2 genów: 4 równoliczne klasy gamet W. S Klug, M.R Cummings Concepts of

Bardziej szczegółowo

Analiza sprzężeń u człowieka. Podstawy

Analiza sprzężeń u człowieka. Podstawy Analiza sprzężeń u człowieka Podstawy Badanie relacji genotyp-fenotyp u człowieka Analiza sprzężeń - poszukiwanie rejonów chromosomu położonych blisko genu determinującego daną cechę Analiza asocjacji

Bardziej szczegółowo

Ocena wartości hodowlanej. Dr Agnieszka Suchecka

Ocena wartości hodowlanej. Dr Agnieszka Suchecka Ocena wartości hodowlanej Dr Agnieszka Suchecka Wartość hodowlana genetycznie uwarunkowane możliwości zwierzęcia do ujawnienia określonej produkcyjności oraz zdolność przekazywania ich potomstwu (wartość

Bardziej szczegółowo

weryfikacja hipotez dotyczących parametrów populacji (średnia, wariancja)

weryfikacja hipotez dotyczących parametrów populacji (średnia, wariancja) PODSTAWY STATYSTYKI. Teoria prawdopodobieństwa i elementy kombinatoryki. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5. Testy parametryczne (na

Bardziej szczegółowo

Zmienność. środa, 23 listopada 11

Zmienność.  środa, 23 listopada 11 Zmienność http://ggoralski.com Zmienność Zmienność - rodzaje Zmienność obserwuje się zarówno między poszczególnymi osobnikami jak i między populacjami. Różnice te mogą mieć jednak różne podłoże. Mogą one

Bardziej szczegółowo

Anna Szewczyk. Wydział Geodezji Górniczej i InŜynierii środowiska AGH

Anna Szewczyk. Wydział Geodezji Górniczej i InŜynierii środowiska AGH Anna Szewczyk Wydział Geodezji Górniczej i InŜynierii środowiska AGH Zastosowania biblioteki Genetics programu R The genetics Package Tytuł: Populacja genetyczna Wersja:1.2.0 Data utworzenia: 2005-11-09

Bardziej szczegółowo

Testowanie hipotez statystycznych.

Testowanie hipotez statystycznych. Bioinformatyka Wykład 9 Wrocław, 5 grudnia 2011 Temat. Test zgodności χ 2 Pearsona. Statystyka χ 2 Pearsona Rozpatrzmy ciąg niezależnych zmiennych losowych X 1,..., X n o jednakowym dyskretnym rozkładzie

Bardziej szczegółowo

SYSTEMY INFORMATYCZNE WSPOMAGAJĄCE HODOWLĘ

SYSTEMY INFORMATYCZNE WSPOMAGAJĄCE HODOWLĘ SYSTEMY INFORMATYCZNE WSPOMAGAJĄCE HODOWLĘ Struktura efektywnej bazy danych Zastosowanie pakietu MS Excel do tworzenia baz danych WSTĘP 1. Dane Przykłady Edycja Zarządzanie 2. Bazy danych Definicje Przykłady

Bardziej szczegółowo

Czynniki genetyczne sprzyjające rozwojowi otyłości

Czynniki genetyczne sprzyjające rozwojowi otyłości Czynniki genetyczne sprzyjające rozwojowi otyłości OTYŁOŚĆ Choroba charakteryzująca się zwiększeniem masy ciała ponad przyjętą normę Wzrost efektywności terapii Czynniki psychologiczne Czynniki środowiskowe

Bardziej szczegółowo

Analiza sprzężeń u człowieka. Podstawy

Analiza sprzężeń u człowieka. Podstawy Analiza sprzężeń u człowieka Podstawy Badanie relacji genotyp-fenotyp u człowieka Analiza sprzężeń - poszukiwanie rejonów chromosomu położonych blisko genu determinującego daną cechę Analiza asocjacji

Bardziej szczegółowo

WSTĘP DO REGRESJI LOGISTYCZNEJ. Dr Wioleta Drobik-Czwarno

WSTĘP DO REGRESJI LOGISTYCZNEJ. Dr Wioleta Drobik-Czwarno WSTĘP DO REGRESJI LOGISTYCZNEJ Dr Wioleta Drobik-Czwarno REGRESJA LOGISTYCZNA Zmienna zależna jest zmienną dychotomiczną (dwustanową) przyjmuje dwie wartości, najczęściej 0 i 1 Zmienną zależną może być:

Bardziej szczegółowo

Zarządzanie populacjami zwierząt. Ocena wartości hodowlanej Wykład 7

Zarządzanie populacjami zwierząt. Ocena wartości hodowlanej Wykład 7 Zarządzanie populacjami zwierząt Ocena wartości odowlanej Wykład 7 Wartość fenotypowa Ceca ilościowa G GE E D I GE E E p E t,d,i addytywna, dominacyjna, interakcyjna (epistatyczna) część wartości genotypowej

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STATYSTYKA MATEMATYCZNA 1. Wykład wstępny 2. Zmienne losowe i teoria prawdopodobieństwa 3. Populacje i próby danych 4. Testowanie hipotez i estymacja parametrów 5. Najczęściej wykorzystywane testy statystyczne

Bardziej szczegółowo

Opis wykonanych badań naukowych oraz uzyskanych wyników

Opis wykonanych badań naukowych oraz uzyskanych wyników Opis wykonanych badań naukowych oraz uzyskanych wyników 1. Analiza danych (krok 2 = uwzględnienie epistazy w modelu): detekcja QTL przy wykorzystaniu modeli dwuwymiarowych z uwzględnieniem różnych modeli

Bardziej szczegółowo

a) Zapisz genotyp tego mężczyzny... oraz zaznacz poniżej (A, B, C lub D), jaki procent gamet tego mężczyzny będzie miało genotyp ax b.

a) Zapisz genotyp tego mężczyzny... oraz zaznacz poniżej (A, B, C lub D), jaki procent gamet tego mężczyzny będzie miało genotyp ax b. W tomie 2 zbioru zadań z biologii z powodu nieprawidłowego wprowadzenia komendy przenoszenia spójników i przyimków do następnej linii wystąpiła zamiana samotnych dużych liter (A, I, W, U) na małe litery.

Bardziej szczegółowo

Regresja liniowa wprowadzenie

Regresja liniowa wprowadzenie Regresja liniowa wprowadzenie a) Model regresji liniowej ma postać: gdzie jest zmienną objaśnianą (zależną); są zmiennymi objaśniającymi (niezależnymi); natomiast są parametrami modelu. jest składnikiem

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STATYSTYKA MATEMATYCZNA 1. Wykład wstępny 2. Teoria prawdopodobieństwa i elementy kombinatoryki 3. Zmienne losowe 4. Populacje i próby danych 5. Testowanie hipotez i estymacja parametrów 6. Test t 7. Test

Bardziej szczegółowo

Ekologia molekularna. wykład 14. Genetyka ilościowa

Ekologia molekularna. wykład 14. Genetyka ilościowa Ekologia molekularna wykład 14 Genetyka ilościowa Dziedziczenie mendlowskie wykład 14/2 Cechy wieloczynnikowe (ilościowe) wzrost masa ciała kolor skóry kolor oczu itp wykład 14/3 Rodzaje cech ilościowych

Bardziej szczegółowo

Testowanie hipotez dla dwóch zmiennych zależnych. Moc testu. Minimalna liczność próby; Regresja prosta; Korelacja Pearsona;

Testowanie hipotez dla dwóch zmiennych zależnych. Moc testu. Minimalna liczność próby; Regresja prosta; Korelacja Pearsona; LABORATORIUM 4 Testowanie hipotez dla dwóch zmiennych zależnych. Moc testu. Minimalna liczność próby; Regresja prosta; Korelacja Pearsona; dwie zmienne zależne mierzalne małe próby duże próby rozkład normalny

Bardziej szczegółowo

METODY STATYSTYCZNE W BIOLOGII

METODY STATYSTYCZNE W BIOLOGII METODY STATYSTYCZNE W BIOLOGII 1. Wykład wstępny 2. Populacje i próby danych 3. Testowanie hipotez i estymacja parametrów 4. Planowanie eksperymentów biologicznych 5. Najczęściej wykorzystywane testy statystyczne

Bardziej szczegółowo

Konspekt do zajęć z przedmiotu Genetyka dla kierunku Położnictwo dr Anna Skorczyk-Werner Katedra i Zakład Genetyki Medycznej

Konspekt do zajęć z przedmiotu Genetyka dla kierunku Położnictwo dr Anna Skorczyk-Werner Katedra i Zakład Genetyki Medycznej Seminarium 1 część 1 Konspekt do zajęć z przedmiotu Genetyka dla kierunku Położnictwo dr Anna Skorczyk-Werner Katedra i Zakład Genetyki Medycznej Genom człowieka Genomem nazywamy całkowitą ilość DNA jaka

Bardziej szczegółowo

METODY STATYSTYCZNE W BIOLOGII

METODY STATYSTYCZNE W BIOLOGII METODY STATYSTYCZNE W BIOLOGII 1. Wykład wstępny 2. Populacje i próby danych 3. Testowanie hipotez i estymacja parametrów 4. Planowanie eksperymentów biologicznych 5. Najczęściej wykorzystywane testy statystyczne

Bardziej szczegółowo

EGZAMIN MAGISTERSKI, Biomatematyka

EGZAMIN MAGISTERSKI, Biomatematyka Biomatematyka 90...... Zadanie 1. (8 punktów) Załóżmy, że w diploidalnej populacji, dla której zachodzi prawo Hardy ego- Weinberga dla loci o dwóch allelach A i a proporcja osobników o genotypie AA wynosi

Bardziej szczegółowo

Definicja. Odziedziczalność. Definicja. w potocznym rozumieniu znaczy tyle co dziedziczenie. Fenotyp( P)=Genotyp(G)+Środowisko(E) V P = V G + V E

Definicja. Odziedziczalność. Definicja. w potocznym rozumieniu znaczy tyle co dziedziczenie. Fenotyp( P)=Genotyp(G)+Środowisko(E) V P = V G + V E Odziedziczalność w potocznym rozumieniu znaczy tyle co dziedziczenie...ale ma ścisłą techniczną definicję. Definicja Fenotyp( P)=Genotyp(G)+Środowisko(E) V P = V G + V E H 2 (w szerszym sensie) = V G /

Bardziej szczegółowo

1. KEGG 2. GO. 3. Klastry

1. KEGG 2. GO. 3. Klastry ANALIZA DANYCH 1. Wykład wstępny 2. Charakterystyka danych 3. Analiza wstępna genomiczna charakterystyka cech 4. Prezentacje grup roboczych analiza wstępna 5. Prezentacje grup roboczych analiza wstępna

Bardziej szczegółowo

Rozdział 8. Regresja. Definiowanie modelu

Rozdział 8. Regresja. Definiowanie modelu Rozdział 8 Regresja Definiowanie modelu Analizę korelacji można traktować jako wstęp do analizy regresji. Jeżeli wykresy rozrzutu oraz wartości współczynników korelacji wskazują na istniejąca współzmienność

Bardziej szczegółowo

Przedziały ufności i testy parametrów. Przedziały ufności dla średniej odpowiedzi. Interwały prognoz (dla przyszłych obserwacji)

Przedziały ufności i testy parametrów. Przedziały ufności dla średniej odpowiedzi. Interwały prognoz (dla przyszłych obserwacji) Wkład 1: Prosta regresja liniowa Statstczn model regresji liniowej Dane dla prostej regresji liniowej Przedział ufności i test parametrów Przedział ufności dla średniej odpowiedzi Interwał prognoz (dla

Bardziej szczegółowo

Bliskie Spotkanie z Biologią. Genetyka populacji

Bliskie Spotkanie z Biologią. Genetyka populacji Bliskie Spotkanie z Biologią Genetyka populacji Plan wykładu 1) Częstości alleli i genotypów w populacji 2) Prawo Hardy ego-weinberga 3) Dryf genetyczny 4) Efekt założyciela i efekt wąskiego gardła 5)

Bardziej szczegółowo

Zmodyfikowane wg Kadowaki T in.: J Clin Invest. 2006;116(7):1784-92

Zmodyfikowane wg Kadowaki T in.: J Clin Invest. 2006;116(7):1784-92 Magdalena Szopa Związek pomiędzy polimorfizmami w genie adiponektyny a wybranymi wyznacznikami zespołu metabolicznego ROZPRAWA DOKTORSKA Promotor: Prof. zw. dr hab. med. Aldona Dembińska-Kieć Kierownik

Bardziej szczegółowo

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2017/2018 CZĘŚĆ 2. PRZEDMIOTY PRZYRODNICZE

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2017/2018 CZĘŚĆ 2. PRZEDMIOTY PRZYRODNICZE EGZAMIN W KLASIE TRZEIEJ GIMNAZJUM W ROKU SZKOLNYM 2017/2018 ZĘŚĆ 2. PRZEDMIOTY PRZYRODNIZE ZASADY OENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZE: GM-PX1, GM-P2, GM-P4, GM-P7 KWIEIEŃ 2018 Zadanie 1. (0 1) III. Poszukiwanie,

Bardziej szczegółowo

Modelowanie danych hodowlanych

Modelowanie danych hodowlanych Modelowanie danych hodowlanych 1. Wykład wstępny 2. Algebra macierzowa 3. Wykorzystanie różnych źródeł informacji w predykcji wartości hodowlanej 4. Kowariancja genetyczna pomiędzy spokrewnionymi osobnikami

Bardziej szczegółowo

METODOLOGICZNE ASPEKTY BADAŃ W BIOLOGII CZŁOWIEKA. WYJAŚNIANIE STRATEGII ADAPTACYJNEJ CZŁOWIEKA METODAMI GENETYKI ILOŚCIOWEJ.

METODOLOGICZNE ASPEKTY BADAŃ W BIOLOGII CZŁOWIEKA. WYJAŚNIANIE STRATEGII ADAPTACYJNEJ CZŁOWIEKA METODAMI GENETYKI ILOŚCIOWEJ. METODOLOGICZNE ASPEKTY BADAŃ W BIOLOGII CZŁOWIEKA. WYJAŚNIANIE STRATEGII ADAPTACYJNEJ CZŁOWIEKA METODAMI GENETYKI ILOŚCIOWEJ Joachim Cieślik, Uniwersytet im. A. Mickiewicza w Poznaniu, Instytut Antropologii

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki 3. Zmienne losowe 4. Populacje i próby danych 5. Testowanie hipotez i estymacja parametrów 6. Test t 7. Test

Bardziej szczegółowo

BioTe21, Pracownia Kryminalistyki i Badań Ojcostwa.

BioTe21, Pracownia Kryminalistyki i Badań Ojcostwa. Bio Kraków, dnia... EKSPERTYZA Z BADAŃ GENETYCZNYCH POKREWIEŃSTWA Nr ekspertyzy:... Badania wykonano w: Bio, Ojcostwa. Na zlecenie:... Typ wybranego testu: TIG3-16 Zlecenie z dnia:... Data otrzymania mat.

Bardziej szczegółowo