Pytania i odpowiedzi

Wielkość: px
Rozpocząć pokaz od strony:

Download "Pytania i odpowiedzi"

Transkrypt

1 Pytania i odpowiedzi

2 Czy kontrola jakości płytek w programach analizy danych jest dostosowywana do przeprowadzanego badania, czy też przyjmuje się jednakową jej wartość dla różnych analiz? We wstępnym etapie w zależności od programu (Genome Studio vs Axiom Analysis Suite) są progi polecane przez producenta, ale również można je modyfikować Są pewne standardowe progi jak MAF > 0.05 lub 0.01 GENO > 0.9 HWE pvalue > 10-4 Czasami należy je jednak zmodyfikować dla konkretnej analizy.

3 Czy podział na klastry wykonany na podstawie danych z mikromacierzy SNP w programie Structure pokrywa się z podziałem na subpopulacje dokonanym podczas analizy PCA w programie R? Źródło: Xing et al., 2010 Toward a more uniform sampling of human genetic diversity: A survey of worldwide populations by highdensity genotyping. Genomics 96:

4 Jak wygląda wykorzystanie mikrosond w rozpoznawaniu i leczeniu nowotworów? Czy na podstawie znajomości odczytu z sondy DNA komórki nowotworowej jesteśmy w stanie zadecydować o leczeniu nowotworu? Za pomocą mikromacierzy jesteśmy w stanie szybko sprawdzić ekspresję tysięcy genów w komórkach nowotworowych. Podwyższona ekspresja wybranych genów została skorelowana ze skutecznością terapii. W testach komercyjnych na płytce umieszczamy sondy tylko dla genów o których mamy informacje. Przykład: podwyższona ekspresja genu kodującego receptor dla estrogenów jest pozytywnie skorelowana ze skutecznością terapii w której wpływa się na syntezę estrogenów lub blokuje receptory estrogenowe. Stosowane testy: Oncotype DX - 21 genów w próbkach z biopsji.

5 Czy możliwe jest wykorzystanie w przyszłości mikromacierzy DNA w kryminalystyce lub sprawdzaniu ojcostwa? Jest możliwe. Przykład Parental Support, Ryan et al Informaticsbased, highly accurate, noninvasive prenatal paternity testing. Do niedawna była to jednak droższa metoda. Czy często się przeprowadza kontrole pochodzenia z wykorzystaniem mikromacierzy SNP np. w hodowlach kotów rasowych? Są tańsze metody, przykładowo mikromacierz dla kotów (Illumina Infinium iselect 63K Cat DNA Array) jest dostępna stosunkowo od niedawna i służy do badań populacyjnych oraz GWAS.

6 Czy korzystanie z GWAS ma rację bytu w przypadku badania alleli o małym wpływie na zmienność i jak duży ma to wpływ na diagnostykę? Czy powoduje to całkowite przeoczenie takich alleli? Jak bardzo trzeba zwiększyć liczbę prób żeby do tego nie doszło? Park et al., Nature Genetics 42: Oszacowanie rozkładu wielkości efektu dla loci wpływających na wzrost, chorobę Crohna oraz nowotwory: a ) zaobserwowane loci b ) szacowane loci Odziedziczalność: Wzrost: 80-90% Choroba Crohna: wysoka Nowotwory: średnia

7 Badania asocjacyjne w skali genomu (GWAS) Wykład 5 Bioinżynieria, I mgr Bioinformatyczna analiza danych Wykład 4 Dr Wioleta Drobik-Czwarno Katedra Genetyki i Ogólnej Hodowli Zwierząt

8 Niejednorodna populacja Metody korekty GWAS na niejednorodna populacje: Kontrola genomowa (ang. genomic control) polega na skalowaniu statystyki testowej tak aby jej mediana stała się medianą oczekiwaną (wg rozkładu). Przeprowadzenie GWAS w obrębie subpopulacji Analiza struktury genetycznej populacji (PCA, MDS) oraz użycie kilku wybranych głównych składowych jako zmienne objaśniające w modelu (eigenstrat). Modele mieszane (ang. mixed models) macierz spokrewnień genomowych jest dodawana jako efekt losowy do modelu.

9 Kontrola genomowa ang. genomic control Korekta na niejednorodną strukturę populacji zaproponowana przez Devlin and Roeder w 1999 roku Dla każdego markera wyliczamy statystykę testową np. statystykę trendu Armitage: Gdzie: -N liczba loci (markerów) -r 2 korelacja pomiędzy genotypem oraz fenotypem do kwadratu G S genotyp dla markera s Y fenotyp

10 Kontrola genomowa ang. genomic control Różnicę w statystyce obserwowanej i oczekiwanej wyrażamy za pomocą czynnika inflacji lambda Gdzie: mediana dla statystyki testowej chi-kwadrat przy jednym stopniu swobody - A rs wartość statystyki trendu Armitage

11 Kontrola genomowa ang. genomic control Brak wyraźnej struktury populacji: Rozkład dla statystyki A rs będzie taki jak rozkład statystyki chikwadrat dla jednego stopnia swobody Wyraźna struktura populacji Rozkład dla statystyki A rs będzie odbiegał od rozkładu statystyki chi-kwadrat dla jednego stopnia swobody z powodu zawyżonej wariancji Lambda = 1 Lambda > 1

12 EIGENSTRAT Metoda zaproponowana przez Price i wsp dla próby niespokrewnionych osobników, z podziałem na subpopulacje Wykonujemy PCA lub MDS i używamy kilku pierwszych głównych komponentów (objaśniających największą część wariancji, PCA) jako zmiennych objaśniających w modelu regresji X genotyp PC1, PC2, PC3 główne komponenty

13 Liniowe modele mieszane ang. Linear Mixed models Komponenty wariancji: y=μ+a+g+e gdzie: - μ średnia - a efekty addytywne - g efekty poligeniczne - e błąd losowy Li and Zhu, 2013 Testowany jest każdy marker, sprawdzamy czy wariancja efektu jest istotnie większa od 0

14 Liniowe modele mieszane ang. Linear Mixed models Model mieszany: y = Xβ+g+e gdzie: X macierz efektów stałych, β współczynnik regresji dla efektów stałych, g-efekty losowe uwarunkowane poligenicznie, e-błąd Wariancja g (σ g2 ) jest zależna od macierzy spokrewnień Var(g) = Kσ g 2 gdzie K jest macierzą spokrewnień (Kinship matrix)

15 Współczynnik kinship Wyliczany dla każdej pary próbek, na podstawie danych rodowodowych lub molekularnych Genomowy współczynnik kinship (ang. genomic kinship) Gdzie: -L liczba loci (markerów) -p l frekwencja allelu w locus l -g l,j genotyp próbki j w locus l (jako 0,1/2,1) Macierz spokrewnień genomowych odzwierciedla strukturę populacji oraz powiązanie rodzinowe

16 Zagubiona odziedziczalność Warianty zidentyfikowane przez GWAS nie wyjaśniają w 100% zmienności genetycznej złożonych cech Odziedziczalność: Maher B Personal genomes: The case of the missing heritability. Nature 456,

17 Oczekiwania podstawowego modelu GWAS SNP Rzeczywistość Gen Fenotyp

18 Co jest odpowiedzialne za zagubioną odziedziczalność? Teorie: Oddziaływania epistatyczne? Warianty strukturalne? Epigenetyka? Odziedziczalność jest błędnie oszacowana niedoszacowane efekty środowiskowe? Rzadkie warianty? Błędy w danych fenotypowych lub złożone symptomy chorobowe? Wpływ mikrobiomu? Dla ciekawskich: Santhosh Girirajan, Missing heritability and where to find it. Genome Biology 18:89.

19 Interakcje epistatyczne Epistaza współdziałanie niealleliczne genów. Gen epistatyczny maskuje fenotypowa ekspresję genu hipostatycznego kształtując fenotyp Niel et al., A survey about methods dedicated to epistasis detection. Front. Genet., 10.

20 Interakcje epistatyczne Czy możemy uwzględnić interakcję każdego markera z każdym? Zakładamy markerów Analiza jednej interakcji zajmie sekundę Dzień ma sekund Daje to: x dni na przeanalizowanie wszystkich interakcji czyli x lat

21 Co możemy zrobić? Analiza wszystkich możliwych interakcji często zbyt czasochłonna i przez to niemożliwa Analiza wybranych interakcji dla najistotniejszych markerów czy na pewno uwzględniamy wszystkie istotne interakcje? Włączenie wiedzy biologicznej do modelu Ogólnodostępne bazy danych Włączenie informacji o genomie, transkryptomie oraz proteomie Umożliwia wybranie markerów/genów, dla których spodziewamy się interakcji i jedynie dla nich wykonujemy analizę

22 Imputacja Termin haplotyp przy GWAS odnosi się do zestawu alleli markerów dziedziczonych wspólnie we fragmencie genomu Imputacja to wykorzystanie informacji haplotypowej w próbie referencyjnej w celu poznania genotypów markerów w grupie badanej. Po co? Zwiększona moc Zwiększona rozdzielczość Meta-analiza wykorzystanie wcześniej opublikowanych danych Uwaga! Imputacja może mieć różną dokładność, na co wpływ będzie miał: Dobór grupy referencyjnej oraz jej wielkość Liczba zgenotypowanych osobników oraz markerów w grupie badanej Frekwencja rzadkich alleli

23

24 Literatura Li G., Zhu H Genetic Studies: The Linear Mixed Models in Genomewide Association Studies. The Open Bioinformatics Journal 7: Bowcock, A. M Finding Genes for Common Diseases Using GWAS. Nature Education 8(5):5 Personal genomes: The case of the missing heritability Nature 456,

Badania asocjacyjne w skali genomu (GWAS)

Badania asocjacyjne w skali genomu (GWAS) Badania asocjacyjne w skali genomu (GWAS) Część 2 LD, PCA Bioinżynieria, I mgr Bioinformatyczna analiza danych Wykład 3 Dr Wioleta Drobik-Czwarno Katedra Genetyki i Ogólnej Hodowli Zwierząt Analiza głównych

Bardziej szczegółowo

Badania asocjacyjne w skali genomu (GWAS)

Badania asocjacyjne w skali genomu (GWAS) Badania asocjacyjne w skali genomu (GWAS) Wstęp do GWAS Część 1 - Kontrola jakości Bioinformatyczna analiza danych Wykład 2 Dr Wioleta Drobik-Czwarno Katedra Genetyki i Ogólnej Hodowli Zwierząt Badania

Bardziej szczegółowo

CECHY ILOŚCIOWE PARAMETRY GENETYCZNE

CECHY ILOŚCIOWE PARAMETRY GENETYCZNE CECHY ILOŚCIOWE PARAMETRY GENETYCZNE Zarządzanie populacjami zwierząt, ćwiczenia V Dr Wioleta Drobik Rodzaje cech Jakościowe o prostym dziedziczeniu uwarunkowane zwykle przez kilka genów Słaba podatność

Bardziej szczegółowo

Ocena wartości hodowlanej. Dr Agnieszka Suchecka

Ocena wartości hodowlanej. Dr Agnieszka Suchecka Ocena wartości hodowlanej Dr Agnieszka Suchecka Wartość hodowlana genetycznie uwarunkowane możliwości zwierzęcia do ujawnienia określonej produkcyjności oraz zdolność przekazywania ich potomstwu (wartość

Bardziej szczegółowo

Ekologia molekularna. wykład 14. Genetyka ilościowa

Ekologia molekularna. wykład 14. Genetyka ilościowa Ekologia molekularna wykład 14 Genetyka ilościowa Dziedziczenie mendlowskie wykład 14/2 Cechy wieloczynnikowe (ilościowe) wzrost masa ciała kolor skóry kolor oczu itp wykład 14/3 Rodzaje cech ilościowych

Bardziej szczegółowo

Podstawy genetyki człowieka. Cechy wieloczynnikowe

Podstawy genetyki człowieka. Cechy wieloczynnikowe Podstawy genetyki człowieka Cechy wieloczynnikowe Dziedziczenie Mendlowskie - jeden gen = jedna cecha np. allele jednego genu decydują o barwie kwiatów groszku Bardziej złożone - interakcje kilku genów

Bardziej szczegółowo

Szacowanie wartości hodowlanej. Zarządzanie populacjami

Szacowanie wartości hodowlanej. Zarządzanie populacjami Szacowanie wartości hodowlanej Zarządzanie populacjami wartość hodowlana = wartość cechy? Tak! Przy h 2 =1 ? wybitny ojciec = wybitne dzieci Tak, gdy cecha wysokoodziedziczalna. Wartość hodowlana genetycznie

Bardziej szczegółowo

1. Analiza asocjacyjna. Cechy ciągłe. Cechy binarne. Analiza sprzężeń. Runs of homozygosity. Signatures of selection

1. Analiza asocjacyjna. Cechy ciągłe. Cechy binarne. Analiza sprzężeń. Runs of homozygosity. Signatures of selection BIOINFORMATYKA 1. Wykład wstępny 2. Bazy danych: projektowanie i struktura 3. Równowaga Hardyego-Weinberga, wsp. rekombinacji 4. Analiza asocjacyjna 5. Analiza asocjacyjna 6. Sekwencjonowanie nowej generacji

Bardziej szczegółowo

Sekwencjonowanie nowej generacji i rozwój programów selekcyjnych w akwakulturze ryb łososiowatych

Sekwencjonowanie nowej generacji i rozwój programów selekcyjnych w akwakulturze ryb łososiowatych Sekwencjonowanie nowej generacji i rozwój programów selekcyjnych w akwakulturze ryb łososiowatych Konrad Ocalewicz Zakład Biologii i Ekologii Morza, Instytut Oceanografii, Wydział Oceanografii i Geografii,

Bardziej szczegółowo

Zarządzanie populacjami zwierząt. Parametry genetyczne cech

Zarządzanie populacjami zwierząt. Parametry genetyczne cech Zarządzanie populacjami zwierząt Parametry genetyczne cech Teoria ścieżki zależność przyczynowo-skutkowa X p 01 Z Y p 02 p 01 2 + p 02 2 = 1 współczynniki ścieżek miary związku między przyczyną a skutkiem

Bardziej szczegółowo

Oprogramowanie dla GWAS

Oprogramowanie dla GWAS BIOINFORMATYKA 1. Wykład wstępny 2. Bazy danych: projektowanie i struktura 3. Równowaga Hardyego-Weinberga, wsp. rekombinacji 4. Analiza asocjacyjna 5. Analiza asocjacyjna 6. Sekwencjonowanie nowej generacji

Bardziej szczegółowo

PODSTAWY BIOINFORMATYKI 11 BAZA DANYCH HAPMAP

PODSTAWY BIOINFORMATYKI 11 BAZA DANYCH HAPMAP PODSTAWY BIOINFORMATYKI 11 BAZA DANYCH HAPMAP WSTĘP 1. SNP 2. haplotyp 3. równowaga sprzężeń 4. zawartość bazy HapMap 5. przykłady zastosowań Copyright 2013, Joanna Szyda HAPMAP BAZA DANYCH HAPMAP - haplotypy

Bardziej szczegółowo

Spokrewnienie prawdopodobieństwo, że dwa losowe geny od dwóch osobników są genami IBD. IBD = identical by descent, geny identycznego pochodzenia

Spokrewnienie prawdopodobieństwo, że dwa losowe geny od dwóch osobników są genami IBD. IBD = identical by descent, geny identycznego pochodzenia prawdopodobieństwo, że dwa losowe geny od dwóch osobników są genami ID. Relationship Relatedness Kinship Fraternity ID = identical by descent, geny identycznego pochodzenia jest miarą względną. Przyjmuje

Bardziej szczegółowo

Dziedziczenie poligenowe

Dziedziczenie poligenowe Dziedziczenie poligenowe Dziedziczenie cech ilościowych Dziedziczenie wieloczynnikowe Na wartość cechy wpływa Komponenta genetyczna - wspólne oddziaływanie wielu (najczęściej jest to liczba nieznana) genów,

Bardziej szczegółowo

Bioinformatyczna analiza danych. Wykład 1 Dr Wioleta Drobik-Czwarno Katedra Genetyki i Ogólnej Hodowli Zwierząt

Bioinformatyczna analiza danych. Wykład 1 Dr Wioleta Drobik-Czwarno Katedra Genetyki i Ogólnej Hodowli Zwierząt Bioinformatyczna analiza danych Wykład 1 Dr Wioleta Drobik-Czwarno Katedra Genetyki i Ogólnej Hodowli Zwierząt Sprawy organizacyjne Prowadzący przedmiot: Dr Wioleta Drobik-Czwarno koordynator przedmiotu,

Bardziej szczegółowo

Tomasz Suchocki Kacper Żukowski, Magda Mielczarek, Joanna Szyda

Tomasz Suchocki Kacper Żukowski, Magda Mielczarek, Joanna Szyda Tomasz Suchocki Kacper Żukowski, Magda Mielczarek, Joanna Szyda Uniwersytet Przyrodniczy we Wrocławiu, Pracownia Biostatystyki Instytut Zootechniki Państwowy Instytut Badawczy 2 > 76 000 osobników w bazie

Bardziej szczegółowo

ANALIZA DANYCH POCHODZĄCYCH Z SEKWENCJONOWANIA NASTĘPNEJ GENERACJI

ANALIZA DANYCH POCHODZĄCYCH Z SEKWENCJONOWANIA NASTĘPNEJ GENERACJI ANALIZA DANYCH POCHODZĄCYCH Z SEKWENCJONOWANIA NASTĘPNEJ GENERACJI JOANNA SZYDA MAGDALENA FRĄSZCZAK MAGDA MIELCZAREK WSTĘP 1. Katedra Genetyki 2. Pracownia biostatystyki 3. Projekty NGS 4. Charakterystyka

Bardziej szczegółowo

MODELE LINIOWE. Dr Wioleta Drobik

MODELE LINIOWE. Dr Wioleta Drobik MODELE LINIOWE Dr Wioleta Drobik MODELE LINIOWE Jedna z najstarszych i najpopularniejszych metod modelowania Zależność między zbiorem zmiennych objaśniających, a zmienną ilościową nazywaną zmienną objaśnianą

Bardziej szczegółowo

Zmienność populacji człowieka. Polimorfizmy i asocjacje

Zmienność populacji człowieka. Polimorfizmy i asocjacje Zmienność populacji człowieka Polimorfizmy i asocjacje Prezentacja } http://wiki.biol.uw.edu.pl/ 2 MONOGENOWE CZYNNIKI GENETYCZNE DZIEDZICZENIE MENDLOWSKIE NIEPEŁNA PENETRACJA GENU DZIEDZICZENIE WIELOCZYNNIKOWE

Bardziej szczegółowo

Definicja. Odziedziczalność. Definicja. w potocznym rozumieniu znaczy tyle co dziedziczenie. Fenotyp( P)=Genotyp(G)+Środowisko(E) V P = V G + V E

Definicja. Odziedziczalność. Definicja. w potocznym rozumieniu znaczy tyle co dziedziczenie. Fenotyp( P)=Genotyp(G)+Środowisko(E) V P = V G + V E Odziedziczalność w potocznym rozumieniu znaczy tyle co dziedziczenie...ale ma ścisłą techniczną definicję. Definicja Fenotyp( P)=Genotyp(G)+Środowisko(E) V P = V G + V E H 2 (w szerszym sensie) = V G /

Bardziej szczegółowo

PODSTAWY BIOINFORMATYKI 12 MIKROMACIERZE

PODSTAWY BIOINFORMATYKI 12 MIKROMACIERZE PODSTAWY BIOINFORMATYKI 12 MIKROMACIERZE WSTĘP 1. Mikromacierze ekspresyjne tworzenie macierzy przykłady zastosowań 2. Mikromacierze SNP tworzenie macierzy przykłady zastosowań MIKROMACIERZE EKSPRESYJNE

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA WYKŁAD 1

STATYSTYKA MATEMATYCZNA WYKŁAD 1 STATYSTYKA MATEMATYCZNA WYKŁAD 1 Wykład wstępny Teoria prawdopodobieństwa Magda Mielczarek wykłady, ćwiczenia Copyright 2017, J. Szyda & M. Mielczarek STATYSTYKA MATEMATYCZNA? ASHG 2011 Writing Workshop;

Bardziej szczegółowo

weryfikacja hipotez dotyczących parametrów populacji (średnia, wariancja)

weryfikacja hipotez dotyczących parametrów populacji (średnia, wariancja) PODSTAWY STATYSTYKI. Teoria prawdopodobieństwa i elementy kombinatoryki. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5. Testy parametryczne (na

Bardziej szczegółowo

Testowanie hipotez statystycznych

Testowanie hipotez statystycznych 9 października 2008 ...czyli definicje na rozgrzewkę n-elementowa próba losowa - wektor n zmiennych losowych (X 1,..., X n ); intuicyjnie: wynik n eksperymentów realizacja próby (X 1,..., X n ) w ω Ω :

Bardziej szczegółowo

PRZYGODY DGV. historia programu selekcji genomowej w Polsce. Joanna Szyda, Andrzej Żarnecki

PRZYGODY DGV. historia programu selekcji genomowej w Polsce. Joanna Szyda, Andrzej Żarnecki PRZYGODY DGV historia programu selekcji genomowej w Polsce Joanna Szyda, Andrzej Żarnecki Co to DGV? DGV Direct Genomic Value bezpośrednia genomowa wartość hodowlana suma addytywnych efektów markerów SNP

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5.

Bardziej szczegółowo

WSTĘP. Copyright 2011, Joanna Szyda

WSTĘP. Copyright 2011, Joanna Szyda BIOINFORMATYKA 1. Wykład wstępny 2. Struktury danych w badaniach bioinformatycznych 3. Bazy danych: projektowanie i struktura 4. Bazy danych: projektowanie i struktura 5. Równowaga Hardyego-Weinberga,

Bardziej szczegółowo

Jaki koń jest nie każdy widzi - genomika populacji polskich ras koni

Jaki koń jest nie każdy widzi - genomika populacji polskich ras koni Jaki koń jest nie każdy widzi - genomika populacji polskich ras koni Gurgul A., Jasielczuk I., Semik-Gurgul E., Pawlina-Tyszko K., Szmatoła T., Bugno-Poniewierska M. Instytut Zootechniki PIB Zakład Biologii

Bardziej szczegółowo

Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki

Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Spis treści I. Wzory ogólne... 2 1. Średnia arytmetyczna:... 2 2. Rozstęp:... 2 3. Kwantyle:... 2 4. Wariancja:... 2 5. Odchylenie standardowe:...

Bardziej szczegółowo

Postępy w realizacji polskiego programu selekcji genomowej buhajów MASinBULL Joanna Szyda

Postępy w realizacji polskiego programu selekcji genomowej buhajów MASinBULL Joanna Szyda Postępy w realizacji polskiego programu selekcji genomowej buhajów MASinBULL Joanna Szyda Uniwersytet Przyrodniczy we Wrocławiu Katedra Genetyki, Pracownia Biostatystyki 1. MASinBULL 2. Metody oceny genomowej

Bardziej szczegółowo

Zarządzanie populacjami zwierząt. Ocena wartości hodowlanej Wykład 7

Zarządzanie populacjami zwierząt. Ocena wartości hodowlanej Wykład 7 Zarządzanie populacjami zwierząt Ocena wartości odowlanej Wykład 7 Wartość fenotypowa Ceca ilościowa G GE E D I GE E E p E t,d,i addytywna, dominacyjna, interakcyjna (epistatyczna) część wartości genotypowej

Bardziej szczegółowo

Zmienność. środa, 23 listopada 11

Zmienność.  środa, 23 listopada 11 Zmienność http://ggoralski.com Zmienność Zmienność - rodzaje Zmienność obserwuje się zarówno między poszczególnymi osobnikami jak i między populacjami. Różnice te mogą mieć jednak różne podłoże. Mogą one

Bardziej szczegółowo

WSTĘP DO REGRESJI LOGISTYCZNEJ. Dr Wioleta Drobik-Czwarno

WSTĘP DO REGRESJI LOGISTYCZNEJ. Dr Wioleta Drobik-Czwarno WSTĘP DO REGRESJI LOGISTYCZNEJ Dr Wioleta Drobik-Czwarno REGRESJA LOGISTYCZNA Zmienna zależna jest zmienną dychotomiczną (dwustanową) przyjmuje dwie wartości, najczęściej 0 i 1 Zmienną zależną może być:

Bardziej szczegółowo

ANALIZA DANYCH POCHODZĄCYCH Z SEKWENCJONOWANIA NASTĘPNEJ GENERACJI

ANALIZA DANYCH POCHODZĄCYCH Z SEKWENCJONOWANIA NASTĘPNEJ GENERACJI ANALIZA DANYCH POCHODZĄCYCH Z SEKWENCJONOWANIA NASTĘPNEJ GENERACJI Joanna Szyda Magdalena Frąszczak Magda Mielczarek WSTĘP 1. Katedra Genetyki 2. Pracownia biostatystyki 3. Projekty NGS 4. Charakterystyka

Bardziej szczegółowo

WSTĘP Oprogramowanie dla GWAS

WSTĘP Oprogramowanie dla GWAS ANALIZA DANYCH 1. Wykład wstępny 2. Charakterystyka danych 3. Analiza wstępna genomiczna charakterystyka cech 4. Prezentacje grup roboczych analiza wstępna 5. Prezentacje grup roboczych analiza wstępna

Bardziej szczegółowo

METODY STATYSTYCZNE W BIOLOGII

METODY STATYSTYCZNE W BIOLOGII METODY STATYSTYCZNE W BIOLOGII 1. Wykład wstępny 2. Populacje i próby danych 3. Testowanie hipotez i estymacja parametrów 4. Planowanie eksperymentów biologicznych 5. Najczęściej wykorzystywane testy statystyczne

Bardziej szczegółowo

WERYFIKACJA MODELI MODELE LINIOWE. Biomatematyka wykład 8 Dr Wioleta Drobik-Czwarno

WERYFIKACJA MODELI MODELE LINIOWE. Biomatematyka wykład 8 Dr Wioleta Drobik-Czwarno WERYFIKACJA MODELI MODELE LINIOWE Biomatematyka wykład 8 Dr Wioleta Drobik-Czwarno ANALIZA KORELACJI LINIOWEJ to NIE JEST badanie związku przyczynowo-skutkowego, Badanie współwystępowania cech (czy istnieje

Bardziej szczegółowo

METODY STATYSTYCZNE W BIOLOGII

METODY STATYSTYCZNE W BIOLOGII METODY STATYSTYCZNE W BIOLOGII 1. Wykład wstępny 2. Populacje i próby danych 3. Testowanie hipotez i estymacja parametrów 4. Planowanie eksperymentów biologicznych 5. Najczęściej wykorzystywane testy statystyczne

Bardziej szczegółowo

Testowanie hipotez statystycznych.

Testowanie hipotez statystycznych. Bioinformatyka Wykład 4 Wrocław, 17 października 2011 Temat. Weryfikacja hipotez statystycznych dotyczących wartości oczekiwanej w dwóch populacjach o rozkładach normalnych. Model 3. Porównanie średnich

Bardziej szczegółowo

METODY STATYSTYCZNE W BIOLOGII

METODY STATYSTYCZNE W BIOLOGII METODY STATYSTYCZNE W BIOLOGII 1. Wykład wstępny 2. Populacje i próby danych 3. Testowanie hipotez i estymacja parametrów 4. Planowanie eksperymentów biologicznych 5. Najczęściej wykorzystywane testy statystyczne

Bardziej szczegółowo

PORÓWNYWANIE POPULACJI POD WZGLĘDEM STRUKTURY

PORÓWNYWANIE POPULACJI POD WZGLĘDEM STRUKTURY PORÓWNYWANIE POPULACJI POD WZGLĘDEM STRUKTURY obliczanie dystansu dzielącego grupy (subpopulacje) wyrażonego za pomocą indeksu F Wrighta (fixation index) w modelu jednego locus 1 Ćwiczenia III Mgr Kaczmarek-Okrój

Bardziej szczegółowo

Statystyka matematyczna. Wykład IV. Weryfikacja hipotez statystycznych

Statystyka matematyczna. Wykład IV. Weryfikacja hipotez statystycznych Statystyka matematyczna. Wykład IV. e-mail:e.kozlovski@pollub.pl Spis treści 1 2 3 Definicja 1 Hipoteza statystyczna jest to przypuszczenie dotyczące rozkładu (wielkości parametru lub rodzaju) zmiennej

Bardziej szczegółowo

Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r

Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r Statystyka matematyczna Testowanie hipotez i estymacja parametrów Wrocław, 18.03.2016r Plan wykładu: 1. Testowanie hipotez 2. Etapy testowania hipotez 3. Błędy 4. Testowanie wielokrotne 5. Estymacja parametrów

Bardziej szczegółowo

Metody statystyczne wykorzystywane do oceny zróżnicowania kolekcji genowych roślin. Henryk Bujak

Metody statystyczne wykorzystywane do oceny zróżnicowania kolekcji genowych roślin. Henryk Bujak Metody statystyczne wykorzystywane do oceny zróżnicowania kolekcji genowych roślin Henryk Bujak e-mail: h.bujak@ihar.edu.pl Ocena różnorodności fenotypowej Różnorodność fenotypowa kolekcji roślinnych zasobów

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA WYKŁAD 3. Populacje i próby danych

STATYSTYKA MATEMATYCZNA WYKŁAD 3. Populacje i próby danych STATYSTYKA MATEMATYCZNA WYKŁAD 3 Populacje i próby danych POPULACJA I PRÓBA DANYCH POPULACJA population Obserwacje dla wszystkich osobników danego gatunku / rasy PRÓBA DANYCH sample Obserwacje dotyczące

Bardziej szczegółowo

Opis wykonanych badań naukowych oraz uzyskanych wyników

Opis wykonanych badań naukowych oraz uzyskanych wyników Opis wykonanych badań naukowych oraz uzyskanych wyników 1. Analiza danych (krok 2 = uwzględnienie epistazy w modelu): detekcja QTL przy wykorzystaniu modeli dwuwymiarowych z uwzględnieniem różnych modeli

Bardziej szczegółowo

Zmienność populacji cz owieka. Polimorfizmy i asocjacje

Zmienność populacji cz owieka. Polimorfizmy i asocjacje Zmienność populacji cz owieka Polimorfizmy i asocjacje 1 Analiza ndna Analiza mtdna Przyczyna szybka ekspansja populacji 3 Zmienność genetyczna cz owieka Różnice w sekwencjach (geny, obszary niekodujące)

Bardziej szczegółowo

Analizy wielkoskalowe w badaniach chromatyny

Analizy wielkoskalowe w badaniach chromatyny Analizy wielkoskalowe w badaniach chromatyny Analizy wielkoskalowe wykorzystujące mikromacierze DNA Genotypowanie: zróżnicowane wewnątrz genów RNA Komórka eukariotyczna Ekspresja genów: Które geny? Poziom

Bardziej szczegółowo

MIKROMACIERZE. dr inż. Aleksandra Świercz dr Agnieszka Żmieńko

MIKROMACIERZE. dr inż. Aleksandra Świercz dr Agnieszka Żmieńko MIKROMACIERZE dr inż. Aleksandra Świercz dr Agnieszka Żmieńko Informacje ogólne Wykłady będą częściowo dostępne w formie elektronicznej http://cs.put.poznan.pl/aswiercz aswiercz@cs.put.poznan.pl Godziny

Bardziej szczegółowo

Modelowanie danych hodowlanych

Modelowanie danych hodowlanych Modelowanie danych hodowlanych 1. Wykład wstępny. Algebra macierzowa 3. Wykorzystanie różnych źródeł informacji w predykcji wartości hodowlanej 4. Kowariancja genetyczna pomiędzy spokrewnionymi osobnikami

Bardziej szczegółowo

BIOINFORMATYKA. Copyright 2011, Joanna Szyda

BIOINFORMATYKA. Copyright 2011, Joanna Szyda BIOINFORMATYKA 1. Wykład wstępny 2. Struktury danych w badaniach bioinformatycznych 3. Bazy danych: projektowanie i struktura 4. Bazy danych: projektowanie i struktura 5. Powiązania pomiędzy genami: równ.

Bardziej szczegółowo

Rozkłady statystyk z próby. Statystyka

Rozkłady statystyk z próby. Statystyka Rozkłady statystyk z próby tatystyka Rozkłady statystyk z próby Próba losowa pobrana z populacji stanowi realizacje zmiennej losowej jak ciąg zmiennych losowych (X, X,... X ) niezależnych i mających ten

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez statystycznych

Bardziej szczegółowo

Wykład 3 Hipotezy statystyczne

Wykład 3 Hipotezy statystyczne Wykład 3 Hipotezy statystyczne Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu obserwowanej zmiennej losowej (cechy populacji generalnej) Hipoteza zerowa (H 0 ) jest hipoteza

Bardziej szczegółowo

Testowanie hipotez statystycznych.

Testowanie hipotez statystycznych. Statystyka Wykład 10 Wrocław, 22 grudnia 2011 Testowanie hipotez statystycznych Definicja. Hipotezą statystyczną nazywamy stwierdzenie dotyczące parametrów populacji. Definicja. Dwie komplementarne w problemie

Bardziej szczegółowo

Ekologia molekularna. wykład 3

Ekologia molekularna. wykład 3 Ekologia molekularna wykład 3 Dziedziczenie mendlowskie Grzegorz Mendel 1822-1884 Darwin + Mendel = Ronald Fisher 1890-1962 wykład 3/2 Prawo Hardy'ego-Weinberga A A gamety możliwe genotypy potomstwa genotyp

Bardziej szczegółowo

1. KEGG 2. GO. 3. Klastry

1. KEGG 2. GO. 3. Klastry ANALIZA DANYCH 1. Wykład wstępny 2. Charakterystyka danych 3. Analiza wstępna genomiczna charakterystyka cech 4. Prezentacje grup roboczych analiza wstępna 5. Prezentacje grup roboczych analiza wstępna

Bardziej szczegółowo

Wnioskowanie statystyczne i weryfikacja hipotez statystycznych

Wnioskowanie statystyczne i weryfikacja hipotez statystycznych Wnioskowanie statystyczne i weryfikacja hipotez statystycznych Wnioskowanie statystyczne Wnioskowanie statystyczne obejmuje następujące czynności: Sformułowanie hipotezy zerowej i hipotezy alternatywnej.

Bardziej szczegółowo

METODOLOGICZNE ASPEKTY BADAŃ W BIOLOGII CZŁOWIEKA. WYJAŚNIANIE STRATEGII ADAPTACYJNEJ CZŁOWIEKA METODAMI GENETYKI ILOŚCIOWEJ.

METODOLOGICZNE ASPEKTY BADAŃ W BIOLOGII CZŁOWIEKA. WYJAŚNIANIE STRATEGII ADAPTACYJNEJ CZŁOWIEKA METODAMI GENETYKI ILOŚCIOWEJ. METODOLOGICZNE ASPEKTY BADAŃ W BIOLOGII CZŁOWIEKA. WYJAŚNIANIE STRATEGII ADAPTACYJNEJ CZŁOWIEKA METODAMI GENETYKI ILOŚCIOWEJ Joachim Cieślik, Uniwersytet im. A. Mickiewicza w Poznaniu, Instytut Antropologii

Bardziej szczegółowo

Genetyka człowieka II. Cechy wieloczynnikowe, polimorfizmy i asocjacje

Genetyka człowieka II. Cechy wieloczynnikowe, polimorfizmy i asocjacje Genetyka człowieka II Cechy wieloczynnikowe, polimorfizmy i asocjacje MONOGENOWE CZYNNIKI GENETYCZNE DZIEDZICZENIE MENDLOWSKIE NIEPEŁNA PENETRACJA GENU DZIEDZICZENIE WIELOCZYNNIKOWE Z DOMINACJĄ POJEDYNCZEGO

Bardziej szczegółowo

Wprowadzenie do genetyki medycznej i sądowej

Wprowadzenie do genetyki medycznej i sądowej Genetyka medyczno-sądowa Wprowadzenie do genetyki medycznej i sądowej Kierownik Pracowni Genetyki Medycznej i Sądowej Ustalanie tożsamości zwłok Identyfikacja sprawców przestępstw Identyfikacja śladów

Bardziej szczegółowo

Ekonometryczne modele nieliniowe

Ekonometryczne modele nieliniowe Ekonometryczne modele nieliniowe Wykład 10 Modele przełącznikowe Markowa Literatura P.H.Franses, D. van Dijk (2000) Non-linear time series models in empirical finance, Cambridge University Press. R. Breuning,

Bardziej szczegółowo

Czynniki genetyczne sprzyjające rozwojowi otyłości

Czynniki genetyczne sprzyjające rozwojowi otyłości Czynniki genetyczne sprzyjające rozwojowi otyłości OTYŁOŚĆ Choroba charakteryzująca się zwiększeniem masy ciała ponad przyjętą normę Wzrost efektywności terapii Czynniki psychologiczne Czynniki środowiskowe

Bardziej szczegółowo

ZARZĄDZANIE POPULACJAMI ZWIERZĄT 1. RÓWNOWAGA GENETYCZNA POPULACJI. Prowadzący: dr Wioleta Drobik Katedra Genetyki i Ogólnej Hodowli Zwierząt

ZARZĄDZANIE POPULACJAMI ZWIERZĄT 1. RÓWNOWAGA GENETYCZNA POPULACJI. Prowadzący: dr Wioleta Drobik Katedra Genetyki i Ogólnej Hodowli Zwierząt ZARZĄDZANIE POPULACJAMI ZWIERZĄT 1. RÓWNOWAGA GENETYCZNA POPULACJI Fot. W. Wołkow Prowadzący: dr Wioleta Drobik Katedra Genetyki i Ogólnej Hodowli Zwierząt POPULACJA Zbiór organizmów żywych, które łączy

Bardziej szczegółowo

1. Symulacje komputerowe Idea symulacji Przykład. 2. Metody próbkowania Jackknife Bootstrap. 3. Łańcuchy Markova. 4. Próbkowanie Gibbsa

1. Symulacje komputerowe Idea symulacji Przykład. 2. Metody próbkowania Jackknife Bootstrap. 3. Łańcuchy Markova. 4. Próbkowanie Gibbsa BIOINFORMATYKA 1. Wykład wstępny 2. Bazy danych: projektowanie i struktura 3. Równowaga Hardyego-Weinberga, wsp. rekombinacji 4. Analiza asocjacyjna 5. Analiza asocjacyjna 6. Sekwencjonowanie nowej generacji

Bardziej szczegółowo

PAKIETY STATYSTYCZNE JOANNA SZYDA TOMASZ SUCHOCKI

PAKIETY STATYSTYCZNE JOANNA SZYDA TOMASZ SUCHOCKI PAKIETY STATYSTYCZNE JOANNA SZYDA TOMASZ SUCHOCKI WSTĘP 1. Katedra Genetyki 2. Pracownia biostatystyki - projekt 3. Charakterystyka przedmiotu 4. Kontakt 5. Literatura Copyright 2017 Joanna Szyda KATEDRA

Bardziej szczegółowo

Ocena interakcji genotypu i środowiska w doświadczeniu proweniencyjno - rodowym z sosną zwyczajną IBL Jan Kowalczyk IBL

Ocena interakcji genotypu i środowiska w doświadczeniu proweniencyjno - rodowym z sosną zwyczajną IBL Jan Kowalczyk IBL Ocena interakcji genotypu i środowiska w doświadczeniu proweniencyjno - rodowym z sosną zwyczajną IBL 2004 Jan Kowalczyk IBL Interakcja GxE Zachodzi wtedy gdy reakcja genotypów jest różna w różnych środowiskach

Bardziej szczegółowo

Anna Szewczyk. Wydział Geodezji Górniczej i InŜynierii środowiska AGH

Anna Szewczyk. Wydział Geodezji Górniczej i InŜynierii środowiska AGH Anna Szewczyk Wydział Geodezji Górniczej i InŜynierii środowiska AGH Zastosowania biblioteki Genetics programu R The genetics Package Tytuł: Populacja genetyczna Wersja:1.2.0 Data utworzenia: 2005-11-09

Bardziej szczegółowo

era genomowa w hodowli bydła mlecznego Instytut Zootechniki Państwowy Instytut Badawczy

era genomowa w hodowli bydła mlecznego Instytut Zootechniki Państwowy Instytut Badawczy era genomowa w hodowli bydła mlecznego Instytut Zootechniki Państwowy Instytut Badawczy 1 2 Szanowni Państwo! W Instytucie Zootechniki PIB od ponad 40 lat prowadzona jest ocena wartości hodowlanej. W tym

Bardziej szczegółowo

Elementy statystyki wielowymiarowej

Elementy statystyki wielowymiarowej Wnioskowanie_Statystyczne_-_wykład Spis treści 1 Elementy statystyki wielowymiarowej 1.1 Kowariancja i współczynnik korelacji 1.2 Macierz kowariancji 1.3 Dwumianowy rozkład normalny 1.4 Analiza składowych

Bardziej szczegółowo

Oznaczenie polimorfizmu genetycznego cytochromu CYP2D6: wykrywanie liczby kopii genu

Oznaczenie polimorfizmu genetycznego cytochromu CYP2D6: wykrywanie liczby kopii genu Ćwiczenie 4 Oznaczenie polimorfizmu genetycznego cytochromu CYP2D6: wykrywanie liczby kopii genu Wstęp CYP2D6 kodowany przez gen występujący w co najmniej w 78 allelicznych formach związanych ze zmniejszoną

Bardziej szczegółowo

Genetyka człowieka II. Cechy wieloczynnikowe, polimorfizmy i asocjacje

Genetyka człowieka II. Cechy wieloczynnikowe, polimorfizmy i asocjacje Genetyka człowieka II Cechy wieloczynnikowe, polimorfizmy i asocjacje Dziedziczenie Mendlowskie - jeden gen = jedna cecha np. allele jednego genu decydują o barwie kwiatów groszku Bardziej złożone - interakcje

Bardziej szczegółowo

Teoria ewolucji. Podstawowe pojęcia. Wspólne pochodzenie.

Teoria ewolucji. Podstawowe pojęcia. Wspólne pochodzenie. Teoria ewolucji Podstawowe pojęcia. Wspólne pochodzenie. Informacje Kontakt: Paweł Golik Instytut Genetyki i Biotechnologii, Pawińskiego 5A pgolik@igib.uw.edu.pl Informacje, materiały: http://www.igib.uw.edu.pl/

Bardziej szczegółowo

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego

Bardziej szczegółowo

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 9 i 10 - Weryfikacja hipotez statystycznych

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 9 i 10 - Weryfikacja hipotez statystycznych WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 9 i 10 - Weryfikacja hipotez statystycznych Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 9 i 10 1 / 30 TESTOWANIE HIPOTEZ STATYSTYCZNYCH

Bardziej szczegółowo

Dziedziczenie wieloczynnikowe. Problem przewidywalności

Dziedziczenie wieloczynnikowe. Problem przewidywalności Dziedziczenie wieloczynnikowe Problem przewidywalności Cechy wieloczynnikowe a mendlowskie Mendlowskie Wieloczynnikowe Proste dziedziczenie, allele pojedynczych genów, wysoka penetracja Złożone dziedziczenie:

Bardziej szczegółowo

Mitochondrialna Ewa;

Mitochondrialna Ewa; Mitochondrialna Ewa; jej sprzymierzeńcy i wrogowie Lien Dybczyńska Zakład genetyki, Uniwersytet Warszawski 01.05.2004 Milion lat temu Ale co dalej??? I wtedy wkracza biologia molekularna Analiza różnic

Bardziej szczegółowo

Testowanie hipotez. Marcin Zajenkowski. Marcin Zajenkowski () Testowanie hipotez 1 / 25

Testowanie hipotez. Marcin Zajenkowski. Marcin Zajenkowski () Testowanie hipotez 1 / 25 Testowanie hipotez Marcin Zajenkowski Marcin Zajenkowski () Testowanie hipotez 1 / 25 Testowanie hipotez Aby porównać ze sobą dwie statystyki z próby stosuje się testy istotności. Mówią one o tym czy uzyskane

Bardziej szczegółowo

PRAWO CZYSTOŚCI GAMET (I Prawo Mendla) RELACJE MIĘDZY ALLELAMI TEGO SAMEGO GENU

PRAWO CZYSTOŚCI GAMET (I Prawo Mendla) RELACJE MIĘDZY ALLELAMI TEGO SAMEGO GENU A A a a A a PRAWO CZYSTOŚCI GAMET (I Prawo Mendla) Osobnik diploidalny wytwarza haploidalne gamety, do których w sposób losowy trafiają po jednym chromosomie z pary (po jednym alleleu z pary), zatem osobnik

Bardziej szczegółowo

3. Modele tendencji czasowej w prognozowaniu

3. Modele tendencji czasowej w prognozowaniu II Modele tendencji czasowej w prognozowaniu 1 Składniki szeregu czasowego W teorii szeregów czasowych wyróżnia się zwykle następujące składowe szeregu czasowego: a) składowa systematyczna; b) składowa

Bardziej szczegółowo

2016-01-14. Sekwencje mikrosatelitarne. SNP Single Nucleotide Polymorphism (mutacje punktowe, polimorfizm jednonukleotydowy)

2016-01-14. Sekwencje mikrosatelitarne. SNP Single Nucleotide Polymorphism (mutacje punktowe, polimorfizm jednonukleotydowy) Sekwencje mikrosatelitarne Próba nr 1 GGGGGGGGGGGG 4x GG Próba nr 2 GGGGGGGGGGGGGGGG 6x GG Próba nr 1 GGGGGGGGG Próba nr 2 GGG GGGG SNP Single Nucleotide Polymorphism (mutacje punktowe, polimorfizm jednonukleotydowy)

Bardziej szczegółowo

Genetyka dla (trochę) zaawansowanych III. Interakcje genetyczne II, dziedziczenie wieloczynnikowe

Genetyka dla (trochę) zaawansowanych III. Interakcje genetyczne II, dziedziczenie wieloczynnikowe Genetyka dla (trochę) zaawansowanych III Interakcje genetyczne II, dziedziczenie wieloczynnikowe Interakcje Łagodzące (alleviating interactions) Fenotyp podwójnego mutanta lżejszy, niż przewidywany dla

Bardziej szczegółowo

Oszacowanie i rozkład t

Oszacowanie i rozkład t Oszacowanie i rozkład t Marcin Zajenkowski Marcin Zajenkowski () Oszacowanie i rozkład t 1 / 31 Oszacowanie 1 Na podstawie danych z próby szacuje się wiele wartości w populacji, np.: jakie jest poparcie

Bardziej szczegółowo

Elementy statystyki STA - Wykład 5

Elementy statystyki STA - Wykład 5 STA - Wykład 5 Wydział Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza 1 ANOVA 2 Model jednoczynnikowej analizy wariancji Na model jednoczynnikowej analizy wariancji możemy traktować jako uogólnienie

Bardziej szczegółowo

GENETYKA POPULACJI. Ćwiczenia 5 Biologia I MGR

GENETYKA POPULACJI. Ćwiczenia 5 Biologia I MGR GENETYKA POPULACJI Ćwiczenia 5 Biologia I MGR WSPÓŁCZESNA GENETYKA POPULACJI CÓRKA TRZECH MATEK TRZY MATKI trzy rewolucje dotyczące teorii i technologii 1) Rewolucja koncepcyjna: wyłoniona z teorii koalescencji,

Bardziej szczegółowo

Genetyka populacji. Ćwiczenia 7

Genetyka populacji. Ćwiczenia 7 Genetyka populacji Ćwiczenia 7 Rodowody wraz z wynikami kontroli użytkowości stanowią podstawową informację potrzebną do doskonalenia zwierząt C F X S D C F C F S D strzałka oznacza przepływ genów między

Bardziej szczegółowo

WYKŁAD 8 TESTOWANIE HIPOTEZ STATYSTYCZNYCH

WYKŁAD 8 TESTOWANIE HIPOTEZ STATYSTYCZNYCH WYKŁAD 8 TESTOWANIE HIPOTEZ STATYSTYCZNYCH Było: Estymacja parametrów rozkładu teoretycznego punktowa przedziałowa Przykład. Cecha X masa owocu pewnej odmiany. ZałoŜenie: cecha X ma w populacji rozkład

Bardziej szczegółowo

Człowiek mendlowski? Genetyka człowieka w XX i XXI w.

Człowiek mendlowski? Genetyka człowieka w XX i XXI w. Człowiek mendlowski? Genetyka człowieka w XX i XXI w. Informacje Kontakt: Paweł Golik Instytut Genetyki i Biotechnologii, Pawińskiego 5A pgolik@igib.uw.edu.pl Informacje, materiały: http://www.igib.uw.edu.pl/

Bardziej szczegółowo

Narzędzia statystyczne i ekonometryczne. Wykład 1. dr Paweł Baranowski

Narzędzia statystyczne i ekonometryczne. Wykład 1. dr Paweł Baranowski Narzędzia statystyczne i ekonometryczne Wykład 1 dr Paweł Baranowski Informacje organizacyjne Wydział Ek-Soc, pok. B-109 pawel@baranowski.edu.pl Strona: baranowski.edu.pl (w tym materiały) Konsultacje:

Bardziej szczegółowo

Zadania ze statystyki cz. 8 I rok socjologii. Zadanie 1.

Zadania ze statystyki cz. 8 I rok socjologii. Zadanie 1. Zadania ze statystyki cz. 8 I rok socjologii Zadanie 1. W potocznej opinii pokutuje przekonanie, że lepsi z matematyki są chłopcy niż dziewczęta. Chcąc zweryfikować tę opinię, przeprowadzono badanie w

Bardziej szczegółowo

Testy nieparametryczne

Testy nieparametryczne Testy nieparametryczne 1 Wybrane testy nieparametryczne 1. Test chi-kwadrat zgodności z rozkładem oczekiwanym 2. Test chi-kwadrat niezależności dwóch zmiennych kategoryzujących 3. Test U Manna-Whitney

Bardziej szczegółowo

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH 1 ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH WFAiS UJ, Informatyka Stosowana II stopień studiów 2 Wnioskowanie statystyczne dla zmiennych numerycznych Porównywanie dwóch średnich Boot-strapping Analiza

Bardziej szczegółowo

Wnioskowanie statystyczne. Statystyka w 5

Wnioskowanie statystyczne. Statystyka w 5 Wnioskowanie statystyczne tatystyka w 5 Rozkłady statystyk z próby Próba losowa pobrana z populacji stanowi realizacje zmiennej losowej jak ciąg zmiennych losowych (X, X,... X ) niezależnych i mających

Bardziej szczegółowo

Wykład 2 Hipoteza statystyczna, test statystyczny, poziom istotn. istotności, p-wartość i moc testu

Wykład 2 Hipoteza statystyczna, test statystyczny, poziom istotn. istotności, p-wartość i moc testu Wykład 2 Hipoteza statystyczna, test statystyczny, poziom istotności, p-wartość i moc testu Wrocław, 01.03.2017r Przykład 2.1 Właściciel firmy produkującej telefony komórkowe twierdzi, że wśród jego produktów

Bardziej szczegółowo

ANALIZA WARIANCJI - PRZYPOMNIENIE

ANALIZA WARIANCJI - PRZYPOMNIENIE ANALIZA WARIANCJI - PRZYPOMNIENIE Dr Wioleta Drobik ANALIZA WARIACJI Podział zaobserwowanej zmienności (wariancji) na zmienność między grupami i w obrębie grup Pozwala na ocenę istotności różnic wielu

Bardziej szczegółowo

Monte Carlo, bootstrap, jacknife

Monte Carlo, bootstrap, jacknife Monte Carlo, bootstrap, jacknife Literatura Bruce Hansen (2012 +) Econometrics, ze strony internetowej: http://www.ssc.wisc.edu/~bhansen/econometrics/ Monte Carlo: rozdział 8.8, 8.9 Bootstrap: rozdział

Bardziej szczegółowo

Wykład 3 Testowanie hipotez statystycznych o wartości średniej. średniej i wariancji z populacji o rozkładzie normalnym

Wykład 3 Testowanie hipotez statystycznych o wartości średniej. średniej i wariancji z populacji o rozkładzie normalnym Wykład 3 Testowanie hipotez statystycznych o wartości średniej i wariancji z populacji o rozkładzie normalnym Wrocław, 08.03.2017r Model 1 Testowanie hipotez dla średniej w rozkładzie normalnym ze znaną

Bardziej szczegółowo

Błędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa

Błędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa Weryfikacja hipotez statystycznych Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy populacji, o prawdziwości lub fałszywości którego wnioskuje się na podstawie

Bardziej szczegółowo

Zadania ze statystyki cz.8. Zadanie 1.

Zadania ze statystyki cz.8. Zadanie 1. Zadania ze statystyki cz.8. Zadanie 1. Wykonano pewien eksperyment skuteczności działania pewnej reklamy na zmianę postawy. Wylosowano 10 osobową próbę studentów, których poproszono o ocenę pewnego produktu,

Bardziej szczegółowo