Pytania i odpowiedzi
|
|
- Antoni Janicki
- 6 lat temu
- Przeglądów:
Transkrypt
1 Pytania i odpowiedzi
2 Czy kontrola jakości płytek w programach analizy danych jest dostosowywana do przeprowadzanego badania, czy też przyjmuje się jednakową jej wartość dla różnych analiz? We wstępnym etapie w zależności od programu (Genome Studio vs Axiom Analysis Suite) są progi polecane przez producenta, ale również można je modyfikować Są pewne standardowe progi jak MAF > 0.05 lub 0.01 GENO > 0.9 HWE pvalue > 10-4 Czasami należy je jednak zmodyfikować dla konkretnej analizy.
3 Czy podział na klastry wykonany na podstawie danych z mikromacierzy SNP w programie Structure pokrywa się z podziałem na subpopulacje dokonanym podczas analizy PCA w programie R? Źródło: Xing et al., 2010 Toward a more uniform sampling of human genetic diversity: A survey of worldwide populations by highdensity genotyping. Genomics 96:
4 Jak wygląda wykorzystanie mikrosond w rozpoznawaniu i leczeniu nowotworów? Czy na podstawie znajomości odczytu z sondy DNA komórki nowotworowej jesteśmy w stanie zadecydować o leczeniu nowotworu? Za pomocą mikromacierzy jesteśmy w stanie szybko sprawdzić ekspresję tysięcy genów w komórkach nowotworowych. Podwyższona ekspresja wybranych genów została skorelowana ze skutecznością terapii. W testach komercyjnych na płytce umieszczamy sondy tylko dla genów o których mamy informacje. Przykład: podwyższona ekspresja genu kodującego receptor dla estrogenów jest pozytywnie skorelowana ze skutecznością terapii w której wpływa się na syntezę estrogenów lub blokuje receptory estrogenowe. Stosowane testy: Oncotype DX - 21 genów w próbkach z biopsji.
5 Czy możliwe jest wykorzystanie w przyszłości mikromacierzy DNA w kryminalystyce lub sprawdzaniu ojcostwa? Jest możliwe. Przykład Parental Support, Ryan et al Informaticsbased, highly accurate, noninvasive prenatal paternity testing. Do niedawna była to jednak droższa metoda. Czy często się przeprowadza kontrole pochodzenia z wykorzystaniem mikromacierzy SNP np. w hodowlach kotów rasowych? Są tańsze metody, przykładowo mikromacierz dla kotów (Illumina Infinium iselect 63K Cat DNA Array) jest dostępna stosunkowo od niedawna i służy do badań populacyjnych oraz GWAS.
6 Czy korzystanie z GWAS ma rację bytu w przypadku badania alleli o małym wpływie na zmienność i jak duży ma to wpływ na diagnostykę? Czy powoduje to całkowite przeoczenie takich alleli? Jak bardzo trzeba zwiększyć liczbę prób żeby do tego nie doszło? Park et al., Nature Genetics 42: Oszacowanie rozkładu wielkości efektu dla loci wpływających na wzrost, chorobę Crohna oraz nowotwory: a ) zaobserwowane loci b ) szacowane loci Odziedziczalność: Wzrost: 80-90% Choroba Crohna: wysoka Nowotwory: średnia
7 Badania asocjacyjne w skali genomu (GWAS) Wykład 5 Bioinżynieria, I mgr Bioinformatyczna analiza danych Wykład 4 Dr Wioleta Drobik-Czwarno Katedra Genetyki i Ogólnej Hodowli Zwierząt
8 Niejednorodna populacja Metody korekty GWAS na niejednorodna populacje: Kontrola genomowa (ang. genomic control) polega na skalowaniu statystyki testowej tak aby jej mediana stała się medianą oczekiwaną (wg rozkładu). Przeprowadzenie GWAS w obrębie subpopulacji Analiza struktury genetycznej populacji (PCA, MDS) oraz użycie kilku wybranych głównych składowych jako zmienne objaśniające w modelu (eigenstrat). Modele mieszane (ang. mixed models) macierz spokrewnień genomowych jest dodawana jako efekt losowy do modelu.
9 Kontrola genomowa ang. genomic control Korekta na niejednorodną strukturę populacji zaproponowana przez Devlin and Roeder w 1999 roku Dla każdego markera wyliczamy statystykę testową np. statystykę trendu Armitage: Gdzie: -N liczba loci (markerów) -r 2 korelacja pomiędzy genotypem oraz fenotypem do kwadratu G S genotyp dla markera s Y fenotyp
10 Kontrola genomowa ang. genomic control Różnicę w statystyce obserwowanej i oczekiwanej wyrażamy za pomocą czynnika inflacji lambda Gdzie: mediana dla statystyki testowej chi-kwadrat przy jednym stopniu swobody - A rs wartość statystyki trendu Armitage
11 Kontrola genomowa ang. genomic control Brak wyraźnej struktury populacji: Rozkład dla statystyki A rs będzie taki jak rozkład statystyki chikwadrat dla jednego stopnia swobody Wyraźna struktura populacji Rozkład dla statystyki A rs będzie odbiegał od rozkładu statystyki chi-kwadrat dla jednego stopnia swobody z powodu zawyżonej wariancji Lambda = 1 Lambda > 1
12 EIGENSTRAT Metoda zaproponowana przez Price i wsp dla próby niespokrewnionych osobników, z podziałem na subpopulacje Wykonujemy PCA lub MDS i używamy kilku pierwszych głównych komponentów (objaśniających największą część wariancji, PCA) jako zmiennych objaśniających w modelu regresji X genotyp PC1, PC2, PC3 główne komponenty
13 Liniowe modele mieszane ang. Linear Mixed models Komponenty wariancji: y=μ+a+g+e gdzie: - μ średnia - a efekty addytywne - g efekty poligeniczne - e błąd losowy Li and Zhu, 2013 Testowany jest każdy marker, sprawdzamy czy wariancja efektu jest istotnie większa od 0
14 Liniowe modele mieszane ang. Linear Mixed models Model mieszany: y = Xβ+g+e gdzie: X macierz efektów stałych, β współczynnik regresji dla efektów stałych, g-efekty losowe uwarunkowane poligenicznie, e-błąd Wariancja g (σ g2 ) jest zależna od macierzy spokrewnień Var(g) = Kσ g 2 gdzie K jest macierzą spokrewnień (Kinship matrix)
15 Współczynnik kinship Wyliczany dla każdej pary próbek, na podstawie danych rodowodowych lub molekularnych Genomowy współczynnik kinship (ang. genomic kinship) Gdzie: -L liczba loci (markerów) -p l frekwencja allelu w locus l -g l,j genotyp próbki j w locus l (jako 0,1/2,1) Macierz spokrewnień genomowych odzwierciedla strukturę populacji oraz powiązanie rodzinowe
16 Zagubiona odziedziczalność Warianty zidentyfikowane przez GWAS nie wyjaśniają w 100% zmienności genetycznej złożonych cech Odziedziczalność: Maher B Personal genomes: The case of the missing heritability. Nature 456,
17 Oczekiwania podstawowego modelu GWAS SNP Rzeczywistość Gen Fenotyp
18 Co jest odpowiedzialne za zagubioną odziedziczalność? Teorie: Oddziaływania epistatyczne? Warianty strukturalne? Epigenetyka? Odziedziczalność jest błędnie oszacowana niedoszacowane efekty środowiskowe? Rzadkie warianty? Błędy w danych fenotypowych lub złożone symptomy chorobowe? Wpływ mikrobiomu? Dla ciekawskich: Santhosh Girirajan, Missing heritability and where to find it. Genome Biology 18:89.
19 Interakcje epistatyczne Epistaza współdziałanie niealleliczne genów. Gen epistatyczny maskuje fenotypowa ekspresję genu hipostatycznego kształtując fenotyp Niel et al., A survey about methods dedicated to epistasis detection. Front. Genet., 10.
20 Interakcje epistatyczne Czy możemy uwzględnić interakcję każdego markera z każdym? Zakładamy markerów Analiza jednej interakcji zajmie sekundę Dzień ma sekund Daje to: x dni na przeanalizowanie wszystkich interakcji czyli x lat
21 Co możemy zrobić? Analiza wszystkich możliwych interakcji często zbyt czasochłonna i przez to niemożliwa Analiza wybranych interakcji dla najistotniejszych markerów czy na pewno uwzględniamy wszystkie istotne interakcje? Włączenie wiedzy biologicznej do modelu Ogólnodostępne bazy danych Włączenie informacji o genomie, transkryptomie oraz proteomie Umożliwia wybranie markerów/genów, dla których spodziewamy się interakcji i jedynie dla nich wykonujemy analizę
22 Imputacja Termin haplotyp przy GWAS odnosi się do zestawu alleli markerów dziedziczonych wspólnie we fragmencie genomu Imputacja to wykorzystanie informacji haplotypowej w próbie referencyjnej w celu poznania genotypów markerów w grupie badanej. Po co? Zwiększona moc Zwiększona rozdzielczość Meta-analiza wykorzystanie wcześniej opublikowanych danych Uwaga! Imputacja może mieć różną dokładność, na co wpływ będzie miał: Dobór grupy referencyjnej oraz jej wielkość Liczba zgenotypowanych osobników oraz markerów w grupie badanej Frekwencja rzadkich alleli
23
24 Literatura Li G., Zhu H Genetic Studies: The Linear Mixed Models in Genomewide Association Studies. The Open Bioinformatics Journal 7: Bowcock, A. M Finding Genes for Common Diseases Using GWAS. Nature Education 8(5):5 Personal genomes: The case of the missing heritability Nature 456,
Badania asocjacyjne w skali genomu (GWAS)
Badania asocjacyjne w skali genomu (GWAS) Część 2 LD, PCA Bioinżynieria, I mgr Bioinformatyczna analiza danych Wykład 3 Dr Wioleta Drobik-Czwarno Katedra Genetyki i Ogólnej Hodowli Zwierząt Analiza głównych
Bardziej szczegółowoBadania asocjacyjne w skali genomu (GWAS)
Badania asocjacyjne w skali genomu (GWAS) Wstęp do GWAS Część 1 - Kontrola jakości Bioinformatyczna analiza danych Wykład 2 Dr Wioleta Drobik-Czwarno Katedra Genetyki i Ogólnej Hodowli Zwierząt Badania
Bardziej szczegółowoCECHY ILOŚCIOWE PARAMETRY GENETYCZNE
CECHY ILOŚCIOWE PARAMETRY GENETYCZNE Zarządzanie populacjami zwierząt, ćwiczenia V Dr Wioleta Drobik Rodzaje cech Jakościowe o prostym dziedziczeniu uwarunkowane zwykle przez kilka genów Słaba podatność
Bardziej szczegółowoOcena wartości hodowlanej. Dr Agnieszka Suchecka
Ocena wartości hodowlanej Dr Agnieszka Suchecka Wartość hodowlana genetycznie uwarunkowane możliwości zwierzęcia do ujawnienia określonej produkcyjności oraz zdolność przekazywania ich potomstwu (wartość
Bardziej szczegółowoEkologia molekularna. wykład 14. Genetyka ilościowa
Ekologia molekularna wykład 14 Genetyka ilościowa Dziedziczenie mendlowskie wykład 14/2 Cechy wieloczynnikowe (ilościowe) wzrost masa ciała kolor skóry kolor oczu itp wykład 14/3 Rodzaje cech ilościowych
Bardziej szczegółowoPodstawy genetyki człowieka. Cechy wieloczynnikowe
Podstawy genetyki człowieka Cechy wieloczynnikowe Dziedziczenie Mendlowskie - jeden gen = jedna cecha np. allele jednego genu decydują o barwie kwiatów groszku Bardziej złożone - interakcje kilku genów
Bardziej szczegółowoSzacowanie wartości hodowlanej. Zarządzanie populacjami
Szacowanie wartości hodowlanej Zarządzanie populacjami wartość hodowlana = wartość cechy? Tak! Przy h 2 =1 ? wybitny ojciec = wybitne dzieci Tak, gdy cecha wysokoodziedziczalna. Wartość hodowlana genetycznie
Bardziej szczegółowo1. Analiza asocjacyjna. Cechy ciągłe. Cechy binarne. Analiza sprzężeń. Runs of homozygosity. Signatures of selection
BIOINFORMATYKA 1. Wykład wstępny 2. Bazy danych: projektowanie i struktura 3. Równowaga Hardyego-Weinberga, wsp. rekombinacji 4. Analiza asocjacyjna 5. Analiza asocjacyjna 6. Sekwencjonowanie nowej generacji
Bardziej szczegółowoSekwencjonowanie nowej generacji i rozwój programów selekcyjnych w akwakulturze ryb łososiowatych
Sekwencjonowanie nowej generacji i rozwój programów selekcyjnych w akwakulturze ryb łososiowatych Konrad Ocalewicz Zakład Biologii i Ekologii Morza, Instytut Oceanografii, Wydział Oceanografii i Geografii,
Bardziej szczegółowoZarządzanie populacjami zwierząt. Parametry genetyczne cech
Zarządzanie populacjami zwierząt Parametry genetyczne cech Teoria ścieżki zależność przyczynowo-skutkowa X p 01 Z Y p 02 p 01 2 + p 02 2 = 1 współczynniki ścieżek miary związku między przyczyną a skutkiem
Bardziej szczegółowoOprogramowanie dla GWAS
BIOINFORMATYKA 1. Wykład wstępny 2. Bazy danych: projektowanie i struktura 3. Równowaga Hardyego-Weinberga, wsp. rekombinacji 4. Analiza asocjacyjna 5. Analiza asocjacyjna 6. Sekwencjonowanie nowej generacji
Bardziej szczegółowoPODSTAWY BIOINFORMATYKI 11 BAZA DANYCH HAPMAP
PODSTAWY BIOINFORMATYKI 11 BAZA DANYCH HAPMAP WSTĘP 1. SNP 2. haplotyp 3. równowaga sprzężeń 4. zawartość bazy HapMap 5. przykłady zastosowań Copyright 2013, Joanna Szyda HAPMAP BAZA DANYCH HAPMAP - haplotypy
Bardziej szczegółowoSpokrewnienie prawdopodobieństwo, że dwa losowe geny od dwóch osobników są genami IBD. IBD = identical by descent, geny identycznego pochodzenia
prawdopodobieństwo, że dwa losowe geny od dwóch osobników są genami ID. Relationship Relatedness Kinship Fraternity ID = identical by descent, geny identycznego pochodzenia jest miarą względną. Przyjmuje
Bardziej szczegółowoDziedziczenie poligenowe
Dziedziczenie poligenowe Dziedziczenie cech ilościowych Dziedziczenie wieloczynnikowe Na wartość cechy wpływa Komponenta genetyczna - wspólne oddziaływanie wielu (najczęściej jest to liczba nieznana) genów,
Bardziej szczegółowoBioinformatyczna analiza danych. Wykład 1 Dr Wioleta Drobik-Czwarno Katedra Genetyki i Ogólnej Hodowli Zwierząt
Bioinformatyczna analiza danych Wykład 1 Dr Wioleta Drobik-Czwarno Katedra Genetyki i Ogólnej Hodowli Zwierząt Sprawy organizacyjne Prowadzący przedmiot: Dr Wioleta Drobik-Czwarno koordynator przedmiotu,
Bardziej szczegółowoTomasz Suchocki Kacper Żukowski, Magda Mielczarek, Joanna Szyda
Tomasz Suchocki Kacper Żukowski, Magda Mielczarek, Joanna Szyda Uniwersytet Przyrodniczy we Wrocławiu, Pracownia Biostatystyki Instytut Zootechniki Państwowy Instytut Badawczy 2 > 76 000 osobników w bazie
Bardziej szczegółowoANALIZA DANYCH POCHODZĄCYCH Z SEKWENCJONOWANIA NASTĘPNEJ GENERACJI
ANALIZA DANYCH POCHODZĄCYCH Z SEKWENCJONOWANIA NASTĘPNEJ GENERACJI JOANNA SZYDA MAGDALENA FRĄSZCZAK MAGDA MIELCZAREK WSTĘP 1. Katedra Genetyki 2. Pracownia biostatystyki 3. Projekty NGS 4. Charakterystyka
Bardziej szczegółowoMODELE LINIOWE. Dr Wioleta Drobik
MODELE LINIOWE Dr Wioleta Drobik MODELE LINIOWE Jedna z najstarszych i najpopularniejszych metod modelowania Zależność między zbiorem zmiennych objaśniających, a zmienną ilościową nazywaną zmienną objaśnianą
Bardziej szczegółowoZmienność populacji człowieka. Polimorfizmy i asocjacje
Zmienność populacji człowieka Polimorfizmy i asocjacje Prezentacja } http://wiki.biol.uw.edu.pl/ 2 MONOGENOWE CZYNNIKI GENETYCZNE DZIEDZICZENIE MENDLOWSKIE NIEPEŁNA PENETRACJA GENU DZIEDZICZENIE WIELOCZYNNIKOWE
Bardziej szczegółowoDefinicja. Odziedziczalność. Definicja. w potocznym rozumieniu znaczy tyle co dziedziczenie. Fenotyp( P)=Genotyp(G)+Środowisko(E) V P = V G + V E
Odziedziczalność w potocznym rozumieniu znaczy tyle co dziedziczenie...ale ma ścisłą techniczną definicję. Definicja Fenotyp( P)=Genotyp(G)+Środowisko(E) V P = V G + V E H 2 (w szerszym sensie) = V G /
Bardziej szczegółowoPODSTAWY BIOINFORMATYKI 12 MIKROMACIERZE
PODSTAWY BIOINFORMATYKI 12 MIKROMACIERZE WSTĘP 1. Mikromacierze ekspresyjne tworzenie macierzy przykłady zastosowań 2. Mikromacierze SNP tworzenie macierzy przykłady zastosowań MIKROMACIERZE EKSPRESYJNE
Bardziej szczegółowoSTATYSTYKA MATEMATYCZNA WYKŁAD 1
STATYSTYKA MATEMATYCZNA WYKŁAD 1 Wykład wstępny Teoria prawdopodobieństwa Magda Mielczarek wykłady, ćwiczenia Copyright 2017, J. Szyda & M. Mielczarek STATYSTYKA MATEMATYCZNA? ASHG 2011 Writing Workshop;
Bardziej szczegółowoweryfikacja hipotez dotyczących parametrów populacji (średnia, wariancja)
PODSTAWY STATYSTYKI. Teoria prawdopodobieństwa i elementy kombinatoryki. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5. Testy parametryczne (na
Bardziej szczegółowoTestowanie hipotez statystycznych
9 października 2008 ...czyli definicje na rozgrzewkę n-elementowa próba losowa - wektor n zmiennych losowych (X 1,..., X n ); intuicyjnie: wynik n eksperymentów realizacja próby (X 1,..., X n ) w ω Ω :
Bardziej szczegółowoPRZYGODY DGV. historia programu selekcji genomowej w Polsce. Joanna Szyda, Andrzej Żarnecki
PRZYGODY DGV historia programu selekcji genomowej w Polsce Joanna Szyda, Andrzej Żarnecki Co to DGV? DGV Direct Genomic Value bezpośrednia genomowa wartość hodowlana suma addytywnych efektów markerów SNP
Bardziej szczegółowoSTATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5.
Bardziej szczegółowoWSTĘP. Copyright 2011, Joanna Szyda
BIOINFORMATYKA 1. Wykład wstępny 2. Struktury danych w badaniach bioinformatycznych 3. Bazy danych: projektowanie i struktura 4. Bazy danych: projektowanie i struktura 5. Równowaga Hardyego-Weinberga,
Bardziej szczegółowoJaki koń jest nie każdy widzi - genomika populacji polskich ras koni
Jaki koń jest nie każdy widzi - genomika populacji polskich ras koni Gurgul A., Jasielczuk I., Semik-Gurgul E., Pawlina-Tyszko K., Szmatoła T., Bugno-Poniewierska M. Instytut Zootechniki PIB Zakład Biologii
Bardziej szczegółowoTablica Wzorów Rachunek Prawdopodobieństwa i Statystyki
Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Spis treści I. Wzory ogólne... 2 1. Średnia arytmetyczna:... 2 2. Rozstęp:... 2 3. Kwantyle:... 2 4. Wariancja:... 2 5. Odchylenie standardowe:...
Bardziej szczegółowoPostępy w realizacji polskiego programu selekcji genomowej buhajów MASinBULL Joanna Szyda
Postępy w realizacji polskiego programu selekcji genomowej buhajów MASinBULL Joanna Szyda Uniwersytet Przyrodniczy we Wrocławiu Katedra Genetyki, Pracownia Biostatystyki 1. MASinBULL 2. Metody oceny genomowej
Bardziej szczegółowoZarządzanie populacjami zwierząt. Ocena wartości hodowlanej Wykład 7
Zarządzanie populacjami zwierząt Ocena wartości odowlanej Wykład 7 Wartość fenotypowa Ceca ilościowa G GE E D I GE E E p E t,d,i addytywna, dominacyjna, interakcyjna (epistatyczna) część wartości genotypowej
Bardziej szczegółowoZmienność. środa, 23 listopada 11
Zmienność http://ggoralski.com Zmienność Zmienność - rodzaje Zmienność obserwuje się zarówno między poszczególnymi osobnikami jak i między populacjami. Różnice te mogą mieć jednak różne podłoże. Mogą one
Bardziej szczegółowoWSTĘP DO REGRESJI LOGISTYCZNEJ. Dr Wioleta Drobik-Czwarno
WSTĘP DO REGRESJI LOGISTYCZNEJ Dr Wioleta Drobik-Czwarno REGRESJA LOGISTYCZNA Zmienna zależna jest zmienną dychotomiczną (dwustanową) przyjmuje dwie wartości, najczęściej 0 i 1 Zmienną zależną może być:
Bardziej szczegółowoANALIZA DANYCH POCHODZĄCYCH Z SEKWENCJONOWANIA NASTĘPNEJ GENERACJI
ANALIZA DANYCH POCHODZĄCYCH Z SEKWENCJONOWANIA NASTĘPNEJ GENERACJI Joanna Szyda Magdalena Frąszczak Magda Mielczarek WSTĘP 1. Katedra Genetyki 2. Pracownia biostatystyki 3. Projekty NGS 4. Charakterystyka
Bardziej szczegółowoWSTĘP Oprogramowanie dla GWAS
ANALIZA DANYCH 1. Wykład wstępny 2. Charakterystyka danych 3. Analiza wstępna genomiczna charakterystyka cech 4. Prezentacje grup roboczych analiza wstępna 5. Prezentacje grup roboczych analiza wstępna
Bardziej szczegółowoMETODY STATYSTYCZNE W BIOLOGII
METODY STATYSTYCZNE W BIOLOGII 1. Wykład wstępny 2. Populacje i próby danych 3. Testowanie hipotez i estymacja parametrów 4. Planowanie eksperymentów biologicznych 5. Najczęściej wykorzystywane testy statystyczne
Bardziej szczegółowoWERYFIKACJA MODELI MODELE LINIOWE. Biomatematyka wykład 8 Dr Wioleta Drobik-Czwarno
WERYFIKACJA MODELI MODELE LINIOWE Biomatematyka wykład 8 Dr Wioleta Drobik-Czwarno ANALIZA KORELACJI LINIOWEJ to NIE JEST badanie związku przyczynowo-skutkowego, Badanie współwystępowania cech (czy istnieje
Bardziej szczegółowoMETODY STATYSTYCZNE W BIOLOGII
METODY STATYSTYCZNE W BIOLOGII 1. Wykład wstępny 2. Populacje i próby danych 3. Testowanie hipotez i estymacja parametrów 4. Planowanie eksperymentów biologicznych 5. Najczęściej wykorzystywane testy statystyczne
Bardziej szczegółowoTestowanie hipotez statystycznych.
Bioinformatyka Wykład 4 Wrocław, 17 października 2011 Temat. Weryfikacja hipotez statystycznych dotyczących wartości oczekiwanej w dwóch populacjach o rozkładach normalnych. Model 3. Porównanie średnich
Bardziej szczegółowoMETODY STATYSTYCZNE W BIOLOGII
METODY STATYSTYCZNE W BIOLOGII 1. Wykład wstępny 2. Populacje i próby danych 3. Testowanie hipotez i estymacja parametrów 4. Planowanie eksperymentów biologicznych 5. Najczęściej wykorzystywane testy statystyczne
Bardziej szczegółowoPORÓWNYWANIE POPULACJI POD WZGLĘDEM STRUKTURY
PORÓWNYWANIE POPULACJI POD WZGLĘDEM STRUKTURY obliczanie dystansu dzielącego grupy (subpopulacje) wyrażonego za pomocą indeksu F Wrighta (fixation index) w modelu jednego locus 1 Ćwiczenia III Mgr Kaczmarek-Okrój
Bardziej szczegółowoStatystyka matematyczna. Wykład IV. Weryfikacja hipotez statystycznych
Statystyka matematyczna. Wykład IV. e-mail:e.kozlovski@pollub.pl Spis treści 1 2 3 Definicja 1 Hipoteza statystyczna jest to przypuszczenie dotyczące rozkładu (wielkości parametru lub rodzaju) zmiennej
Bardziej szczegółowoStatystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r
Statystyka matematyczna Testowanie hipotez i estymacja parametrów Wrocław, 18.03.2016r Plan wykładu: 1. Testowanie hipotez 2. Etapy testowania hipotez 3. Błędy 4. Testowanie wielokrotne 5. Estymacja parametrów
Bardziej szczegółowoMetody statystyczne wykorzystywane do oceny zróżnicowania kolekcji genowych roślin. Henryk Bujak
Metody statystyczne wykorzystywane do oceny zróżnicowania kolekcji genowych roślin Henryk Bujak e-mail: h.bujak@ihar.edu.pl Ocena różnorodności fenotypowej Różnorodność fenotypowa kolekcji roślinnych zasobów
Bardziej szczegółowoSTATYSTYKA MATEMATYCZNA WYKŁAD 3. Populacje i próby danych
STATYSTYKA MATEMATYCZNA WYKŁAD 3 Populacje i próby danych POPULACJA I PRÓBA DANYCH POPULACJA population Obserwacje dla wszystkich osobników danego gatunku / rasy PRÓBA DANYCH sample Obserwacje dotyczące
Bardziej szczegółowoOpis wykonanych badań naukowych oraz uzyskanych wyników
Opis wykonanych badań naukowych oraz uzyskanych wyników 1. Analiza danych (krok 2 = uwzględnienie epistazy w modelu): detekcja QTL przy wykorzystaniu modeli dwuwymiarowych z uwzględnieniem różnych modeli
Bardziej szczegółowoZmienność populacji cz owieka. Polimorfizmy i asocjacje
Zmienność populacji cz owieka Polimorfizmy i asocjacje 1 Analiza ndna Analiza mtdna Przyczyna szybka ekspansja populacji 3 Zmienność genetyczna cz owieka Różnice w sekwencjach (geny, obszary niekodujące)
Bardziej szczegółowoAnalizy wielkoskalowe w badaniach chromatyny
Analizy wielkoskalowe w badaniach chromatyny Analizy wielkoskalowe wykorzystujące mikromacierze DNA Genotypowanie: zróżnicowane wewnątrz genów RNA Komórka eukariotyczna Ekspresja genów: Które geny? Poziom
Bardziej szczegółowoMIKROMACIERZE. dr inż. Aleksandra Świercz dr Agnieszka Żmieńko
MIKROMACIERZE dr inż. Aleksandra Świercz dr Agnieszka Żmieńko Informacje ogólne Wykłady będą częściowo dostępne w formie elektronicznej http://cs.put.poznan.pl/aswiercz aswiercz@cs.put.poznan.pl Godziny
Bardziej szczegółowoModelowanie danych hodowlanych
Modelowanie danych hodowlanych 1. Wykład wstępny. Algebra macierzowa 3. Wykorzystanie różnych źródeł informacji w predykcji wartości hodowlanej 4. Kowariancja genetyczna pomiędzy spokrewnionymi osobnikami
Bardziej szczegółowoBIOINFORMATYKA. Copyright 2011, Joanna Szyda
BIOINFORMATYKA 1. Wykład wstępny 2. Struktury danych w badaniach bioinformatycznych 3. Bazy danych: projektowanie i struktura 4. Bazy danych: projektowanie i struktura 5. Powiązania pomiędzy genami: równ.
Bardziej szczegółowoRozkłady statystyk z próby. Statystyka
Rozkłady statystyk z próby tatystyka Rozkłady statystyk z próby Próba losowa pobrana z populacji stanowi realizacje zmiennej losowej jak ciąg zmiennych losowych (X, X,... X ) niezależnych i mających ten
Bardziej szczegółowoStatystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl
Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący
Bardziej szczegółowoSTATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez statystycznych
Bardziej szczegółowoWykład 3 Hipotezy statystyczne
Wykład 3 Hipotezy statystyczne Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu obserwowanej zmiennej losowej (cechy populacji generalnej) Hipoteza zerowa (H 0 ) jest hipoteza
Bardziej szczegółowoTestowanie hipotez statystycznych.
Statystyka Wykład 10 Wrocław, 22 grudnia 2011 Testowanie hipotez statystycznych Definicja. Hipotezą statystyczną nazywamy stwierdzenie dotyczące parametrów populacji. Definicja. Dwie komplementarne w problemie
Bardziej szczegółowoEkologia molekularna. wykład 3
Ekologia molekularna wykład 3 Dziedziczenie mendlowskie Grzegorz Mendel 1822-1884 Darwin + Mendel = Ronald Fisher 1890-1962 wykład 3/2 Prawo Hardy'ego-Weinberga A A gamety możliwe genotypy potomstwa genotyp
Bardziej szczegółowo1. KEGG 2. GO. 3. Klastry
ANALIZA DANYCH 1. Wykład wstępny 2. Charakterystyka danych 3. Analiza wstępna genomiczna charakterystyka cech 4. Prezentacje grup roboczych analiza wstępna 5. Prezentacje grup roboczych analiza wstępna
Bardziej szczegółowoWnioskowanie statystyczne i weryfikacja hipotez statystycznych
Wnioskowanie statystyczne i weryfikacja hipotez statystycznych Wnioskowanie statystyczne Wnioskowanie statystyczne obejmuje następujące czynności: Sformułowanie hipotezy zerowej i hipotezy alternatywnej.
Bardziej szczegółowoMETODOLOGICZNE ASPEKTY BADAŃ W BIOLOGII CZŁOWIEKA. WYJAŚNIANIE STRATEGII ADAPTACYJNEJ CZŁOWIEKA METODAMI GENETYKI ILOŚCIOWEJ.
METODOLOGICZNE ASPEKTY BADAŃ W BIOLOGII CZŁOWIEKA. WYJAŚNIANIE STRATEGII ADAPTACYJNEJ CZŁOWIEKA METODAMI GENETYKI ILOŚCIOWEJ Joachim Cieślik, Uniwersytet im. A. Mickiewicza w Poznaniu, Instytut Antropologii
Bardziej szczegółowoGenetyka człowieka II. Cechy wieloczynnikowe, polimorfizmy i asocjacje
Genetyka człowieka II Cechy wieloczynnikowe, polimorfizmy i asocjacje MONOGENOWE CZYNNIKI GENETYCZNE DZIEDZICZENIE MENDLOWSKIE NIEPEŁNA PENETRACJA GENU DZIEDZICZENIE WIELOCZYNNIKOWE Z DOMINACJĄ POJEDYNCZEGO
Bardziej szczegółowoWprowadzenie do genetyki medycznej i sądowej
Genetyka medyczno-sądowa Wprowadzenie do genetyki medycznej i sądowej Kierownik Pracowni Genetyki Medycznej i Sądowej Ustalanie tożsamości zwłok Identyfikacja sprawców przestępstw Identyfikacja śladów
Bardziej szczegółowoEkonometryczne modele nieliniowe
Ekonometryczne modele nieliniowe Wykład 10 Modele przełącznikowe Markowa Literatura P.H.Franses, D. van Dijk (2000) Non-linear time series models in empirical finance, Cambridge University Press. R. Breuning,
Bardziej szczegółowoCzynniki genetyczne sprzyjające rozwojowi otyłości
Czynniki genetyczne sprzyjające rozwojowi otyłości OTYŁOŚĆ Choroba charakteryzująca się zwiększeniem masy ciała ponad przyjętą normę Wzrost efektywności terapii Czynniki psychologiczne Czynniki środowiskowe
Bardziej szczegółowoZARZĄDZANIE POPULACJAMI ZWIERZĄT 1. RÓWNOWAGA GENETYCZNA POPULACJI. Prowadzący: dr Wioleta Drobik Katedra Genetyki i Ogólnej Hodowli Zwierząt
ZARZĄDZANIE POPULACJAMI ZWIERZĄT 1. RÓWNOWAGA GENETYCZNA POPULACJI Fot. W. Wołkow Prowadzący: dr Wioleta Drobik Katedra Genetyki i Ogólnej Hodowli Zwierząt POPULACJA Zbiór organizmów żywych, które łączy
Bardziej szczegółowo1. Symulacje komputerowe Idea symulacji Przykład. 2. Metody próbkowania Jackknife Bootstrap. 3. Łańcuchy Markova. 4. Próbkowanie Gibbsa
BIOINFORMATYKA 1. Wykład wstępny 2. Bazy danych: projektowanie i struktura 3. Równowaga Hardyego-Weinberga, wsp. rekombinacji 4. Analiza asocjacyjna 5. Analiza asocjacyjna 6. Sekwencjonowanie nowej generacji
Bardziej szczegółowoPAKIETY STATYSTYCZNE JOANNA SZYDA TOMASZ SUCHOCKI
PAKIETY STATYSTYCZNE JOANNA SZYDA TOMASZ SUCHOCKI WSTĘP 1. Katedra Genetyki 2. Pracownia biostatystyki - projekt 3. Charakterystyka przedmiotu 4. Kontakt 5. Literatura Copyright 2017 Joanna Szyda KATEDRA
Bardziej szczegółowoOcena interakcji genotypu i środowiska w doświadczeniu proweniencyjno - rodowym z sosną zwyczajną IBL Jan Kowalczyk IBL
Ocena interakcji genotypu i środowiska w doświadczeniu proweniencyjno - rodowym z sosną zwyczajną IBL 2004 Jan Kowalczyk IBL Interakcja GxE Zachodzi wtedy gdy reakcja genotypów jest różna w różnych środowiskach
Bardziej szczegółowoAnna Szewczyk. Wydział Geodezji Górniczej i InŜynierii środowiska AGH
Anna Szewczyk Wydział Geodezji Górniczej i InŜynierii środowiska AGH Zastosowania biblioteki Genetics programu R The genetics Package Tytuł: Populacja genetyczna Wersja:1.2.0 Data utworzenia: 2005-11-09
Bardziej szczegółowoera genomowa w hodowli bydła mlecznego Instytut Zootechniki Państwowy Instytut Badawczy
era genomowa w hodowli bydła mlecznego Instytut Zootechniki Państwowy Instytut Badawczy 1 2 Szanowni Państwo! W Instytucie Zootechniki PIB od ponad 40 lat prowadzona jest ocena wartości hodowlanej. W tym
Bardziej szczegółowoElementy statystyki wielowymiarowej
Wnioskowanie_Statystyczne_-_wykład Spis treści 1 Elementy statystyki wielowymiarowej 1.1 Kowariancja i współczynnik korelacji 1.2 Macierz kowariancji 1.3 Dwumianowy rozkład normalny 1.4 Analiza składowych
Bardziej szczegółowoOznaczenie polimorfizmu genetycznego cytochromu CYP2D6: wykrywanie liczby kopii genu
Ćwiczenie 4 Oznaczenie polimorfizmu genetycznego cytochromu CYP2D6: wykrywanie liczby kopii genu Wstęp CYP2D6 kodowany przez gen występujący w co najmniej w 78 allelicznych formach związanych ze zmniejszoną
Bardziej szczegółowoGenetyka człowieka II. Cechy wieloczynnikowe, polimorfizmy i asocjacje
Genetyka człowieka II Cechy wieloczynnikowe, polimorfizmy i asocjacje Dziedziczenie Mendlowskie - jeden gen = jedna cecha np. allele jednego genu decydują o barwie kwiatów groszku Bardziej złożone - interakcje
Bardziej szczegółowoTeoria ewolucji. Podstawowe pojęcia. Wspólne pochodzenie.
Teoria ewolucji Podstawowe pojęcia. Wspólne pochodzenie. Informacje Kontakt: Paweł Golik Instytut Genetyki i Biotechnologii, Pawińskiego 5A pgolik@igib.uw.edu.pl Informacje, materiały: http://www.igib.uw.edu.pl/
Bardziej szczegółowoSzczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego
Bardziej szczegółowoWYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 9 i 10 - Weryfikacja hipotez statystycznych
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 9 i 10 - Weryfikacja hipotez statystycznych Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 9 i 10 1 / 30 TESTOWANIE HIPOTEZ STATYSTYCZNYCH
Bardziej szczegółowoDziedziczenie wieloczynnikowe. Problem przewidywalności
Dziedziczenie wieloczynnikowe Problem przewidywalności Cechy wieloczynnikowe a mendlowskie Mendlowskie Wieloczynnikowe Proste dziedziczenie, allele pojedynczych genów, wysoka penetracja Złożone dziedziczenie:
Bardziej szczegółowoMitochondrialna Ewa;
Mitochondrialna Ewa; jej sprzymierzeńcy i wrogowie Lien Dybczyńska Zakład genetyki, Uniwersytet Warszawski 01.05.2004 Milion lat temu Ale co dalej??? I wtedy wkracza biologia molekularna Analiza różnic
Bardziej szczegółowoTestowanie hipotez. Marcin Zajenkowski. Marcin Zajenkowski () Testowanie hipotez 1 / 25
Testowanie hipotez Marcin Zajenkowski Marcin Zajenkowski () Testowanie hipotez 1 / 25 Testowanie hipotez Aby porównać ze sobą dwie statystyki z próby stosuje się testy istotności. Mówią one o tym czy uzyskane
Bardziej szczegółowoPRAWO CZYSTOŚCI GAMET (I Prawo Mendla) RELACJE MIĘDZY ALLELAMI TEGO SAMEGO GENU
A A a a A a PRAWO CZYSTOŚCI GAMET (I Prawo Mendla) Osobnik diploidalny wytwarza haploidalne gamety, do których w sposób losowy trafiają po jednym chromosomie z pary (po jednym alleleu z pary), zatem osobnik
Bardziej szczegółowo3. Modele tendencji czasowej w prognozowaniu
II Modele tendencji czasowej w prognozowaniu 1 Składniki szeregu czasowego W teorii szeregów czasowych wyróżnia się zwykle następujące składowe szeregu czasowego: a) składowa systematyczna; b) składowa
Bardziej szczegółowo2016-01-14. Sekwencje mikrosatelitarne. SNP Single Nucleotide Polymorphism (mutacje punktowe, polimorfizm jednonukleotydowy)
Sekwencje mikrosatelitarne Próba nr 1 GGGGGGGGGGGG 4x GG Próba nr 2 GGGGGGGGGGGGGGGG 6x GG Próba nr 1 GGGGGGGGG Próba nr 2 GGG GGGG SNP Single Nucleotide Polymorphism (mutacje punktowe, polimorfizm jednonukleotydowy)
Bardziej szczegółowoGenetyka dla (trochę) zaawansowanych III. Interakcje genetyczne II, dziedziczenie wieloczynnikowe
Genetyka dla (trochę) zaawansowanych III Interakcje genetyczne II, dziedziczenie wieloczynnikowe Interakcje Łagodzące (alleviating interactions) Fenotyp podwójnego mutanta lżejszy, niż przewidywany dla
Bardziej szczegółowoOszacowanie i rozkład t
Oszacowanie i rozkład t Marcin Zajenkowski Marcin Zajenkowski () Oszacowanie i rozkład t 1 / 31 Oszacowanie 1 Na podstawie danych z próby szacuje się wiele wartości w populacji, np.: jakie jest poparcie
Bardziej szczegółowoElementy statystyki STA - Wykład 5
STA - Wykład 5 Wydział Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza 1 ANOVA 2 Model jednoczynnikowej analizy wariancji Na model jednoczynnikowej analizy wariancji możemy traktować jako uogólnienie
Bardziej szczegółowoGENETYKA POPULACJI. Ćwiczenia 5 Biologia I MGR
GENETYKA POPULACJI Ćwiczenia 5 Biologia I MGR WSPÓŁCZESNA GENETYKA POPULACJI CÓRKA TRZECH MATEK TRZY MATKI trzy rewolucje dotyczące teorii i technologii 1) Rewolucja koncepcyjna: wyłoniona z teorii koalescencji,
Bardziej szczegółowoGenetyka populacji. Ćwiczenia 7
Genetyka populacji Ćwiczenia 7 Rodowody wraz z wynikami kontroli użytkowości stanowią podstawową informację potrzebną do doskonalenia zwierząt C F X S D C F C F S D strzałka oznacza przepływ genów między
Bardziej szczegółowoWYKŁAD 8 TESTOWANIE HIPOTEZ STATYSTYCZNYCH
WYKŁAD 8 TESTOWANIE HIPOTEZ STATYSTYCZNYCH Było: Estymacja parametrów rozkładu teoretycznego punktowa przedziałowa Przykład. Cecha X masa owocu pewnej odmiany. ZałoŜenie: cecha X ma w populacji rozkład
Bardziej szczegółowoCzłowiek mendlowski? Genetyka człowieka w XX i XXI w.
Człowiek mendlowski? Genetyka człowieka w XX i XXI w. Informacje Kontakt: Paweł Golik Instytut Genetyki i Biotechnologii, Pawińskiego 5A pgolik@igib.uw.edu.pl Informacje, materiały: http://www.igib.uw.edu.pl/
Bardziej szczegółowoNarzędzia statystyczne i ekonometryczne. Wykład 1. dr Paweł Baranowski
Narzędzia statystyczne i ekonometryczne Wykład 1 dr Paweł Baranowski Informacje organizacyjne Wydział Ek-Soc, pok. B-109 pawel@baranowski.edu.pl Strona: baranowski.edu.pl (w tym materiały) Konsultacje:
Bardziej szczegółowoZadania ze statystyki cz. 8 I rok socjologii. Zadanie 1.
Zadania ze statystyki cz. 8 I rok socjologii Zadanie 1. W potocznej opinii pokutuje przekonanie, że lepsi z matematyki są chłopcy niż dziewczęta. Chcąc zweryfikować tę opinię, przeprowadzono badanie w
Bardziej szczegółowoTesty nieparametryczne
Testy nieparametryczne 1 Wybrane testy nieparametryczne 1. Test chi-kwadrat zgodności z rozkładem oczekiwanym 2. Test chi-kwadrat niezależności dwóch zmiennych kategoryzujących 3. Test U Manna-Whitney
Bardziej szczegółowoALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH
1 ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH WFAiS UJ, Informatyka Stosowana II stopień studiów 2 Wnioskowanie statystyczne dla zmiennych numerycznych Porównywanie dwóch średnich Boot-strapping Analiza
Bardziej szczegółowoWnioskowanie statystyczne. Statystyka w 5
Wnioskowanie statystyczne tatystyka w 5 Rozkłady statystyk z próby Próba losowa pobrana z populacji stanowi realizacje zmiennej losowej jak ciąg zmiennych losowych (X, X,... X ) niezależnych i mających
Bardziej szczegółowoWykład 2 Hipoteza statystyczna, test statystyczny, poziom istotn. istotności, p-wartość i moc testu
Wykład 2 Hipoteza statystyczna, test statystyczny, poziom istotności, p-wartość i moc testu Wrocław, 01.03.2017r Przykład 2.1 Właściciel firmy produkującej telefony komórkowe twierdzi, że wśród jego produktów
Bardziej szczegółowoANALIZA WARIANCJI - PRZYPOMNIENIE
ANALIZA WARIANCJI - PRZYPOMNIENIE Dr Wioleta Drobik ANALIZA WARIACJI Podział zaobserwowanej zmienności (wariancji) na zmienność między grupami i w obrębie grup Pozwala na ocenę istotności różnic wielu
Bardziej szczegółowoMonte Carlo, bootstrap, jacknife
Monte Carlo, bootstrap, jacknife Literatura Bruce Hansen (2012 +) Econometrics, ze strony internetowej: http://www.ssc.wisc.edu/~bhansen/econometrics/ Monte Carlo: rozdział 8.8, 8.9 Bootstrap: rozdział
Bardziej szczegółowoWykład 3 Testowanie hipotez statystycznych o wartości średniej. średniej i wariancji z populacji o rozkładzie normalnym
Wykład 3 Testowanie hipotez statystycznych o wartości średniej i wariancji z populacji o rozkładzie normalnym Wrocław, 08.03.2017r Model 1 Testowanie hipotez dla średniej w rozkładzie normalnym ze znaną
Bardziej szczegółowoBłędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa
Weryfikacja hipotez statystycznych Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy populacji, o prawdziwości lub fałszywości którego wnioskuje się na podstawie
Bardziej szczegółowoZadania ze statystyki cz.8. Zadanie 1.
Zadania ze statystyki cz.8. Zadanie 1. Wykonano pewien eksperyment skuteczności działania pewnej reklamy na zmianę postawy. Wylosowano 10 osobową próbę studentów, których poproszono o ocenę pewnego produktu,
Bardziej szczegółowo