Ocena wartości hodowlanej. Dr Agnieszka Suchecka
|
|
- Teresa Żurek
- 8 lat temu
- Przeglądów:
Transkrypt
1 Ocena wartości hodowlanej Dr Agnieszka Suchecka
2 Wartość hodowlana genetycznie uwarunkowane możliwości zwierzęcia do ujawnienia określonej produkcyjności oraz zdolność przekazywania ich potomstwu (wartość genów osobnika dla jego potomstwa) suma średnich efektów działania alleli w danym genotypie (addytywna wartość genetyczna), nie może być zmierzona dlatego szacujemy wartość hodowlaną (G i ) w oparciu o różne źródła informacji jest wyrażona w jednostkach badanej cechy
3 Szacowanie wartości hodowlanej jedno źródło informacji G i = b GP P i P + P Gdzie: G i szacowana wartość hodowlana P średnia wartość fenotypowa w populacji P i wartość fenotypowa - źródło informacji (wydajność własna lub krewnych) b GP współczynnik regresji wartości hodowlanej na wartość fenotypową jest jednym z równoważnych określeń odziedziczalności h
4 Komponenty wariancji fenotypowej: Gdzie: σ P = σ G + σ E + σ G E σ P =zmienność fenotypowa - zmienność pomierzonej wartości cechy u osobnika σ G =zmienność genetyczna zmienność średniej wartości cechy osobników o danym genotypie w przeciętnych warunkach środowiskowych. Najważniejsze składowe: σ A =zmienność addytywna, σ D - zmienność dominacyjna (współdziałanie genów w parach), σ I = zmienność interakcyjna (epistatyczna, współdziałania genów z różnych loci) σ E =zmienność środowiskowa- wpływ czynników środowiskowych odbiegających od przeciętnych. Najważniejsze składowe: σ EP = zmienność środowiskowa stała (systematyczna), σ Et - zmienność środowiskowa chwilowa (losowa) σ G E = zmienność wywołana interakcją genotyp - środowisko
5 Wykorzystywane parametry genetyczne Odziedziczalność (h ) Powtarzalność (R e ) Korelacje (R)
6 Odziedziczalność Odziedziczalność to siła związku pomiędzy fenotypem zwierzęcia a wartością genów osobnika dla jego potomstwa (wartością hodowlaną). Jeśli cecha jest wysoko odziedziczalna, fenotyp zwierzęcia jest bardzo dobrym źródłem informacji na temat jego genów. Gdy odziedziczalność jest wysoka, obserwujemy większe podobieństwo fenotypowe między blisko spokrewnionymi osobnikami. W szerszym zakresie H = σ G σ P W węższym zakresie h = σ A σ P Udział całkowitej zmienności genetycznej w całkowitej zmienności fenotypowej W jakim stopniu fenotypowa różnica pomiędzy dwoma osobnikami jest wynikiem addytywnej genetycznej różnicy między nimi
7 Odziedziczalność Niska (<0,16), średnia (0,16-0,4) lub wysoka (>0,4) Dotyczy określonej populacji i jest zmienna w czasie, oszacowania wymagają regularnych powtórzeń Może być interpretowana również jako: Współczynnik regresji wartości genetycznej (Y) na fenotypową (X) - b YX = cov XY V X Współczynnik korelacji dla wartości genetycznej i fenotypowej do potęgi drugiej R XY = cov XY V X V Y h =R XY
8 Odziedziczalność Najważniejsze metody szacowania: - analiza regresji h = b gdzie b jest współczynnikiem regresji wartości cechy potomka na średnią wartość fenotypową rodzica - analiza wariancji h = 4t gdzie t jest współczynnikiem korelacji wewnątrzklasowej - metoda największej wiarygodności z restrykcjami (REML z ang. restricted/residuals maximum likelihood)
9 Szacowanie odziedziczalności - Analiza wariancji klasyfikacja pojedyncza Populacja podzielona na grupy rodzbinowe (najczęściej córki po ojcach) z pomierzoną wartością cechy Wymagania i założenia: jednorodne wariancje dla poszczególnych grup ojcowskich liczebność grupy ojcowskiej nie mniejsza niż 10 co najmniej kilkadziesiąt grup ojcowskich wymagany jest rozkład normalny (w przypadku testowania hipotez) spokrewnienie w ramach jednej grupy ojcowskiej powinno wynosić 0,5 spokrewnienie między osobnikami z różnych grup ojcowskich powinno być równe zeru.
10 Szacowanie odziedziczalności - Analiza wariancji klasyfikacja pojedyncza cd. Model: gdzie: y ij = μ + s i + e i y ij obserwacja j-tego potomka po i-tym ojcu μ średnia ogólna s i efekt losowy i-tego ojca e ij losowy efekt resztowy związany z obserwacją j-tego potomka po i-tym ojcu
11 Szacowanie odziedziczalności - Analiza wariancji klasyfikacja pojedyncza cd. Źródła zmienności Liczba stopni swobody SKO ŚKO Wartość oczekiwana ŚKO Między grupami k-1 SKO mg. = S 1 -S SKO/Lss σ e + n. σ s Wewnątrz grup N-k SKO wg. = S 0 -S 1 SKO/Lss σ e Gdzie: Lss Liczba stopni swobody SKO Suma kwadratów odchyleń; ŚKO Średni kwadrat odchyleń; k - liczba grup; N liczba wszystkich obserwacji; n i liczba obserwacji w grupie i; n. uśredniona liczebność w grupie
12 Szacowanie odziedziczalności - Analiza wariancji klasyfikacja pojedyncza cd. Wzory definicyjne: SKO mg. = (x i x ) SKO wg. = (x ij x i ) Wzory robocze: S 0 = x ij S 1 = ( x i ) S n = ( x ij) i N Układ nieortogonalny, uśredniona liczebność grup (k): Odziedziczalność: n. = 1 k 1 N 1 N 4σ s h = σ s + σ e i n i
13 Powtarzalność Stopień siły zależności między powtarzanymi wartościami fenotypowymi osobnika dla danej cechy. Można ją określić dla cech, w których można wykonać kolejne powtórzone oceny fenotypu w kolejnych okresach użytkowania (liczebność miotu, wydajność mleczna w kolejnych laktacjach) Przyjmuje wartości od h do 1 R e = σ A + σ EP = σ P σ A + σ EP σ A + σ EP + σ Et
14 Szacowanie powtarzalności - Analiza wariancji klasyfikacja pojedyncza Źródła zmienności Liczba stopni swobody SKO ŚKO Wartość oczekiwana ŚKO Między grupami k-1 SKO mg. = S 1 -S SKO/Lss σ e + n. σ c Wewnątrz grup N-k SKO wg. = S 0 -S 1 SKO/Lss σ e Powtarzalność: σ c R e = σ c + σ e
15 Zadania Zad. 1. Oszacuj odziedziczalność czasu potrzebnego do przebycia jednej mili przez konie, wiedząc, że dane stanowiły obserwacje z 5 grup półrodzeństwa o liczebnościach odpowiednio: 5, 4, 3, 6, 6. Sumy kwadratów dla zmienności między grupami półrodzeństwa i wewnątrz tych grup wynosiły odpowiednio: 8,0 i 74,0. Zad.. Analizowano zawartość tłuszczu w pierwszej laktacji. Próba składała się z 15 grup ojcowskich o liczebnościach równych odpowiednio: 1, 30, 48, 33, 4, 16, 5, 4, 50, 45, 47,, 38, 40, 9. Suma kwadratów dla źródła zmienności między grupami ojcowskimi wyniosła 45,49 a wewnątrz grup: 75,57. Oszacuj h analizowanej cechy. Zad. 3. Oszacuj powtarzalność grubości skorupy jaj, wiedząc, że materiał stanowiły po 4 obserwacje od 40 ptaków. Suma kwadratów dla zmienności między ptakami: 360,0, a wewnątrz: 115,0.
16 Zadania cd Zad. 4. Oszacuj powtarzalność wydajności wełny na podstawie obserwacji dokonanych kilkakrotnie na 10 owcach. Ilość pomiarów na kolejnych sztukach wynosiła:, 3, 3,, 4, 3, 3, 4, 4, 3. Suma kwadratów dla zmienności między owcami wyniosła 65,3, a wewnątrz owiec (między kolejnymi pomiarami dla zwierzęcia) 39,1. Zad. 5. Oszacuj odziedziczalność ciężaru cieląt przy odsadzaniu u bydła mięsnego wiedząc, że materiał stanowiły cielęta z 1 grup ojcowskich, których liczebnosć była jednakowa i wynosiła 10 sztuk, a sumy kwadratów wynosiły: dla zmienności między grupami ojcowskimi 68,4, dla zmienności wewnątrz tych grup 385,5.
17 Dokładność oceny wartości hodowlanej (R) Korelacja między wartością hodowlaną, a źródłem informacji (wartością fenotypową) na podstawie którego szacuje się wartość hodowlaną. Informuje nas o zgodności pomiędzy przewidywaną a prawdziwą wartością hodowlaną i zależy od: współczynnika odziedziczalności (h ) rodzaju źródła informacji, ocena na podstawie: własnego fenotypu duża dokładność przy wysokiej odziedziczalności rośnie wraz ze wzrostem liczby pomiarów (m), szczególnie przydatna przy niskiej odziedziczalności i powtarzalności (Re)
18 Dokładność oceny wartości hodowlanej cd. pojedynczego krewnego bardzo mała dokładność rodzic, potomek, pełne rodzeństwo: ( razy mniejsza dokładność niż własny fenotyp); półrodzeństwo, dziadek: (4 razy mniejsza dokładność) grupy krewnych: rośnie wraz ze wzrostem liczby krewnych (n) rośnie wraz ze wzrostem spokrewnienia z grupą krewnych (r) spada wraz ze wzrostem spokrewnienia w obrębie grupy krewnych o czym pośrednio informuje współczynnik korelacji wewnątrzklasowej (t)
19 Źródła informacji o wartości hodowlanej R współczynnik korelacji, dokładność oceny b współczynnik regresji Własny fenotyp (P i ) h h Fenotyp pojedynczego krewnego (P i ) Średnia grupy krewnych (P n ) r rh rh nh 1+ n 1 t r nh 1+ n 1 t Średnia z wielokrotnych pomiarów (P m ) Cecha skorelowana mh 1 + m 1 Re r G h mh 1 + m 1 Re r G h σ G1 σ G h odziedziczalność h pierwiastek z h, korelacja pomiędzy fenotypem a wartością hodowlaną; r współczynnik spokrewnienia osobnika i krewnego n liczba krewnych t współczynnik korelacji wewnątrzklasowej w grupie (t= r G h jeśli podobieństwo wynika tylko z pokrewieństwa) m liczba pomiarów Re powtarzalność r G korelacja genetyczna
20 Zadania Zad 1. Średnia masa ciała myszy przy odsadzeniu wynosi 4,8g, a odziedziczalność dla tej cechy jest równa 0,. Oszacuj wartość hodowlaną dla myszy o masie ciała przy odsadzeniu: a) g; b) 30 g. Zad. Średnia wydajność tłuszczu w populacji krów wynosi 150 kg. Odziedziczalność tej cechy jest równa 0,3, a powtarzalność 0,6. Oceń wartość hodowlaną każdej z krów na podstawie: a)jej pierwszej laktacji; b) jej wszystkich dostępnych laktacji. Na tej podstawie porównaj uszeregowanie krów i dokładność uzyskanych ocen. Krowa laktacja I II III c) porównaj wartości hodowlane i dokładność oceny dla syna krowy I oraz półbrata krowy I.
21 Zadania cd Zad 3. Porównaj dokładność oceny wartości hodowlanej na podstawie: a) Pięciu sztuk potomstwa będącego półrodzeństwem b) Dwudziestu sztuk potomstwa będącego półrodzeństwem c) Pięciu sztuk półrodzeństwa osobnika (będącego dla siebie półrodzeństwem) Przyjmij odziedziczalność równą A. h =0.64 oraz B. h =0.16 Zad 4. Odziedziczalność dla wydajności mleka w pewnej populacji jest równa 0,5, natomiast powtarzalność dla tej wydajności w kolejnych laktacjach wynosi 0,35. O ile wzrośnie dokładność oceny wartości hodowlanej jeśli zamiast wydajności z 1 laktacji wykorzystamy średnią z trzech? Zad 5. U świń interesuje nas ocena wartości hodowlanej pod względem dwóch cech średni przyrost dzienny oraz wykorzystanie paszy. Korelacja między nimi jest wysoka i dodatnia. Dostępne dane: r G =+0,7 korelacja; h =0,44 średni przyrost dzienny; h =0,3 wykorzystanie paszy. Jak zmieni się dokładność oceny wartości hodowlanej w zależności od wybranej cechy na podstawie której będziemy oceniać?
CECHY ILOŚCIOWE PARAMETRY GENETYCZNE
CECHY ILOŚCIOWE PARAMETRY GENETYCZNE Zarządzanie populacjami zwierząt, ćwiczenia V Dr Wioleta Drobik Rodzaje cech Jakościowe o prostym dziedziczeniu uwarunkowane zwykle przez kilka genów Słaba podatność
Szacowanie wartości hodowlanej. Zarządzanie populacjami
Szacowanie wartości hodowlanej Zarządzanie populacjami wartość hodowlana = wartość cechy? Tak! Przy h 2 =1 ? wybitny ojciec = wybitne dzieci Tak, gdy cecha wysokoodziedziczalna. Wartość hodowlana genetycznie
Zarządzanie populacjami zwierząt. Parametry genetyczne cech
Zarządzanie populacjami zwierząt Parametry genetyczne cech Teoria ścieżki zależność przyczynowo-skutkowa X p 01 Z Y p 02 p 01 2 + p 02 2 = 1 współczynniki ścieżek miary związku między przyczyną a skutkiem
Zarządzanie populacjami zwierząt. Ocena wartości hodowlanej Wykład 7
Zarządzanie populacjami zwierząt Ocena wartości odowlanej Wykład 7 Wartość fenotypowa Ceca ilościowa G GE E D I GE E E p E t,d,i addytywna, dominacyjna, interakcyjna (epistatyczna) część wartości genotypowej
Definicja. Odziedziczalność. Definicja. w potocznym rozumieniu znaczy tyle co dziedziczenie. Fenotyp( P)=Genotyp(G)+Środowisko(E) V P = V G + V E
Odziedziczalność w potocznym rozumieniu znaczy tyle co dziedziczenie...ale ma ścisłą techniczną definicję. Definicja Fenotyp( P)=Genotyp(G)+Środowisko(E) V P = V G + V E H 2 (w szerszym sensie) = V G /
Dziedziczenie poligenowe
Dziedziczenie poligenowe Dziedziczenie cech ilościowych Dziedziczenie wieloczynnikowe Na wartość cechy wpływa Komponenta genetyczna - wspólne oddziaływanie wielu (najczęściej jest to liczba nieznana) genów,
Wnioskowanie statystyczne. Statystyka w 5
Wnioskowanie statystyczne tatystyka w 5 Rozkłady statystyk z próby Próba losowa pobrana z populacji stanowi realizacje zmiennej losowej jak ciąg zmiennych losowych (X, X,... X ) niezależnych i mających
Z poprzedniego wykładu
PODSTAWY STATYSTYKI 1. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5. Testy parametryczne
Zmienność. środa, 23 listopada 11
Zmienność http://ggoralski.com Zmienność Zmienność - rodzaje Zmienność obserwuje się zarówno między poszczególnymi osobnikami jak i między populacjami. Różnice te mogą mieć jednak różne podłoże. Mogą one
Praca hodowlana. Wartość użytkowa, wartość hodowlana i selekcja bydła
Praca hodowlana Wartość użytkowa, wartość hodowlana i selekcja bydła Duże zróżnicowanie, obserwowane w zakresie wydajności poszczególnych krów w obrębie rasy, zależy od wielu czynników genetycznych i środowiskowych.
Ocena wartości hodowlanej buhajów rasy simentalskiej. Sierpień
Ocena wartości hodowlanej buhajów rasy simentalskiej Sierpień 2017.3 1 Spis treści Ocena wartości hodowlanej dla cech produkcyjnych i komórek somatycznych... 3 Indeks produkcyjny [kg]... 3 Podindeks produkcyjny
Metody statystyczne wykorzystywane do oceny zróżnicowania kolekcji genowych roślin. Henryk Bujak
Metody statystyczne wykorzystywane do oceny zróżnicowania kolekcji genowych roślin Henryk Bujak e-mail: h.bujak@ihar.edu.pl Ocena różnorodności fenotypowej Różnorodność fenotypowa kolekcji roślinnych zasobów
DOBÓR. Kojarzenie, depresja inbredowa, krzyżowanie, heterozja
DOBÓR Kojarzenie, depresja inbredowa, krzyżowanie, heterozja SELEKCJA grupa osobników obu płci, która ma zostać rodzicami następnego pokolenia DOBÓR OSOBNIKÓW DO KOJARZEŃ POSTĘP HODOWLANY następne pokolenie
Ocena wartości hodowlanej buhajów rasy simentalskiej
Ocena wartości hodowlanej buhajów rasy simentalskiej Sierpień 2016 1 Spis treści Ocena wartości hodowlanej dla cech produkcyjnych i komórek somatycznych... 3 Indeks produkcyjny [kg]... 3 Podindeks produkcyjny
PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com
Analiza korelacji i regresji KORELACJA zależność liniowa Obserwujemy parę cech ilościowych (X,Y). Doświadczenie jest tak pomyślane, aby obserwowane pary cech X i Y (tzn i ta para x i i y i dla różnych
Genetyka cech ilościowych zwierząt w praktyce
Genetyka cech ilościowych zwierząt w praktyce Materiały do zajęć Tomasz Strabel Akademia Rolnicza im. Augusta Cieszkowskiego w Poznaniu, Katedra Genetyki i Podstaw Hodowli Zwierząt Ostatnia aktualizacja:
METODY STATYSTYCZNE W BIOLOGII
METODY STATYSTYCZNE W BIOLOGII 1. Wykład wstępny 2. Populacje i próby danych 3. Testowanie hipotez i estymacja parametrów 4. Planowanie eksperymentów biologicznych 5. Najczęściej wykorzystywane testy statystyczne
Genetyka populacji. Ćwiczenia 7
Genetyka populacji Ćwiczenia 7 Rodowody wraz z wynikami kontroli użytkowości stanowią podstawową informację potrzebną do doskonalenia zwierząt C F X S D C F C F S D strzałka oznacza przepływ genów między
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5.
GENETYKA POPULACJI. Ćwiczenia 5 Biologia I MGR
GENETYKA POPULACJI Ćwiczenia 5 Biologia I MGR WSPÓŁCZESNA GENETYKA POPULACJI CÓRKA TRZECH MATEK TRZY MATKI trzy rewolucje dotyczące teorii i technologii 1) Rewolucja koncepcyjna: wyłoniona z teorii koalescencji,
Statystyka. #6 Analiza wariancji. Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik. rok akademicki 2015/ / 14
Statystyka #6 Analiza wariancji Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik rok akademicki 2015/2016 1 / 14 Analiza wariancji 2 / 14 Analiza wariancji Analiza wariancji jest techniką badania wyników,
Zadania ze statystyki, cz.7 - hipotezy statystyczne, błąd standardowy, testowanie hipotez statystycznych
Zadania ze statystyki, cz.7 - hipotezy statystyczne, błąd standardowy, testowanie hipotez statystycznych Zad. 1 Średnia ocen z semestru letniego w populacji studentów socjologii w roku akademickim 2011/2012
Testowanie hipotez statystycznych cd.
Temat Testowanie hipotez statystycznych cd. Kody znaków: żółte wyróżnienie nowe pojęcie pomarańczowy uwaga kursywa komentarz 1 Zagadnienia omawiane na zajęciach 1. Przykłady testowania hipotez dotyczących:
STATYSTYKA MATEMATYCZNA WYKŁAD 3. Populacje i próby danych
STATYSTYKA MATEMATYCZNA WYKŁAD 3 Populacje i próby danych POPULACJA I PRÓBA DANYCH POPULACJA population Obserwacje dla wszystkich osobników danego gatunku / rasy PRÓBA DANYCH sample Obserwacje dotyczące
Depresja inbredowa i heterozja
Depresja inbredowa i heterozja Charles Darwin Dlaczego rośliny chronią się przed samozapyleniem? Doświadczenie na 57 gatunkach roślin! Samozapłodnienie obniża wigor i płodność większości z 57 gatunków
Pokrewieństwo, rodowód, chów wsobny
Pokrewieństwo, rodowód, chów wsobny Pokrewieństwo Pokrewieństwo, z punktu widzenia genetyki, jest podobieństwem genetycznym. Im osobniki są bliżej spokrewnione, tym bardziej są podobne pod względem genetycznym.
Badanie normalności rozkładu
Temat: Badanie normalności rozkładu. Wyznaczanie przedziałów ufności. Badanie normalności rozkładu Shapiro-Wilka: jest on najbardziej zalecanym testem normalności rozkładu. Jednak wskazane jest, aby liczebność
ZARZĄDZANIE POPULACJAMI ZWIERZĄT SPOKREWNIENIE INBRED
ZARZĄDZANIE POPULACJAMI ZWIERZĄT SPOKREWNIENIE INBRED Rodowody wraz z wynikami kontroli użytkowości stanowią podstawową informację potrzebną do doskonalenia zwierząt X S D C F C F C S D F strzałka oznacza
Modelowanie danych hodowlanych
Modelowanie danych hodowlanych 1. Wykład wstępny. Algebra macierzowa 3. Wykorzystanie różnych źródeł informacji w predykcji wartości hodowlanej 4. Kowariancja genetyczna pomiędzy spokrewnionymi osobnikami
MODELE LINIOWE. Dr Wioleta Drobik
MODELE LINIOWE Dr Wioleta Drobik MODELE LINIOWE Jedna z najstarszych i najpopularniejszych metod modelowania Zależność między zbiorem zmiennych objaśniających, a zmienną ilościową nazywaną zmienną objaśnianą
STATYSTYKA MATEMATYCZNA WYKŁAD listopada 2009
STATYSTYKA MATEMATYCZNA WYKŁAD 7 23 listopada 2009 Wykład 6 (16.XI.2009) zakończył się zdefiniowaniem współczynnika korelacji: E X µ x σ x Y µ y σ y = T WSPÓŁCZYNNIK KORELACJI ρ X,Y = ρ Y,X (!) WSPÓŁCZYNNIK
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 5
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 5 Jednoczynnikowa analiza wariancji i porównania wielokrotne (układ losowanych bloków randomized block design RBD) Układ losowanych bloków Stosujemy, gdy podejrzewamy,
Zadania ze statystyki cz. 8 I rok socjologii. Zadanie 1.
Zadania ze statystyki cz. 8 I rok socjologii Zadanie 1. W potocznej opinii pokutuje przekonanie, że lepsi z matematyki są chłopcy niż dziewczęta. Chcąc zweryfikować tę opinię, przeprowadzono badanie w
5. WNIOSKOWANIE PSYCHOMETRYCZNE
5. WNIOSKOWANIE PSYCHOMETRYCZNE Model klasyczny Gulliksena Wynik otrzymany i prawdziwy Błąd pomiaru Rzetelność pomiaru testem Standardowy błąd pomiaru Błąd estymacji wyniku prawdziwego Teoria Odpowiadania
STATYSTYKA MATEMATYCZNA, LISTA 3
STATYSTYKA MATEMATYCZNA, LISTA 3 1. Aby zweryfikować hipotezę o symetryczności monety; H: p = 0.5 przeciwko K: p 0.5 wykonano nią n = 100 rzutów. Wyznaczyć obszar krytyczny i zweryfikować hipotezę H gdy
Zad. 4 Należy określić rodzaj testu (jedno czy dwustronny) oraz wartości krytyczne z lub t dla określonych hipotez i ich poziomów istotności:
Zadania ze statystyki cz. 7. Zad.1 Z populacji wyłoniono próbę wielkości 64 jednostek. Średnia arytmetyczna wartość cechy wyniosła 110, zaś odchylenie standardowe 16. Należy wyznaczyć przedział ufności
S t a t y s t y k a, część 3. Michał Żmihorski
S t a t y s t y k a, część 3 Michał Żmihorski Porównanie średnich -test T Założenia: Zmienne ciągłe (masa, temperatura) Dwie grupy (populacje) Rozkład normalny* Równe wariancje (homoscedasticity) w grupach
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA 1. Wykład wstępny 2. Teoria prawdopodobieństwa i elementy kombinatoryki 3. Zmienne losowe 4. Populacje i próby danych 5. Testowanie hipotez i estymacja parametrów 6. Test t 7. Test
Prawdopodobieństwo i rozkład normalny cd.
# # Prawdopodobieństwo i rozkład normalny cd. Michał Daszykowski, Ivana Stanimirova Instytut Chemii Uniwersytet Śląski w Katowicach Ul. Szkolna 9 40-006 Katowice E-mail: www: mdaszyk@us.edu.pl istanimi@us.edu.pl
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego
X Y 4,0 3,3 8,0 6,8 12,0 11,0 16,0 15,2 20,0 18,9
Zadanie W celu sprawdzenia, czy pipeta jest obarczona błędem systematycznym stałym lub zmiennym wykonano szereg pomiarów przy różnych ustawieniach pipety. Wyznacz równanie regresji liniowej, które pozwoli
dr hab. Dariusz Piwczyński, prof. nadzw. UTP
dr hab. Dariusz Piwczyński, prof. nadzw. UTP NIEZBĘDNE DO ZROZUMIENIA WYKŁADU POJĘCIA Doświadczenie jednogrupowe (jednopróbkowe), dwugrupowe (dwupróbkowe) Doświadczenie niezależne i wiązane (zależne, sparowane)
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego
WERYFIKACJA MODELI MODELE LINIOWE. Biomatematyka wykład 8 Dr Wioleta Drobik-Czwarno
WERYFIKACJA MODELI MODELE LINIOWE Biomatematyka wykład 8 Dr Wioleta Drobik-Czwarno ANALIZA KORELACJI LINIOWEJ to NIE JEST badanie związku przyczynowo-skutkowego, Badanie współwystępowania cech (czy istnieje
LABORATORIUM Populacja Generalna (PG) 2. Próba (P n ) 3. Kryterium 3σ 4. Błąd Średniej Arytmetycznej 5. Estymatory 6. Teoria Estymacji (cz.
LABORATORIUM 4 1. Populacja Generalna (PG) 2. Próba (P n ) 3. Kryterium 3σ 4. Błąd Średniej Arytmetycznej 5. Estymatory 6. Teoria Estymacji (cz. I) WNIOSKOWANIE STATYSTYCZNE (STATISTICAL INFERENCE) Populacja
( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie:
ma postać y = ax + b Równanie regresji liniowej By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : xy b = a = b lub x Gdzie: xy = też a = x = ( b ) i to dane empiryczne, a ilość
Współczynnik korelacji. Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ
Współczynnik korelacji Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ Własności współczynnika korelacji 1. Współczynnik korelacji jest liczbą niemianowaną 2. ϱ 1,
Statystyczna analiza danych w programie STATISTICA (wykład 2) Dariusz Gozdowski
Statystyczna analiza danych w programie STATISTICA (wykład ) Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Weryfikacja (testowanie) hipotez statystycznych
Spokrewnienie prawdopodobieństwo, że dwa losowe geny od dwóch osobników są genami IBD. IBD = identical by descent, geny identycznego pochodzenia
prawdopodobieństwo, że dwa losowe geny od dwóch osobników są genami ID. Relationship Relatedness Kinship Fraternity ID = identical by descent, geny identycznego pochodzenia jest miarą względną. Przyjmuje
Zadania ze statystyki cz.8. Zadanie 1.
Zadania ze statystyki cz.8. Zadanie 1. Wykonano pewien eksperyment skuteczności działania pewnej reklamy na zmianę postawy. Wylosowano 10 osobową próbę studentów, których poproszono o ocenę pewnego produktu,
weryfikacja hipotez dotyczących parametrów populacji (średnia, wariancja) założenie: znany rozkład populacji (wykorzystuje się dystrybuantę)
PODSTAWY STATYSTYKI 1. Teoria prawdopodobieństwa i elementy kombinatoryki. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5. Testy parametryczne (na
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA 1. Wykład wstępny 2. Zmienne losowe i teoria prawdopodobieństwa 3. Populacje i próby danych 4. Testowanie hipotez i estymacja parametrów 5. Najczęściej wykorzystywane testy statystyczne
Elementy statystyki STA - Wykład 5
STA - Wykład 5 Wydział Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza 1 ANOVA 2 Model jednoczynnikowej analizy wariancji Na model jednoczynnikowej analizy wariancji możemy traktować jako uogólnienie
Teoria błędów. Wszystkie wartości wielkości fizycznych obarczone są pewnym błędem.
Teoria błędów Wskutek niedoskonałości przyrządów, jak również niedoskonałości organów zmysłów wszystkie pomiary są dokonywane z określonym stopniem dokładności. Nie otrzymujemy prawidłowych wartości mierzonej
Przykład 1. (A. Łomnicki)
Plan wykładu: 1. Wariancje wewnątrz grup i między grupami do czego prowadzi ich ocena 2. Rozkład F 3. Analiza wariancji jako metoda badań założenia, etapy postępowania 4. Dwie klasyfikacje a dwa modele
LISTA 4. 7.Przy sporządzaniu skali magnetometru dokonano 10 niezależnych pomiarów
LISTA 4 1.Na pewnym obszarze dokonano 40 pomiarów grubości warstwy piasku otrzymując w m.: 54, 58, 64, 69, 61, 56, 41, 48, 56, 61, 70, 55, 46, 57, 70, 55, 47, 62, 55, 60, 54,57,65,60,53,54, 49,58,62,59,55,50,58,
Opis wykonanych badań naukowych oraz uzyskanych wyników
Opis wykonanych badań naukowych oraz uzyskanych wyników 1. Analiza danych (krok 2 = uwzględnienie epistazy w modelu): detekcja QTL przy wykorzystaniu modeli dwuwymiarowych z uwzględnieniem różnych modeli
Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki
Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Spis treści I. Wzory ogólne... 2 1. Średnia arytmetyczna:... 2 2. Rozstęp:... 2 3. Kwantyle:... 2 4. Wariancja:... 2 5. Odchylenie standardowe:...
STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE
STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE 1 W trakcie badania obliczono wartości średniej (15,4), mediany (13,6) oraz dominanty (10,0). Określ typ asymetrii rozkładu. 2 Wymień 3 cechy rozkładu Gauss
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 7
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 7 Analiza korelacji - współczynnik korelacji Pearsona Cel: ocena współzależności między dwiema zmiennymi ilościowymi Ocenia jedynie zależność liniową. r = cov(x,y
KORELACJE I REGRESJA LINIOWA
KORELACJE I REGRESJA LINIOWA Korelacje i regresja liniowa Analiza korelacji: Badanie, czy pomiędzy dwoma zmiennymi istnieje zależność Obie analizy się wzajemnie przeplatają Analiza regresji: Opisanie modelem
PORÓWNYWANIE POPULACJI POD WZGLĘDEM STRUKTURY
PORÓWNYWANIE POPULACJI POD WZGLĘDEM STRUKTURY obliczanie dystansu dzielącego grupy (subpopulacje) wyrażonego za pomocą indeksu F Wrighta (fixation index) w modelu jednego locus 1 Ćwiczenia III Mgr Kaczmarek-Okrój
Testowanie hipotez statystycznych.
Statystyka Wykład 10 Wrocław, 22 grudnia 2011 Testowanie hipotez statystycznych Definicja. Hipotezą statystyczną nazywamy stwierdzenie dotyczące parametrów populacji. Definicja. Dwie komplementarne w problemie
Ocena wartości hodowlanej buhajów rasy PHF odmiany czarno-białej i czerwono-białej
Ocena wartości hodowlanej buhajów rasy PHF odmiany czarno-białej i czerwono-białej ( listopad 2012) SPIS TREŚCI Ocena wartości hodowlanej buhajów dla cech produkcyjnych i zawartości komórek somatycznych...
Pobieranie prób i rozkład z próby
Pobieranie prób i rozkład z próby Marcin Zajenkowski Marcin Zajenkowski () Pobieranie prób i rozkład z próby 1 / 15 Populacja i próba Populacja dowolnie określony zespół przedmiotów, obserwacji, osób itp.
Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16
Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego
Regresja wielokrotna jest metodą statystyczną, w której oceniamy wpływ wielu zmiennych niezależnych (X1, X2, X3,...) na zmienną zależną (Y).
Statystyka i opracowanie danych Ćwiczenia 12 Izabela Olejarczyk - Wożeńska AGH, WIMiIP, KISIM REGRESJA WIELORAKA Regresja wielokrotna jest metodą statystyczną, w której oceniamy wpływ wielu zmiennych niezależnych
RACHUNEK PRAWDOPODOBIEŃSTWA I STATYSTYKA MATEMATYCZNA
RACHUNEK PRAWDOPODOBIEŃSTWA I STATYSTYKA MATEMATYCZNA LISTA 10 1.Dokonano 8 pomiarów pewnej odległości (w m) i otrzymano: 201, 195, 207, 203, 191, 208, 198, 210. Wiedząc,że błąd pomiaru ma rozkład normalny
Psychometria PLAN NAJBLIŻSZYCH WYKŁADÓW. Co wyniki testu mówią nam o samym teście? A. Rzetelność pomiaru testem. TEN SLAJD JUŻ ZNAMY
definicja rzetelności błąd pomiaru: systematyczny i losowy Psychometria Co wyniki testu mówią nam o samym teście? A. Rzetelność pomiaru testem. rozkład X + błąd losowy rozkład X rozkład X + błąd systematyczny
Wnioskowanie statystyczne Weryfikacja hipotez. Statystyka
Wnioskowanie statystyczne Weryfikacja hipotez Statystyka Co nazywamy hipotezą Każde stwierdzenie o parametrach rozkładu lub rozkładzie zmiennej losowej w populacji nazywać będziemy hipotezą statystyczną
Rozkłady statystyk z próby. Statystyka
Rozkłady statystyk z próby tatystyka Rozkłady statystyk z próby Próba losowa pobrana z populacji stanowi realizacje zmiennej losowej jak ciąg zmiennych losowych (X, X,... X ) niezależnych i mających ten
ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH
1 ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH WFAiS UJ, Informatyka Stosowana II stopień studiów 2 Wnioskowanie statystyczne dla zmiennych numerycznych Porównywanie dwóch średnich Boot-strapping Analiza
Statystyka. Wykład 8. Magdalena Alama-Bućko. 10 kwietnia Magdalena Alama-Bućko Statystyka 10 kwietnia / 31
Statystyka Wykład 8 Magdalena Alama-Bućko 10 kwietnia 2017 Magdalena Alama-Bućko Statystyka 10 kwietnia 2017 1 / 31 Tematyka zajęć: Wprowadzenie do statystyki. Analiza struktury zbiorowości miary położenia
Przedziały ufności. Poziom istotności = α (zwykle 0.05) Poziom ufności = 1 α Przedział ufności dla parametru μ = taki przedział [a,b], dla którego
Przedziały ufności Poziom istotności = α (zwykle 0.05) Poziom ufności = 1 α Przedział ufności dla parametru μ = taki przedział [a,b], dla którego czyli P( μ [a,b] ) = 1 α P( μ < a ) = α/2 P( μ > b ) =
Matematyka i statystyka matematyczna dla rolników w SGGW WYKŁAD 9. TESTOWANIE HIPOTEZ STATYSTYCZNYCH cd.
WYKŁAD 9 TESTOWANIE HIPOTEZ STATYSTYCZNYCH cd. Było: Przykład 1. Badano krąŝek o wymiarach zbliŝonych do monety jednozłotowej ze stronami oznaczonymi: A, B. NaleŜy ustalić, czy krąŝek jest symetryczny?
Estymacja parametrów rozkładu cechy
Estymacja parametrów rozkładu cechy Estymujemy parametr θ rozkładu cechy X Próba: X 1, X 2,..., X n Estymator punktowy jest funkcją próby ˆθ = ˆθX 1, X 2,..., X n przybliżającą wartość parametru θ Przedział
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 8
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 8 Regresja wielokrotna Regresja wielokrotna jest metodą statystyczną, w której oceniamy wpływ wielu zmiennych niezależnych (X 1, X 2, X 3,...) na zmienną zależną (Y).
Indeksy wartości hodowlanych rasy simentalskiej w poszczególnych krajach - omówienie
Indeksy wartości hodowlanych rasy simentalskiej w poszczególnych krajach - omówienie Od pewnego czasu w naszym kraju toczą się rozmowy na temat zmiany i rozwinięcia indeksu wartości hodowlanych dla rasy
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI. Test zgodności i analiza wariancji Analiza wariancji
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI Test zgodności i analiza wariancji Analiza wariancji Test zgodności Chi-kwadrat Sprawdza się za jego pomocą ZGODNOŚĆ ROZKŁADU EMPIRYCZNEGO Z PRÓBY Z ROZKŁADEM HIPOTETYCZNYM
weryfikacja hipotez dotyczących parametrów populacji (średnia, wariancja)
PODSTAWY STATYSTYKI. Teoria prawdopodobieństwa i elementy kombinatoryki. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5. Testy parametryczne (na
Testowanie hipotez statystycznych.
Bioinformatyka Wykład 4 Wrocław, 17 października 2011 Temat. Weryfikacja hipotez statystycznych dotyczących wartości oczekiwanej w dwóch populacjach o rozkładach normalnych. Model 3. Porównanie średnich
Estymacja punktowa i przedziałowa
Temat: Estymacja punktowa i przedziałowa Kody znaków: żółte wyróżnienie nowe pojęcie czerwony uwaga kursywa komentarz 1 Zagadnienia 1. Statystyczny opis próby. Idea estymacji punktowej pojęcie estymatora
Sekwencjonowanie nowej generacji i rozwój programów selekcyjnych w akwakulturze ryb łososiowatych
Sekwencjonowanie nowej generacji i rozwój programów selekcyjnych w akwakulturze ryb łososiowatych Konrad Ocalewicz Zakład Biologii i Ekologii Morza, Instytut Oceanografii, Wydział Oceanografii i Geografii,
Metoda największej wiarygodności
Rozdział Metoda największej wiarygodności Ogólnie w procesie estymacji na podstawie prób x i (każde x i może być wektorem) wyznaczamy parametr λ (w ogólnym przypadku również wektor) opisujący domniemany
, a ilość poziomów czynnika A., b ilość poziomów czynnika B. gdzie
Test Scheffego, gdzie (1) n to ilość powtórzeń (pomiarów) w jednej grupie (zabiegu) Test NIR Istnieje wiele testów dla porównań wielokrotnych opartych o najmniejszą istotna różnicę między średnimi (NIR).
Selekcja, dobór hodowlany. ESPZiWP
Selekcja, dobór hodowlany ESPZiWP Celem pracy hodowlanej jest genetyczne doskonalenie zwierząt w wyznaczonym kierunku. Trudno jest doskonalić zwierzęta już urodzone, ale można doskonalić populację w ten
Prawdopodobieństwo i statystyka r.
Zadanie. Niech (X, Y) ) będzie dwuwymiarową zmienną losową, o wartości oczekiwanej (μ, μ, wariancji każdej ze współrzędnych równej σ oraz kowariancji równej X Y ρσ. Staramy się obserwować niezależne realizacje
Ekologia molekularna. wykład 14. Genetyka ilościowa
Ekologia molekularna wykład 14 Genetyka ilościowa Dziedziczenie mendlowskie wykład 14/2 Cechy wieloczynnikowe (ilościowe) wzrost masa ciała kolor skóry kolor oczu itp wykład 14/3 Rodzaje cech ilościowych
Rozkłady statystyk z próby
Rozkłady statystyk z próby Rozkłady statystyk z próby Przypuśćmy, że wykonujemy serię doświadczeń polegających na 4 krotnym rzucie symetryczną kostką do gry, obserwując liczbę wyrzuconych oczek Nr kolejny
Estymacja przedziałowa. Przedział ufności
Estymacja przedziałowa Przedział ufności Estymacja przedziałowa jest to szacowanie wartości danego parametru populacji, ρ za pomocą tak zwanego przedziału ufności. Przedziałem ufności nazywamy taki przedział
Regresja wieloraka Ogólny problem obliczeniowy: dopasowanie linii prostej do zbioru punktów. Najprostszy przypadek - jedna zmienna zależna i jedna
Regresja wieloraka Regresja wieloraka Ogólny problem obliczeniowy: dopasowanie linii prostej do zbioru punktów. Najprostszy przypadek - jedna zmienna zależna i jedna zmienna niezależna (można zobrazować
STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA
STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA Zadanie 0.1 Zmienna losowa X ma rozkład określony funkcją prawdopodobieństwa: x k 0 4 p k 1/3 1/6 1/ obliczyć EX, D X. (odp. 4/3;
JEDNOCZYNNIKOWA ANOVA
Analizę ANOVA wykorzystujemy do wykrycia różnic pomiędzy średnimi w więcej niż dwóch grupach/więcej niż w dwóch pomiarach JEDNOCZYNNIKOWA ANOVA porównania jednej zmiennej pomiędzy więcej niż dwoma grupami
Statystyczna analiza danych
Statystyczna analiza danych Korelacja i regresja Ewa Szczurek szczurek@mimuw.edu.pl Instytut Informatyki Uniwersytet Warszawski 1/30 Ostrożnie z interpretacją p wartości p wartości zależą od dwóch rzeczy
Metody Statystyczne. Metody Statystyczne. #8 Błąd I i II rodzaju powtórzenie. Dwuczynnikowa analiza wariancji
gkrol@mail.wz.uw.edu.pl #8 Błąd I i II rodzaju powtórzenie. Dwuczynnikowa analiza wariancji 1 Ryzyko błędu - powtórzenie Statystyka niczego nie dowodzi, czyni tylko wszystko mniej lub bardziej prawdopodobnym
Autor: Dariusz Piwczyński 1 Ćwiczenie: Doświadczenia 2-grupowe w układzie niezależnym i zależnym.
Autor: Dariusz Piwczyński 1 Ćwiczenie: Doświadczenia 2-grupowe w układzie niezależnym i zależnym. Zadania: Arkusz kalkulacyjny Excel Do weryfikacji różnic między dwiema grupami obiektów w Excelu wykorzystujemy
Wnioskowanie statystyczne i weryfikacja hipotez statystycznych
Wnioskowanie statystyczne i weryfikacja hipotez statystycznych Wnioskowanie statystyczne Wnioskowanie statystyczne obejmuje następujące czynności: Sformułowanie hipotezy zerowej i hipotezy alternatywnej.
Rozwój oceny wartości hodowlanej w Polsce w świetle oczekiwań hodowców dr Katarzyna Rzewuska CGen PFHBiPM
Rozwój oceny wartości hodowlanej w Polsce w świetle oczekiwań hodowców dr Katarzyna Rzewuska CGen PFHBiPM k.rzewuska@cgen.pl 1 października 2018 Czym jest indeks ekonomiczny? WH =? Indeks ekonomiczny to
Statystyka. Wykład 7. Magdalena Alama-Bućko. 16 kwietnia Magdalena Alama-Bućko Statystyka 16 kwietnia / 35
Statystyka Wykład 7 Magdalena Alama-Bućko 16 kwietnia 2017 Magdalena Alama-Bućko Statystyka 16 kwietnia 2017 1 / 35 Tematyka zajęć: Wprowadzenie do statystyki. Analiza struktury zbiorowości miary położenia
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 4
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 4 Inne układy doświadczalne 1) Układ losowanych bloków Stosujemy, gdy podejrzewamy, że może występować systematyczna zmienność między powtórzeniami np. - zmienność