P. F. Góra.

Wielkość: px
Rozpocząć pokaz od strony:

Download "P. F. Góra."

Transkrypt

1 Komputerowa analiza zagadnień różniczkowych 10. Dygresje matematycze: Metody iteracyjne rozwiazywania układów równań liniowych, minimalizacja wielowymiarowa i układy równań algebraicznych P. F. Góra

2 Metody iteracyjne W metodach dokładnych otrzymane rozwiazanie jest dokładne z dokładnościa do błędów zaokraglenia, które, dodajmy, dla układów źle uwarunkowanych moga być znaczne. W metodach iteracyjnych rozwiazanie dokładne otrzymuje się, teoretycznie, w granicy nieskończenie wielu kroków w praktyce liczymy na to, że po skończonej (i niewielkiej) ilości kroków zbliżymy się do wyniku ścisłego w granicach błędu zaokraglenia. Copyright c P. F. Góra 10 2

3 Rozpatrzmy układ równań: Przepiszmy ten układ w postaci a 11 x 1 + a 12 x 2 + a 13 x 3 = b 1 (1a) a 21 x 1 + a 22 x 2 + a 23 x 3 = b 2 (1b) a 31 x 1 + a 32 x 2 + a 33 x 3 = b 3 (1c) x 1 = (b 1 a 12 x 2 a 13 x 3 )/a 11 (2a) x 2 = (b 2 a 21 x 1 a 23 x 3 )/a 22 (2b) x 3 = (b 3 a 31 x 1 a 32 x 2 )/a 33 (2c) Gdyby po prawej stronie (2) były stare elementy x j, a po lewej nowe, dostalibyśmy metodę iteracyjna Copyright c P. F. Góra 10 3

4 x (k+1) i = b i i 1 j=1 a ij x (k) j N j=i+1 a ij x (k) j / a ii (3) Górny indeks x (k) oznacza, ze jest to przybliżenie w k-tym kroku. Jest to tak zwana metoda Jacobiego. Zauważmy, że w metodzie (3) nie wykorzystuje się najnowszych przybliżeń: Powiedzmy, obliczajac x (k+1) 2 korzystamy z x (k) 1, mimo iż znane jest już wówczas x (k+1) 1. (Za to metodę tę łatwo można zrównoleglić.) Sugeruje to następujace ulepszenie: x (k+1) i = b i i 1 j=1 a ij x (k+1) j Jest to tak zwana metoda Gaussa-Seidela. N j=i+1 a ij x (k) j / a ii (4) Copyright c P. F. Góra 10 4

5 Jeżeli macierz A = {a ij } jest rzadka, obie te metody iteracyjne będa efektywne tylko i wyłacznie wówczas, gdy we wzorach (3), (4) uwzględni się ich strukturę, to jest uniknie redundantnych mnożeń przez zera. Copyright c P. F. Góra 10 5

6 Trochę teorii Metody Jacobiego i Gaussa-Seidela należa do ogólnej kategorii Mx (k+1) = Nx (k) + b (5) gdzie A = M N jest podziałem (splitting) macierzy. Dla metody Jacobiego M = D (część diagonalna), N = (L + U) (części pod- i ponaddiagonalne, bez przekatnej). Dla metody Gaussa-Seidela M = D + L, N = U. Rozwia- zanie równania Ax = b jest punktem stałym iteracji (5). Copyright c P. F. Góra 10 6

7 Definicja Promieniem spektralnym (diagonalizowalnej) macierzy G nazywam ρ(g) = max{ λ : y 0 : Gy = λy} (6) Twierdzenie 1. Iteracja (5) jest zbieżna jeśli det M 0 oraz ρ(m 1 N) < 1. Dowód. Przy tych założeniach iteracja (5) jest odwzorowaniem zwężajacym. Twierdzenie 2. Metoda Jacobiego jest zbieżna jeśli macierz A jest silnie diagonalnie dominujaca. Twierdzenie 3. Metoda Gaussa-Seidela jest zbieżna jeśli macierz A jest symetryczna i dodatnio określona. Copyright c P. F. Góra 10 7

8 Przykład 10 1 Metoda Jacobiego Metoda Gaussa-Seidela 10 0 Rozwiazujemy układ równań: 3x + y + z = 1 x + 3y + z = 1 x + y + 3z = 1 x n -x n nr iteracji, n Copyright c P. F. Góra 10 8

9 SOR Jeśli ρ(m 1 N) w metodzie Gaussa-Seidela jest bliskie jedności, zbieżność metody jest bardzo wolna. Można próbować ja poprawić: x (k+1) i = w b i i 1 j=1 a ij x (k+1) j N j=i+1 a ij x (k) j / a ii + (1 w)x (k) i, (7) gdzie w R jest parametrem relaksacji. Metoda ta zwana jest succesive overrelaxation, SOR. W postaci macierzowej M w x (k+1) = N w x (k) + wb (8) M w = D + wl, N w = (1 w)d wu. Teoretycznie należy dobrać takie w, aby zminimalizować ρ(m 1 w N w ). Copyright c P. F. Góra 10 9

10 Metoda gradientów sprzężonych motywacja Rozważmy funcję f : R N R f(x) = 1 2 xt Ax b T x + c, (9) gdzie x, b R N, c R, A = A T R N N jest symetryczna i dodatnio określona. Przy tych założeniach, funkcja (9) ma dokładnie jedno minimum, będace zarazem minimum globalnym. Szukanie minimów dodatnio określonych form kwadratowych jest (względnie) łatwe i z praktycznego punktu widzenia ważne. Minimum to leży w punkcie spełniajacym f = 0. (10) Copyright c P. F. Góra 10 10

11 Obliczmy = 1 2 k f = 1 A jk x j x k x i 2 x i = 1 2 A ik x k j,k x A j jk j,k x }{{} i δ ij j x i x x k + x k j x i A ji x j b i = 1 2 j }{{} j δ ik k b j x j + c x i A ik x k }{{} 0 b j x j x i }{{} δ ij j A ij x j b i = (Ax b) i. (11) Copyright c P. F. Góra 10 11

12 Widzimy zatem, że funkcja (9) osiaga minimum w punkcie, w którym zachodzi Ax b = 0 Ax = b. (12) Rozwiazywanie układu równań liniowych (12) z macierza symetryczna, dodatnio określona jest równoważne poszukiwaniu minimum dodatnio określonej formy kwadratowej. Przypuśćmy, że macierz A jest przy tym rzadka i duża (lub co najmniej średnioduża). Wówczas metoda gradientów sprzężonych jest godna uwagi metoda rozwiazywania (12) Copyright c P. F. Góra 10 12

13 Metoda gradientów sprzężonych, Conjugate Gradients, CG A R N N symetryczna, dodatnio określona, x 1 poczatkowe przybliżenie rozwiazania równania (12), 0 < ε 1. r 1 = b Ax 1, p 1 = r 1 while r k > ε end α k = rt k r k p T k Ap k r k+1 = r k α k Ap k β k = rt k+1 r k+1 r T k r k p k+1 = r k+1 + β k p k x k+1 = x k + α k p k (13) Copyright c P. F. Góra 10 13

14 Wówczas zachodza twierdzenia: Twierdzenie 4. Ciagi wektorów {r k }, {p k } spełniaja następujace zależności: r T i r j = 0, i > j, (14a) r T i p j = 0, i > j, (14b) p T i Ap j = 0, i > j. (14c) Twierdzenie 5. Jeżeli r M = 0, to x M jest ścisłym rozwiazaniem równania (12). Dowód. Oba (sic!) dowody przebiegaja indukcyjnie. Copyright c P. F. Góra 10 14

15 Ciag {x k } jest w gruncie rzeczy pomocniczy, nie bierze udziału w iteracjach, służy tylko do konstruowania kolejnych przybliżeń rozwiazania. Istota algorytmu jest konstruowanie dwu ciagów wektorów spełniajacych zależności (14). Wektory {r k } sa wzajemnie prostopadłe, a zatem w arytmetyce dokładnej r N+1 = 0, wobec czego x N+1 jest poszukiwanym ścisłym rozwia- zaniem. Zauważmy, że ponieważ A jest symetryczna, dodatnio określona, warunek (14c) oznacza, że wektory {p k } sa wzajemnie prostopadłe w metryce zadanej przez A. Ten właśnie warunek nazywa się warunkiem sprzężenia względem A, co daje nazwę całej metodzie. Copyright c P. F. Góra 10 15

16 Koszt metody W arytmetyce dokładnej metoda zbiega się po N krokach, zatem jej koszt wynosi O(N koszt jednego kroku). Koszt jednego kroku zdominowany jest przez obliczanie iloczynu Ap k. Jeśli macierz A jest pełna, jest to O(N 2 ), a zatem całkowity koszt wynosi O(N 3 ), czyli tyle, ile dla metod dokładnych. Jeżeli jednak A jest rzadka, koszt obliczania iloczynu jest mniejszy (o ile obliczenie to jest odpowiednio zaprogramowane). Jeśli A jest pasmowa o szerokości pasma M N, całkowity koszt wynosi O(M N 2 ). Copyright c P. F. Góra 10 16

17 Problem! W arytmetyce o skończonej dokładności kolejne generowane wektory nie sa ściśle ortogonalne do swoich poprzedników na skutek akumulujacego się błędu zaokraglenia rzut na poprzednie wektory może stać się z czasem znaczny. Powoduje to istotne spowolnienie metody. Twierdzenie 6. Jeżeli x jest ścisłym rozwiazaniem równania (12), x k sa generowane w metodzie gradientów sprzężonych, zachodzi x x k 2 x x 1 gdzie κ jest współczynnikiem uwarunkowania macierzy A. ( κ 1 κ + 1 ) k 1, (15) Jeżeli κ 1, zbieżność może być bardzo wolna. Copyright c P. F. Góra 10 17

18 Strategia minimalizacji wielowymiarowej Zakładamy, że metody poszukiwania minimów lokalnych fukncji jednej zmiennej sa znane. Rozważmy funkcję f:r N R. Przedstawimy strategię poszukiwania (lokalnego) minimum tej funkcji w postaci ciagu minimalizacji jednowymiarowych. Copyright c P. F. Góra 10 18

19 1. Aktualnym przybliżeniem minimum jest punkt x k. 2. Dany jest pewien kierunek poszukiwań p k. 3. Konstruujemy funcję g k :R R g k (α) = f(x k + αp k ). (16) 4. Znanymi metodami jednowymiarowymi znajdujemy α min takie, że funkcja (16) osiaga minimum. Jest to minimum kierunkowe funkcji f goto 1. x k+1 = x k + α min p k. (17) Copyright c P. F. Góra 10 19

20 Jak wybierać kierunki poszukiwań? Cały problem sprowadza się zatem do wyboru odpowiedniej sekwencji kolejnych kierunków {p k }. Bardzo popularne sa metody Minimalizacji po współrzędnych kolejnymi kierunkami poszukiwań sa kierunki równoległe do kolejnych osi układu współrzędnych. Metoda najszybszego spadku, w której kierunek poszukiwań pokrywa się z minus gradientem minimalizowanej funkcji w punkcie startowym. Jeśli jesteśmy blisko minimum nie sa to dobre pomysły, gdyż prowadza do wielu drobnych kroków, które częściowo likwiduja efekty osiagnięte w krokach poprzednich. Dlaczego? Copyright c P. F. Góra 10 20

21 Znajdźmy warunek na to, aby f osiagała minimum kierunkowe, czyli aby g k o- siagała minimum: dg k dα = i f x i (p k ) i = ( f x=xmin ) T pk = 0. (18) W minimum kierunkowym gradient funkcji jest prostopadły do kierunku poszukiwań. Widać stad natychmiast, że krok minimalizacji w metodzie najszybszego spadku co prawda zaczyna się prostopadle do poziomnic funkcji, ale kończy się stycznie do poziomnic. Z kolei w minimalizacji po współrzędnych kolejne kierunki poszukiwań, czyli tutaj - kolejne współrzędne, nie zależa od kształtu minimalizowanej funkcji; taka strategia nie może być optymalna. Copyright c P. F. Góra 10 21

22 Przybliżenie formy kwadratowej Przypuśćmy, że jesteśmy dostatecznie blisko minimum. Rozwijamy minimalizowana funkcję w szereg Taylora wokół minimum i otrzymujemy f(x) 1 2 xt Ax b T x + f 0, (19) gdzie A jest macierza drugich pochodnych czastkowych (hessjanem) obliczanym w minimum. Z definicji minimum, macierz ta jest dodatnio określona, jeśli zaś funkcja jest dostatecznie gładka, macierz ta jest symetryczna. Zatem w pobliżu minimum, funkcja w przybliżeniu zachowuje się jak dodatnio określona forma kwadratowa. Copyright c P. F. Góra 10 22

23 Gradienty sprzężone W przybliżeniu (19) gradient funkcji f w punkcie x k wynosi f x=xk = Ax k b. (20) Kolejne poszukiwania odbywaja się w kierunku p k+1. Gradient funkcji w pewnym nowym punkcie x = x k + αp k+1 wynosi Zmiana gradientu wynosi f x = Ax k + αap k+1 b. (21) δ ( f) = αap k+1. (22) Copyright c P. F. Góra 10 23

24 Punkt x k jest minimum kierunkowym w kierunku p k, a więc gradient funkcji w tym punkcie spełnia warunek (18). Jeżeli chcemy aby poszukiwania w nowym kierunku nie zepsuły minimum kierunkowego w kierunku p k, zmiana gradientu musi być prostopadła do starego kierunku poszukiwań, δ ( f) T p k = 0. Tak jednak musi być dla wszystkich poprzednich kierunków, nie chcemy bowiem naruszyć żadnego z poprzednich minimów kierunkowych. A zatem p T i Ap j = 0, i > j. (23) Metodę wybierania kierunków poszukiwań spełniajacych (23) nazywamy metoda gradientów sprzężonych. Copyright c P. F. Góra 10 24

25 Jak się obejść bez hessjanu? Z poprzedniego wykładu znamy algebraiczna metodę gradientów sprzężonych, wydaje się zatem, iż moglibyśmy jej użyć do skonstruowania ciagu wektorów {p k }. Niestety, nie możemy, nie znamy bowiem macierzy A, czyli hessjanu w minimum. Czy możemy się bez tego obejść? Twierdzenie 7. Niech f ma postać (19) i niech r k = f xk. Z punktu x k idziemy w kierunku p k do punktu, w którym f osiaga minimum kierunkowe. Oznaczmy ten punkt x k+1. Wówczas r k+1 = f xk+1 jest tym samym wektorem, który zostałby skonstruowany w algebraicznej metodzie gradientów sprzężonych. Copyright c P. F. Góra 10 25

26 Dowód. Na podstawie równania (20), r k = Ax k + b oraz r k+1 = A(x k + αp k ) + b = r k αap k. (24) W minimum kierunkowym p T k f x k+1 = p T k r k+1 = 0 (por. (18)). Wobec tego mnożac równanie (24) lewostronnie przez p T k, otrzymujemy α = pt k r k p T k Ap k. (25) Ponieważ w algebraicznej metodzie gradientów sprzężonych r T k p k = r T k r k, otrzymujemy dokładnie takie samo α jak we wzorach na metodę algebraiczna, co kończy dowód. Copyright c P. F. Góra 10 26

27 Algorytm gradientów sprzężonych Rozpoczynamy w pewnym punkcie x 1. Bierzemy r 1 = p 1 = f x1. 1. Będac w punkcie x k, dokonujemy minimalizacji kierunkowej w kierunku p k ; osiagamy punkt x k Obliczamy r k+1 = f xk Obliczamy (jak w metodzie algebraicznej) β = rt k+1 r k+1 r T k r k. (26) 4. Obliczamy (jak w metodzie algebraicznej) p k+1 = r k+1 + βp k. Copyright c P. F. Góra 10 27

28 Zamiast używać równania (26), można skorzystać z β = rt k+1 (r k+1 r k ) r T k r k. (27) Jeżeli funkcja f ma ściśle postać (19), nie ma to znaczenia, gdyż r T k+1 r k = 0. Ponieważ jednak f jest tylko w przybliżeniu forma kwadratowa, (27) może przyspieszyć obliczenia gdy grozi stagnacja. Copyright c P. F. Góra 10 28

29 Układy równań algebraicznych Poszukiwanie ekstremów funkcji wielu zmiennych formalnie sprowadza się do rozwiazywania równania f = 0. W praktyce minimalizacja funkcji poprzez rozwiazywanie tego równania jest bardzo zła metoda, jest to jednak dobra okazja do przypomnienia najważniejszych metod rozwiazywania nieliniowych układów równań algebraicznych. Copyright c P. F. Góra 10 29

30 Niech g:r N R N będzie funkcja klasy co najmniej C 1. Rozważamy równanie formalnie równoważne układowi równań g(x) = 0, (28) g 1 (x 1, x 2,..., x N ) = 0, (29a) g 2 (x 1, x 2,..., x N ) = 0, (29b)... g N (x 1, x 2,..., x N ) = 0. (29c) Copyright c P. F. Góra 10 30

31 Metoda Newtona Rozwijajac funkcję g w szereg Taylora do pierwszego rzędu otrzymamy gdzie J jest jakobianem funkcji g: g(x + δx) g(x) + Jδx, (30) J(x) ij = g i x j x. (31) Jaki krok δx musimy wykonać, aby znaleźć się w punkcie spełniajacym równanie (28)? Żadamy aby g(x + δx) = 0, skad otrzymujemy δx = J 1 g(x). (32) Copyright c P. F. Góra 10 31

32 Prowadzi to do następujacej iteracji: x k+1 = x k J 1 (x k )g(x k ). (33) Oczywiście zapis z = J 1 g należy rozumieć w ten sposób, że z spełnia równanie Jz = g. Nie należy konstruować jawnej odwrotności jakobianu. Uwaga: W metodzie (33) jakobian trzeba obliczać w każdym kroku. Oznacza to, że w każdym kroku trzeba rozwiazywać inny układ równań liniowych, co czyni metodę dość kosztowna, zwłaszcza jeśli N (wymiar problemu) jest znaczne. Często dla przyspieszenia obliczeń macierz J zmieniamy nie co krok, ale co kilka kroków pozwala to użyć tej samej faktoryzacji J do rozwiazania kilku kolejnych równań Jz = g(x k ). Jest to dodatkowe uproszczenie, ale jest ono bardzo wydajne przy N 1. Copyright c P. F. Góra 10 32

33 Metoda zmiennej metryki Powracamy do minimalizacji funkcji f:r N R. Formalna konieczność rozwia- zywania równania f = 0 sugeruje nastosowanie następujacego algorytmu opartego na metodzie Newtona: x i+1 = x i H 1 f xi, (34) gdzie H oznacza macierz drugich pochodnych czastkowych funkcji f wyliczanych w punkcie x i (aktualnym). Copyright c P. F. Góra 10 33

34 W pobliżu minimum f ma w przybliżeniu postać (19). Wówczas położenie minimum możemy znaleźć formalnie w jednym kroku jako x min x i = A 1 f xi, (35) gdzie A jest hessjanem w minimum. Zauważmy, że aby krok Newtona w istocie prowadził do zmniejszenia się wartości funkcji, musi zachodzić (x x i ) T f xi < 0, czyli co jest spełnione, jeżeli A jest dodatnio określone. (x x i ) T A(x x i ) < 0 (36) Copyright c P. F. Góra 10 34

35 Wreszcie jeśli x i, x i+1 sa kolejnymi krokami iteracji prowadzacej do minimalizacji, oddejmujac odpowiednie równania (35) od siebie dostajemy x i+1 x i = A 1 ( f xi+1 f xi ). (37) Ale my wciaż nie znamy A. Celem metody zmiennej metryki jest wobec tego skonstruowanie pewnego ciagu przybliżeń hessjanu zamiast równania (37) mamy x i+1 x i = H i+1 ( f xi+1 f xi ). (38) Copyright c P. F. Góra 10 35

36 W powyższym równaniu H i oznaczaja kolejne przybliżenia hessjanu w minimum. Przyliżenia te musza spełniać 1. H i jest symetryczne i dodatnio określone. 2. Zachodzi lim H i = A 1. (39) i Jeśli nie mamy żadnego lepszego pomysłu, możemy przyjać H 1 = I. Metoda ma formalnie postać x i+1 = x i H i f xi. (40) Copyright c P. F. Góra 10 36

37 Konstruowanie kolejnych H i DFP updating formula: H i+1 = H i + (x i+1 x i )(x i+1 x i ) T (x i+1 x i ) T ( f xi+1 f xi ) [ Hi ( f xi+1 f x i )] [ Hi ( f xi+1 f x i )] T ( f xi+1 f x i ) T Hi ( f xi+1 f x i ). (41) Copyright c P. F. Góra 10 37

38 BFGS updating formula: H i+1 = + ( f xi+1 f xi ) T Hi ( f xi+1 f xi ) uu T, (42a) u = x i+1 x i (x i+1 x i ) T ( f xi+1 f xi ) H i ( f xi+1 f xi ) ( f xi+1 f x i ) T Hi ( f xi+1 f x i ), (42b) gdzie kropki oznaczaja cała formułę DFP. Copyright c P. F. Góra 10 38

39 Własności metody zmiennej metryki Można pokazać, że H i modyfikowane tak według formuły DFP, jak i BFGS 1. Jest symetryczne i dodatnio określone, jeśli tylko H 1 jest symetryczne i dodatnio określone. 2. Spełnia warunek (38). 3. Spełnia (39). 4. Dodatkowo, jeśli f jest forma kwadratowa (19), H i N+1 A 1 w arytmetyce dokładnej. Copyright c P. F. Góra 10 39

40 Metoda Levenberga-Marquardta Tak metoda gradientów sprzężonych, jak i metoda zmiennej metryki, sa dostosowane do przypadku, w którym funkcja jest z dobrym przybliżeniem postaci (19), a więc gdy jesteśmy dostatecznie blisko poszukiwanego minimum. Jednak daleko od minimum metody te sa powolne trudno oczekiwać, że wzory słuszne dla formy kwadratowej będa dobrze działać gdy funkcja forma kwadratowa nie jest. Daleko od minimum jest sens stosować metodę najszybszego spadku. Powinniśmy zatem mieć metodę, która daleko od minimum zachowuje się jak najszybszy spadek, blisko zaś minimum redukuje się do gradientów sprzężonych (lub zmiennej metryki). Copyright c P. F. Góra 10 40

41 Powróćmy do algorytmu opartego na metodzie Newtona (34): x i+1 = x i H 1 (x i ) f xi, Daleko od minimum hessjan nie musi być nawet dodatnio określony, co powoduje, iż krok newtonowski wcale nie musi prowadzić do spadku wartości funkcji (por. (36)). My jednak chcemy aby wartość funkcji w kolejnych krokach spadała. Zmodyfikujmy więc hessjan: przy czym λ 0. H ii = (1 + λ) 2 f x 2, (43a) i H ij = 2 f, i j, (43b) x i x j Copyright c P. F. Góra 10 41

42 Zauważmy, że zachodzi jedna z dwu możliwych sytuacji: (i) jeśli znajdujemy się w basenie atrakcji minimum, wówczas dla odpowiednio dużego λ macierz (43) stanie się dodatnio określona lub też (ii) jeśli dla żadnego dodatniego λ macierz (43) nie staje się dodatnio określona, znajdujemy się na monotonicznej gałęzi funkcji, poza basenem atrakcji minimum. Rozpoczynamy z jakimś niewielkim λ, na przykład λ = λ 0 = 2 10 = 1/1024. Przypuśćmy, iż aktualnym przybliżeniem minimum jest punkt x i. Dostajemy zatem... verte Copyright c P. F. Góra 10 42

43 Algorytm Levenberga-Marquardta 1. Oblicz f(x i ). 2. Oblicz H(x i ). 3. Oblicz x test = x i H 1 (x i ) f(x i ). (44) 4. Jeżeli f(x test ) > f(x i ), to (a) λ 8λ (można też powiększać o inny znaczny czynnik). (b) Idź do punktu Jeżeli f(x test ) < f(x i ), to (a) λ λ/8 (można też zmniejszać o inny znaczny czynnik). (b) x i+1 = x test. (c) Idź do punktu 1. Copyright c P. F. Góra 10 43

44 Komentarz Dodatkowo, jeśli λ > λ max 1, uznajemy, iż znajdujemy się poza basenem atrakcji minimum i algorytm zawodzi. Jeśli natomiast λ < λ min 1, macierz H jest w praktyce równa hessjanowi, a zatem modyfikacja (43) przestaje być potrzebna. Możemy wówczas przerzucić się na metodę gradientów sprzężonych lub metodę zmiennej metryki aby wykorzystać ich szybka zbieżność w pobliżu minimum, gdzie funkcja ma postać (19). Ponadto w celu przyspieszenia obliczeń, jeżeli f(x test ) < f(x i ), możemy chwilowo zrezygnować ze zmniejszania λ i modyfikowania H i przeprowadzić kilka kroków z ta sama macierza, a więc korzystajac z tej samej faktoryzacji. Copyright c P. F. Góra 10 44

45 Zauważmy, iż przypadek λ 1 oznacza, iż jesteśmy daleko od minimum. Z drugiej strony jeśli λ 1, macierz H staje się w praktyce diagonalna, a zatem x test x i (1 + λ) 1 diag ( 2 f x 2 1 ) 1, ( 2 ) 1 ( f 2 f,..., x 2 2 x 2 N ) 1 f(x i) x i const f(x i ), (45) o ile drugie pochodne czastkowe w poszczególnych kierunkach nie różnia się znacznie od siebie. Widać, iż daleko od minimum, gdzie warunek zachowujacy raz osiagnięte minima kierunkowe nie zachodzi, algorytm Levenberga-Marquardta zachowuje się prawie jak metoda najszybszego spadku. Copyright c P. F. Góra 10 45

46 Rozwiazywanie równań nieliniowych a minimalizacja Wracamy do problemu rozwiazywania równań algebraicznych, danego równaniem (28): g(x) = 0. Zaproponowana powyżej metoda Newtona czasami zawodzi. Ponieważ rozwiazywanie równań algebraicznych jest trudne, natomiast minimalizacja jest łatwa, niektórzy skłonni sa rozważać funkcję G:R N R G(x) = 1 2 g(x) 2 = 1 2 (g(x))t g(x) (46) i szukać jej minimum zamiast rozwiazywać (28). Globalne minimum G = 0 odpowiada co prawda rozwiazaniu (28), jednak G może mieć wiele minimów lokalnych, nie mamy także gwarancji, że globalne minimum G = 0 istnieje. Nie jest to więc dobry pomysł. Copyright c P. F. Góra 10 46

47 Metoda globalnie zbieżna Rozwiazaniem jest połaczenie idei minimalizacji funkcji (46) i metody Newtona. Przypuśćmy, iż chcemy rozwiazywać równanie (28) metoda Newtona. Krok iteracji wynosi δx = J 1 g. (47) Z drugiej strony mamy G = 1 x i 2 a zatem G = J T g. j ( ) gj g j g j + g j x i x i = j J ji g j (48) Copyright c P. F. Góra 10 47

48 Jak zmienia się funkcja G (46) po wykonaniu kroku Newtona (47)? ( G) T δx = g T J ( J 1) g = g T g < 0, (49) a zatem kierunek kroku Newtona jest lokalnym kierunkiem spadku G. Jednak przesunięcie się o pełna długość kroku Newtona nie musi prowadzić do spadku G. Postępujemy wobec tego jak następuje: Copyright c P. F. Góra 10 48

49 1. w = 1. Oblicz δx. 2. x test = x i + w δx. 3. Jeśli G(x test ) < G(x i ), to (a) x i+1 = x test (b) goto 1 4. Jeśli G(x test ) > G(x i ), to (a) w w/2 (b) goto 2 Jest to zatem forma tłumionej (damped) metody Newtona. Zamiast połowienia kroku, można używać innych strategii poszukiwania w prowadzacych do zmniejszenia się wartości G. Jeśli wartość w spadnie poniżej pewnego akceptowalnego progu, obliczenia należy przerwać, jednak (49) gwarantuje, że istnieje takie w, iż w δx prowadzi do zmniejszenia się G. Copyright c P. F. Góra 10 49

50 Bardzo ważna uwaga Wszystkie przedstawione tu metody wymagaja znajomości analitycznych wzorów na pochodne odpowiednich funkcji. Używanie powyższych metod w sytuacji, w których pochodne należy aproksymować numerycznie, na ogół nie ma sensu. Copyright c P. F. Góra 10 50

51 Wielowymiarowa metoda siecznych metoda Broydena Niekiedy analityczne wzory na pochodne sa nieznane, niekiedy samo obliczanie jakobianu, wymagajace obliczenia N 2 pochodnych czastkowych, jest numerycznie zbyt kosztowne. W takich sytuacjach czasami używa się metody zwanej niezbyt ściśle wielowymiarowa metoda siecznych. Podobnie jak w przypadku jednowymiarowym, gdzie pochodna zastępuje się ilorazem różnicowym g (x i+1 ) g(x i+1) g(x i ) x i+1 x i, (50) jakobian w kroku Newtona zastępujemy wyrażeniem przybliżonym: Zamiast J δx = g(x) bierzemy B x = g. Macierz B jest przybliżeniem jakobianu, poprawianym w każdym kroku iteracji. Otrzymujemy zatem Copyright c P. F. Góra 10 51

52 natomiast poprawki B obliczamy jako x i+1 = x i B 1 i g(x i ), (51) B i+1 = B i + ( g i B i x i ) ( x i ) T ( x i ) T, (52) x i gdzie x i = x i+1 x i, g i = g(x i+1 ) g(x i ). Ponieważ poprawka do B i ma postać iloczynu diadycznego dwu wektorów, B 1 i+1 można obliczać korzystaj ac ze wzoru Shermana-Morrisona. Metoda ta wymaga inicjalizacji poprzez podanie B 1 oraz wektora x 1. To drugie nie jest niczym dziwnym; co do pierwszego, jeśli to tylko możliwe, można przyjać B 1 = J(x 1 ). Copyright c P. F. Góra 10 52

Wstęp do metod numerycznych 11. Minimalizacja: funkcje wielu zmiennych. P. F. Góra

Wstęp do metod numerycznych 11. Minimalizacja: funkcje wielu zmiennych. P. F. Góra Wstęp do metod numerycznych 11. Minimalizacja: funkcje wielu zmiennych P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012 Strategia minimalizacji wielowymiarowej Zakładamy, że metody poszukiwania minimów

Bardziej szczegółowo

Wstęp do metod numerycznych 9a. Układy równań algebraicznych. P. F. Góra

Wstęp do metod numerycznych 9a. Układy równań algebraicznych. P. F. Góra Wstęp do metod numerycznych 9a. Układy równań algebraicznych P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012 Układy równań algebraicznych Niech g:r N równanie R N będzie funkcja klasy co najmniej

Bardziej szczegółowo

Wstęp do metod numerycznych 12. Minimalizacja: funkcje wielu zmiennych. P. F. Góra

Wstęp do metod numerycznych 12. Minimalizacja: funkcje wielu zmiennych. P. F. Góra Wstęp do metod numerycznych 12. Minimalizacja: funkcje wielu zmiennych P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2015 Strategia minimalizacji wielowymiarowej Zakładamy, że metody poszukiwania minimów

Bardziej szczegółowo

Komputerowa analiza zagadnień różniczkowych 2. Metoda gradientów sprzężonych Minimalizacja i układy równań algebraicznych

Komputerowa analiza zagadnień różniczkowych 2. Metoda gradientów sprzężonych Minimalizacja i układy równań algebraicznych Komputerowa analiza zagadnień różniczkowych 2. Metoda gradientów sprzężonych Minimalizacja i układy równań algebraicznych P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2007/08 Metoda gradientów

Bardziej szczegółowo

Wstęp do metod numerycznych Metody iteracyjne i metoda gradientów. P. F. Góra

Wstęp do metod numerycznych Metody iteracyjne i metoda gradientów. P. F. Góra Wstęp do metod numerycznych Metody iteracyjne i metoda gradientów sprzężonych P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012 Metody iteracyjne W metodach dokładnych otrzymane rozwiazanie jest dokładne

Bardziej szczegółowo

Wstęp do metod numerycznych Algebraiczna metoda gradientów sprzężonych. P. F. Góra

Wstęp do metod numerycznych Algebraiczna metoda gradientów sprzężonych. P. F. Góra Wstęp do metod numerycznych Algebraiczna metoda gradientów sprzężonych P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2015 Metoda gradientów sprzężonych motywacja Rozważmy funcję f : R N R f(x) = 1 2

Bardziej szczegółowo

Wstęp do metod numerycznych Metody iteracyjne Algebraiczna metoda gradientów sprzężonych. P. F. Góra

Wstęp do metod numerycznych Metody iteracyjne Algebraiczna metoda gradientów sprzężonych. P. F. Góra Wstęp do metod numerycznych Metody iteracyjne Algebraiczna metoda gradientów sprzężonych P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2017 Metody iteracyjne Rozwiazanie układu równań liniowych, uzyskane

Bardziej szczegółowo

Wstęp do metod numerycznych 12. Minimalizacja: funkcje wielu zmiennych. P. F. Góra

Wstęp do metod numerycznych 12. Minimalizacja: funkcje wielu zmiennych. P. F. Góra Wstęp do metod numerycznych 12. Minimalizacja: funkcje wielu zmiennych P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2018 Strategia minimalizacji wielowymiarowej Zakładamy, że metody poszukiwania minimów

Bardziej szczegółowo

Wstęp do metod numerycznych SVD, metody iteracyjne i metoda gradientów. P. F. Góra

Wstęp do metod numerycznych SVD, metody iteracyjne i metoda gradientów. P. F. Góra Wstęp do metod numerycznych SVD, metody iteracyjne i metoda gradientów sprzężonych P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2011 Współczynnik uwarunkowania macierzy symetrycznej Twierdzenie 1. Niech

Bardziej szczegółowo

Wstęp do metod numerycznych 9. Rozwiazywanie równań algebraicznych. P. F. Góra

Wstęp do metod numerycznych 9. Rozwiazywanie równań algebraicznych. P. F. Góra Wstęp do metod numerycznych 9. Rozwiazywanie równań algebraicznych P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2015 Co to znaczy rozwiazać równanie? Przypuśmy, że postawiono przed nami problem rozwiazania

Bardziej szczegółowo

Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa. P. F. Góra

Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa. P. F. Góra Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012 Uwarunkowanie zadania numerycznego Niech ϕ : R n R m będzie pewna funkcja odpowiednio wiele

Bardziej szczegółowo

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 4. Równania różniczkowe zwyczajne podstawy teoretyczne

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 4. Równania różniczkowe zwyczajne podstawy teoretyczne Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 4. Równania różniczkowe zwyczajne podstawy teoretyczne P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2005/06 Wstęp

Bardziej szczegółowo

KADD Minimalizacja funkcji

KADD Minimalizacja funkcji Minimalizacja funkcji n-wymiarowych Forma kwadratowa w n wymiarach Procedury minimalizacji Minimalizacja wzdłuż prostej w n-wymiarowej przestrzeni Metody minimalizacji wzdłuż osi współrzędnych wzdłuż kierunków

Bardziej szczegółowo

Optymalizacja ciągła

Optymalizacja ciągła Optymalizacja ciągła 5. Metody kierunków poparwy (metoda Newtona-Raphsona, metoda gradientów sprzężonych) Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 28.03.2019 1

Bardziej szczegółowo

UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH

UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH Transport, studia I stopnia rok akademicki 2011/2012 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Uwagi wstępne Układ liniowych równań algebraicznych można

Bardziej szczegółowo

WYKŁAD 9 METODY ZMIENNEJ METRYKI

WYKŁAD 9 METODY ZMIENNEJ METRYKI WYKŁAD 9 METODY ZMIENNEJ METRYKI Kierunki sprzężone. Metoda Newtona Raphsona daje dobre przybliżenie najlepszego kierunku poszukiwań, lecz jest to okupione znacznym kosztem obliczeniowym zwykle postać

Bardziej szczegółowo

Wstęp do metod numerycznych Rozwiazywanie równań algebraicznych. P. F. Góra

Wstęp do metod numerycznych Rozwiazywanie równań algebraicznych. P. F. Góra Wstęp do metod numerycznych Rozwiazywanie równań algebraicznych P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2010 Co to znaczy rozwiazać równanie? Przypuśmy, że postawiono przed nami problem rozwiazania

Bardziej szczegółowo

Wstęp do metod numerycznych Zagadnienia wstępne Uwarunkowanie. P. F. Góra

Wstęp do metod numerycznych Zagadnienia wstępne Uwarunkowanie. P. F. Góra Wstęp do metod numerycznych Zagadnienia wstępne Uwarunkowanie P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2014 Sposoby reprezentacji liczb całkowitych i rzeczywistych patrz wykład z Teoretycznych Podstaw

Bardziej szczegółowo

Optymalizacja ciągła

Optymalizacja ciągła Optymalizacja ciągła 4. Metody kierunków poprawy (metoda spadku wzdłuż gradientu) Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 21.03.2019 1 / 41 Plan wykładu Minimalizacja

Bardziej szczegółowo

KADD Minimalizacja funkcji

KADD Minimalizacja funkcji Minimalizacja funkcji Poszukiwanie minimum funkcji Foma kwadratowa Metody przybliżania minimum minimalizacja Minimalizacja w n wymiarach Metody poszukiwania minimum Otaczanie minimum Podział obszaru zawierającego

Bardziej szczegółowo

ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH

ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH Transport, studia I stopnia Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać ogólna równania nieliniowego Często występującym, ważnym problemem obliczeniowym

Bardziej szczegółowo

UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH

UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać układu równań liniowych Układ liniowych równań algebraicznych

Bardziej szczegółowo

Wstęp do metod numerycznych Eliminacja Gaussa Równania macierzowe. P. F. Góra

Wstęp do metod numerycznych Eliminacja Gaussa Równania macierzowe. P. F. Góra Wstęp do metod numerycznych Eliminacja Gaussa Równania macierzowe P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2015 Co można zrobić z układem równań... tak, aby jego rozwiazania się nie zmieniły? Rozważam

Bardziej szczegółowo

Wstęp do metod numerycznych Faktoryzacja QR i SVD. P. F. Góra

Wstęp do metod numerycznych Faktoryzacja QR i SVD. P. F. Góra Wstęp do metod numerycznych Faktoryzacja QR i SVD P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012 Transformacja Householdera Niech u R N, u 0. Tworzymy macierz W sposób oczywisty P T = P. Obliczmy

Bardziej szczegółowo

Zaawansowane metody numeryczne

Zaawansowane metody numeryczne Wykład 11 Ogólna postać metody iteracyjnej Definicja 11.1. (metoda iteracyjna rozwiązywania układów równań) Metodą iteracyjną rozwiązywania { układów równań liniowych nazywamy ciąg wektorów zdefiniowany

Bardziej szczegółowo

Wstęp do metod numerycznych Miejsca zerowe wielomianów Układy równań algebraicznych. P. F. Góra

Wstęp do metod numerycznych Miejsca zerowe wielomianów Układy równań algebraicznych. P. F. Góra Wstęp do metod numerycznych Miejsca zerowe wielomianów Układy równań algebraicznych P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2010 Podstawowe Twierdzenie Algebry Rozwiazywanie równań wielomianowych

Bardziej szczegółowo

Metody numeryczne I Równania nieliniowe

Metody numeryczne I Równania nieliniowe Metody numeryczne I Równania nieliniowe Janusz Szwabiński szwabin@ift.uni.wroc.pl Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/66 Równania nieliniowe 1. Równania nieliniowe z pojedynczym pierwiastkiem

Bardziej szczegółowo

1 Metody rozwiązywania równań nieliniowych. Postawienie problemu

1 Metody rozwiązywania równań nieliniowych. Postawienie problemu 1 Metody rozwiązywania równań nieliniowych. Postawienie problemu Dla danej funkcji ciągłej f znaleźć wartości x, dla których f(x) = 0. (1) 2 Przedział izolacji pierwiastka Będziemy zakładać, że równanie

Bardziej szczegółowo

Wstęp do metod numerycznych 9. Minimalizacja: funkcje jednej zmiennej. P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/

Wstęp do metod numerycznych 9. Minimalizacja: funkcje jednej zmiennej. P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ Wstęp do metod numerycznych 9. Minimalizacja: funkcje jednej zmiennej P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2011 Lokalna minimalizacja ciagła Minimalizacja funkcji jest jedna z najważniejszych

Bardziej szczegółowo

ZADANIA OPTYMALIZCJI BEZ OGRANICZEŃ

ZADANIA OPTYMALIZCJI BEZ OGRANICZEŃ ZADANIA OPTYMALIZCJI BEZ OGRANICZEŃ Maciej Patan Uniwersytet Zielonogórski WSTEP Zadanie minimalizacji bez ograniczeń f(ˆx) = min x R nf(x) f : R n R funkcja ograniczona z dołu Algorytm rozwiazywania Rekurencyjny

Bardziej szczegółowo

Wstęp do metod numerycznych Zagadnienia wstępne Uwarunkowanie. P. F. Góra

Wstęp do metod numerycznych Zagadnienia wstępne Uwarunkowanie. P. F. Góra Wstęp do metod numerycznych Zagadnienia wstępne Uwarunkowanie P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2016 Źródła błędów numerycznych Wyniki obliczeń numerycznych obarczone sa błędami. Ich najważniejszymi

Bardziej szczegółowo

Metody numeryczne. Janusz Szwabiński. Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/50

Metody numeryczne. Janusz Szwabiński. Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/50 Metody numeryczne Układy równań liniowych, część II Janusz Szwabiński szwabin@ift.uni.wroc.pl Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/50 Układy równań liniowych, część II 1. Iteracyjne poprawianie

Bardziej szczegółowo

Matematyka stosowana i metody numeryczne

Matematyka stosowana i metody numeryczne Ewa Pabisek Adam Wosatko Piotr Pluciński Matematyka stosowana i metody numeryczne Konspekt z wykładu 6 Rozwiązywanie równań nieliniowych Rozwiązaniem lub pierwiastkiem równania f(x) = 0 lub g(x) = h(x)

Bardziej szczegółowo

Układy równań nieliniowych (wielowymiarowa metoda Newtona-Raphsona) f(x) = 0, gdzie. dla n=2 np.

Układy równań nieliniowych (wielowymiarowa metoda Newtona-Raphsona) f(x) = 0, gdzie. dla n=2 np. Układy równań nieliniowych (wielowymiarowa metoda Newtona-Raphsona f(x 0, f ( f, f,..., f n gdzie 2 x ( x, x 2,..., x n dla n2 np. f ( x, y 0 g( x, y 0 dla każdej wielowymiarowej rozwinięcie w szereg Taylora

Bardziej szczegółowo

Komputerowa analiza zagadnień różniczkowych 10. Dwupunktowe problemy brzegowe (BVP, Boundary Value Problems)

Komputerowa analiza zagadnień różniczkowych 10. Dwupunktowe problemy brzegowe (BVP, Boundary Value Problems) Komputerowa analiza zagadnień różniczkowych 10. Dwupunktowe problemy brzegowe (BVP, Boundary Value Problems) P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2007/08 Wprowadzenie Rozważmy

Bardziej szczegółowo

Rozwiązywanie równań nieliniowych

Rozwiązywanie równań nieliniowych Rozwiązywanie równań nieliniowych Marcin Orchel 1 Wstęp Przykłady wyznaczania miejsc zerowych funkcji f : f(ξ) = 0. Wyszukiwanie miejsc zerowych wielomianu n-tego stopnia. Wymiar tej przestrzeni wektorowej

Bardziej szczegółowo

Komputerowa analiza zagadnień różniczkowych 3. Metody Eulera, metody punktu środkowego i metody trapezowe

Komputerowa analiza zagadnień różniczkowych 3. Metody Eulera, metody punktu środkowego i metody trapezowe Komputerowa analiza zagadnień różniczkowych 3. Metody Eulera, metody punktu środkowego i metody trapezowe P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2011 Problem Cauchy ego dy dx = f(x, y) (1) y(x

Bardziej szczegółowo

Wstęp do metod numerycznych Eliminacja Gaussa Faktoryzacja LU. P. F. Góra

Wstęp do metod numerycznych Eliminacja Gaussa Faktoryzacja LU. P. F. Góra Wstęp do metod numerycznych Eliminacja Gaussa Faktoryzacja LU P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2014 Co można zrobić z układem równań... tak, aby jego rozwiazania się nie zmieniły? Rozważam

Bardziej szczegółowo

Iteracyjne rozwiązywanie równań

Iteracyjne rozwiązywanie równań Elementy metod numerycznych Plan wykładu 1 Wprowadzenie Plan wykładu 1 Wprowadzenie 2 Plan wykładu 1 Wprowadzenie 2 3 Wprowadzenie Metoda bisekcji Metoda siecznych Metoda stycznych Plan wykładu 1 Wprowadzenie

Bardziej szczegółowo

Wstęp do metod numerycznych Zagadnienia wstępne Uwarunkowanie. P. F. Góra

Wstęp do metod numerycznych Zagadnienia wstępne Uwarunkowanie. P. F. Góra Wstęp do metod numerycznych Zagadnienia wstępne Uwarunkowanie P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2017 Źródła błędów numerycznych Wyniki obliczeń numerycznych obarczone sa błędami. Ich najważniejszymi

Bardziej szczegółowo

1 Równania nieliniowe

1 Równania nieliniowe 1 Równania nieliniowe 1.1 Postać ogólna równania nieliniowego Często występującym, ważnym problemem obliczeniowym jest numeryczne poszukiwanie rozwiązań równań nieliniowych, np. algebraicznych (wielomiany),

Bardziej szczegółowo

Komputerowa analiza zagadnień różniczkowych 3. Metody Eulera, metody punktu środkowego i metody trapezowe

Komputerowa analiza zagadnień różniczkowych 3. Metody Eulera, metody punktu środkowego i metody trapezowe Komputerowa analiza zagadnień różniczkowych 3. Metody Eulera, metody punktu środkowego i metody trapezowe P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2010 Problem Cauchy ego dy dx = f(x, y) (1) y(x

Bardziej szczegółowo

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 5. Terminologia. Metody Eulera, metody punktu środkowego i metody trapezowe

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 5. Terminologia. Metody Eulera, metody punktu środkowego i metody trapezowe Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 5. Terminologia. Metody Eulera, metody punktu środkowego i metody trapezowe P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr

Bardziej szczegółowo

Z52: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania, zagadnienie brzegowe.

Z52: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania, zagadnienie brzegowe. Z5: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania zagadnienie brzegowe Dyskretne operatory różniczkowania Numeryczne obliczanie pochodnych oraz rozwiązywanie

Bardziej szczegółowo

Komputerowa analiza zagadnień różniczkowych 3. Numeryczne zagadnienie własne

Komputerowa analiza zagadnień różniczkowych 3. Numeryczne zagadnienie własne Komputerowa analiza zagadnień różniczkowych 3. Numeryczne zagadnienie własne P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2007/08 Wektory i wartości własne definicje Niech A C N N. Jeżeli

Bardziej szczegółowo

3. Funkcje wielu zmiennych

3. Funkcje wielu zmiennych 3 Funkcje wielu zmiennych 31 Ciagłość Zanim podamy definicję ciagłości dla funkcji wielu zmiennych wprowadzimy bardzo ogólne i abstrakcyjne pojęcie przestrzeni metrycznej Przestrzeń metryczna Metryka w

Bardziej szczegółowo

Wstęp do metod numerycznych Eliminacja Gaussa i faktoryzacja LU. P. F. Góra

Wstęp do metod numerycznych Eliminacja Gaussa i faktoryzacja LU. P. F. Góra Wstęp do metod numerycznych Eliminacja Gaussa i faktoryzacja LU P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2018 Co można zrobić z układem równań... tak, aby jego rozwiazania się nie zmieniły? Rozważam

Bardziej szczegółowo

Układy równań liniowych. Krzysztof Patan

Układy równań liniowych. Krzysztof Patan Układy równań liniowych Krzysztof Patan Motywacje Zagadnienie kluczowe dla przetwarzania numerycznego Wiele innych zadań redukuje się do problemu rozwiązania układu równań liniowych, często o bardzo dużych

Bardziej szczegółowo

KADD Metoda najmniejszych kwadratów funkcje nieliniowe

KADD Metoda najmniejszych kwadratów funkcje nieliniowe Metoda najmn. kwadr. - funkcje nieliniowe Metoda najmniejszych kwadratów Funkcje nieliniowe Procedura z redukcją kroku iteracji Przykłady zastosowań Dopasowanie funkcji wykładniczej Dopasowanie funkcji

Bardziej szczegółowo

Wprowadzenie Metoda bisekcji Metoda regula falsi Metoda siecznych Metoda stycznych RÓWNANIA NIELINIOWE

Wprowadzenie Metoda bisekcji Metoda regula falsi Metoda siecznych Metoda stycznych RÓWNANIA NIELINIOWE Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać ogólna równania nieliniowego Zazwyczaj nie można znaleźć

Bardziej szczegółowo

Optymalizacja ciągła

Optymalizacja ciągła Optymalizacja ciągła 1. Optymalizacja funkcji jednej zmiennej Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 28.02.2019 1 / 54 Plan wykładu Optymalizacja funkcji jednej

Bardziej szczegółowo

Rozwiązywanie układów równań liniowych metody przybliżone Materiały pomocnicze do ćwiczeń z metod numerycznych

Rozwiązywanie układów równań liniowych metody przybliżone Materiały pomocnicze do ćwiczeń z metod numerycznych Rozwiązywanie układów równań liniowych metody przybliżone Materiały pomocnicze do ćwiczeń z metod numerycznych Piotr Modliński Wydział Geodezji i Kartografii PW 14 stycznia 2012 P. Modliński, GiK PW Rozw.

Bardziej szczegółowo

Metody numeryczne. Równania nieliniowe. Janusz Szwabiński.

Metody numeryczne. Równania nieliniowe. Janusz Szwabiński. Metody numeryczne Równania nieliniowe Janusz Szwabiński szwabin@ift.uni.wroc.pl nm_slides-9.tex Metody numeryczne Janusz Szwabiński 7/1/2003 20:18 p.1/64 Równania nieliniowe 1. Równania nieliniowe z pojedynczym

Bardziej szczegółowo

Wstęp do metod numerycznych 11. Minimalizacja: funkcje jednej zmiennej. P. F. Góra

Wstęp do metod numerycznych 11. Minimalizacja: funkcje jednej zmiennej. P. F. Góra Wstęp do metod numerycznych 11. Minimalizacja: funkcje jednej zmiennej P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2015 Lokalna minimalizacja ciagła Minimalizacja funkcji jest jedna z najważniejszych

Bardziej szczegółowo

Wykład 14. Elementy algebry macierzy

Wykład 14. Elementy algebry macierzy Wykład 14 Elementy algebry macierzy dr Mariusz Grządziel 26 stycznia 2009 Układ równań z dwoma niewiadomymi Rozważmy układ równań z dwoma niewiadomymi: a 11 x + a 12 y = h 1 a 21 x + a 22 y = h 2 a 11,

Bardziej szczegółowo

RÓWNANIA NIELINIOWE Maciej Patan

RÓWNANIA NIELINIOWE Maciej Patan RÓWNANIA NIELINIOWE Maciej Patan Uniwersytet Zielonogórski Przykład 1 Prędkość v spadającego spadochroniarza wyraża się zależnością v = mg ( 1 e c t) m c gdzie g = 9.81 m/s 2. Dla współczynnika oporu c

Bardziej szczegółowo

dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory;

dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory; Wykłady 8 i 9 Pojęcia przestrzeni wektorowej i macierzy Układy równań liniowych Elementy algebry macierzy dodawanie, odejmowanie, mnożenie macierzy; macierz odwrotna dr Mariusz Grządziel 15,29 kwietnia

Bardziej szczegółowo

Optymalizacja ciągła

Optymalizacja ciągła Optymalizacja ciągła 5. Metoda stochastycznego spadku wzdłuż gradientu Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 04.04.2019 1 / 20 Wprowadzenie Minimalizacja różniczkowalnej

Bardziej szczegółowo

Rozwiązywanie równań nieliniowych i ich układów. Wyznaczanie zer wielomianów.

Rozwiązywanie równań nieliniowych i ich układów. Wyznaczanie zer wielomianów. Rozwiązywanie równań nieliniowych i ich układów. Wyznaczanie zer wielomianów. Plan wykładu: 1. Wyznaczanie pojedynczych pierwiastków rzeczywistych równań nieliniowych metodami a) połowienia (bisekcji)

Bardziej szczegółowo

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 7a. Metody wielokrokowe

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 7a. Metody wielokrokowe Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 7a. Metody wielokrokowe P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2005/06 Motywacja Metody wielokrokowe sa

Bardziej szczegółowo

Elementy metod numerycznych

Elementy metod numerycznych Wykład nr 5 i jej modyfikacje. i zera wielomianów Założenia metody Newtona Niech będzie dane równanie f (x) = 0 oraz przedział a, b taki, że w jego wnętrzu znajduje się dokładnie jeden pierwiastek α badanego

Bardziej szczegółowo

Pochodne cząstkowe i ich zastosowanie. Ekstrema lokalne funkcji

Pochodne cząstkowe i ich zastosowanie. Ekstrema lokalne funkcji Pochodne cząstkowe i ich zastosowanie. Ekstrema lokalne funkcji Adam Kiersztyn Lublin 2014 Adam Kiersztyn () Pochodne cząstkowe i ich zastosowanie. Ekstrema lokalne funkcji maj 2014 1 / 24 Zanim przejdziemy

Bardziej szczegółowo

Wstęp do metod numerycznych 5. Numeryczne zagadnienie własne. P. F. Góra

Wstęp do metod numerycznych 5. Numeryczne zagadnienie własne. P. F. Góra Wstęp do metod numerycznych 5. Numeryczne zagadnienie własne P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2011 Zagadnienie własne Definicja: Niech A C N N. Liczbę λ C nazywam wartościa własna macierzy

Bardziej szczegółowo

IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych,

IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych, IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. Definicja 1.1. Niech D będzie podzbiorem przestrzeni R n, n 2. Odwzorowanie f : D R nazywamy

Bardziej szczegółowo

Zaawansowane metody numeryczne

Zaawansowane metody numeryczne Wykład 10 Rozkład LU i rozwiązywanie układów równań liniowych Niech będzie dany układ równań liniowych postaci Ax = b Załóżmy, że istnieją macierze L (trójkątna dolna) i U (trójkątna górna), takie że macierz

Bardziej szczegółowo

Metody iteracyjne rozwiązywania układów równań liniowych (5.3) Normy wektorów i macierzy (5.3.1) Niech. x i. i =1

Metody iteracyjne rozwiązywania układów równań liniowych (5.3) Normy wektorów i macierzy (5.3.1) Niech. x i. i =1 Normy wektorów i macierzy (5.3.1) Niech 1 X =[x x Y y =[y1 x n], oznaczają wektory przestrzeni R n, a yn] niech oznacza liczbę rzeczywistą. Wyrażenie x i p 5.3.1.a X p = p n i =1 nosi nazwę p-tej normy

Bardziej szczegółowo

Egzamin z Metod Numerycznych ZSI, Egzamin, Gr. A

Egzamin z Metod Numerycznych ZSI, Egzamin, Gr. A Egzamin z Metod Numerycznych ZSI, 06.2007. Egzamin, Gr. A Imię i nazwisko: Nr indeksu: Section 1. Test wyboru, max 33 pkt Zaznacz prawidziwe odpowiedzi literą T, a fałszywe N. Każda prawidłowa odpowiedź

Bardziej szczegółowo

III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań.

III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań. III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań. Analiza stabilności rozwiązań stanowi ważną część jakościowej teorii równań różniczkowych. Jej istotą jest poszukiwanie odpowiedzi

Bardziej szczegółowo

Optymalizacja (minimalizacja) funkcji. Plan wykładu: 1. Sformułowanie problemu, funkcja celu. 2. Metody bezgradientowe

Optymalizacja (minimalizacja) funkcji. Plan wykładu: 1. Sformułowanie problemu, funkcja celu. 2. Metody bezgradientowe Optymalizacja (minimalizacja) funkcji Plan wykładu: 1. Sformułowanie problemu, funkcja celu. Metody bezgradientowe a) metoda złotego podziału b) metoda sympleks c) metoda interpolacji Powell'a 3. Metody

Bardziej szczegółowo

METODY NUMERYCZNE. Wykład 4. Numeryczne rozwiązywanie równań nieliniowych z jedną niewiadomą. prof. dr hab.inż. Katarzyna Zakrzewska

METODY NUMERYCZNE. Wykład 4. Numeryczne rozwiązywanie równań nieliniowych z jedną niewiadomą. prof. dr hab.inż. Katarzyna Zakrzewska METODY NUMERYCZNE Wykład 4. Numeryczne rozwiązywanie równań nieliniowych z jedną niewiadomą prof. dr hab.inż. Katarzyna Zakrzewska Met.Numer. Wykład 4 1 Rozwiązywanie równań nieliniowych z jedną niewiadomą

Bardziej szczegółowo

Metody rozwiązywania równań nieliniowych

Metody rozwiązywania równań nieliniowych Metody rozwiązywania równań nieliniowych Rozwiązywanie równań nieliniowych Ogólnie równanie o jednej niewiadomej x można przedstawić w postaci f ( x)=0, x R, (1) gdzie f jest wystarczająco regularną funkcją.

Bardziej szczegółowo

Macierze. Rozdział Działania na macierzach

Macierze. Rozdział Działania na macierzach Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i, j) (i 1,..., n; j 1,..., m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F R lub F C, nazywamy macierzą (rzeczywistą, gdy

Bardziej szczegółowo

RÓŻNICZKOWANIE FUNKCJI WIELU ZMIENNYCH: rachunek pochodnych dla funkcji wektorowych. Pochodne cząstkowe funkcji rzeczywistej wielu zmiennych

RÓŻNICZKOWANIE FUNKCJI WIELU ZMIENNYCH: rachunek pochodnych dla funkcji wektorowych. Pochodne cząstkowe funkcji rzeczywistej wielu zmiennych RÓŻNICZKOWANIE FUNKCJI WIELU ZMIENNYCH: rachunek pochodnych dla funkcji wektorowych Pochodne cząstkowe funkcji rzeczywistej wielu zmiennych wyliczamy według wzoru (x, x 2,..., x n ) f(x, x 2,..., x n )

Bardziej szczegółowo

x y

x y Przykłady pytań na egzamin końcowy: (Uwaga! Skreślone pytania nie obowiązują w tym roku.). Oblicz wartość interpolacji funkcjami sklejanymi (przypadek (case) a), dla danych i =[- 4 5], y i =[0 4 -]. Jaka

Bardziej szczegółowo

1 Pochodne wyższych rzędów

1 Pochodne wyższych rzędów 1 Pochodne wyższych rzędów Definicja 1.1 (Pochodne cząstkowe drugiego rzędu) Niech f będzie odwzorowaniem o wartościach w R m, określonym na zbiorze G R k. Załóżmy, że zbiór tych x G, dla których istnieje

Bardziej szczegółowo

13. Funkcje wielu zmiennych pochodne, gradient, Jacobian, ekstrema lokalne.

13. Funkcje wielu zmiennych pochodne, gradient, Jacobian, ekstrema lokalne. 13. Funkcje wielu zmiennych pochodne, gradient, Jacobian, ekstrema lokalne. 1. Wprowadzenie. Dotąd rozważaliśmy funkcje działające z podzbioru liczb rzeczywistych w zbiór liczb rzeczywistych, zatem funkcje

Bardziej szczegółowo

Wybrane metody przybliżonego. wyznaczania rozwiązań (pierwiastków) równań nieliniowych

Wybrane metody przybliżonego. wyznaczania rozwiązań (pierwiastków) równań nieliniowych Wykład trzeci 1 Wybrane metody przybliżonego wyznaczania rozwiązań pierwiastków równań nieliniowych 2 Metody rozwiązywania równań nieliniowych = 0 jest unkcją rzeczywistą zmiennej rzeczywistej Rozwiązanie

Bardziej szczegółowo

Wykład 5. Metoda eliminacji Gaussa

Wykład 5. Metoda eliminacji Gaussa 1 Wykład 5 Metoda eliminacji Gaussa Rozwiązywanie układów równań liniowych Układ równań liniowych może mieć dokładnie jedno rozwiązanie, nieskończenie wiele rozwiązań lub nie mieć rozwiązania. Metody dokładne

Bardziej szczegółowo

Rozwiązywanie algebraicznych układów równań liniowych metodami iteracyjnymi. Plan wykładu:

Rozwiązywanie algebraicznych układów równań liniowych metodami iteracyjnymi. Plan wykładu: Rozwiązywanie algebraicznych układów równań liniowych metodami iteracynymi Plan wykładu: 1. Przykłady macierzy rzadkich i formaty ich zapisu 2. Metody: Jacobiego, Gaussa-Seidla, nadrelaksaci 3. Zbieżność

Bardziej szczegółowo

Metody Rozmyte i Algorytmy Ewolucyjne

Metody Rozmyte i Algorytmy Ewolucyjne mgr inż. Wydział Matematyczno-Przyrodniczy Szkoła Nauk Ścisłych Uniwersytet Kardynała Stefana Wyszyńskiego Podstawy optymalizacji Plan prezentacji 1 Podstawy matematyczne 2 3 Eliminacja ograniczeń Metody

Bardziej szczegółowo

Rozwiązywanie algebraicznych układów równań liniowych metodami iteracyjnymi

Rozwiązywanie algebraicznych układów równań liniowych metodami iteracyjnymi Rozwiązywanie algebraicznych układów równań liniowych metodami iteracyjnymi Plan wykładu: 1. Przykłady macierzy rzadkich i formaty ich zapisu 2. Metody: Jacobiego, Gaussa-Seidla, nadrelaksacji 3. Zbieżność

Bardziej szczegółowo

Metody Numeryczne Optymalizacja. Wojciech Szewczuk

Metody Numeryczne Optymalizacja. Wojciech Szewczuk Metody Numeryczne Optymalizacja Optymalizacja Definicja 1 Przez optymalizację będziemy rozumieć szukanie minimów lub maksimów funkcji. Optymalizacja Definicja 2 Optymalizacja lub programowanie matematyczne

Bardziej szczegółowo

Wstęp do metod numerycznych 9. Miejsca zerowe wielomianów. P. F. Góra

Wstęp do metod numerycznych 9. Miejsca zerowe wielomianów. P. F. Góra Wstęp do metod numerycznych 9. Miejsca zerowe wielomianów P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2014 Podstawowe Twierdzenie Algebry Rozwiazywanie równań wielomianowych P n (z) = a n z n + a n

Bardziej szczegółowo

Plan wykładu. Obliczenia równoległe w zagadnieniach inżynierskich. Wykład 6 p. Rozwiazywanie układów równań. metody bezpośrednie,

Plan wykładu. Obliczenia równoległe w zagadnieniach inżynierskich. Wykład 6 p. Rozwiazywanie układów równań. metody bezpośrednie, Plan wykładu Obliczenia równoległe w zagadnieniach inżynierskich Wykład 6 Dr inż. Tomasz Olas olas@icis.pcz.pl Układy równań liniowych i metody ich rozwiazywania Metoda sprzężonych gradientów Macierze

Bardziej szczegółowo

Wykład z równań różnicowych

Wykład z równań różnicowych Wykład z równań różnicowych 1 Wiadomości wstępne Umówmy się, że na czas tego wykładu zrezygnujemy z oznaczania n-tego wyrazu ciągu symbolem typu x n, y n itp. Zamiast tego pisać będziemy x (n), y (n) itp.

Bardziej szczegółowo

Funkcje wielu zmiennych

Funkcje wielu zmiennych Funkcje wielu zmiennych Wykresy i warstwice funkcji wielu zmiennych. Granice i ciagłość funkcji wielu zmiennych. Pochodne czastkowe funkcji wielu zmiennych. Gradient. Pochodna kierunkowa. Różniczka zupełna.

Bardziej szczegółowo

Obliczenia naukowe Wykład nr 8

Obliczenia naukowe Wykład nr 8 Obliczenia naukowe Wykład nr 8 Paweł Zieliński Katedra Informatyki, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Literatura Literatura podstawowa [] D. Kincaid, W. Cheney, Analiza numeryczna,

Bardziej szczegółowo

Komputerowa analiza zagadnień różniczkowych 1. Równania różniczkowe zwyczajne podstawy teoretyczne. P. F. Góra

Komputerowa analiza zagadnień różniczkowych 1. Równania różniczkowe zwyczajne podstawy teoretyczne. P. F. Góra Komputerowa analiza zagadnień różniczkowych 1. Równania różniczkowe zwyczajne podstawy teoretyczne P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2010 Zasady zaliczenie ćwiczeń egzamin ustny; na egzaminie

Bardziej szczegółowo

METODY NUMERYCZNE. Wykład 4. Numeryczne rozwiązywanie równań nieliniowych z jedną niewiadomą. Rozwiązywanie równań nieliniowych z jedną niewiadomą

METODY NUMERYCZNE. Wykład 4. Numeryczne rozwiązywanie równań nieliniowych z jedną niewiadomą. Rozwiązywanie równań nieliniowych z jedną niewiadomą METODY NUMERYCZNE Wykład 4. Numeryczne rozwiązywanie równań nieliniowych z jedną niewiadomą dr hab.inż. Katarzyna Zakrzewska, prof.agh Met.Numer. Wykład 4 1 Rozwiązywanie równań nieliniowych z jedną niewiadomą

Bardziej szczegółowo

5. Rozwiązywanie układów równań liniowych

5. Rozwiązywanie układów równań liniowych 5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a

Bardziej szczegółowo

2. Definicja pochodnej w R n

2. Definicja pochodnej w R n 2. Definicja pochodnej w R n Niech będzie dana funkcja f : U R określona na zbiorze otwartym U R n. Pochodną kierunkową w punkcie a U w kierunku wektora u R n nazywamy granicę u f(a) = lim t 0 f(a + tu)

Bardziej szczegółowo

Wstęp do metod numerycznych Równania macierzowe Faktoryzacja LU i Cholesky ego. P. F. Góra

Wstęp do metod numerycznych Równania macierzowe Faktoryzacja LU i Cholesky ego. P. F. Góra Wstęp do metod numerycznych Równania macierzowe Faktoryzacja LU i Cholesky ego P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2017 Uwagi o eliminacji Gaussa Przypuśćmy, że mamy rozwiazać kilka układów

Bardziej szczegółowo

10. Metody obliczeniowe najmniejszych kwadratów

10. Metody obliczeniowe najmniejszych kwadratów 10. Metody obliczeniowe najmniejszych kwadratów 1. Dowód twierdzenia o faktoryzacji macierzy Twierdzenie 1 Każdadodatniookreślon aisymetryczn amacierzm można przedstawíc wpostaci M = PP T gdzie P jest

Bardziej szczegółowo

METODY ROZWIĄZYWANIA RÓWNAŃ NIELINIOWYCH

METODY ROZWIĄZYWANIA RÓWNAŃ NIELINIOWYCH METODY ROZWIĄZYWANIA RÓWNAŃ NIELINIOWYCH Jednym z zastosowań metod numerycznych jest wyznaczenie pierwiastka lub pierwiastków równania nieliniowego. W tym celu stosuje się szereg metod obliczeniowych np:

Bardziej szczegółowo

Wstęp do metod numerycznych Faktoryzacja Cholesky ego i QR. P. F. Góra

Wstęp do metod numerycznych Faktoryzacja Cholesky ego i QR. P. F. Góra Wstęp do metod numerycznych Faktoryzacja Cholesky ego i QR P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2018 Faktoryzacja Cholesky ego Niech A R N N będzie symetryczna, A T = A, i dodatnio określona:

Bardziej szczegółowo

VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa.

VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa. VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa. W rozdziale tym zajmiemy się dokładniej badaniem stabilności rozwiązań równania różniczkowego. Pojęcie stabilności w

Bardziej szczegółowo

3. Macierze i Układy Równań Liniowych

3. Macierze i Układy Równań Liniowych 3. Macierze i Układy Równań Liniowych Rozważamy równanie macierzowe z końcówki ostatniego wykładu ( ) 3 1 X = 4 1 ( ) 2 5 Podstawiając X = ( ) x y i wymnażając, otrzymujemy układ 2 równań liniowych 3x

Bardziej szczegółowo

Układy równań i równania wyższych rzędów

Układy równań i równania wyższych rzędów Rozdział Układy równań i równania wyższych rzędów Układy równań różniczkowych zwyczajnych Wprowadzenie W poprzednich paragrafach zajmowaliśmy się równaniami różniczkowymi y = f(x, y), których rozwiązaniem

Bardziej szczegółowo

Modyfikacja schematu SCPF obliczeń energii polaryzacji

Modyfikacja schematu SCPF obliczeń energii polaryzacji Modyfikacja schematu SCPF obliczeń energii polaryzacji Zakład Metod Obliczeniowych Chemii 11 kwietnia 2006 roku 1 Po co? Jak? 2 Algorytm Analiza zbieżności 3 dla układów symetrycznych 4 Fulleren 5 Po co?

Bardziej szczegółowo

Postać Jordana macierzy

Postać Jordana macierzy Rozdział 8 Postać Jordana macierzy Niech F = R lub F = C Macierz J r λ) F r r postaci λ 1 0 0 0 λ 1 J r λ) = 0 λ 1 0 0 λ gdzie λ F nazywamy klatką Jordana stopnia r Oczywiście J 1 λ) = [λ Definicja 81

Bardziej szczegółowo