Fizyka i technologia wzrostu kryształów
|
|
- Ewa Adamska
- 7 lat temu
- Przeglądów:
Transkrypt
1 Fizyka i technologia wzrostu kryształów Transmisyjna Mikroskopia elektronowa Sławomir Kret, kret@ifpan.edu.pl Instytut Fizyki PAN
2 Transmisyjna Mikroskopia Elektronowa TEM (Transmission Electron Microscopy) informacje o defektach i składzie chemicznym z wnętrza materiału rozdzielczość w zależności od trybu pracy Aktualny rekord w eksperymentalnym mikroskopie 0.05 nm (50 pm) Skaningowa Mikroskopia Elektronowa (SEM) topografia powierzchni sklad chemiczny powierzchni rozdzielczości SEM-FEG ~5-3 nm
3 Geneza TEM W 1923 Prince Louis de Broglie postulował falową naturę materii. W 1927 Hans Bush pokazał, że cewki magnetyczne mogą ogniskować wiązkę elektronową w taki sam sposób, jak szklane soczewki światło. W 1927 C.J. Davisson i L.H Germer oraz G. P. Thompson i A. Reid niezależnie zademonstrowali dyfrakcję elektronową wykazując falową naturę elektronów. 7 kwietnia 1931 Ernst Ruska i Max Knoll otrzymali pierwszy obraz TEM wykorzystując dwie soczewki magnetyczne pierwszy komercyjny TEM- Metropolitan-Vickers EM1.
4 Budowa transmisyjnego mikroskopu elektronowego Ernst August Friedrich Ruska ( ) Nobel 1986 Wyrzutnia elektronów (działo elektronowe) Detektory promieniowania rentgenowskiego, filtry energii, spektrometry strat energii elektronów. Kondensor układ soczewek skupiających elektrony Komora preparatu Obiektyw tworzy obraz: rzeczywisty, odwrócony, powiększony Soczewki pośrednie i projekcyjna powiększają i rzutują obraz utworzony przez obiektyw. Ekran materiał święcący w wyniku bombardowania elektronami, np. siarczek cynku System rejestracji obrazu klisza fotograficzna, kamera TV, matryca CCD
5 Jeol 2000EX IF-PAN (1989) 200kV Rozdzielczość 0.27 nm Rozdzielczość ograniczona przez soczewki
6 Przełom w TEM działo z emisja polową +korekcja aberracji sferycznej 0.25 nm Jeol 2000ex IF-PAN LaB 6 HRTEM imaging of atoms at sub-ångström resolution, O'Keefe et al. J Electron Microsc (Tokyo).2005; 54: nm 0.1 nm 0.06 nm Microsc. Microanal.,Vol.9(Suppl.3),038 (2003) G. Benner, M. Matijevic, A. Orchowski, B. Schindler*, M. H., P. Hartel Carl Zeiss SMT s new sub-angstrom UHRTEM
7 Rozdzielczość a długość fali Napięcie przyspieszające [kv] λ [nm] λ (nm) relatywistyczna prędkość (x10 8 m/s) Jeol 2000EX IF-PAN (1989) 200kV 0.27 nm Rozdzielczość ograniczona przez soczewki FEI Titan+ Cs + monochromator 300kV (λ =2 pm) 0.07 nm (70 pm) Rozdzielczość ograniczona przez szczątkową aberrację chromatyczną, wibracje i niestabilność napięcia przyspieszającego oraz prądu w soczewkach
8 Oddziaływanie wysokoenergetycznych elektronów z atomem - energia ev 1. Nie rozproszone 2. Nisko kątowe rozpraszanie elastyczne 3. Wysoko kątowe rozpraszanie elastyczne 4. Wstecznie rozproszone 5. Rozproszenie nieelastyczne na zewnętrznej powłoce 6. Rozproszenie nieelastyczne na wewnętrznej powłoce
9 Oddziaływanie wysokoenergetycznych elektronów z ciałem stałym rozpraszanie nieelastyczne Padający elektron elektron Augera wybity elektron (jonizacja) poziom próżni poziom Fermiego charakterystyczny foton X dziura Elektron ze stratą energii
10 Sygnały produkowane przez sondę elektronową w cienkim krysztale wykorzystywane do tworzenia obrazów i/lub spektroskopii Fotony widzialne katodoluminescencja padająca wiązka elektronowa φ10µm.0.1 nm wstecznie rozproszone elektrony elektrony wtórne Promieniowanie X EDX ciepło elektrony Auger a Cienki preparat t=5-200 nm elektrony rozproszone elastycznie DYFRAKCJA CTEM, SAD, HRTEM, Z-contrast elektrony przechodzące bez rozproszenia elektrony rozproszone nieelastycznie EELS
11 Dlaczego elektrony są tak interesujące? Rozpraszanie na: Średnia droga swobodna [nm] Długość absorpcji [nm] Neuutrony jądrach X-rays elektronach elektrony potencjale Bardzo silne oddziaływanie z materią Sygnał od 1 atomu w próbce dla elektronów jest 10 4 większy niż dla promieni X
12 Wykonanie przekroju poprzecznego : - piła drutowa lub micro disc - drut stalowy lub molibdenowy φ µm +SiC, BC, zawiesina w oleju lub glicerynie -inkrustowany diamentami drut dla suchego cięcia -- grubość plasterków µm Microsaw from Tecnoorg Linda Hungary Artefakty: - generacja defektów - zniszczenia termiczne C
13 Wykonanie przekroju poprzecznego : - pocienianie plasterków - usuwa zniszczenia powodowane przez cięcie - przygotowanie geometrii preparatu - szlifowanie na papierach ściernych SiC do t= 50 µm. Gatan Disc grinder - dimplowanie 0-10 µm trawienie jonowe mikroskop - tripod polishing 0 µm mikroskop ( tylko Si ) Tarcza szlifująca próbka
14 Wykonanie przekroju poprzecznego : - Trawienie jonowe Image from:electron Microscopy in Solid Stage Physics H.Bethge and J. Heydenreich, Elesevier 1987 Kąt padania wiązki jonów 1-25, ale <5 pozwala uniknąć selektywnego trawienia Napnięcie przyspieszające 4-9kV (200V- 8kV) czas 1-48h Jony Argonu, chłodzenie ciekłym azotem pośrednio, ( strumieniem gazu obojętnego ) próżnia 10-5 Torr (10-3 Torr podczas trawienia)
15 Trawienie jonowe powoduje defekty radiacyjne i amorfizuje powierzchnie Ograniczenie uszkodzeń poprzez: - niższe napięcie, zmniejszanie kąta padania wiązki jonów, chłodzenie preparatu Chłodzenie ciekłym azotem Regulator temperatury Wideo mikroskop z zoomem Precision Ion Polishing System (PIPS ) na wyposażeniu IF-PAN Dzialła jonowe 100V - 6KV kąty 0º-10º
16 Podstawowe Tryby Pracy mikroskopu Przysłona kontrastu obraz 1 probka objektyw Pł. Ogniskowa Przys.Selec. Soczewki pośrednie obraz 2 Socz. Proj. Obraz TEM Obraz dyfrakcyjny
17 Dyfrakcja elektronowa konstrukcja sfery Ewalda
18 Dyfrakcja elektronowa Równanie Bragga λ/d=2 sin θ 2θ Wiec : R= Lλ/d Dyfrakcja elektronowa SAD z nano-wiskersa ZnTe Z wielu nw Analogia do dyfrakcji proszkowej X-ray Ryssunek : D. Williamset.al., Transmission Electron Microscopy. A textbook for Materials Science,. Fot. P.Dluzewski, S.Kret IF-PAN
19 Kontrast dyfrakcyjny: jasne i ciemne pole Rys:. D. Williams et.al., Transmission Electron Microscopy. A textbook for Materials Science,.
20 Kontrast dyfrakcyjny: jasne i ciemne pole Krystality Pd o wymiarach 5-15 nm Foto :P.Dłużewski IF-PAN
21 Kontrast dyfrakcyjny: obraz dyslokacji opis intuicyjny Wygięcie płaszczyzn warunek Bragga spełniony lokalnie prostopadle do stopni równolegle do stopni Obraz TEM przekroju poprzecznego przez 2.5 µm warstwę 3C-SiC wyhodowaną na Si (100) 4 off. Foto: S.Kret IF-PAN Próbka: M Zieliński NowaSiC
22 Kontrast dyfrakcyjny: Warunek dwuwiązkowy Rysunki:. D. Williams et.al., Transmission Electron Microscopy. A textbook for Materials Science,.
23 Kontrast dyfrakcyjny: Warunek dwuwiązkowy Siatka dyslokacji niedopasowania GaAs/In 0.07 GaAs Dyslokacja znika jeśli g b = 0 Foto :P.Dłużweski IF-PAN Próbka: ł. GELCZUK et.al. WEMiF,Wrocław
24 Kontrast dyfrakcyjny: Warunek dwuwiązkowy Siatka dyslokacji niedopasowania GaAs/In 0.07 GaAs Dyslokacja znika jeśli g b = 0 Foto :P.Dłużweski IF-PAN Próbka: ł. GELCZUK et.al. WEMiF,Wrocław
25 Kontrast dyfrakcyjny: Warunek dwuwiązkowy Siatka dyslokacji niedopasowania GaAs/In 0.07 GaAs Dyslokacja znika jeśli g b = 0 Foto :P.Dłużweski IF-PAN Próbka: ł. GELCZUK et.al. WEMiF,Wrocław
26 Cienka folia t=5-30nm Plaszczyzna obiektu Równolegla wiązka elektronów A C B Tryb pracy HRTEM Kontrast Fazowy P.ogniskowa -g O g Soczewka obiektywu Przyslona kontrastu B ' Plaszczyzna obrazu Syntylator lub film C ' A ' wlókna optyczne CCD
27 Zasada tworzenia obrazu HRTEM (selekcja wiązek ugiętych na obrazie dyfrakcyjnym) Interferencja 2 wiązek Interferencja 7 wiązek
28 HRTEM GaAs <110> Zn (a) (b) Te 7 wiązek Rozdzielczość 0.27 nm 0.3 nm monowarstwa 13 wiązek Rozdzielczość 0.16 nm
29 SYMULACJA HRTEM : ETAP I wysokoenergetyczne elektrony w krysztale metoda " multislice " : podział grubego kryształu na plasterki "weak-phase-object aproximation" Cowley and Moodie (1957) z weak-phase-object propagacja Ψ r ) r [ Ψ ( r ) q ( r )] p ( r) n+ 1 ( = n n+ 1 n+ 1 r πe = z q + i 0 E V x y z dz n 1( ) exp (,, ) λ p r k r) = exp - i z n+ 1( r 2 ( x + y 2 z by P.Stadelman Internetowy symulator TEM 2 ) r Funkcja "przezroczystości" plasterka (n+1) Propagator
30 Amplitudy wiązki pierwotnej i główne wiązki ugięte (bez absorpcji) GaAs kierunek wiązki padającej <110> Grubość kryształu [nm]
31 SYMULACJA HRTEM : ETAP II elektrony w układzie optycznym mikroskopu przybliżenie nieliniowe formowania obrazu w oświetleniu częściowo koherentnym K.Ishizuka 1980 Uwzględnia aberracje układu optycznego mikroskopu Contrast Transfer Function (CTF), Funkcja przenoszenia kontrastu
32 Symulacje HRTEM 200 kv LaB 6 Grubość [nm] GaAs <110> Zone axis Rozogniskowanie [nm] In 0.5 Ga 0.5 As <110> Zone axis
33 Przykład wykorzystania TEM w badaniu kropek kwantowych GaAs/Ga 0.65 In 0.35 As 23ML x=0.35 a/a=0.027 naprężenie ~ 3GPa LPS-ESPCI Kontrast dyfrakcyjny w rzucie płaskim [001] Pseudo heksagonalna sieć kropek Średnia odległość ok. 30 nm
34 Przekrój poprzeczny Elektrony w kierunku <110> LPS-ESPCI
35 Pomiar rozkładów dystorsji sieci na Choices of obrazach the images HRTEM and ROI LPS-ESPCI
36 Siatka odniesienia nałożona na zdeformowany kryształ
37 Wektory przemieszczeń x5
38 u x 14 pixels=a u z 11 pixels=1ml a x =13.25 pixels a z =18.66 pixels
39 Lokalne dystorsje sieci ε x = ux ε y = uy x y Kret S. Et al Phil. Mag. Letter 66 52
40 Dystorsje skład chemiczny Rozkład indu w wyspie GaAs/Ga 0.65 In 0.35 As 23ML na podstawie analizy HRTEM i modelowania FE Kret S. et al J.Appl Phys. 86, 21 Ucieczka indu do zrelaksowanej części wyspy!
41 Pseudomorphic growth, tetragonal distortion biaxial stress a ~2 a a l d z a s 12 d = α a = 2 z a s c 1+ ν α = + c 11 1 ν
42 Skład określamy korzystając z prawa Vegarda InGaN, GaN, InN a = xa + (1 x) Inx Ga1 x N InN a GaN Local composition: ε= a/a x In = α a ( a GaN InN ε ( z) a GaN = ) α ε a a
43 HRTEM images of InGaN (MBE) MQWs in the [1120 ] zone axis.
44 Thickness 5-10 nm ε MAX = In Max 22-28% Nominal ~15% %In ε ε xx Surface plot of measured Indum composition, colour scale are common for εxx and %In
45 Checking validity of the β on know object : - molecular static relaxation of 5/7 atomic core of edge dislocation in in GaN, Burgers vector 1/3< 21 10> - modified S-W potential (10000 atoms) - simulate images [0001] zone axis, TOPCON 2B EXPERIMENTAL SIMULATON t=10nm, df=-20m
46 Checking validity of the β on know object : - molecular static relaxation of 5/7 atomic core of edge dislocation in in GaN, Burgers vector 1/3< 21 10> - modified S-W potential (10000 atoms) - simulate images [0001] zone axis, TOPCON 2B EXPERIMENTAL SIMULATON t=10nm, df=-20m β xx
47 Checking validity of the β on know object : - molecular static relaxation of 5/7 atomic core of edge dislocation in in GaN,Burgers vector 1/3< 21 10> - modified S-W potential (10000 atoms) - simulate images [0001] zone axis, TOPCON 2B EXPERIMENTAL SIMULATON t=10nm, df=-20m β xy
48 Checking validity of the β on know object : - molecular static relaxation of 5/7 atomic core of edge dislocation in in GaN,Burgers vector 1/3< 21 10> - modified S-W potential (10000 atoms) - simulate images [0001] zone axis, TOPCON 2B EXPERIMENTAL SIMULATON t=10nm, df=-20m β yx
49 Checking validity of the β on know object : - molecular static relaxation of 5/7 atomic core of edge dislocation in in GaN,Burgers vector 1/3< 21 10> - modified S-W potential (10000 atoms) - simulate images [0001] zone axis, TOPCON 2B EXPERIMENTAL SIMULATON t=10nm, df=-20m β yy
50 Metody spektroskopowe Spektroskopia charakterystycznego promieniowania X (EDX) Spektrum EDX H. Kirmse, W. Neumann, Humboldt-Universität zu Berlin
51 FEG-EDX Liniowy profil składu nanodrut ZnTe/katalizator Au-Ga+?? ZnTe, E.Janik at al..nanotechnology, 18,2007,
52 Analiza strat energii elektorów rozproszonych nieelastycznie EELS Czyli kolorowy mikroskop elektronowy
53 Spektroskopia strat energii elektronów i mapowanie składu chemicznego Elektrony tracą różne porcje energii w zależności od tego na czym się rozproszą
54 Takie informacje mogą być uzyskane w skali nanometrycznej ELNES Extender fine structure (EXELFS) - atomspecific radial distribution of near neighbors (RDF)
55 Si implantowane Mn 45 nm 115 nm 240 nm JEOL 2000EX P..Dłużewski, S.Kret,, A. Szczepańska IF-PAN 2005
56 wydzielenia koherentne Rozmiar nm Kształt : fasetki nm JEOL 2000EX S.Kret, P..Dluzewski, A. Szczepańska IF-PAN 2005
57 Widmo EELS w pobliżu krawędzi absorpcji manganu Zlicznia elektronów strata energii ev Φ~3nm Obrazy przed i po krawędzi absorbcji Mapa rozkładu manganu wydzielenia 3-5 nmśrednicy Tecnai G2 F20 S-Twin Cs corrected GIF-EELS S.Kret, A. Szczepańska,Y. Lefraisim, M. Hytch Tuluza CEMES 2005 r
58 Z-contrast STEM Z=31 Z=33 Zródło: S. J. Pennycook, Structure Determination through Z- Contrast Microscopy, p. 173 in Advances in Imaging and Electron Physics, Vol 123, ed. by P. G. Merli, G. Calestani, and M. Vittori- Antisari, 2002 Ga As 1.4Å EELS kolumny atomowej
59 Holografia elektronowa (niskiej rozdzielczości) precyzyjne pomiary zmiany fazy fali elektronowej wizualizacja lokalnych pól magnetycznych i elektrycznych, Nanocząski FeNi, wiry magnetyczne Tranzystory 0.3µm NMOS i PMOS Amplituda i faza RAFAL E. DUNIN-BORKOWSKI et. al. MICROSCOPY RESEARCH AND TECHNIQUE 64: (2004) W.D.Rau et. al, phys. Stat. Sol. (b) 222, 213 (200)
60 Problem rzutu i uśredniania Tomografia I dużo więcej Np. +dyfrakcja
61 Słabe punkty TEMu Konieczność wykonania preparatu zniszczenie materiału Słabe próbkowanie lokalne informacje tylko z obszarów przezroczystych dla elektronów a jednak około mm 2 dla najlepszych preparatów Artefakty preparatyki - relaksacja naprężeń w cienkiej folii - amorfizacja, defekty radiacyjne Zniszczenia radiacyjne elektronami próbka przestaje być reprezentatywna - jonizacja i niszczenie wiązań chemicznych - nagrzewanie i dyfuzja składników w słabo przewodzących próbkach - wybijanie lub przesuwanie atomów, rozpylanie Wysokie koszty aparatury, pracochłonne przygotowanie preparatów Skomplikowana klawiszologia i interpretacja danych wyobraźnia i wiedza mikroskopisty (ciągle potrzebny)
62 Zalecana literatura : - J.Kozubowski, Metody transmisyjnej mikroskopii elektronowej, Wydawnictwo Śląsk, Katowice Spence, J. C. H., Experimental High Resolution Transmission Electron Microscopy, North-Holland, Amsterdam, Holanda, Williams, D. B., Barry Carter, C., Transmission Electron Microscopy. A textbook for Materials Science, Plenum Press, New York, USA, 1996.
Fizyka i technologia wzrostu kryształów
Fizyka i technologia wzrostu kryształów Transmisyjna Mikroskopia elektronowa Sławomir Kret, kret@ifpan.edu.pl Instytut Fizyki PAN Transmisyjna Mikroskopia Elektronowa TEM (Transmission Electron Microscopy)
h λ= mv h - stała Plancka (4.14x10-15 ev s)
Twórcy podstaw optyki elektronowej: De Broglie LV. 1924 hipoteza: każde ciało poruszające się ma przyporządkowaną falę a jej długość jest ilorazem stałej Plancka i pędu. Elektrony powinny więc mieć naturę
Fizyka i technologia wzrostu kryształów
Fizyka i technologia wzrostu kryształów Transmisyjna Mikroskopia Elektronowa Sławomir Kret, kret@ifpan.edu.pl Instytut Fizyki PAN Transmisyjna Mikroskopia Elektronowa TEM (Transmission Electron Microscopy)
WSPÓŁCZESNA TRANSMISYJNA MIKROSKOPIA ELEKTRONOWA PODSTAWY I MOŻLIWOŚCI TECHNIK S/TEM
WSPÓŁCZESNA TRANSMISYJNA MIKROSKOPIA ELEKTRONOWA PODSTAWY I MOŻLIWOŚCI TECHNIK S/TEM DOSTĘPNYCH W LABORATORIUM WYDZIAŁU CHEMII UMCS DR INŻ. SEBASTIAN ARABASZ ul. Wantule 12, 02 828 Warszawa tel/fax: (22)
LABORATORIUM ANALITYCZNEJ MIKROSKOPII ELEKTRONOWEJ (L - 2)
LABORATORIUM ANALITYCZNEJ MIKROSKOPII ELEKTRONOWEJ (L - 2) Posiadane uprawnienia: ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO NR AB 120 wydany przez Polskie Centrum Akredytacji Wydanie nr 5 z 18 lipca 2007
Spektroskopia charakterystycznych strat energii elektronów EELS (Electron Energy-Loss Spectroscopy)
Spektroskopia charakterystycznych strat energii elektronów EELS (Electron Energy-Loss Spectroscopy) Oddziaływanie elektronów ze stałą, krystaliczną próbką wstecznie rozproszone elektrony elektrony pierwotne
Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego
Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego Ćwiczenie 6 Elektronowy mikroskop transmisyjny w badaniach struktury metali metodą elektronograficzną Cel ćwiczenia: Celem ćwiczenia jest zbadanie struktury
MIKROSKOPIA ELEKTRONOWA. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego
MIKROSKOPIA ELEKTRONOWA Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Tło historyczne Pod koniec XIX wieku stosowanie mikroskopów świetlnych w naukach
Spektroskopia fotoelektronów (PES)
Spektroskopia fotoelektronów (PES) Efekt fotoelektryczny hν ( UV lub X) E =hν kin W Proces fotojonizacji w PES: M + hν M + + e E kin (e) = hν E B Φ sp E B energia wiązania elektronu w atomie/cząsteczce
Promieniowanie X. Jak powstaje promieniowanie rentgenowskie Budowa lampy rentgenowskiej Widmo ciągłe i charakterystyczne promieniowania X
Promieniowanie X Jak powstaje promieniowanie rentgenowskie Budowa lampy rentgenowskiej Widmo ciągłe i charakterystyczne promieniowania X Lampa rentgenowska Lampa rentgenowska Promieniowanie rentgenowskie
Podstawy fizyki kwantowej i budowy materii
Podstawy fizyki kwantowej i budowy materii prof. dr hab. Aleksander Filip Żarnecki Zakład Cząstek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej Wykład 5 7 listopada 2016 A.F.Żarnecki Podstawy
Elektronowa mikroskopia. T. 2, Mikroskopia skaningowa / Wiesław Dziadur, Janusz Mikuła. Kraków, Spis treści
Elektronowa mikroskopia. T. 2, Mikroskopia skaningowa / Wiesław Dziadur, Janusz Mikuła. Kraków, 2016 Spis treści Wykaz ważniejszych skrótów i oznaczeń 11 Przedmowa 17 Wstęp 19 Literatura 26 Rozdział I.
I.4 Promieniowanie rentgenowskie. Efekt Comptona. Otrzymywanie promieniowania X Pochłanianie X przez materię Efekt Comptona
r. akad. 004/005 I.4 Promieniowanie rentgenowskie. Efekt Comptona Otrzymywanie promieniowania X Pochłanianie X przez materię Efekt Comptona Jan Królikowski Fizyka IVBC 1 r. akad. 004/005 0.01 nm=0.1 A
Czy atomy mogą być piękne?
Krzysztof Matus Doktorant w Instytucie Materiałów Inżynierskich i Biomedycznych Wydział Mechaniczny Technologiczny Politechnika Śląska Czy atomy mogą być piękne? W czasach, gdy ciągły rozwój nauki połączony
Skaningowy Mikroskop Elektronowy. Rembisz Grażyna Drab Bartosz
Skaningowy Mikroskop Elektronowy Rembisz Grażyna Drab Bartosz PLAN PREZENTACJI: 1. Zarys historyczny 2. Zasada działania SEM 3. Zjawiska fizyczne wykorzystywane w SEM 4. Budowa SEM 5. Przygotowanie próbek
Wykład 12 V = 4 km/s E 0 =.08 e V e = = 1 Å
Wykład 12 Fale materii: elektrony, neutrony, lekkie atomy Neutrony generowane w reaktorze są spowalniane w wyniku zderzeń z moderatorem (grafitem) do V = 4 km/s, co odpowiada energii E=0.08 ev a energia
Prawa optyki geometrycznej
Optyka Podstawowe pojęcia Światłem nazywamy fale elektromagnetyczne, o długościach, na które reaguje oko ludzkie, tzn. 380-780 nm. O falowych własnościach światła świadczą takie zjawiska, jak ugięcie (dyfrakcja)
Monochromatyzacja promieniowania molibdenowej lampy rentgenowskiej
Uniwersytet Śląski Instytut Chemii Zakładu Krystalografii ul. Bankowa 14, pok. 133, 40 006 Katowice tel. (032)359 1503, e-mail: izajen@wp.pl, opracowanie: dr Izabela Jendrzejewska Laboratorium z Krystalografii
Światło ma podwójną naturę:
Światło ma podwójną naturę: przejawia własności fal i cząstek W. C. Roentgen ( Nobel 1901) Istnieje ciągłe przejście pomiędzy tymi własnościami wzdłuż spektrum fal elektromagnetycznych Dla niskich częstości
SPM Scanning Probe Microscopy Mikroskopia skanującej sondy STM Scanning Tunneling Microscopy Skaningowa mikroskopia tunelowa AFM Atomic Force
SPM Scanning Probe Microscopy Mikroskopia skanującej sondy STM Scanning Tunneling Microscopy Skaningowa mikroskopia tunelowa AFM Atomic Force Microscopy Mikroskopia siły atomowej MFM Magnetic Force Microscopy
Techniki mikroskopowe
Techniki mikroskopowe Metody badań strukturalnych ciała stałego dr inż. Magdalena Król Mikrostruktura Struktura przestrzenne rozmieszczenie cząstek materii (atomów, jonów, cząsteczek) oraz zespół relacji
Promieniowanie rentgenowskie. Podstawowe pojęcia krystalograficzne
Promieniowanie rentgenowskie Podstawowe pojęcia krystalograficzne Krystalografia - podstawowe pojęcia Komórka elementarna (zasadnicza): najmniejszy, charakterystyczny fragment sieci przestrzennej (lub
NOWOCZESNE TECHNIKI BADAWCZE W INŻYNIERII MATERIAŁOWEJ. Beata Grabowska, pok. 84A, Ip
NOWOCZESNE TECHNIKI BADAWCZE W INŻYNIERII MATERIAŁOWEJ Beata Grabowska, pok. 84A, Ip http://home.agh.edu.pl/~graboska/ Mikroskopia Słowo mikroskop wywodzi się z języka greckiego: μικρός - mikros "mały
Fizykochemiczne metody w kryminalistyce. Wykład 7
Fizykochemiczne metody w kryminalistyce Wykład 7 Stosowane metody badawcze: 1. Klasyczna metoda analityczna jakościowa i ilościowa 2. badania rentgenostrukturalne 3. Badania spektroskopowe 4. Metody chromatograficzne
SZCZEGÓŁOWY OPIS PRZEDMIOTU ZAMÓWIENIA STANOWIĄCY JEDNOCZEŚNIE DRUK POTWIERDZENIE ZGODNOŚCI TECHNICZNEJ OFERTY
Załącznik nr 2 do SIWZ Załacznik nr 2 do umowy SZCZEGÓŁOWY OPIS PRZEDMIOTU ZAMÓWIENIA STANOWIĄCY JEDNOCZEŚNIE DRUK POTWIERDZENIE ZGODNOŚCI TECHNICZNEJ OFERTY Przedmiot oferty: Wysokorozdzielczy skaningowy
Spektroskopia elektronów Augera AES
Spektroskopia elektronów Augera AES (Auger Electron Spectroscopy) Emisja elektronu Augera (Pierre Auger, 1925) elektron Augera E kin E vac 3 poziom Fermiego e C B 2 Φ Α E C E B E A A 1 Energia kinetyczna
Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego
Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego Ćwiczenie 7 Elektronowy mikroskop skaningowy-analogowy w badaniach morfologii powierzchni ciała stałego. Cel ćwiczenia: Celem ćwiczenia jest zapoznanie
Inkluzje Protodikraneurini trib. nov.. (Hemiptera: Cicadellidae) w bursztynie bałtyckim i ich badania w technice SEM
Muzeum i Instytut Zoologii Polska Akademia Nauk Akademia im. Jana DługoszaD ugosza Inkluzje Protodikraneurini trib. nov.. (Hemiptera: Cicadellidae) w bursztynie bałtyckim i ich badania w technice SEM Magdalena
Źródło typu Thonnemena dostarcza jony: H, D, He, N, O, Ar, Xe, oraz J i Hg.
ZFP dysponuje obecnie unowocześnioną aparaturą, której skompletowanie, uruchomienie i utrzymanie w sprawności wymagało wysiłku zarówno merytorycznego jak i organizacyjnego oraz finansowego. Unowocześnienia
Fizyka kwantowa. promieniowanie termiczne zjawisko fotoelektryczne. efekt Comptona dualizm korpuskularno-falowy. kwantyzacja światła
W- (Jaroszewicz) 19 slajdów Na podstawie prezentacji prof. J. Rutkowskiego Fizyka kwantowa promieniowanie termiczne zjawisko fotoelektryczne kwantyzacja światła efekt Comptona dualizm korpuskularno-falowy
METODY BADAŃ BIOMATERIAŁÓW
METODY BADAŃ BIOMATERIAŁÓW 1 Cel badań: ograniczenie ryzyka związanego ze stosowaniem biomateriałów w medycynie Rodzaje badań: 1. Badania biofunkcyjności implantów, 2. Badania degradacji implantów w środowisku
Ciała stałe. Ciała krystaliczne. Ciała amorficzne. Bardzo często mamy do czynienia z ciałami polikrystalicznymi, rzadko monokryształami.
Ciała stałe Ciała krystaliczne Ciała amorficzne Bardzo często mamy do czynienia z ciałami polikrystalicznymi, rzadko monokryształami. r T = Kryształy rosną przez regularne powtarzanie się identycznych
Eugeniusz Łągiewka. Podstawy dyfrakcji promieni rentgenowskich, elektronów i neutronów
Eugeniusz Łągiewka Podstawy dyfrakcji promieni rentgenowskich, elektronów i neutronów KATOWICE 2015 Podstawy dyfrakcji promieni rentgenowskich, elektronów i neutronów Rodzinie i Przyjaciołom 1 2 NR 159
Krystalografia. Dyfrakcja
Krystalografia Dyfrakcja Podstawowe zagadnienia Rodzaje promieniowania używane w dyfrakcyjnych metodach badań struktur krystalicznych, ich źródła Fizyczne podstawy i warunki dyfrakcji Równania dyfrakcji:
S. Baran - Podstawy fizyki materii skondensowanej Dyfrakcja na kryształach. Dyfrakcja na kryształach
S. Baran - Podstawy fizyki materii skondensowanej Dyfrakcja na kryształach Dyfrakcja na kryształach Warunki dyfrakcji źródło: Ch. Kittel Wstęp do fizyki..., rozdz. 2, rys. 6, str. 49 Konstrukcja Ewalda
Zaawansowane Metody Badań Strukturalnych. Badania strukturalne materiałów Badania właściwości materiałów
Zaawansowane Metody Badań Strukturalnych Badania strukturalne materiałów Badania właściwości materiałów Zaawansowane Metody Badań Strukturalnych 1. Struktura próbki a metoda badań strukturalnych 2. Podział
Jak badać strukturę powierzchni?
Jak badać strukturę powierzchni? Wykład - 12 15 Anim - ten kod oznacza, że na stronie znajdują się animacje niewidoczne w pliku pdf. Aby oglądnąć te animacje skopiuj zbiór z pokazem PowerPoint Z. Postawa,
Falowa natura materii
r. akad. 2012/2013 wykład I - II Podstawy Procesów i Konstrukcji Inżynierskich Falowa natura materii 1 r. akad. 2012/2013 Podstawy Procesów i Konstrukcji Inżynierskich Warunki zaliczenia: Aby uzyskać dopuszczenie
Mody sprzężone plazmon-fonon w silnych polach magnetycznych
Mody sprzężone plazmon-fonon w silnych polach magnetycznych Mody sprzężone w półprzewodnikach polarnych + E E pl η = st α = E E pl ξ = p B.B. Varga,, Phys. Rev. 137,, A1896 (1965) A. Mooradian and B. Wright,
Fale materii. gdzie h= 6.6 10-34 J s jest stałą Plancka.
Fale materii 194- Louis de Broglie teoria fal materii, 199- nagroda Nobla Hipoteza de Broglie głosi, że dwoiste korpuskularno falowe zachowanie jest cechą nie tylko promieniowania, lecz również materii.
Laboratorium Badania Materiałów Inżynierskich i Biomedycznych
Wydział Mechaniczny Technologiczny Politechnika Śląska Laboratorium Badania Materiałów Inżynierskich i Biomedycznych Instytut Materiałów Inżynierskich i Biomedycznych 1 Projekt MERFLENG... W 2012 roku
Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska
Podstawy fizyki Wykład 11 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska D. Halliday, R. Resnick, J.Walker: Podstawy Fizyki, tom 3, Wydawnictwa Naukowe PWN, Warszawa 2003. K.Sierański, K.Jezierski,
Światło fala, czy strumień cząstek?
1 Światło fala, czy strumień cząstek? Teoria falowa wyjaśnia: Odbicie Załamanie Interferencję Dyfrakcję Polaryzację Efekt fotoelektryczny Efekt Comptona Teoria korpuskularna wyjaśnia: Odbicie Załamanie
FORMULARZ WYMAGANYCH WARUNKÓW TECHNICZNYCH
Załącznik Nr 2 WYMAGANIA BEZWZGLĘDNE: FORMULARZ WYMAGANYCH WARUNKÓW TECHNICZNYCH Przedmiotem zamówienia jest dostawa i instalacja fabrycznie nowego skaningowego mikroskopu elektronowego (SEM) ze zintegrowanym
Laboratorium z Krystalografii. 2 godz.
Uniwersytet Śląski Instytut Chemii Zakład Krystalografii Laboratorium z Krystalografii 2 godz. Zbadanie zależności intensywności linii Ka i Kb promieniowania charakterystycznego X emitowanego przez anodę
SPEKTROSKOPIA RENTGENOWSKA
Intensywność ĆWICZENIE 105 SPEKTROSKOPIA RENTGENOWSKA Cel ćwiczenia: obserwacja ciągłego i charakterystycznego promieniowania rentgenowskiego, którego źródłem jest wolfram; wyznaczenie energii promieniowania
Rezonanse magnetyczne oraz wybrane techniki pomiarowe fizyki ciała stałego
Paweł Szroeder Rezonanse magnetyczne oraz wybrane techniki pomiarowe fizyki ciała stałego Wykład X Transmisyjna mikroskopia elektronowa (TEM) Dyfrakcja elektronowa (ED) Zalety mikroskopii elektronowej
Metody analizy pierwiastków z zastosowaniem wtórnego promieniowania rentgenowskiego. XRF, SRIXE, PIXE, SEM (EPMA)
Metody analizy pierwiastków z zastosowaniem wtórnego promieniowania rentgenowskiego. XRF, SRIXE, PIXE, SEM (EPMA) Promieniowaniem X nazywa się promieniowanie elektromagnetyczne o długości fali od około
Fizyka powierzchni. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska
Fizyka powierzchni 11 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Lista zagadnień Fizyka powierzchni i międzypowierzchni, struktura
BADANIE I ACHROMATYZACJA PRĄŻKÓW INTERFERENCYJNYCH TWORZONYCH ZA POMOCĄ ZWIERCIADŁA LLOYDA
BADANIE I ACHROMATYZACJA PRĄŻKÓW INTERFERENCYJNYCH TWORZONYCH ZA POMOCĄ ZWIERCIADŁA LLOYDA Celem ćwiczenia jest: 1. demonstracja dużej liczby prążków w interferometrze Lloyda z oświetleniem monochromatycznym,
Metody badania kosmosu
Metody badania kosmosu Zakres widzialny Fale radiowe i mikrofale Promieniowanie wysokoenergetyczne Detektory cząstek Pomiar sił grawitacyjnych Obserwacje prehistoryczne Obserwatorium słoneczne w Goseck
Dyfrakcja. Dyfrakcja to uginanie światła (albo innych fal) przez drobne obiekty (rozmiar porównywalny z długością fali) do obszaru cienia
Dyfrakcja 1 Dyfrakcja Dyfrakcja to uginanie światła (albo innych fal) przez drobne obiekty (rozmiar porównywalny z długością fali) do obszaru cienia uginanie na szczelinie uginanie na krawędziach przedmiotów
Dyslokacje w kryształach. ach. Keshra Sangwal Zakład Fizyki Stosowanej, Instytut Fizyki Politechnika Lubelska
Dyslokacje w kryształach ach Keshra Sangwal Zakład Fizyki Stosowanej, Instytut Fizyki Politechnika Lubelska I. Wprowadzenie do defektów II. Dyslokacje: Podstawowe pojęcie III. Własności mechaniczne kryształów
Laboratorium z Krystalografii. 2 godz.
Uniwersytet Śląski Instytut Chemii Zakład Krystalografii Laboratorium z Krystalografii 2 godz. Zbadanie zależności intensywności linii Kα i Kβ promieniowania charakterystycznego X emitowanego przez anodę
półprzewodniki Plan na dzisiaj Optyka nanostruktur Struktura krystaliczna Dygresja Sebastian Maćkowski
Plan na dzisiaj Optyka nanostruktur Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 półprzewodniki
III. EFEKT COMPTONA (1923)
III. EFEKT COMPTONA (1923) Zjawisko zmiany długości fali promieniowania roentgenowskiego rozpraszanego na swobodnych elektronach. Zjawisko to stoi u podstaw mechaniki kwantowej. III.1. EFEKT COMPTONA Rys.III.1.
Fizyka powierzchni. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska
Fizyka powierzchni 7 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Lista zagadnień Fizyka powierzchni i międzypowierzchni, struktura powierzchni
Dyslokacje w kryształach. ach. Keshra Sangwal, Politechnika Lubelska. Literatura
Dyslokacje w kryształach ach Keshra Sangwal, Politechnika Lubelska I. Wprowadzenie do defektów II. Dyslokacje: podstawowe pojęcie III. Własności mechaniczne kryształów IV. Źródła i rozmnażanie się dyslokacji
Powierzchnie cienkie warstwy nanostruktury. Józef Korecki, C1, II p., pok. 207
Powierzchnie cienkie warstwy nanostruktury Józef Korecki, C1, II p., pok. 207 korecki@uci.agh.edu.pl http://korek.uci.agh.edu.pl/priv/jk.htm Obiekty niskowymiarowe Powierzchnia Cienkie warstwy Wielowarstwy
Absorpcja promieni rentgenowskich 2 godz.
Uniwersytet Śląski - Instytut Chemii Zakład Krystalografii ul. Bankowa 14, pok. 133, 40-006 Katowice tel. (032)3591627, e-mail: joanna_palion@poczta.fm opracowanie: mgr Joanna Palion-Gazda Laboratorium
Mody sprzęŝone plazmon-fonon w silnych polach magnetycznych
Mody sprzęŝone plazmon-fonon w silnych polach magnetycznych Mody sprzęŝone w półprzewodnikach polarnych + E E pl η = st α = E E pl ξ = p B.B. Varga, Phys. Rev. 137,, A1896 (1965) A. Mooradian and B. Wright,
Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach
Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach Efekt Comptona. p f Θ foton elektron p f p e 0 p e Zderzenia fotonów
Rozpraszanie nieelastyczne
Rozpraszanie nieelastyczne Przekazywanie energii elektronów wiązki prowadzi do emisji szeregu sygnałów wykorzystywanych w mikroskopii elektronowej i mikroanalizie rentgenowskiej: 1. Niskoenergetyczne elektrony
Rejestracja i rekonstrukcja fal optycznych. Hologram zawiera pełny zapis informacji o fali optycznej jej amplitudzie i fazie.
HOLOGRAFIA prof dr hab inŝ Krzysztof Patorski Krzysztof Rejestracja i rekonstrukcja fal optycznych Hologram zawiera pełny zapis informacji o fali optycznej jej amplitudzie i fazie a) Laser b) odniesienia
Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI
Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI I. Zagadnienia do opracowania. 1. Otrzymywanie promieni rentgenowskich. 2. Budowa lampy rentgenowskiej. 3. Własności
Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI
Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI Ćwiczenie 13 : Dyfrakcja wiązki elektronów na I. Zagadnienia do opracowania. 1. Dualizm korpuskularno falowy
Optyka instrumentalna
Optyka instrumentalna wykład 9 4 maja 2017 Wykład 8 Przyrządy optyczne Oko ludzkie Lupa Okular Luneta, lornetka Teleskopy zwierciadlane Mikroskop Parametry obiektywów, rozdzielczość Oświetlenie (dia, epi,
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 3 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2013/14
OPTYKA GEOMETRYCZNA I INSTRUMENTALNA
1100-1BO15, rok akademicki 2018/19 OPTYKA GEOMETRYCZNA I INSTRUMENTALNA dr hab. Rafał Kasztelanic Wykład 7 Dystorsja Zależy od wielkości pola widzenia. Dystorsja nie wpływa na ostrość obrazu lecz dokonuje
Prezentacja aparatury zakupionej przez IKiFP. Mikroskopy LEEM i PEEM
Prezentacja aparatury zakupionej przez IKiFP Mikroskopy LEEM i PEEM Cechy ogólne mikroskopów do badania powierzchni; czułość Å - nm szeroka gama kontrastów topograficzny strukturalny chemiczny magnetyczny
Spektroskopia elektronów Augera. AES Auger Electron Spectroscopy
Spektroskopia elektronów Augera AES Auger Electron Spectroscopy Podstawy E k Z E 4 E 3 E 2 E 1 E k =(E 2 -E 3 )-E 4 Proces Auger a Jonizacja głęboko leżącego poziomu elektronowego przez elektrony pierwotne
Mody sprzęŝone plazmon-fonon w silnych polach magnetycznych
Mody sprzęŝone plazmon-fonon w silnych polach magnetycznych Klasyczny przykład pośredniego oddziaływania pola magnetycznego na wzbudzenia fononowe Schemat: pole magnetyczne (siła Lorentza) nośniki (oddziaływanie
Wykład XI. Optyka geometryczna
Wykład XI Optyka geometryczna Jak widzimy? Aby przedmiot był widoczny, musi wysyłać światło w wielu kierunkach. Na podstawie światła zebranego przez oko mózg lokalizuje położenie obiektu. Niekiedy promienie
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 8 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Aneta Drabińska, Barbara Piętka, Paweł Kowalczyk Wydział Fizyki Uniwersytet
Podstawy fizyki wykład 2
D. Halliday, R. Resnick, J.Walker: Podstawy Fizyki, tom 5, PWN, Warszawa 2003. H. D. Young, R. A. Freedman, Sear s & Zemansky s University Physics with Modern Physics, Addison-Wesley Publishing Company,
Rentgenografia - teorie dyfrakcji
Rentgenografia - teorie dyfrakcji widmo promieniowania rentgenowskiego Widmo emisyjne promieniowania rentgenowskiego: -promieniowanie charakterystyczne -promieniowanie ciągłe (białe) Efekt naświetlenia
Oddziaływanie promieniowania X z materią. Podstawowe mechanizmy
Oddziaływanie promieniowania X z materią Podstawowe mechanizmy Promieniowanie od oscylującego elektronu Rozpraszanie Thomsona Dyspersja podejście klasyczne Fala padająca Wymuszony, tłumiony oscylator harmoniczny
Ćwiczenie 12 (44) Wyznaczanie długości fali świetlnej przy pomocy siatki dyfrakcyjnej
Ćwiczenie 12 (44) Wyznaczanie długości fali świetlnej przy pomocy siatki dyfrakcyjnej Wprowadzenie Światło widzialne jest to promieniowanie elektromagnetyczne (zaburzenie poła elektromagnetycznego rozchodzące
NOWOCZESNE TECHNIKI BADAWCZE W INŻYNIERII MATERIAŁOWEJ. Beata Grabowska, pok. 84A, Ip
NOWOCZESNE TECHNIKI BADAWCZE W INŻYNIERII MATERIAŁOWEJ Beata Grabowska, pok. 84A, Ip http://home.agh.edu.pl/~graboska/ Mikroskopia Słowo mikroskop wywodzi się z języka greckiego: μικρός - mikros "mały
Co to jest kropka kwantowa? Kropki kwantowe - część I otrzymywanie. Co to jest ekscyton? Co to jest ekscyton? e πε. E = n. Sebastian Maćkowski
Co to jest kropka kwantowa? Kropki kwantowe - część I otrzymywanie Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Co to jest ekscyton? Co to jest ekscyton? h 2 2 2 e πε m* 4 0ε s Φ
Pomiar energii wiązania deuteronu. Celem ćwiczenia jest wyznaczenie energii wiązania deuteronu
J1 Pomiar energii wiązania deuteronu Celem ćwiczenia jest wyznaczenie energii wiązania deuteronu Przygotowanie: 1) Model deuteronu. Własności deuteronu jako źródło informacji o siłach jądrowych [4] ) Oddziaływanie
UMO-2011/01/B/ST7/06234
Załącznik nr 7 do sprawozdania merytorycznego z realizacji projektu badawczego Szybka nieliniowość fotorefrakcyjna w światłowodach półprzewodnikowych do zastosowań w elementach optoelektroniki zintegrowanej
Metody i techniki badań II. Instytut Inżynierii Materiałowej Wydział Inżynierii Mechanicznej i Mechatroniki ZUT
Metody i techniki badań II Instytut Inżynierii Materiałowej Wydział Inżynierii Mechanicznej i Mechatroniki ZUT Dr inż. Agnieszka Kochmańska pok. 20 Zakład Metaloznawstwa i Odlewnictwa agnieszka.kochmanska@zut.edu.pl
Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI
Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI I. Zagadnienia do opracowania. 1. Otrzymywanie promieni rentgenowskich. 2. Budowa lampy rentgenowskiej. 3. Własności
Techniki Jądrowe w Diagnostyce i Terapii Medycznej
Techniki Jądrowe w Diagnostyce i Terapii Medycznej Wykład 2-5 marca 2019 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Rozpad Przemiana Widmo
Badanie schematu rozpadu jodu 128 I
J8 Badanie schematu rozpadu jodu 128 I Celem doświadczenie jest wyznaczenie schematu rozpadu jodu 128 I Wiadomości ogólne 1. Oddziaływanie kwantów γ z materią [1,3] a) efekt fotoelektryczny b) efekt Comptona
POMIARY OPTYCZNE 1. Wykład 1. Dr hab. inż. Władysław Artur Woźniak
POMIARY OPTYCZNE Wykład Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej Pokój 8/ bud. A- http://www.if.pwr.wroc.pl/~wozniak/ OPTYKA GEOMETRYCZNA Codzienne obserwacje: światło
Badanie schematu rozpadu jodu 128 J
J8A Badanie schematu rozpadu jodu 128 J Celem doświadczenie jest wyznaczenie schematu rozpadu jodu 128 J Wiadomości ogólne 1. Oddziaływanie kwantów γ z materią (1,3) a/ efekt fotoelektryczny b/ efekt Comptona
Ćw.6. Badanie własności soczewek elektronowych
Pracownia Molekularne Ciało Stałe Ćw.6. Badanie własności soczewek elektronowych Brygida Mielewska, Tomasz Neumann Zagadnienia do przygotowania: 1. Budowa mikroskopu elektronowego 2. Wytwarzanie wiązki
Nanostruktury i nanotechnologie
Nanostruktury i nanotechnologie Heterozłącza Efekty kwantowe Nanotechnologie Z. Postawa, "Fizyka powierzchni i nanostruktury" 1 Termin oddania referatów do 19 I 004 Zaliczenie: 1 I 004 Z. Postawa, "Fizyka
Badanie uporządkowania magnetycznego w ultracienkich warstwach kobaltu w pobliżu reorientacji spinowej.
Tel.: +48-85 7457229, Fax: +48-85 7457223 Zakład Fizyki Magnetyków Uniwersytet w Białymstoku Ul.Lipowa 41, 15-424 Białystok E-mail: vstef@uwb.edu.pl http://physics.uwb.edu.pl/zfm Praca magisterska Badanie
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 2, Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 2, 17.02.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Równania Maxwella r-nie falowe
OBRAZOWANIE ORAZ BADANIE ROZMIARÓW I POŁOŻENIA OBIEKTÓW NAŚWIETLONYCH PROMIENIOWANIEM X
X4 OBRAZOWANIE ORAZ BADANIE ROZMIARÓW I POŁOŻENIA OBIEKTÓW NAŚWIETLONYCH PROMIENIOWANIEM X 1. Cel ćwiczenia Celem ćwiczenia jest jakościowe poznanie podstawowych zjawisk fizycznych wykorzystywanych w obrazowaniu
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 8 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15
Mikroskopy uniwersalne
Mikroskopy uniwersalne Źródło światła Kolektor Kondensor Stolik mikroskopowy Obiektyw Okular Inne Przesłony Pryzmaty Płytki półprzepuszczalne Zwierciadła Nasadki okularowe Zasada działania mikroskopu z
WYJAŚNIENIE TREŚCI SIWZ
Warszawa, dnia 17.11.2015r. WYJAŚNIENIE TREŚCI SIWZ Dotyczy przetargu nieograniczonego na: Dostawa stołowego skaningowego mikroskopu elektronowego wraz z wyposażeniem dla Instytutu Technologii Materiałów
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 1 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Paweł Kowalczyk, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2015/16
Podstawy fizyczne absorpcji rentgenowskiej
Podstawy fizyczne absorpcji rentgenowskiej Anna Wolska IF PAN Warszawa 2006 http://www-als.lbl.gov/als/quickguide/vugraph.html Promieniowanie rentgenowskie - promieniowanie elekromagnetyczne w zakresie
Rozpraszanie i dyfrakcja promieniowania X część II. Jak eksplorować przestrzeń odwrotną - eksperymenty dyfrakcyjne
Rozpraszanie i dyfrakcja promieniowania X część II Jak eksplorować przestrzeń odwrotną - eksperymenty dyfrakcyjne Poprzedni wykład Dyfrakcja a transformacja Fouriera k r R r(r) q=k-k Obraz dyfrakcji (rozproszenia)
ELEMENTY OPTYKI Fale elektromagnetyczne Promieniowanie świetlne Odbicie światła Załamanie światła Dyspersja światła Polaryzacja światła Dwójłomność
ELEMENTY OPTYKI Fale elektromagnetyczne Promieniowanie świetlne Odbicie światła Załamanie światła Dyspersja światła Polaryzacja światła Dwójłomność Holografia FALE ELEKTROMAGNETYCZNE Fale elektromagnetyczne