NOWOCZESNE TECHNIKI BADAWCZE W INŻYNIERII MATERIAŁOWEJ. Beata Grabowska, pok. 84A, Ip

Wielkość: px
Rozpocząć pokaz od strony:

Download "NOWOCZESNE TECHNIKI BADAWCZE W INŻYNIERII MATERIAŁOWEJ. Beata Grabowska, pok. 84A, Ip"

Transkrypt

1 NOWOCZESNE TECHNIKI BADAWCZE W INŻYNIERII MATERIAŁOWEJ Beata Grabowska, pok. 84A, Ip

2 Mikroskopia Słowo mikroskop wywodzi się z języka greckiego: μικρός - mikros "mały σκοπέω - skopeo "patrzę, obserwuję" MIKROSKOPIA Rodzaj promieniowania Metoda obrazowania ultradźwiękowa optyczna elektronowa jonowa holograficzna skaningowa transmisyjna Nowoczesne Techniki Badawcze w Inżynierii Materiałowej, dr hab. Beata Grabowska, WO AGH

3 TEM a SEM W transmisyjnej mikroskopii elektronowej (TEM) rejestrowane są sygnały pochodzące od elektronów przechodzących przez badaną próbkę. W skaningowej mikroskopii elektronowej wiązka elektronowa (SEM) skanuje linia po linii wybrany obszar próbki, przy czym rejestrowane są sygnały emitowane przez próbkę. Cecha urządzenia Oświetlenie Klasyczny mikroskop optyczny Światło widzialne, λ = nm Transmisyjny mikroskop elektronowy Wiązka elektronów, λ = 0,004 nm Skaningowy mikroskop elektronowy Wiązka elektronów Maksymalne x 200-2M x M x powiększenie Zdolność rozdzielcza ~200 nm ~0.1 nm ~1 nm Sposób obserwacji Bezpośredni Pośredni Pośredni Preparaty Stosowane soczewki Przeźroczyste optycznie (powierzchnia próbki) Optyczne (szklane, kwarcowe) Przeźroczyste dla wiązki elektronów (niekoniecznie przeźroczyste dla światła widzialnego) Elektromagnetyczne, elektrostatyczne Nowoczesne Techniki Badawcze w Inżynierii Materiałowej, dr hab. Beata Grabowska, WO AGH Powierzchnia próbki Elektromagnetyczne

4 SPRZĘT NanoScope MultiMode SPM System Mikroskop MultiMode SPM = STM +AFM AFM Atomic Force Microscopy Mikroskop Sił Atomowych STM Scanning Tunneling Microscop Skaningowy Mikroskop Tunelowy

5 Mikroskopia sond skanujących SPM Skanning Probe Microscopy Mikroskop Sond Skanujących AFM STM Atomic Force Microscopy Scanning Tunneling Microscopy Mikroskop Sił Atomowych Skaningowy Mikroskop Tunelowy Tryby pracy AFM: CM Contact Mode TM Tapping Mode Phase Imaging TR Torsional Resonance Mode EFM Electric Force Microscopy LFM Lateral Force Microscopy FM Force Modulation Imaging Nanoindentation, Nanoscratching Nowoczesne Techniki Badawcze w Inżynierii Materiałowej, dr hab. Beata Grabowska, WO AGH

6 AFM - Mikroskopia Sił Atomowych Siły van der Waalsa Typ wiązania Energia dysocjacji (kcal/mol) kowalencyjne 400 wiązania wodorowe dipol dipol oddziaływania Londona <

7 AFM - Mikroskopia Sił Atomowych Budowa oraz zasada działania mikroskopu AFM Ostrze jest umocowane na swobodnym końcu dźwigni o długości μm. Detektor mierzy ugięcie dźwigni podczas, skanowania próbki lub gdy próbka jest przesuwana pod ostrzem. topografia powierzchni próbki

8 SPRZĘT Tipy igły skanujące Wygląd uchwytu i tipów ostrze uchwyt dźwignia Grzegorz Trykowski [5]

9 AFM - Mikroskopia Sił Atomowych Siły van der Waalsa jon dipol wiązania wodorowe dipol - dipol jon indukowany dipol dipol indukowany dipol oddziaływania Londona Nowoczesne Techniki Badawcze w Inżynierii Materiałowej, dr hab. Beata Grabowska, WO AGH

10 AFM - Mikroskopia Sił Atomowych Mikroskop sił lateralnych mierzy poprzeczne ugięcie (skręcenie) dźwigni spowodowane obecnością sił równoległych do płaszczyzny próbki (np. sił tarcia powierzchniowego).

11 PRÓBKI SPM = STM +AFM Obrazowanie z atomową rozdzielczością atomowo płaska, połysk (AFM, STM) max. śr. 15 mm, gr. 6 mm (AFM, STM) przewodząca (STM) Obrazowanie w skali nanometrycznej płaska gołym okiem, chropowatość < 0,05 mm (AFM, STM) Nieodpowiednia do SPM chropowatość widoczna gołym okiem (AFM, STM) ciecz (AFM, STM) gaz (AFM, STM) Nowoczesne Techniki Badawcze w Inżynierii Materiałowej, dr hab. Beata Grabowska, WO AGH

12 MOŻLIWOŚCI SPM = STM + AFM Możliwości pomiarowe mikroskopu SPM - Pomiar chropowatości powierzchni - Badanie topografii powierzchni z rozdzielczością >1nm - Badanie rozkładu ładunku elektrostatycznego - Badanie różnic tarcia na poziomie cząsteczkowym - Badanie różnic modułu Younga - Badanie różnic twardości Nowoczesne Techniki Badawcze w Inżynierii Materiałowej, dr hab. Beata Grabowska, WO AGH

13 TRYBY PRACY AFM Tryby pracy AFM związane z zależnością oddziaływania próbka ostrze od odległości ostrza od próbki. siła chmury elektronowe atomów próbki i sondy wzajemnie się odpychają kontakt przerywany siła odpychająca kontakt odległość sondy od próbki brak kontaktu siła przyciągająca chmury elektronowe atomów próbki i sondy wzajemnie się przyciągają Nowoczesne Techniki Badawcze w Inżynierii Materiałowej, dr hab. Beata Grabowska, WO AGH

14 TRYBY PRACY AFM Tryby pracy AFM związane z zależnością oddziaływania próbka ostrze od odległości ostrza od próbki: 1. tryb kontaktowy (contactmode) 2. tryb bezkontaktowy (non-contactmode) 3. tryb z przerywanym kontaktem (tappingmode) siła kontakt przerywany chmury elektronowe atomów próbki i sondy wzajemnie się odpychają siła odpychająca tem kontakt odległość sondy od próbki brak kontaktu siła przyciągająca chmury elektronowe atomów próbki i sondy wzajemnie się przyciągają Nowoczesne Techniki Badawcze w Inżynierii Materiałowej, dr hab. Beata Grabowska, WO AGH

15 AFM - Mikroskopia Sił Atomowych 1. Tryb kontaktowy Ostrze podczas skanowania jest w kontakcie z próbką (obszar odpychających sił van der Waalsa). pomiar siły dokonywany jest przez rejestrację wychylenia (ugięcia) swobodnego końca dźwigni z ostrzem podczas skanowania próbki, siły oddziaływań sonda próbka powodują wychylenie dźwigienki proporcjonalne do topografii próbki, sonda poddawana jest nie tylko siłom odpychającym typu van der Waalsa ale i siłom kapilarnym związanym z obecnościa np. wody na powierzchni próbki, w efekcie sonda przykleja się do próbki. próbka F obraz w trybie kontaktowym kropla wody Obraz powierzchni próbki z kropla wody = CΔz gdzie: C stała sprężystości dźwigni Δz- wychylenie dźwigni Nowoczesne Techniki Badawcze w Inżynierii Materiałowej, dr hab. Beata Grabowska, WO AGH

16 AFM - Mikroskopia Sił Atomowych OSTRZA 1. Tryb kontaktowy ostrze o małej stałej sprężystości (c<1n/m) pozwala zminimalizować siłę oddziaływania pomiędzy ostrzem a próbką podczas skanowania (standardowo ostrze z azotku krzemu Si 3 N 4 ) długość dźwigni ~ μm

17 AFM - Mikroskopia Sił Atomowych 2. Tryb bezkontaktowy obraz w trybie bezkontaktowym o odległość ostrza od próbki ~ nm (obszar przyciągających sił van der Waalsa); słabsze siły próbka kropla wody Obraz powierzchni próbki z kropla wody dźwignia oscyluje z częstotliwością rezonansową (lub blisko niej); możemy traktować ją jako oscylator harmoniczny z częstotliwością rezonansową f dźwigienka sondy drga blisko powierzchni próbki dźwigienka znajduje się w stałej odległości, mierzy więc zmiany sił przyciągania wynikające z topografii próbki sonda nie jest narażona na defekt spowodowany uderzeniem w próbkę Nowoczesne Techniki Badawcze w Inżynierii Materiałowej, dr hab. Beata Grabowska, WO AGH

18 AFM - Mikroskopia Sił Atomowych 3. Tryb z przerywanym kontaktem (Tapping Mode) OSTRZA oscylująca dźwignia z ostrzem blisko częstotliwości rezonansowej (f ~ khz) duża amplituda oscylacji (>20 nm) kiedy ostrze nie jest w kontakcie z próbką oscylujące ostrze jest zbliżane do próbki i zaczyna uderzać w próbkę (tapping) Nowoczesne Techniki Badawcze w Inżynierii Materiałowej, dr hab. Beata Grabowska, WO AGH

19 AFM - Mikroskopia Sił Atomowych 3. Tryb z przerywanym kontaktem (Tapping Mode) OSTRZA Cechy dźwigni i ostrza pracującego w trybie Tapping Mode: krótka, sztywna dźwignia z krzemu ze zintegrowanym ostrzem duża stała sprężystości dźwigni (c = N/m.) wysoka częstotliwość rezonansowa (f = khz) Nowoczesne Techniki Badawcze w Inżynierii Materiałowej, dr hab. Beata Grabowska, WO AGH

20 AFM - Mikroskopia Sił Atomowych Tryby pracy AFM (porównanie) obraz w trybie kontaktowym siła chmury elektronowe atomów próbki i sondy wzajemnie się odpychają kontakt przerywany siła odpychająca próbka kropla wody kontakt odległość sondy od próbki obraz w trybie bezkontaktowym o brak kontaktu siła aprzy przyciągająca chmury elektronowe atomów próbki i sondy wzajemnie się przyciągają próbka Nowoczesne Techniki Badawcze w Inżynierii Materiałowej, dr hab. Beata Grabowska, WO AGH krop la wod y

21 AFM - Mikroskopia Sił Atomowych Tryby pracy AFM (porównanie) Tryb kontaktowy: - duża rozdzielczość obrazów - duże siły adhezyjne spowodowane obecnością zanieczyszczeń powierzchni - możliwość uszkodzenia próbki lub ostrza próbka obraz w trybie kontaktowym kropla wody Tryb bezkontaktowy: - mniejsza rozdzielczość obrazów obraz w trybie bezkontaktowym o Tryb z przerywanym kontaktem: - możliwość skanowania miękkich powierzchni (brak zniszczeń skanowanej powierzchni) - dobra zdolność rozdzielcza próbka Nowoczesne Techniki Badawcze w Inżynierii Materiałowej, dr hab. Beata Grabowska, WO AGH krop la wod y

22 SPRZĘT NanoScope MultiMode SPM System WYPOSAŻENIE DODATKOWE Tryby pracy AFM: Tryby pracy STM: - Praca w cieczach - Podstawowy - Praca w zadanej atmosferze - Wykonywanie nanozarysowań Mikroskop AFM firmy Veeco

23 PRZYKŁADOWE BADANIA

24 POLIMERY (SEM) Problem: degradacja polimerów Metody badań mikroskopowych - Skaningowy Mikroskop Elektronowy - Mikroskop Sond Skanujących - Mikroanaliza Rentgenowska

25 Biodegradacja w glebie Mikroorganizmy Beata Grabowska, badania własne

26 POLIMERY (SEM) Grzegorz Trykowski [5]

27 PRZYKŁADOWE BADANIA Węgle aktywne WĘGLE AKTYWNE GRANULKA Metody badań mikroskopowych - Skaningowy Mikroskop Elektronowy - Mikroskop Sond Skanujących - Mikroanaliza Rentgenowska

28 WĘGLE AKTYWNE AFM Grzegorz Trykowski [5]

29 WĘGLE AKTYWNE (SEM) C Ag Grzegorz Trykowski [5]

30 WĘGLE AKTYWNE (SEM) C Ag Grzegorz Trykowski [5]

31 Podsumowanie

32 SEM i AFM metody komplementarne SEM AFM x,y 5 nm maksymalna rozdzielczość x,y 0,1 nm z 0,01 nm 10 mm minimalna rozdzielczość 10 m 5 cm przemieszczanie próbki podczas 5 m obrazowania próżnia środowisko pracy atmosfera zadany gaz ciecz 1 numeryczne przedstawienie wyników 5 Nowoczesne Techniki Badawcze w Inżynierii Materiałowej, dr hab. Beata Grabowska, WO AGH

33 Źródła 1. Kęcki Z.: Podstawy spektroskopii molekularnej, PWN, Warszawa Cygański A.: Metody spektroskopowe w chemii analitycznej, WNT, Warszawa Silverstein R. M. i inni: Spektroskopowe metody identyfikacji związków organicznych, PWN Warszawa Oleś A. Metody doświadczalne fizyki ciała stałego, WNT, Warszawa, Grzegorz Trykowski, Wydział Chemii UMK, Prezentacja: files/afm/afm_stm.ppt 6. chemistry.bd.psu.edu/justik/...212/.../chem%20210%20ir% ppt 7.

AFM. Mikroskopia sił atomowych

AFM. Mikroskopia sił atomowych AFM Mikroskopia sił atomowych Siły van der Waalsa F(r) V ( r) = c 1 r 1 12 c 2 r 1 6 Siły van der Waalsa Mod kontaktowy Tryby pracy AFM związane z zależnością oddziaływania próbka ostrze od odległości

Bardziej szczegółowo

Podstawy fizyki wykład 2

Podstawy fizyki wykład 2 D. Halliday, R. Resnick, J.Walker: Podstawy Fizyki, tom 5, PWN, Warszawa 2003. H. D. Young, R. A. Freedman, Sear s & Zemansky s University Physics with Modern Physics, Addison-Wesley Publishing Company,

Bardziej szczegółowo

I. Wstęp teoretyczny. Ćwiczenie: Mikroskopia sił atomowych (AFM) Prowadzący: Michał Sarna (sarna@novel.ftj.agh.edu.pl) 1.

I. Wstęp teoretyczny. Ćwiczenie: Mikroskopia sił atomowych (AFM) Prowadzący: Michał Sarna (sarna@novel.ftj.agh.edu.pl) 1. Ćwiczenie: Mikroskopia sił atomowych (AFM) Prowadzący: Michał Sarna (sarna@novel.ftj.agh.edu.pl) I. Wstęp teoretyczny 1. Wprowadzenie Mikroskop sił atomowych AFM (ang. Atomic Force Microscope) jest jednym

Bardziej szczegółowo

Rodzaje mikroskopów ze skanującą sondą (SPM, Scanning Probe Microscopy)

Rodzaje mikroskopów ze skanującą sondą (SPM, Scanning Probe Microscopy) Spis treści 1 Historia 2 Rodzaje mikroskopów ze skanującą sondą (SPM, Scanning Probe Microscopy) 2.1 Skaningowy mikroskop tunelowy (STM od ang. Scanning Tunneling Microscope) 2.1.1 Uzyskiwanie obrazu metodą

Bardziej szczegółowo

Fizyka powierzchni. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska

Fizyka powierzchni. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Fizyka powierzchni 11 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Lista zagadnień Fizyka powierzchni i międzypowierzchni, struktura

Bardziej szczegółowo

ĆWICZENIE 4a. Analiza struktury kompozytów polimerowych

ĆWICZENIE 4a. Analiza struktury kompozytów polimerowych Nanomateriały ĆWICZENIE 4a 5 Analiza struktury kompozytów polimerowych Określenie stopnia rozproszenia i rozmiaru modyfikowanych bentonitów oraz nanonapełniaczy w matrycy epoksydowej Analiza topografii

Bardziej szczegółowo

Mikroskopia skaningowa tunelowa i siłowa

Mikroskopia skaningowa tunelowa i siłowa Zakład Fizyki Magnetyków Uniwersytet w Białymstoku Instytut Fizyki Doświadczalnej Lipowa 41, 15-424 Białystok Tel: (85) 7457228 http://physics.uwb.edu.pl/zfmag Mikroskopia skaningowa tunelowa i siłowa

Bardziej szczegółowo

PRACOWNIA MIKROSKOPII

PRACOWNIA MIKROSKOPII 1. Kierownik Pracowni: Dr hab. Andrzej Wojtczak, prof. UMK 2. Wykonujący badania: Mgr Grzegorz Trykowski 3. Adres: Uniwersytet Mikołaja Kopernika Wydział Chemii Pracownia Analiz Instrumentalnych ul. Gagarina

Bardziej szczegółowo

1 k. AFM: tryb bezkontaktowy

1 k. AFM: tryb bezkontaktowy AFM: tryb bezkontaktowy Ramię igły wprowadzane w drgania o małej amplitudzie (rzędu 10 nm) Pomiar zmian amplitudy drgań pod wpływem sił (na ogół przyciągających) Zbliżanie igły do próbki aż do osiągnięcia

Bardziej szczegółowo

M2 Mikroskopia sił atomowych: badanie nanostruktur.

M2 Mikroskopia sił atomowych: badanie nanostruktur. M2 Mikroskopia sił atomowych: badanie nanostruktur. Celem ćwiczenia jest poznanie mikroskopii sił atomowych i zbadanie otrzymanych próbek. Wymagane zagadnienia Podstawy fizyczne mikroskopii sił atomowych:

Bardziej szczegółowo

M1/M3 Zastosowanie mikroskopii sił atomowych do badania nanostruktur

M1/M3 Zastosowanie mikroskopii sił atomowych do badania nanostruktur M1/M3 Zastosowanie mikroskopii sił atomowych do badania nanostruktur Prowadzący: Kontakt e-mail: Rafał Bożek rafal.bozek@fuw.edu.pl Celem ćwiczenia jest zapoznanie się z zasadami mikroskopii sił atomowych

Bardziej szczegółowo

Badanie powierzchni materiałów z za pomocą skaningowej mikroskopii sił atomowych (AFM)

Badanie powierzchni materiałów z za pomocą skaningowej mikroskopii sił atomowych (AFM) 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z techniką obrazowania powierzchni za pomocą skaningowego mikroskopu sił atomowych (AFM). Badanie powierzchni materiałów z za pomocą skaningowej mikroskopii

Bardziej szczegółowo

Wykład 12 V = 4 km/s E 0 =.08 e V e = = 1 Å

Wykład 12 V = 4 km/s E 0 =.08 e V e  = = 1 Å Wykład 12 Fale materii: elektrony, neutrony, lekkie atomy Neutrony generowane w reaktorze są spowalniane w wyniku zderzeń z moderatorem (grafitem) do V = 4 km/s, co odpowiada energii E=0.08 ev a energia

Bardziej szczegółowo

Mikroskop sił atomowych

Mikroskop sił atomowych Mikroskop sił atomowych AFM: jak to działa? Krzysztof Zieleniewski Proseminarium ZFCS, 5 listopada 2009 Plan seminarium Łyczek historii Możliwości mikroskopu Budowa mikroskopu na Pasteura Podstawowe mody

Bardziej szczegółowo

Mikroskopia Sił Atomowych (AFM)

Mikroskopia Sił Atomowych (AFM) Narzędzia dla nanotechnologii Mikroskopia Sił Atomowych (AFM) Tomasz Kruk* Wprowadzenie Wśród wielu urządzeń kojarzonych z nanotechnologią żadne nie jest tak dobrze rozpoznawalne i proste w założeniu swojej

Bardziej szczegółowo

Zaawansowane Metody Badań Strukturalnych. Dyfrakcja rentgenowska cz.2 Mikroskopia Sił Atomowych AFM

Zaawansowane Metody Badań Strukturalnych. Dyfrakcja rentgenowska cz.2 Mikroskopia Sił Atomowych AFM Zaawansowane Metody Badań Strukturalnych Dyfrakcja rentgenowska cz.2 Mikroskopia Sił Atomowych AFM Rentgenowska fazowa analiza ilościowa Parametry komórki elementarnej Wielkości krystalitów Budowa mikroskopu

Bardziej szczegółowo

SPM Scanning Probe Microscopy Mikroskopia skanującej sondy STM Scanning Tunneling Microscopy Skaningowa mikroskopia tunelowa AFM Atomic Force

SPM Scanning Probe Microscopy Mikroskopia skanującej sondy STM Scanning Tunneling Microscopy Skaningowa mikroskopia tunelowa AFM Atomic Force SPM Scanning Probe Microscopy Mikroskopia skanującej sondy STM Scanning Tunneling Microscopy Skaningowa mikroskopia tunelowa AFM Atomic Force Microscopy Mikroskopia siły atomowej MFM Magnetic Force Microscopy

Bardziej szczegółowo

Mikroskop sił atomowych (AFM)

Mikroskop sił atomowych (AFM) Mikroskop sił atomowych (AFM) 1. Wprowadzenie Mikroskop sił atomowych (ang. Atomic Force Microscope AFM) został skonstruowany w 1986 r. w laboratorium IBM w Zurichu (Binnig G., Quate C.F., Gerber C., Phys.

Bardziej szczegółowo

Laboratorium nanotechnologii

Laboratorium nanotechnologii Laboratorium nanotechnologii Zakres zagadnień: - Mikroskopia sił atomowych AFM i STM (W. Fizyki) - Skaningowa mikroskopia elektronowa SEM (WIM) - Transmisyjna mikroskopia elektronowa TEM (IF PAN) - Nanostruktury

Bardziej szczegółowo

Dyfrakcja rentgenowska cz.2 Mikroskopia Sił Atomowych AFM

Dyfrakcja rentgenowska cz.2 Mikroskopia Sił Atomowych AFM Zaawansowane Metody Badań Strukturalnych Dyfrakcja rentgenowska cz.2 Mikroskopia Sił Atomowych AFM Fazowa analiza ilościowa Obliczenia strukturalne prawo Vegarda Pomiary cienkich warstw Budowa mikroskopu

Bardziej szczegółowo

Wady ostrza. Ponieważ ostrze ma duży promień niektóre elementy ukształtowania powierzchni nie są rejestrowane (fioletowy element)

Wady ostrza. Ponieważ ostrze ma duży promień niektóre elementy ukształtowania powierzchni nie są rejestrowane (fioletowy element) Wady ostrza Ponieważ ostrze ma duży promień niektóre elementy ukształtowania powierzchni nie są rejestrowane (fioletowy element) Ponieważ ostrze ma kilka zakończeń w obrazie pojawiają się powtórzone struktury

Bardziej szczegółowo

METODY BADAŃ BIOMATERIAŁÓW

METODY BADAŃ BIOMATERIAŁÓW METODY BADAŃ BIOMATERIAŁÓW 1 Cel badań: ograniczenie ryzyka związanego ze stosowaniem biomateriałów w medycynie Rodzaje badań: 1. Badania biofunkcyjności implantów, 2. Badania degradacji implantów w środowisku

Bardziej szczegółowo

(Pieczęć Wykonawcy) Załącznik nr 8 do SIWZ Nr postępowania: ZP/259/050/D/11. Opis oferowanej dostawy OFERUJEMY:

(Pieczęć Wykonawcy) Załącznik nr 8 do SIWZ Nr postępowania: ZP/259/050/D/11. Opis oferowanej dostawy OFERUJEMY: . (Pieczęć Wykonawcy) Załącznik nr 8 do SIWZ Nr postępowania: ZP/259/050/D/11 Opis oferowanej dostawy OFERUJEMY: 1) Mikroskop AFM według pkt 1 a) załącznika nr 7 do SIWZ, model / producent..... Detekcja

Bardziej szczegółowo

Skaningowy Mikroskop Elektronowy. Rembisz Grażyna Drab Bartosz

Skaningowy Mikroskop Elektronowy. Rembisz Grażyna Drab Bartosz Skaningowy Mikroskop Elektronowy Rembisz Grażyna Drab Bartosz PLAN PREZENTACJI: 1. Zarys historyczny 2. Zasada działania SEM 3. Zjawiska fizyczne wykorzystywane w SEM 4. Budowa SEM 5. Przygotowanie próbek

Bardziej szczegółowo

Techniki mikroskopowe

Techniki mikroskopowe Techniki mikroskopowe Metody badań strukturalnych ciała stałego dr inż. Magdalena Król Mikrostruktura Struktura przestrzenne rozmieszczenie cząstek materii (atomów, jonów, cząsteczek) oraz zespół relacji

Bardziej szczegółowo

ZASTOSOWANIE MIKROSKOPII SIŁ ATOMOWYCH (AFM) W DIAGNOSTYCE WARSTWY WIERZCHNIEJ

ZASTOSOWANIE MIKROSKOPII SIŁ ATOMOWYCH (AFM) W DIAGNOSTYCE WARSTWY WIERZCHNIEJ Mirosław BRAMOWICZ Uniwersytet Warmińsko-Mazurski w Olsztynie Sylwester KŁYSZ Instytut Techniczny Wojsk Lotniczych PRACE NAUKOWE ITWL Zeszyt 22, s. 159 166, 2007 r. DOI 10.2478/v10041-008-0009-z ZASTOSOWANIE

Bardziej szczegółowo

DOTYCZY: Sygn. akt SZ /12/6/6/2012

DOTYCZY: Sygn. akt SZ /12/6/6/2012 Warszawa dn. 2012-07-26 SZ-222-20/12/6/6/2012/ Szanowni Państwo, DOTYCZY: Sygn. akt SZ-222-20/12/6/6/2012 Przetargu nieograniczonego, którego przedmiotem jest " sprzedaż, szkolenie, dostawę, montaż i uruchomienie

Bardziej szczegółowo

LABORATORIUM ANALITYCZNEJ MIKROSKOPII ELEKTRONOWEJ (L - 2)

LABORATORIUM ANALITYCZNEJ MIKROSKOPII ELEKTRONOWEJ (L - 2) LABORATORIUM ANALITYCZNEJ MIKROSKOPII ELEKTRONOWEJ (L - 2) Posiadane uprawnienia: ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO NR AB 120 wydany przez Polskie Centrum Akredytacji Wydanie nr 5 z 18 lipca 2007

Bardziej szczegółowo

Nanoskopowe metody charakteryzacji materiałów. Obrazek: Helsinki University of Technology tfy.tkk.fi/sin/research/

Nanoskopowe metody charakteryzacji materiałów. Obrazek: Helsinki University of Technology tfy.tkk.fi/sin/research/ Nanoskopowe metody charakteryzacji materiałów Obrazek: Helsinki University of Technology tfy.tkk.fi/sin/research/ STM i AFM: podstawy konstrukcji STM AFM Scanning tunelling microscope (STM) Heinrich Rohrer

Bardziej szczegółowo

Rezonanse magnetyczne oraz wybrane techniki pomiarowe fizyki ciała stałego

Rezonanse magnetyczne oraz wybrane techniki pomiarowe fizyki ciała stałego Paweł Szroeder Rezonanse magnetyczne oraz wybrane techniki pomiarowe fizyki ciała stałego Wykład XI Badania powierzchni ciała stałego: elektronowy mikroskop skaningowy (SEM), skaningowy mikroskop tunelowy

Bardziej szczegółowo

BIOTRIBOLOGIA. Wykład 1. TRIBOLOGIA z języka greckiego tribo (tribos) oznacza tarcie

BIOTRIBOLOGIA. Wykład 1. TRIBOLOGIA z języka greckiego tribo (tribos) oznacza tarcie BIOTRIBOLOGIA Wykład TRIBOLOGIA z języka greckiego tribo (tribos) oznacza tarcie Nauka o oddziaływaniu powierzchni ciał znajdujących cię w relatywnym ruchu Nauka o tarciu, zużywaniu i smarowaniu Biotribologia

Bardziej szczegółowo

Prof. dr hab. Maria Kozioł-Montewka

Prof. dr hab. Maria Kozioł-Montewka Mikroskop sił atomowych jako nowe narzędzie w bezpośredniej identyfikacji drobnoustrojów stanowiących broń biologiczną Prof. dr hab. Maria Kozioł-Montewka Katedra i Zakład Mikrobiologii Lekarskiej Uniwersytet

Bardziej szczegółowo

Skaningowy mikroskop tunelowy STM

Skaningowy mikroskop tunelowy STM Skaningowy mikroskop tunelowy STM Skaningowy mikroskop tunelowy (ang. Scanning Tunneling Microscope; STM) należy do szerszej rodziny mikroskopów ze sondą skanującą. Wykorzystuje on zjawisko tunelowania

Bardziej szczegółowo

MIKROSKOPIA ELEKTRONOWA. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

MIKROSKOPIA ELEKTRONOWA. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego MIKROSKOPIA ELEKTRONOWA Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Tło historyczne Pod koniec XIX wieku stosowanie mikroskopów świetlnych w naukach

Bardziej szczegółowo

WARSZAWA LIX Zeszyt 257

WARSZAWA LIX Zeszyt 257 WARSZAWA LIX Zeszyt 257 SPIS TRE CI STRESZCZENIE... 9 WYKAZ SKRÓTÓW... 10 1. WPROWADZENIE... 13 2. MIKROSKOPIA SI ATOMOWYCH PODSTAWY... 17 2.1. Podstawy oddzia ywa ostrze próbka... 23 2.1.1. Modele fizyczne

Bardziej szczegółowo

Grafen materiał XXI wieku!?

Grafen materiał XXI wieku!? Grafen materiał XXI wieku!? Badania grafenu w aspekcie jego zastosowań w sensoryce i metrologii Tadeusz Pustelny Plan prezentacji: 1. Wybrane właściwości fizyczne grafenu 2. Grafen materiał 21-go wieku?

Bardziej szczegółowo

Opis przedmiotu zamówienia

Opis przedmiotu zamówienia ZP/UR/169/2012 Zał. nr 1a do siwz Opis przedmiotu zamówienia A. Spektrometr ramanowski z mikroskopem optycznym: 1) Spektrometr ramanowski posiadający podwójny tor detekcyjny, wyposażony w chłodzony termoelektrycznie

Bardziej szczegółowo

ANALIZA POWIERZCHNI BADANIA POWIERZCHNI

ANALIZA POWIERZCHNI BADANIA POWIERZCHNI Analiza ciała stałego ANALIZA POWIERZCHNI ANALIZA CAŁEJ OBJTOCI CIAŁO STAŁE ANALIZA POWIERZCHNI METODY NISZCZCE METODY NIENISZCZCE Metody niszczce: - przeprowadzenie do roztworu (rozpuszczanie, roztwarzanie

Bardziej szczegółowo

h λ= mv h - stała Plancka (4.14x10-15 ev s)

h λ= mv h - stała Plancka (4.14x10-15 ev s) Twórcy podstaw optyki elektronowej: De Broglie LV. 1924 hipoteza: każde ciało poruszające się ma przyporządkowaną falę a jej długość jest ilorazem stałej Plancka i pędu. Elektrony powinny więc mieć naturę

Bardziej szczegółowo

SYLABUS. Elektronowa mikroskopia w nauce o materiałach Nazwa jednostki prowadzącej Wydział matematyczno - Przyrodniczy

SYLABUS. Elektronowa mikroskopia w nauce o materiałach Nazwa jednostki prowadzącej Wydział matematyczno - Przyrodniczy SYLABUS Nazwa Elektronowa mikroskopia w nauce o materiałach Nazwa jednostki prowadzącej Wydział matematyczno - Przyrodniczy przedmiot Centrum Mikroelektroniki i Nanotechnologii Kod Studia Kierunek studiów

Bardziej szczegółowo

Elementy teorii powierzchni metali

Elementy teorii powierzchni metali prof. dr hab. Adam Kiejna Elementy teorii powierzchni metali Wykład 4 v.16 Wiązanie metaliczne Wiązanie metaliczne Zajmujemy się tylko metalami dlatego w zasadzie interesuje nas tylko wiązanie metaliczne.

Bardziej szczegółowo

Fizykochemiczne metody w kryminalistyce. Wykład 7

Fizykochemiczne metody w kryminalistyce. Wykład 7 Fizykochemiczne metody w kryminalistyce Wykład 7 Stosowane metody badawcze: 1. Klasyczna metoda analityczna jakościowa i ilościowa 2. badania rentgenostrukturalne 3. Badania spektroskopowe 4. Metody chromatograficzne

Bardziej szczegółowo

Elektronowa mikroskopia. T. 2, Mikroskopia skaningowa / Wiesław Dziadur, Janusz Mikuła. Kraków, Spis treści

Elektronowa mikroskopia. T. 2, Mikroskopia skaningowa / Wiesław Dziadur, Janusz Mikuła. Kraków, Spis treści Elektronowa mikroskopia. T. 2, Mikroskopia skaningowa / Wiesław Dziadur, Janusz Mikuła. Kraków, 2016 Spis treści Wykaz ważniejszych skrótów i oznaczeń 11 Przedmowa 17 Wstęp 19 Literatura 26 Rozdział I.

Bardziej szczegółowo

NOWOCZESNE TECHNIKI BADAWCZE W INŻYNIERII MATERIAŁOWEJ. Beata Grabowska, pok. 84A, Ip

NOWOCZESNE TECHNIKI BADAWCZE W INŻYNIERII MATERIAŁOWEJ. Beata Grabowska, pok. 84A, Ip NOWOCZESNE TECHNIKI BADAWCZE W INŻYNIERII MATERIAŁOWEJ Beata Grabowska, pok. 84A, Ip http://home.agh.edu.pl/~graboska/ Mikroskopia Słowo mikroskop wywodzi się z języka greckiego: μικρός - mikros "mały

Bardziej szczegółowo

Przykłady wykorzystania mikroskopii elektronowej w poszukiwaniach ropy naftowej i gazu ziemnego. mgr inż. Katarzyna Kasprzyk

Przykłady wykorzystania mikroskopii elektronowej w poszukiwaniach ropy naftowej i gazu ziemnego. mgr inż. Katarzyna Kasprzyk Przykłady wykorzystania mikroskopii elektronowej w poszukiwaniach ropy naftowej i gazu ziemnego mgr inż. Katarzyna Kasprzyk Mikroskop skaningowy Pierwszy mikroskop elektronowy transmisyjny powstał w 1931r

Bardziej szczegółowo

Wykład 21: Studnie i bariery cz.2.

Wykład 21: Studnie i bariery cz.2. Wykład 21: Studnie i bariery cz.2. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Przykłady tunelowania: rozpad alfa, synteza

Bardziej szczegółowo

Zaawansowane Metody Badań Strukturalnych. Dyfrakcja rentgenowska cz.2 Mikroskopia Sił Atomowych AFM

Zaawansowane Metody Badań Strukturalnych. Dyfrakcja rentgenowska cz.2 Mikroskopia Sił Atomowych AFM Zaawansowane Metody Badań Strukturalnych Dyfrakcja rentgenowska cz.2 Mikroskopia Sił Atomowych AFM Rentgenowska fazowa analiza jakościowa i ilościowa Parametry komórki elementarnej Wielkości krystalitów

Bardziej szczegółowo

Mikroskop tunelowy skaningowy Scaning tuneling microscopy (STM)

Mikroskop tunelowy skaningowy Scaning tuneling microscopy (STM) Mikroskop tunelowy skaningowy Scaning tuneling microscopy (STM) Zasada działania Historia odkryć Zastosowane rozwiązania Przykłady zastosowania Bolesław AUGUSTYNIAK Zasada działania mikroskopu skanującego

Bardziej szczegółowo

Politechnika Gdańska. Wydział Chemiczny. Katedra Elektrochemii, Korozji i Inżynierii Materiałowej. Rozprawa doktorska

Politechnika Gdańska. Wydział Chemiczny. Katedra Elektrochemii, Korozji i Inżynierii Materiałowej. Rozprawa doktorska Politechnika Gdańska Wydział Chemiczny Katedra Elektrochemii, Korozji i Inżynierii Materiałowej Rozprawa doktorska Dynamiczna spektroskopia impedancyjna w mikroskopowej analizie powierzchni metalicznych

Bardziej szczegółowo

Kamil Zalewski, Wojciech Nath, Marcin Ewiak, Grzegorz Gabryel

Kamil Zalewski, Wojciech Nath, Marcin Ewiak, Grzegorz Gabryel Kamil Zalewski, Wojciech Nath, Marcin Ewiak, Grzegorz Gabryel Ogólny opis mikroskopów Wstęp do idei mikroskopów skanujących Rodziny mikroskopów skanujących Ogólna zasada działania mikroskopów AFM i STM

Bardziej szczegółowo

OPIS PRZEDMIOTU ZAMÓWIENIA

OPIS PRZEDMIOTU ZAMÓWIENIA Załącznik nr 2 do SIWZ OPIS PRZEDMIOTU ZAMÓWIENIA Zadanie nr 1 pn.: Dostawa i instalacja fabrycznie nowego (nieużywanego) Profilometru mechanicznego wraz z przeszkoleniem Personelu Zamawiającego Przedmiotem

Bardziej szczegółowo

Elementy pomiaru AFM

Elementy pomiaru AFM Elementy pomiaru AFM - Dobór właściwej metody i konfiguracji mikroskopu - Przygotowanie i zamocowanie próbki - Dobranie i zamocowanie igły - Regulacja i ustawienie parametrów pracy: Regulacja pozycji fotodiody

Bardziej szczegółowo

Ćwiczenie 5: Metody mikroskopowe w inżynierii materiałowej. Mikroskopia elektronowa

Ćwiczenie 5: Metody mikroskopowe w inżynierii materiałowej. Mikroskopia elektronowa ćw 5 Ćwiczenie 5: Metody mikroskopowe w inżynierii materiałowej. Mikroskopia elektronowa PRZEDMIOT: NOWOCZESNE TECHNIKI BADAWCZE W INŻYNIERII MATERIAŁOWEJ Opracowały: cz. teoretyczna: dr hab. Beata Grabowska

Bardziej szczegółowo

Inkluzje Protodikraneurini trib. nov.. (Hemiptera: Cicadellidae) w bursztynie bałtyckim i ich badania w technice SEM

Inkluzje Protodikraneurini trib. nov.. (Hemiptera: Cicadellidae) w bursztynie bałtyckim i ich badania w technice SEM Muzeum i Instytut Zoologii Polska Akademia Nauk Akademia im. Jana DługoszaD ugosza Inkluzje Protodikraneurini trib. nov.. (Hemiptera: Cicadellidae) w bursztynie bałtyckim i ich badania w technice SEM Magdalena

Bardziej szczegółowo

Badanie strutury powierzchni z atomową zdolnością rozdzielczą. Powierzchnia jak ją zdefiniować?

Badanie strutury powierzchni z atomową zdolnością rozdzielczą. Powierzchnia jak ją zdefiniować? Badanie strutury powierzchni z atomową zdolnością rozdzielczą Powierzchnia jak ją zdefiniować? Obszar kryształu, dla którego nie da się zastosować trójwymiarowych równań opisujących własności wnętrza.

Bardziej szczegółowo

Oglądanie świata w nanoskali mikroskop STM

Oglądanie świata w nanoskali mikroskop STM FOTON 112, Wiosna 2011 23 Oglądanie świata w nanoskali mikroskop STM Szymon Godlewski Instytut Fizyki UJ Od zarania dziejów człowiek przejawiał wielką ciekawość otaczającego go świata. Prowadził obserwacje

Bardziej szczegółowo

Leon Murawski, Katedra Fizyki Ciała Stałego Wydział Fizyki Technicznej i Matematyki Stosowanej

Leon Murawski, Katedra Fizyki Ciała Stałego Wydział Fizyki Technicznej i Matematyki Stosowanej Nanomateriałów Leon Murawski, Katedra Fizyki Ciała Stałego Wydział Fizyki Technicznej i Matematyki Stosowanej POLITECHNIKA GDAŃSKA Centrum Zawansowanych Technologii Pomorze ul. Al. Zwycięstwa 27 80-233

Bardziej szczegółowo

I. PROMIENIOWANIE CIEPLNE

I. PROMIENIOWANIE CIEPLNE I. PROMIENIOWANIE CIEPLNE - lata '90 XIX wieku WSTĘP Widmo promieniowania elektromagnetycznego zakres "pokrycia" różnymi rodzajami fal elektromagnetycznych promieniowania zawartego w danej wiązce. rys.i.1.

Bardziej szczegółowo

SYLABUS. Nazwa jednostki prowadzącej Wydział Matematyczno - Przyrodniczy Centrum Mikroelektroniki i Nanotechnologii

SYLABUS. Nazwa jednostki prowadzącej Wydział Matematyczno - Przyrodniczy Centrum Mikroelektroniki i Nanotechnologii SYLABUS Nazwa przedmiotu Nanotechnologie i nanoobiekty Nazwa jednostki prowadzącej Wydział Matematyczno - Przyrodniczy przedmiot Centrum Mikroelektroniki i Nanotechnologii Kod przedmiotu Studia Kierunek

Bardziej szczegółowo

Metody i techniki badań II. Instytut Inżynierii Materiałowej Wydział Inżynierii Mechanicznej i Mechatroniki ZUT

Metody i techniki badań II. Instytut Inżynierii Materiałowej Wydział Inżynierii Mechanicznej i Mechatroniki ZUT Metody i techniki badań II Instytut Inżynierii Materiałowej Wydział Inżynierii Mechanicznej i Mechatroniki ZUT Dr inż. Agnieszka Kochmańska pok. 20 Zakład Metaloznawstwa i Odlewnictwa agnieszka.kochmanska@zut.edu.pl

Bardziej szczegółowo

ANALIZA POWIERZCHNI

ANALIZA POWIERZCHNI ANALIZA POWIERZCHNI Metody niszczące (próbka zostaje zniszczona w czasie analizy): - przeprowadzenie do roztworu (rozpuszczanie, roztwarzanie lub stapianie) i następnie analiza metodami klasycznymi lub

Bardziej szczegółowo

WIĄZANIA. Co sprawia, że ciała stałe istnieją i są stabilne? PRZYCIĄGANIE ODPYCHANIE

WIĄZANIA. Co sprawia, że ciała stałe istnieją i są stabilne? PRZYCIĄGANIE ODPYCHANIE WIĄZANIA Co sprawia, że ciała stałe istnieją i są stabilne? PRZYCIĄGANIE ODPYCHANIE Przyciąganie Wynika z elektrostatycznego oddziaływania między elektronami a dodatnimi jądrami atomowymi. Może to być

Bardziej szczegółowo

Opis efektów kształcenia dla modułu zajęć

Opis efektów kształcenia dla modułu zajęć Nazwa modułu: Własności materiałów inżynierskich Rok akademicki: 2013/2014 Kod: MIM-2-302-IS-n Punkty ECTS: 4 Wydział: Inżynierii Metali i Informatyki Przemysłowej Kierunek: Inżynieria Materiałowa Specjalność:

Bardziej szczegółowo

Mikroskopie skaningowe

Mikroskopie skaningowe SPM Scanning Probe Microscopy Mikroskopie skaningowe (SPM- Sharp Probe Microscopy) Mikroskopy skanujące 1. Efekt tunelowania (STM). Stały prąd, stała wysokość. 2. Oddziaływania sił atomowych(afm). W kontakcie,

Bardziej szczegółowo

Badania komponentów do samolotów, pojazdów i maszyn

Badania komponentów do samolotów, pojazdów i maszyn Laboratorium badawczo-rozwojowe Nanores Oferta dedykowana dla Badania komponentów do samolotów, pojazdów i maszyn O NAS Nanores jest nowoczesnym, niezależnym laboratorium badawczo-rozwojowym, nastawionym

Bardziej szczegółowo

Jest to uniwersalna metoda detekcji składu atomowego WW (nie wykrywa tylko atomów wodoru) umożliwiająca wszechstronne badanie tej warstwy.

Jest to uniwersalna metoda detekcji składu atomowego WW (nie wykrywa tylko atomów wodoru) umożliwiająca wszechstronne badanie tej warstwy. METODY BADANIA STRUKTURY WARSTWY WIERZCHNIEJ SPEKTROSKOPIA FOTOELEKTRONOWA XPS X-ray Photoelectron Spektroscopy Jest to uniwersalna metoda detekcji składu atomowego WW (nie wykrywa tylko atomów wodoru)

Bardziej szczegółowo

Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego

Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego Ćwiczenie 7 Elektronowy mikroskop skaningowy-analogowy w badaniach morfologii powierzchni ciała stałego. Cel ćwiczenia: Celem ćwiczenia jest zapoznanie

Bardziej szczegółowo

5.2.3. Układy detekcji i przetwarzania bliskiego pola... 80 5.2.4. Układy pętli sprzężenia zwrotnego... 82 5.2.5. Zasilacze systemu i układy

5.2.3. Układy detekcji i przetwarzania bliskiego pola... 80 5.2.4. Układy pętli sprzężenia zwrotnego... 82 5.2.5. Zasilacze systemu i układy Moim Rodzicom Spis treści Spis oznaczeń i akronimów... 9 1. Wstęp... 17. Metody pomiarowe mikroskopii bliskich oddziaływań....1. Mikroskopia tunelowa... 3.. Mikroskopia sił atomowych... 4..1. Statyczna

Bardziej szczegółowo

Podstawy fizyki kwantowej i budowy materii

Podstawy fizyki kwantowej i budowy materii Podstawy fizyki kwantowej i budowy materii prof. dr hab. Aleksander Filip Żarnecki Zakład Cząstek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej Wykład 5 7 listopada 2016 A.F.Żarnecki Podstawy

Bardziej szczegółowo

CZUŁOŚĆ CHEMICZNA W MIKROSKOPII SIŁ ATOMOWYCH

CZUŁOŚĆ CHEMICZNA W MIKROSKOPII SIŁ ATOMOWYCH CZUŁOŚĆ CHEMICZNA W MIKROSKOPII SIŁ ATOMOWYCH Marek Szymoński Centrum Badań Układów Nanoskopowych i Zaawansowanych Materiałów (NANOSAM) Wydział Fizyki, Astronomii i Informatyki Stosowanej Uniwersytet Jagielloński

Bardziej szczegółowo

Wykład z Chemii Ogólnej

Wykład z Chemii Ogólnej Wykład z Chemii Ogólnej Część 2 Budowa materii: od atomów do układów molekularnych 2.3. WIĄZANIA CHEMICZNE i ODDZIAŁYWANIA Katedra i Zakład Chemii Fizycznej Collegium Medicum w Bydgoszczy Uniwersytet Mikołaja

Bardziej szczegółowo

O manipulacji w nanoskali

O manipulacji w nanoskali FOTON 113, Lato 2011 23 O manipulacji w nanoskali Szymon Godlewski Instytut Fizyki UJ Skonstruowany w 1981 roku przez dwóch pracowników IBM Gerda Binniga i Heinricha Rohrera skaningowy mikroskop tunelowy

Bardziej szczegółowo

dr inż. Beata Brożek-Pluska SERS La boratorium La serowej

dr inż. Beata Brożek-Pluska SERS La boratorium La serowej dr inż. Beata Brożek-Pluska La boratorium La serowej Spektroskopii Molekularnej PŁ Powierzchniowo wzmocniona sp ektroskopia Ramana (Surface Enhanced Raman Spectroscopy) Cząsteczki zaadsorbowane na chropowatych

Bardziej szczegółowo

WIĄZANIA. Co sprawia, że ciała stałe istnieją i są stabilne? PRZYCIĄGANIE ODPYCHANIE

WIĄZANIA. Co sprawia, że ciała stałe istnieją i są stabilne? PRZYCIĄGANIE ODPYCHANIE WIĄZANIA Co sprawia, że ciała stałe istnieją i są stabilne? PRZYCIĄGANIE ODPYCHANIE 1 Przyciąganie Wynika z elektrostatycznego oddziaływania między elektronami a dodatnimi jądrami atomowymi. Może to być

Bardziej szczegółowo

SZCZEGÓŁOWY OPIS PRZEDMIOTU ZAMÓWIENIA STANOWIĄCY JEDNOCZEŚNIE DRUK POTWIERDZENIE ZGODNOŚCI TECHNICZNEJ OFERTY

SZCZEGÓŁOWY OPIS PRZEDMIOTU ZAMÓWIENIA STANOWIĄCY JEDNOCZEŚNIE DRUK POTWIERDZENIE ZGODNOŚCI TECHNICZNEJ OFERTY Załącznik nr 2 do SIWZ Załacznik nr 2 do umowy SZCZEGÓŁOWY OPIS PRZEDMIOTU ZAMÓWIENIA STANOWIĄCY JEDNOCZEŚNIE DRUK POTWIERDZENIE ZGODNOŚCI TECHNICZNEJ OFERTY Przedmiot oferty: Wysokorozdzielczy skaningowy

Bardziej szczegółowo

Opis przedmiotu zamówienia

Opis przedmiotu zamówienia Załącznik nr 5 Opis przedmiotu zamówienia 1. Przedmiotem zamówienia jest dostawa mikroskopu na potrzeby Centrum Badań nad Innowacjami o parametrach: 2. Dostarczony asortyment musi być fabrycznie nowy oraz

Bardziej szczegółowo

Dźwięk. Cechy dźwięku, natura światła

Dźwięk. Cechy dźwięku, natura światła Dźwięk. Cechy dźwięku, natura światła Fale dźwiękowe (akustyczne) - podłużne fale mechaniczne rozchodzące się w ciałach stałych, cieczach i gazach. Zakres słyszalnej częstotliwości f: 20 Hz < f < 20 000

Bardziej szczegółowo

Obraz przyrody w obiektywie mikroskopu elektronowego

Obraz przyrody w obiektywie mikroskopu elektronowego Obraz przyrody w obiektywie mikroskopu elektronowego Wydział Biologii i Ochrony Środowiska, Uniwersytet Śląski Jagna Karcz, Pracownia Mikroskopii Elektronowej Skaningowej www.semlab.us.edu.pl Technologicznie

Bardziej szczegółowo

Model wiązania kowalencyjnego cząsteczka H 2

Model wiązania kowalencyjnego cząsteczka H 2 Model wiązania kowalencyjnego cząsteczka H 2 + Współrzędne elektronu i protonów Orbitale wiążący i antywiążący otrzymane jako kombinacje orbitali atomowych Orbital wiążący duża gęstość ładunku między jądrami

Bardziej szczegółowo

Laboratorium Materiałów Zol-Żelowych i Nanotechnologii Dolnośląskiego Centrum Zaawansowanych Technologii

Laboratorium Materiałów Zol-Żelowych i Nanotechnologii Dolnośląskiego Centrum Zaawansowanych Technologii Laboratorium Materiałów Zol-Żelowych i Nanotechnologii Dolnośląskiego Centrum Zaawansowanych Technologii Wydział Mechaniczny, Instytut Materiałoznawstwa i Mechaniki Technicznej Politechnika Wrocławska,

Bardziej szczegółowo

Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego. Ćwiczenie 8 Mikroanalizator rentgenowski EDX w badaniach składu chemicznego ciał stałych

Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego. Ćwiczenie 8 Mikroanalizator rentgenowski EDX w badaniach składu chemicznego ciał stałych Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego Ćwiczenie 8 Mikroanalizator rentgenowski EDX w badaniach składu chemicznego ciał stałych Cel ćwiczenia: Celem ćwiczenia jest wykorzystanie promieniowania

Bardziej szczegółowo

DOTYCZY: Sygn. akt SZ-222-20/12/6/6/2012

DOTYCZY: Sygn. akt SZ-222-20/12/6/6/2012 Warszawa dn. 2012-07-20 SZ-222-20/12/6/6/2012/2713 Szanowni Państwo, DOTYCZY: Sygn. akt SZ-222-20/12/6/6/2012 Przetargu nieograniczonego, którego przedmiotem jest " sprzedaż, szkolenie, dostawę, montaż

Bardziej szczegółowo

Techniki analityczne. Podział technik analitycznych. Metody spektroskopowe. Spektroskopia elektronowa

Techniki analityczne. Podział technik analitycznych. Metody spektroskopowe. Spektroskopia elektronowa Podział technik analitycznych Techniki analityczne Techniki elektrochemiczne: pehametria, selektywne elektrody membranowe, polarografia i metody pokrewne (woltamperometria, chronowoltamperometria inwersyjna

Bardziej szczegółowo

Dobór materiałów konstrukcyjnych cz.13

Dobór materiałów konstrukcyjnych cz.13 Dobór materiałów konstrukcyjnych cz.13 dr inż. Hanna Smoleńska Katedra Inżynierii Materiałowej i Spajania Wydział Mechaniczny, Politechnika Gdańska Materiały edukacyjne ROZSZERZALNOŚĆ CIEPLNA LINIOWA Ashby

Bardziej szczegółowo

DOTYCZY: Sygn. akt SZ-222-20/12/6/6/2012

DOTYCZY: Sygn. akt SZ-222-20/12/6/6/2012 Warszawa dn. 2012-08-03 SZ-222-20/12/6/6/2012/ Szanowni Państwo, DOTYCZY: Sygn. akt SZ-222-20/12/6/6/2012 Przetargu nieograniczonego, którego przedmiotem jest " sprzedaż, szkolenie, dostawę, montaż i uruchomienie

Bardziej szczegółowo

Plan studiów ZMiN, II stopień, obowiązujący od roku 2017/18 A. Specjalizacja fotonika i nanotechnologia

Plan studiów ZMiN, II stopień, obowiązujący od roku 2017/18 A. Specjalizacja fotonika i nanotechnologia Załącznik nr do programu kształcenia ZMiN II stopnia Plan studiów ZMiN, II stopień, obowiązujący od roku 207/8 A. Specjalizacja fotonika i nanotechnologia I semestr, łączna : 75, łączna liczba punktów

Bardziej szczegółowo

SZCZEGÓŁOWY OPIS PRZEDMIOTU ZAMÓWIENIA

SZCZEGÓŁOWY OPIS PRZEDMIOTU ZAMÓWIENIA Załącznik nr 1 do SIWZ Znak sprawy: KA-2/124/2010 SZCZEGÓŁOWY OPIS PRZEDMIOTU ZAMÓWIENIA Zadanie nr 1 Dostawa mikroskopu i spektrometru FT-IR Przedmiotem zamówienia jest dostawa mikroskopu i spektrometru

Bardziej szczegółowo

Techniki mikroskopowe mikroskopia optyczna i fluorescencyjna, skaningowy mikroskop elektronowy i mikroskop sił atomowych

Techniki mikroskopowe mikroskopia optyczna i fluorescencyjna, skaningowy mikroskop elektronowy i mikroskop sił atomowych Techniki mikroskopowe mikroskopia optyczna i fluorescencyjna, skaningowy mikroskop elektronowy i mikroskop sił atomowych Mariusz Kępczyński, p. 148, kepczyns@chemia.uj.edu.pl Wstęp Plan wykładu mikroskopia

Bardziej szczegółowo

Fizyka Ciała Stałego

Fizyka Ciała Stałego Wykład III Struktura krystaliczna Fizyka Ciała Stałego Ciała stałe można podzielić na: Krystaliczne, o uporządkowanym ułożeniu atomów lub molekuł tworzącym sieć krystaliczną. Amorficzne, brak uporządkowania,

Bardziej szczegółowo

Pytania do ćwiczeń na I-szej Pracowni Fizyki

Pytania do ćwiczeń na I-szej Pracowni Fizyki Ćw. nr 5 Oscylator harmoniczny. 1. Ruch harmoniczny prosty. Pojęcia: okres, wychylenie, amplituda. 2. Jaka siła powoduje ruch harmoniczny spręŝyny i ciała do niej zawieszonego? 3. Wzór na okres (Studenci

Bardziej szczegółowo

S. Baran - Podstawy fizyki materii skondensowanej Wiązania chemiczne w ciałach stałych. Wiązania chemiczne w ciałach stałych

S. Baran - Podstawy fizyki materii skondensowanej Wiązania chemiczne w ciałach stałych. Wiązania chemiczne w ciałach stałych Wiązania chemiczne w ciałach stałych Wiązania chemiczne w ciałach stałych typ kowalencyjne jonowe metaliczne Van der Waalsa wodorowe siła* silne silne silne pochodzenie uwspólnienie e- (pary e-) przez

Bardziej szczegółowo

2. Metody, których podstawą są widma atomowe 32

2. Metody, których podstawą są widma atomowe 32 Spis treści 5 Spis treści Przedmowa do wydania czwartego 11 Przedmowa do wydania trzeciego 13 1. Wiadomości ogólne z metod spektroskopowych 15 1.1. Podstawowe wielkości metod spektroskopowych 15 1.2. Rola

Bardziej szczegółowo

Niezwykłe światło. ultrakrótkie impulsy laserowe. Piotr Fita

Niezwykłe światło. ultrakrótkie impulsy laserowe. Piotr Fita Niezwykłe światło ultrakrótkie impulsy laserowe Laboratorium Procesów Ultraszybkich Zakład Optyki Wydział Fizyki Uniwersytetu Warszawskiego Światło Fala elektromagnetyczna Dla światła widzialnego długość

Bardziej szczegółowo

Uniwersytet Łódzki, Wydział Chemii Katedra Chemii Nieorganicznej i Analitycznej Zakład Elektroanalizy i Elektrochemii Łódź, ul.

Uniwersytet Łódzki, Wydział Chemii Katedra Chemii Nieorganicznej i Analitycznej Zakład Elektroanalizy i Elektrochemii Łódź, ul. Uniwersytet Łódzki, Wydział Chemii 91-403 Łódź, ul. Tamka 12 Andrzej Leniart Akademia Ciekawej Chemii 11 czerwiec 2014 r. Z czego zbudowana jest materia? Demokryt z Abdery (ur. ok. 460 p.n.e., zm. ok.

Bardziej szczegółowo

4. APARATURA POMIAROWO BADAWCZA I ZASADY JEJ DZIAŁANIA Skaningowy mikroskop tunelowy STM (scanning tunneling microscope)

4. APARATURA POMIAROWO BADAWCZA I ZASADY JEJ DZIAŁANIA Skaningowy mikroskop tunelowy STM (scanning tunneling microscope) 4. APARATURA POMIAROWO BADAWCZA I ZASADY JEJ DZIAŁANIA 4.1. Skaningowy mikroskop tunelowy STM (scanning tunneling microscope) Skaningowa mikroskopia tunelowa należy do grupy technik mikroskopowych objętych

Bardziej szczegółowo

Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury.

Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury. 1 Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury. natężenie natężenie teoria klasyczna wynik eksperymentu

Bardziej szczegółowo

Plan studiów ZMiN, II stopień, obowiązujący w roku 2016/2017 A. Specjalizacja fotonika i nanotechnologia

Plan studiów ZMiN, II stopień, obowiązujący w roku 2016/2017 A. Specjalizacja fotonika i nanotechnologia Załącznik nr do programu kształcenia ZMiN II stopnia Plan studiów ZMiN, II stopień, obowiązujący w roku 206/20 A. Specjalizacja fotonika i nanotechnologia I semestr, łączna :, łączna liczba punktów : 0

Bardziej szczegółowo

Badania korozji oraz elementów metalowych

Badania korozji oraz elementów metalowych Laboratorium badawczo-rozwojowe Nanores Oferta dedykowana dla Badania korozji oraz elementów metalowych O NAS Nanores jest nowoczesnym, niezależnym laboratorium badawczo-rozwojowym, nastawionym na świadczenie

Bardziej szczegółowo