Jak badać strukturę powierzchni?

Wielkość: px
Rozpocząć pokaz od strony:

Download "Jak badać strukturę powierzchni?"

Transkrypt

1 Jak badać strukturę powierzchni? Wykład Anim - ten kod oznacza, że na stronie znajdują się animacje niewidoczne w pliku pdf. Aby oglądnąć te animacje skopiuj zbiór z pokazem PowerPoint Z. Postawa, "Fizyka powierzchni i nanostruktury" 1

2 Techniki badawcze Zjawiska towarzyszące bombardowaniu powierzchni Informacja o symetrii powierzchni Informacja o lokalnym otoczeniu wiązką elektronów atomowa zdolność rozdzielcza Dyfrakcja strumienia cząstek: dyfrakcja niskoenergetycznych elektronów mikroskop polowy (Field Ion (Low Energy Electron Opis Diffraction) Bragga LEED Microscope) - FIM dyfrakcja odbiciowa wysokoenergetycznych Kinematyczna teoria dyfrakcji skaningowy mikroskop tunelowy elektronów (Reflection High Energy Electron (Scanning Tunneling Microscope) Diffraction) Sieć RHEED odwrotna STM holografia elektronowa mikroskop sił atomowych (Atomic Spektroskopia LEED rozpraszanie jonów (Ion scattering Force Microscope) AFM spectroscopy Spektroskopia - ISS RHEED kanałowanie jonów - channeling Anim Z. Postawa, "Fizyka powierzchni i nanostruktury" 2

3 Oddziaływanie elektronów z materią Własności elektronów: ładunek C masa m e 1/1836 m proton kg spin ½ promień e 2 /mc m Przekaz energii E w zderzeniu elektronu o masie m e i energii kinetycznej E 0 ze spoczywającą cząstką o masie m 2 Zderzenie centralne E 4m m 2 E e E 0 4m m ( m + m ) e e E E Przekaz energii w zderzeniu z protonem 0 0 E 0 Procesy elastyczne nie są efektywne Z. Postawa, "Fizyka powierzchni i nanostruktury" 3

4 Rozpraszanie elastyczne Elektron Elektron Jądro atomowe Jądro atomowe Niskie energie Wysokie energie Niskie energie ( < 0.3 kev ) rozpraszanie do tyłu Wysokie energie ( > 5 kev ) rozpraszanie do przodu Oddziaływanie z siecią rozpraszanie elastyczne Z. Postawa, "Fizyka powierzchni i nanostruktury" 4

5 Procesy nieelastyczne Zderzenia z innymi elektronami ciała stałego Elektrony E Energia elektronu Izolatory Pasmo przewodnictwa Przerw a wzbroniona E Pasmo walencyjne Przewodniki Energia Fermiego E F E Elektrony 4m m ( m + m ) e e e e 2 E E E 0 Efektywne 0 Poziomy atomowe D(E) Gęstość stanów D(E) D(E) Z. Postawa, "Fizyka powierzchni i nanostruktury" 5

6 Oddziaływanie elektronów z materią Elektrony wtórne δ 1 Elektrony rozproszone η Elektrony pierwotne Elektrony wtórne δ ο PRÓŻNIA CIAŁO STAŁE Współczynnik emisji elektronowej ξ ξη + δ Z. Postawa, "Fizyka powierzchni i nanostruktury" 6

7 Współczynnik emisji elektronowej η Współczynnik emisji elektronów rozproszonych Elektrony rozproszone Liczba atomowa Materiał Elektrony wtórne E o 0.32 kev δ Na 0.9 Al 0.7 Cu 1.5 Ge 0.35 Pb 1.05 KI 7.0 CsBr 15 Z. Postawa, "Fizyka powierzchni i nanostruktury" 7

8 Zależność wtórnej emisji elektronowej od energii pierwotnych elektronów ζ max Współczynnik emisji ξ V 1 V 2 ζ 1 θ 3 θ 2 θ 1 θ 3 > θ 2 > θ 1 Napięcie przyspieszające ( V ) Maksimum przy kilkuset ev θ kąt padania elektronów pierwotnych Z. Postawa, "Fizyka powierzchni i nanostruktury" 8

9 Materiały dynatronowe Materiały o dużym współczynniku wtórnej emisji elektronowej γ CsBr KI γ 10 Fotopowielacze Powielacze elektronowe Rejestrują fotony optyczne Rejestrują jony, elektrony, promieniowanie UV i X Z. Postawa, "Fizyka powierzchni i nanostruktury" 9

10 Fotopowielacze Anim n elektrod R50 Ω Przykład γ 10 n 10 Wzmocnienie W γ n V Bez wzmocnienia 1 foton -> 1 elektron Czas przelotu 10 ns W 10 10!!!!!! 0.16 A Ze wzmocnieniem 50 Ω 3 mv Z. Postawa, "Fizyka powierzchni i nanostruktury" 10

11 Powielacze elektronowe Materiał dynatronowy Rejestrowana cząstka Warstwa półprzewodnikowa Elektrony wtórne Ścianka szklana Impuls elektronowy Powielacze jednokanałowe (Channeltron) Powielacze wielokanałowe (Multichannel Plate - MCP) Z. Postawa, "Fizyka powierzchni i nanostruktury" 11

12 Średnie drogi swobodne elektronów Zależność nieelastycznej średniej drogi swobodnej od energii elektronu n 0 n x n n 0 e x λ e Minimum λ e przy eV Kształt zależności nie zależy od rodzaju pierwiastka Średnia gęstość elektronów w paśmie walencyjnym pierwiastków 0.25 el/å 3 Dominują zderzenia z elektronami pasma walencyjnego Z. Postawa, "Fizyka powierzchni i nanostruktury" 12

13 Rozkłady energii kinetycznej wyemitowanych elektronów Log(Sygnał) dn(e) de Węgiel 1000 ev N(E) Energia ( ev ) Z. Postawa, "Fizyka powierzchni i nanostruktury" 13

14 Elektrony rozproszone elastycznie Rozkład kątowy jest anizotropowy Energia kinetyczna E o rozproszone pierwotne E 0 1 kev Ciało stałe Powierzchniowo czułe Z. Postawa, "Fizyka powierzchni i nanostruktury" 14

15 Nieelastycznie rozproszone elektrony pierwotne Elektrony wtórne Elektrony pierwotne Brak powierzchniowej czułości Z. Postawa, "Fizyka powierzchni i nanostruktury" 15

16 Plazmony Przesuwamy gaz elektronowy o gęstości n i masie m znajdujący się w cienkiej, metalowej płytce o odległość x + Gęstość powierzchniowa ładunku σ n e x Wytworzy się wtedy pole E 4π σ 4π n e x, które będzie usiłowało przesunąć elektrony z powrotem. x n m e 2 d x 2 dt ne E 4πn 2 e 2 x Równanie oscylatora ω p 2 4πn e m e 2 ω p 15.3 ev dla Al Z. Postawa, "Fizyka powierzchni i nanostruktury" 16

17 Elektrony wtórne Kaskada zderzeń Rozkład kątowy jest izotropowy Elektrony wtórne Elektrony pierwotne Energie kinetyczne < 50 ev Brak powierzchniowej czułości Z. Postawa, "Fizyka powierzchni i nanostruktury" 17

18 Elektrony Auger a Elektron pierwotny E o 3 2 E o >> E 1 Rozkład kątowy jest anizotropowy Energia kinetyczna wynosi kilkaset ev E E 1 E 2 E* 3 A) B) E Próżnia Pasmo walencyjne 1 Poziomy wewnętrzne Powierzchniowo i chemicznie czułe Z. Postawa, "Fizyka powierzchni i nanostruktury" 18

19 Jak wytworzyć wiązkę elektronów? Termoemisja Model gazu elektronowego w metalu Praca wyjścia Φ Poziom próżni E O Metal opuszczają elektrony o energii E znajdujące się w wysokoenergetycznej części rozkładu Fermiego-Diraca, czyli Energia Fermiego µ E - µ >> k T i f(e) exp(-(e - µ)/kt) Jeżeli E 1 jest energią elektronu liczoną względem próżni to E E o + E 1. Ostatecznie rozkład energii wyemitowanych elektronów ma postać: - Φ E 1 f (E1) exp exp kt kt Klasyczny rozkład Boltzmanna Φ praca wyjścia elektronów z materiału E 0 - µ Z. Postawa, "Fizyka powierzchni i nanostruktury" 19

20 Jaki materiał wybrać? Gęstość prądu emisji podaje prawo Richardsona-Dushmana: j A T 2 e Φ kt gdzie A 4π m e q e k 2 h A/cm 2 K, Aby j było duże: Materiały: Φ W 4.5 ev Ta 4.2 ev Cs 1.8 ev zmniejszać Φ zwiększać T Wybrać Cs? Kompromis pomiędzy wytrzymałością na wysokie T i małym Φ Re Th/W LaB katody tlenkowe 6 Z. Postawa, "Fizyka powierzchni i nanostruktury" 20

21 Źródło elektronów Grzany element (katoda) Cylinder Wehnelta Punkt skupienia (źródło elektronów) Anoda Wiązka elektronów Soczewki skupiające Soczewka obiektowa Z. Postawa, "Fizyka powierzchni i nanostruktury" 21

22 Jak wykorzystać elektrony do badań powierzchni? Duże prawdopodobieństwo zderzeń nieelastycznych Krótka droga (płytko) Długa droga (głęboko) Brak straty energii Strata energii Elektrony rozproszone elastycznie Z. Postawa, "Fizyka powierzchni i nanostruktury" 22

23 Czy elektrony ulegają dyfrakcji? TAK Długość fali de Broglie a λ λ hc E, gdzie: h jest stałą Planck a, c jest prędkościąświatła w próżni, λ jest długością fali r - doświadczenie Davissona-Germera Z. Postawa, "Fizyka powierzchni i nanostruktury" 23

24 Dyfrakcja na sieci krystalicznej Ujęcie Bragga Interferencja konstruktywna θ θ n λ 2 d sin θ d sinθ θ θ d sinθ d λ długość fali n rząd interferencji d odległość międzypłaszczyznowa d ~ nm θ kąt padania wiązki Czy zawsze zobaczymy dyfrakcję? Z. Postawa, "Fizyka powierzchni i nanostruktury" 24

25 Czy zawsze zobaczymy dyfrakcję? NIE!!! Warunki do spełnienia: warunki spójności, promieniowanie o odpowiedniej długości. n λ 2 d sin θ sin θ < 1 λ/2 d d ~ 3 Å λ 6 Å Z. Postawa, "Fizyka powierzchni i nanostruktury" 25

26 Długości fali λ a energia cząstek E Fotony: λ hc E, gdzie: h jest stałą Planck a, c jest prędkościąświatła w próżni, λ jest długością fali. λ 6 Å E hc λ 6.63*10 34 J s m 8 ms J 2000eV Fotony o energii 2 kev: Z. Postawa, "Fizyka powierzchni i nanostruktury" 26

27 Długości fali λ a energia cząstek E Cząstki materialne Długość fali de Broglie a wynosi: λ h 2mE Elektrony Neutrony λ (Å) E( ev ) λ (Å) E( ev ) λ 6 Å E kin 4.2 ev E kin ev Z. Postawa, "Fizyka powierzchni i nanostruktury" 27

28 Własności równania Bragga nλ 2d sin θ n h 2mE 2 dsin θ Równanie Bragga ma dwie własności, które są warte zauważenia: 1) ssin(θ) jest proporcjonalne do 1/d. W rezultacie powierzchnia, na której odległości międzyatomowe są mniejsze wytworzy obraz dyfrakcyjny, w którym odległości pomiędzy maksimami są większe. 2) ssin(θ) jest proporcjonalne do 1/E 1/2. Tak więc, odległość pomiędzy maksimami obrazu dyfrakcyjnego będzie rosła ze zmniejszaniem się energii elektronów. Nie należy używać zbyt dużej energii Z. Postawa, "Fizyka powierzchni i nanostruktury" 28

29 Dyfrakcja przypadek ogólny Założenia Rozpraszanie jest: Kinematyczna teoria rozpraszania elastyczne (zachowana energia) jednokrotne izotropowe (fala kulista) Kryształ Detektor C. Kittel, Wstęp do fizyki ciała stałego Z. Postawa, "Fizyka powierzchni i nanostruktury" 29

30 Dyfrakcja przypadek ogólny Na kryształ pada fala płaska F(r) A e i(kˆrˆ ωt) Krys ztał Detektor Rˆ ρˆ + rˆ r 2 ρ 2 + R 2 2ρ R cos( ρ, R) ρ<< R r ρ 2 + R 2 2ρR cos( ρ, R) ρ r R 1 2 cos( ρ, R) R ρcos( ρ, R) R Czynnik fazowy w punkcie obserwacji (z punktu ρ wychodzi fala kulista) Anim e i( kˆ ρˆ ) e r ikr e i (kˆ ρ+ ˆ kr ) r Z. Postawa, "Fizyka powierzchni i nanostruktury" 30

31 Całkowita amplituda A rejestrowana przez detektor Krys ztał Detektor Sumujemy po możliwych wartościach ρ A ~ ρ i e ( kˆ ˆ ρ kρ cos( ˆ ρ,ˆ r) ) Z. Postawa, "Fizyka powierzchni i nanostruktury" 31

32 Jeżeli amplituda rozpraszania na centrum rozpraszającym w punkcie ρ wynosi n(ρ) to amplituda fali rozproszonej A na elemencie objętości dv kryształu otrzymana w punkcie R położonym poza kryształem będzie proporcjonalna do całki A ~ n( ˆ) ρ exp( ikˆ ˆ ρ ikρ cos( ˆ, ρ Rˆ ))dv n( ˆ)exp ρ n( ˆ)exp ρ Powyższy wzór można uprościć: ( ikˆ ˆ ρ ik cos( ˆ, ρ Rˆ) ρ ) dv ( ikˆ ˆ ρ ikˆ ˆ ρ ) dv n( ˆ)exp ρ ( i( kˆ kˆ ) ˆ ρ ) dv Ostatecznie k wektor falowy rozpraszania A ~ n(ˆ)e ρ i kˆ ρˆ dv Z. Postawa, "Fizyka powierzchni i nanostruktury" 32

33 Sieć Sieć i baza ρ Baza ρ i ρ i a,b,c wektory bazowe sieci ρ m a + n b + l c A ~ n(ˆ ρ)e i kˆ ρˆ dv n(ˆ ρ )e i i kˆ ρˆ i dv i m,n,l e i kˆ âm+ i kˆ bˆ n+ i kˆ ĉl Czynnik atomowy F Decyduje o natężeniu Czynnik strukturalny S Decyduje o interferencji Z. Postawa, "Fizyka powierzchni i nanostruktury" 33

34 Maksima obrazu dyfrakcyjnego A i e kˆ â m+ i kˆ bˆ n+ i kˆ ĉl m,n,l Maksimum główne wystąpi wtedy, gdy kˆ kˆ kˆ â bˆ ĉ 2π m 2π n 2π l Warunki Lauego Przestrzeń odwrotna Ĝ kˆ Z. Postawa, "Fizyka powierzchni i nanostruktury" 34

35 Wektory sieci odwrotnej 3D Ĝ h  + k Bˆ + l Ĉ Ĝ Ĝ Ĝ â bˆ ĉ 2π m 2π n 2π l Powyższe związki są spełnione przez następujące wektory  2π bˆ ĉ â (bˆ ĉ) Bˆ 2π ĉ â â (bˆ ĉ) Ĉ 2π â bˆ â (bˆ ĉ) Z. Postawa, "Fizyka powierzchni i nanostruktury" 35

36 Wektory sieci odwrotnej 2D Ĝ h  + k Bˆ Ĝ Ĝ â bˆ 2π m 2π n a, b wektory komórki elementarnej płaszczyzny Powyższe związki są spełnione przez następujące wektory  2π bˆ nˆ â (bˆ nˆ ) Bˆ 2π nˆ â â (bˆ nˆ ) gdzie, nˆ jest jednostkowym wektorem prostopadłym do powierzchni. k k + G ' k dowolne!!! Z. Postawa, "Fizyka powierzchni i nanostruktury" 36

37 Konstrukcja Ewalda Dyfrakcja trójwymiarowa Sieć odwrotna Warunek powstania maksimum k k+ G Anim Niewielka zmiana energii (zmiana promienia k okręgu) powoduje znikanie punktów dyfrakcyjnych Z. Postawa, "Fizyka powierzchni i nanostruktury" 37

38 Konstrukcja Ewalda dla dyfrakcji na powierzchni (04)(03)(02)(01)(00)(01)(02)(03)(04) Warunek powstania maksimum k k + G Sfera Ewalda Pręty sieci odwrotnej ' k dowolne Anim k i k 2 k 2-4G -3G -2G -G 0 G 2G 3G 4G Niewielka zmiana energii (zmiana promienia k okręgu) powoduje przesuwanie punktów dyfrakcyjnych Z. Postawa, "Fizyka powierzchni i nanostruktury" 38

39 Przestrzeń rzeczywista Powierzchnie fcc Przestrzeń odwrotna Sieć rzeczywista Sieć rzeczywista fcc(100) W tym przypadku sieć odwrotna wygląda, tak jak sieć rzeczywista! Przestrzeń rzeczywista Przestrzeń odwrotna Sieć rzeczywista Sieć rzeczywista fcc(110) W tym przypadku sieć odwrotna wygląda, tak jak sieć rzeczywista odwrócona o 90 o! Z. Postawa, "Fizyka powierzchni i nanostruktury" 39

40 Powierzchnia fcc(111) Powierzchnie fcc, cd. Przestrzeń rzeczywista Przestrzeń odwrotna Sieć rzeczywista Sieć rzeczywista sieć rzeczywista i odwrotna mają tą samą symetrię. Jednak w tym przypadku wektory a 1 i a 2 nie są prostopadłe, a 1 i a 2 są prostopadłe, a 2 i a 1 są prostopadłe, ale a 1 i a 1 nie są już równoległe. Ponieważ kąt alfa30 o, i cos( alfa) 2 3 a a 1 ' Z. Postawa, "Fizyka powierzchni i nanostruktury" 40

41 Obrazy dyfrakcyjne - rekonstrukcja Przestrzeń rzeczywista Przestrzeń odwrotna Przestrzeń rzeczywista Składamy obrazy dyfrakcyjne Nie zawsze działa Obraz dyfrakcyjny Z. Postawa, "Fizyka powierzchni i nanostruktury" 41

42 Co za tydzień? Dyfrakcja elektronowa cd. dynamiczna teoria dyfrakcji drgania sieci dyfuzja po powierzchni Z. Postawa, "Fizyka powierzchni i nanostruktury" 42

43 Wektor sieci odwrotnej a płaszczyzny sieciowe  G hkl h A + k B + l C G hkl wektor sieci odwrotnej A, B, C wektory bazowe sieci odwrotnej. Zgodnie z definicją wskaźników h,k,l, płaszczyzna (hkl) przecina układ współrzędnych rzeczywistej sieci w punktach a/h, b/k, c/l. Wektor da/h-b/k leży na płaszczyźnie (hkl) Obliczmy d G hkl 2π-2π0 Identyczną bˆ nˆ zależność otrzymamy nˆ â dla 2π â (bˆ nˆ ) Bˆ 2π G hkl (a/h-c/l) oraz G hkl (b/k-c/l) â (bˆ nˆ ) Wektor G hkl jest prostopadły do płaszczyzny (hkl) Z. Postawa, "Fizyka powierzchni i nanostruktury" 43

44 InSb(100) C(8x2) Z. Postawa, "Fizyka powierzchni i nanostruktury" 44

45 Wiązka centralna (specular beam) Ekran fluorescencyjny Wiązka centralna Wiązka padająca Granica cienia Z. Postawa, "Fizyka powierzchni i nanostruktury" 45

46 Rozpraszanie na układzie liniowym Rozpraszanie na linii N atomów k d N 1 I A N 1 m 0 e N 1 N 1 i kˆ dˆ m e m 0 m 0 i kˆ dˆ m e i kˆ dˆ m 1 e 1 e i kˆ dˆ (N 1) i kˆ dˆ 1 e 1 e i kˆ dˆ (N 1) i kˆ dˆ I 1 cos 1 ( kˆ dˆ (N 1) ) cos( kˆ dˆ ) 2 kˆ dˆ (N 1) sin 2 2 kˆ dˆ sin 2 Z. Postawa, "Fizyka powierzchni i nanostruktury" 46

47 Rozpraszanie na układzie liniowym I 2 kˆ dˆ (N 1) sin 2 2 kˆ dˆ sin 2 Znormalizowane natężenie N 1 N 10 N kd Z. Postawa, "Fizyka powierzchni i nanostruktury" 47

48 Przykłady obrazów LEED Natężenie a) pojedynczy punkt b) dwa punkty odległe o a c) N punktów odległych o a d) grupy N punktów odległych o a Grupy są odległe o (N+1/2)a e) kilka grup o zmiennej liczbie atomów. Poza tym jak w punkcie d. -4π a -2π a 2π a 4π a f) N atomów rozmieszczonych przypadkowo w 2N węzłach sieci odległych od siebie o a. Z. Postawa, "Fizyka powierzchni i nanostruktury" 48

Ciała stałe. Ciała krystaliczne. Ciała amorficzne. Bardzo często mamy do czynienia z ciałami polikrystalicznymi, rzadko monokryształami.

Ciała stałe. Ciała krystaliczne. Ciała amorficzne. Bardzo często mamy do czynienia z ciałami polikrystalicznymi, rzadko monokryształami. Ciała stałe Ciała krystaliczne Ciała amorficzne Bardzo często mamy do czynienia z ciałami polikrystalicznymi, rzadko monokryształami. r T = Kryształy rosną przez regularne powtarzanie się identycznych

Bardziej szczegółowo

Krystalografia. Dyfrakcja

Krystalografia. Dyfrakcja Krystalografia Dyfrakcja Podstawowe zagadnienia Rodzaje promieniowania używane w dyfrakcyjnych metodach badań struktur krystalicznych, ich źródła Fizyczne podstawy i warunki dyfrakcji Równania dyfrakcji:

Bardziej szczegółowo

PODSTAWY MECHANIKI KWANTOWEJ

PODSTAWY MECHANIKI KWANTOWEJ PODSTAWY MECHANIKI KWANTOWEJ De Broglie, na podstawie analogii optycznych, w roku 194 wysunął hipotezę, że cząstki materialne także charakteryzują się dualizmem korpuskularno-falowym. Hipoteza de Broglie

Bardziej szczegółowo

Prawo Bragga. Różnica dróg promieni 1 i 2 wynosi: s = CB + BD: CB = BD = d sinθ

Prawo Bragga. Różnica dróg promieni 1 i 2 wynosi: s = CB + BD: CB = BD = d sinθ Prawo Bragga Prawo Bragga Prawo Bragga Różnica dróg promieni 1 i 2 wynosi: s = CB + BD: CB = BD = d sinθ d - odległość najbliższych płaszczyzn, w których są ułożone atomy, równoległych do powierzchni kryształu,

Bardziej szczegółowo

Fizyczne Metody Badań Materiałów 2

Fizyczne Metody Badań Materiałów 2 Fizyczne Metody Badań Materiałów 2 Dr inż. Marek Chmielewski G.G. np.p.7-8 www.mif.pg.gda.pl/homepages/bzyk Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Bardziej szczegółowo

FIZYKA POWIERZCHNI I NANOSTRUKTURY. Wykład odbędzie się w II semstrze 2005/2006

FIZYKA POWIERZCHNI I NANOSTRUKTURY. Wykład odbędzie się w II semstrze 2005/2006 FIZYKA POWIERZCHNI I NANOSTRUKTURY dr hab. Zbigniew Postawa Zakład Fizyki Doświadczalnej pok. 016 Tel. 5626 e-mail: zp@castor.if.uj.edu.pl H H C H H C H H Wykład odbędzie się w II semstrze 2005/2006 Bez

Bardziej szczegółowo

Fale materii. gdzie h= 6.6 10-34 J s jest stałą Plancka.

Fale materii. gdzie h= 6.6 10-34 J s jest stałą Plancka. Fale materii 194- Louis de Broglie teoria fal materii, 199- nagroda Nobla Hipoteza de Broglie głosi, że dwoiste korpuskularno falowe zachowanie jest cechą nie tylko promieniowania, lecz również materii.

Bardziej szczegółowo

Krystalografia. Wykład VIII

Krystalografia. Wykład VIII Krystalografia Wykład VIII Plan wykładu Otrzymywanie i właściwow ciwości promieni rentgenowskich Sieć odwrotna Warunki dyfrakcji promieniowania rentgenowskiego 2 NajwaŜniejsze daty w analizie strukturalnej

Bardziej szczegółowo

Wykład FIZYKA II. 11. Optyka kwantowa. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA II. 11. Optyka kwantowa.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA II 11. Optyka kwantowa Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ FIZYKA KLASYCZNA A FIZYKA WSPÓŁCZESNA Fizyka klasyczna

Bardziej szczegółowo

h λ= mv h - stała Plancka (4.14x10-15 ev s)

h λ= mv h - stała Plancka (4.14x10-15 ev s) Twórcy podstaw optyki elektronowej: De Broglie LV. 1924 hipoteza: każde ciało poruszające się ma przyporządkowaną falę a jej długość jest ilorazem stałej Plancka i pędu. Elektrony powinny więc mieć naturę

Bardziej szczegółowo

Promieniowanie rentgenowskie. Podstawowe pojęcia krystalograficzne

Promieniowanie rentgenowskie. Podstawowe pojęcia krystalograficzne Promieniowanie rentgenowskie Podstawowe pojęcia krystalograficzne Krystalografia - podstawowe pojęcia Komórka elementarna (zasadnicza): najmniejszy, charakterystyczny fragment sieci przestrzennej (lub

Bardziej szczegółowo

Prawa optyki geometrycznej

Prawa optyki geometrycznej Optyka Podstawowe pojęcia Światłem nazywamy fale elektromagnetyczne, o długościach, na które reaguje oko ludzkie, tzn. 380-780 nm. O falowych własnościach światła świadczą takie zjawiska, jak ugięcie (dyfrakcja)

Bardziej szczegółowo

Charakterystyka promieniowania miedziowej lampy rentgenowskiej.

Charakterystyka promieniowania miedziowej lampy rentgenowskiej. Uniwersytet Śląski - Instytut Chemii Zakładu Krystalografii ul. Bankowa 14, pok. 133, 40-006 Katowice tel. 0323591503, e-mail: izajen@wp.pl, opracowanie: dr Izabela Jendrzejewska Laboratorium z Krystalografii

Bardziej szczegółowo

WŁASNOŚCI CIAŁ STAŁYCH I CIECZY

WŁASNOŚCI CIAŁ STAŁYCH I CIECZY WŁASNOŚCI CIAŁ STAŁYCH I CIECZY Polimery Sieć krystaliczna Napięcie powierzchniowe Dyfuzja 2 BUDOWA CIAŁ STAŁYCH Ciała krystaliczne (kryształy): monokryształy, polikryształy Ciała amorficzne (bezpostaciowe)

Bardziej szczegółowo

Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury.

Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury. 1 Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury. natężenie natężenie teoria klasyczna wynik eksperymentu

Bardziej szczegółowo

Spektroskopia elektronów Augera

Spektroskopia elektronów Augera Spektroskopia elektronów Augera AES Auger Electron Spectroscopy Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Podstawy E k Z E 4 E 3 E 2 E 1 E k =(E

Bardziej szczegółowo

Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI

Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI Ćwiczenie 13 : Dyfrakcja wiązki elektronów na I. Zagadnienia do opracowania. 1. Dualizm korpuskularno falowy

Bardziej szczegółowo

Materiały Reaktorowe. Fizyczne podstawy uszkodzeń radiacyjnych cz. 1.

Materiały Reaktorowe. Fizyczne podstawy uszkodzeń radiacyjnych cz. 1. Materiały Reaktorowe Fizyczne podstawy uszkodzeń radiacyjnych cz. 1. Uszkodzenie radiacyjne Uszkodzenie radiacyjne przekaz energii od cząstki inicjującej do materiału oraz rozkład jonów w ciele stałym

Bardziej szczegółowo

Seminarium. -rozpad α -oddziaływanie promienowania z materią -liczniki scyntylacyjne. Konrad Tudyka

Seminarium. -rozpad α -oddziaływanie promienowania z materią -liczniki scyntylacyjne. Konrad Tudyka Seminarium -rozpad α -oddziaływanie promienowania z materią -liczniki scyntylacyjne Konrad Tudyka 1 W 1908r. Rutheford zatopił niewielka ilość 86 Rn w szklanym naczyniu o ciękich sciankach (przenikliwych

Bardziej szczegółowo

Podstawy fizyki kwantowej i budowy materii

Podstawy fizyki kwantowej i budowy materii Podstawy fizyki kwantowej i budowy materii prof. dr hab. Aleksander Filip Żarnecki Zakład Cząstek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej Wykład 5 7 listopada 2016 A.F.Żarnecki Podstawy

Bardziej szczegółowo

Czym jest prąd elektryczny

Czym jest prąd elektryczny Prąd elektryczny Ruch elektronów w przewodniku Wektor gęstości prądu Przewodność elektryczna Prawo Ohma Klasyczny model przewodnictwa w metalach Zależność przewodności/oporności od temperatury dla metali,

Bardziej szczegółowo

Elementy teorii powierzchni metali

Elementy teorii powierzchni metali prof. dr hab. Adam Kiejna Elementy teorii powierzchni metali Wykład 4 v.16 Wiązanie metaliczne Wiązanie metaliczne Zajmujemy się tylko metalami dlatego w zasadzie interesuje nas tylko wiązanie metaliczne.

Bardziej szczegółowo

Fizyka powierzchni 6-7/7. Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska

Fizyka powierzchni 6-7/7. Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska Fizyka powierzchni 6-7/7 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Lista zagadnień Fizyka powierzchni i międzypowierzchni, struktura powierzchni ciał stałych Termodynamika równowagowa i

Bardziej szczegółowo

Analiza składu chemicznego powierzchni

Analiza składu chemicznego powierzchni Analiza składu chemicznego powierzchni Techniki elektronowe Spektrometria elektronów Auger a (AES) zjawisko Auger a Spektrometria fotoelektronów rentgenowskich (XPS) efekt fotoelektryczny Próbka Soczewka

Bardziej szczegółowo

OPTYKA. Leszek Błaszkieiwcz

OPTYKA. Leszek Błaszkieiwcz OPTYKA Leszek Błaszkieiwcz Ojcem optyki jest Witelon (1230-1314) Zjawisko odbicia fal promień odbity normalna promień padający Leszek Błaszkieiwcz Rys. Zjawisko załamania fal normalna promień padający

Bardziej szczegółowo

Rozszczepienie poziomów atomowych

Rozszczepienie poziomów atomowych Rozszczepienie poziomów atomowych Poziomy energetyczne w pojedynczym atomie Gdy zbliżamy atomy chmury elektronowe nachodzą na siebie (inaczej: funkcje falowe elektronów zaczynają się przekrywać) Na skutek

Bardziej szczegółowo

Badanie schematu rozpadu jodu 128 J

Badanie schematu rozpadu jodu 128 J J8A Badanie schematu rozpadu jodu 128 J Celem doświadczenie jest wyznaczenie schematu rozpadu jodu 128 J Wiadomości ogólne 1. Oddziaływanie kwantów γ z materią (1,3) a/ efekt fotoelektryczny b/ efekt Comptona

Bardziej szczegółowo

Laboratorium z Krystalografii. 2 godz.

Laboratorium z Krystalografii. 2 godz. Uniwersytet Śląski - Instytut Chemii Zakład Krystalografii ul. Bankowa 14, pok. 132, 40-006 Katowice tel. 0323591627, e-mail: ewa.malicka@us.edu.pl opracowanie: dr Ewa Malicka Laboratorium z Krystalografii

Bardziej szczegółowo

Spektroskopia elektronów Augera. AES Auger Electron Spectroscopy

Spektroskopia elektronów Augera. AES Auger Electron Spectroscopy Spektroskopia elektronów Augera AES Auger Electron Spectroscopy Podstawy E k Z E 4 E 3 E 2 E 1 E k =(E 2 -E 3 )-E 4 Proces Auger a Jonizacja głęboko leżącego poziomu elektronowego przez elektrony pierwotne

Bardziej szczegółowo

Mikroskopia polowa. Efekt tunelowy Historia odkryć Uwagi o tunelowaniu Zastosowane rozwiązania. Bolesław AUGUSTYNIAK

Mikroskopia polowa. Efekt tunelowy Historia odkryć Uwagi o tunelowaniu Zastosowane rozwiązania. Bolesław AUGUSTYNIAK Mikroskopia polowa Efekt tunelowy Historia odkryć Uwagi o tunelowaniu Zastosowane rozwiązania Bolesław AUGUSTYNIAK Efekt tunelowy Efekt kwantowy, którym tłumaczy się przenikanie elektronu w sposób niezgodny

Bardziej szczegółowo

Opracowała: mgr Agata Wiśniewska PRZYKŁADOWE SPRAWDZIANY WIADOMOŚCI l UMIEJĘTNOŚCI Współczesny model budowy atomu (wersja A)

Opracowała: mgr Agata Wiśniewska PRZYKŁADOWE SPRAWDZIANY WIADOMOŚCI l UMIEJĘTNOŚCI Współczesny model budowy atomu (wersja A) PRZYKŁADOW SPRAWDZIANY WIADOMOŚCI l UMIJĘTNOŚCI Współczesny model budowy atomu (wersja A) 1. nuklid A. Zbiór atomów o tej samej wartości liczby atomowej. B. Nazwa elektrycznie obojętnej cząstki składowej

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 8 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15

Bardziej szczegółowo

VI.5 Zderzenia i rozpraszanie. Przekrój czynny. Wzór Rutherforda i odkrycie jądra atomowego

VI.5 Zderzenia i rozpraszanie. Przekrój czynny. Wzór Rutherforda i odkrycie jądra atomowego VI.5 Zderzenia i rozpraszanie. Przekrój czynny. Wzór Rutherforda i odkrycie jądra atomowego Jan Królikowski Fizyka IBC 1 Przekrój czynny Jan Królikowski Fizyka IBC Zderzenia Oddziaływania dwóch (lub więcej)

Bardziej szczegółowo

Monochromatyzacja promieniowania molibdenowej lampy rentgenowskiej

Monochromatyzacja promieniowania molibdenowej lampy rentgenowskiej Uniwersytet Śląski Instytut Chemii Zakładu Krystalografii ul. Bankowa 14, pok. 133, 40 006 Katowice tel. (032)359 1503, e-mail: izajen@wp.pl, opracowanie: dr Izabela Jendrzejewska Laboratorium z Krystalografii

Bardziej szczegółowo

Instrukcja do ćwiczenia. Analiza rentgenostrukturalna materiałów polikrystalicznych

Instrukcja do ćwiczenia. Analiza rentgenostrukturalna materiałów polikrystalicznych nstrukcja do ćwiczenia naliza rentgenostrukturalna materiałów polikrystalicznych Katedra Chemii Nieorganicznej i Technologii Ciała Stałego Wydział Chemiczny Politechnika Warszawska Warszawa, 2007 Promieniowanie

Bardziej szczegółowo

Mechanika klasyczna zasada zachowania energii. W obszarze I cząstka biegnie z prędkością v I, Cząstka przechodzi z obszaru I do II.

Mechanika klasyczna zasada zachowania energii. W obszarze I cząstka biegnie z prędkością v I, Cząstka przechodzi z obszaru I do II. Próg potencjału Mecanika klasyczna zasada zacowania energii mvi mv E + V W obszarze I cząstka biegnie z prędkością v I, E > V w obszarze cząstka biegnie z prędkością v Cząstka przecodzi z obszaru I do.

Bardziej szczegółowo

OBRAZOWANIE ORAZ BADANIE ROZMIARÓW I POŁOŻENIA OBIEKTÓW NAŚWIETLONYCH PROMIENIOWANIEM X

OBRAZOWANIE ORAZ BADANIE ROZMIARÓW I POŁOŻENIA OBIEKTÓW NAŚWIETLONYCH PROMIENIOWANIEM X X4 OBRAZOWANIE ORAZ BADANIE ROZMIARÓW I POŁOŻENIA OBIEKTÓW NAŚWIETLONYCH PROMIENIOWANIEM X 1. Cel ćwiczenia Celem ćwiczenia jest jakościowe poznanie podstawowych zjawisk fizycznych wykorzystywanych w obrazowaniu

Bardziej szczegółowo

WŁASNOŚCI ŚWIATŁA. 1. Optyka geometryczna i falowa zasady i prawa optyki geometrycznej całkowite wewnętrzne odbicie; światłowody

WŁASNOŚCI ŚWIATŁA. 1. Optyka geometryczna i falowa zasady i prawa optyki geometrycznej całkowite wewnętrzne odbicie; światłowody WŁASNOŚCI ŚWIATŁA 1. Optyka geometryczna i falowa zasady i prawa optyki geometrycznej całkowite wewnętrzne odbicie; światłowody 2. Oddziaływanie fali z materią dyfrakcja promieni X na sieci krystalicznej

Bardziej szczegółowo

Falowa natura materii

Falowa natura materii r. akad. 2012/2013 wykład I - II Podstawy Procesów i Konstrukcji Inżynierskich Falowa natura materii 1 r. akad. 2012/2013 Podstawy Procesów i Konstrukcji Inżynierskich Warunki zaliczenia: Aby uzyskać dopuszczenie

Bardziej szczegółowo

zadania zamknięte W zadaniach od 1. do 10. wybierz i zaznacz jedną poprawną odpowiedź.

zadania zamknięte W zadaniach od 1. do 10. wybierz i zaznacz jedną poprawną odpowiedź. zadania zamknięte W zadaniach od 1. do 10. wybierz i zaznacz jedną poprawną odpowiedź. Zadanie 1. (1 p.) Wybierz ten zestaw wielkości fizycznych, który zawiera wyłącznie wielkości skalarne. a. ciśnienie,

Bardziej szczegółowo

Nanostruktury i nanotechnologie

Nanostruktury i nanotechnologie Nanostruktury i nanotechnologie Heterozłącza Efekty kwantowe Nanotechnologie Z. Postawa, "Fizyka powierzchni i nanostruktury" 1 Termin oddania referatów do 19 I 004 Zaliczenie: 1 I 004 Z. Postawa, "Fizyka

Bardziej szczegółowo

Badanie schematu rozpadu jodu 128 I

Badanie schematu rozpadu jodu 128 I J8 Badanie schematu rozpadu jodu 128 I Celem doświadczenie jest wyznaczenie schematu rozpadu jodu 128 I Wiadomości ogólne 1. Oddziaływanie kwantów γ z materią [1,3] a) efekt fotoelektryczny b) efekt Comptona

Bardziej szczegółowo

S T R U K T U R Y J E D N O W Y M I A R O W E. W Ł A S N O Ś C I. P R Z Y K Ł A D Y. JOANNA MIECZKOWSKA FIZYKA STOSOWANA

S T R U K T U R Y J E D N O W Y M I A R O W E. W Ł A S N O Ś C I. P R Z Y K Ł A D Y. JOANNA MIECZKOWSKA FIZYKA STOSOWANA S T R U K T U R Y J E D N O W Y M I A R O W E. W Ł A S N O Ś C I. P R Z Y K Ł A D Y. JOANNA MIECZKOWSKA FIZYKA STOSOWANA Własności fizyczne niskowymiarowych układów molekularnych są opisywane, w pierwszym

Bardziej szczegółowo

SPIS TREŚCI ««*» ( # * *»»

SPIS TREŚCI ««*» ( # * *»» ««*» ( # * *»» CZĘŚĆ I. POJĘCIA PODSTAWOWE 1. Co to jest fizyka? 11 2. Wielkości fizyczne 11 3. Prawa fizyki 17 4. Teorie fizyki 19 5. Układ jednostek SI 20 6. Stałe fizyczne 20 CZĘŚĆ II. MECHANIKA 7.

Bardziej szczegółowo

39 DUALIZM KORPUSKULARNO FALOWY.

39 DUALIZM KORPUSKULARNO FALOWY. Włodzimierz Wolczyński 39 DUALIZM KORPUSKULARNO FALOWY. ZJAWISKO FOTOELEKTRYCZNE. FALE DE BROGILE Fale radiowe Fale radiowe ultrakrótkie Mikrofale Podczerwień IR Światło Ultrafiolet UV Promienie X (Rentgena)

Bardziej szczegółowo

Fizyka powierzchni. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska

Fizyka powierzchni. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Fizyka powierzchni 8 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Lista zagadnień Fizyka powierzchni i międzypowierzchni, struktura powierzchni

Bardziej szczegółowo

LABORATORIUM ANALITYCZNEJ MIKROSKOPII ELEKTRONOWEJ (L - 2)

LABORATORIUM ANALITYCZNEJ MIKROSKOPII ELEKTRONOWEJ (L - 2) LABORATORIUM ANALITYCZNEJ MIKROSKOPII ELEKTRONOWEJ (L - 2) Posiadane uprawnienia: ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO NR AB 120 wydany przez Polskie Centrum Akredytacji Wydanie nr 5 z 18 lipca 2007

Bardziej szczegółowo

Wstęp. Krystalografia geometryczna

Wstęp. Krystalografia geometryczna Wstęp Przedmiot badań krystalografii. Wprowadzenie do opisu struktury kryształów. Definicja sieci Bravais go i bazy atomowej, komórki prymitywnej i elementarnej. Podstawowe typy komórek elementarnych.

Bardziej szczegółowo

Atom wodoru i jony wodoropodobne

Atom wodoru i jony wodoropodobne Atom wodoru i jony wodoropodobne dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2012/13 Spis treści Spis treści 1. Model Bohra atomu wodoru 2 1.1. Porządek

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 1 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15

Bardziej szczegółowo

FIZYKA I ASTRONOMIA RUCH JEDNOSTAJNIE PROSTOLINIOWY RUCH PROSTOLINIOWY JEDNOSTAJNIE PRZYSPIESZONY RUCH PROSTOLINIOWY JEDNOSTAJNIE OPÓŹNIONY

FIZYKA I ASTRONOMIA RUCH JEDNOSTAJNIE PROSTOLINIOWY RUCH PROSTOLINIOWY JEDNOSTAJNIE PRZYSPIESZONY RUCH PROSTOLINIOWY JEDNOSTAJNIE OPÓŹNIONY FIZYKA I ASTRONOMIA RUCH JEDNOSTAJNIE PROSTOLINIOWY Każdy ruch jest zmienną położenia w czasie danego ciała lub układu ciał względem pewnego wybranego układu odniesienia. v= s/t RUCH

Bardziej szczegółowo

V OGÓLNOPOLSKI KONKURS Z FIZYKI Fizyka się liczy Eliminacje TEST 27 lutego 2013r.

V OGÓLNOPOLSKI KONKURS Z FIZYKI Fizyka się liczy Eliminacje TEST 27 lutego 2013r. V OGÓLNOPOLSKI KONKURS Z FIZYKI Fizyka się liczy Eliminacje TEST 27 lutego 2013r. 1. Po wirującej płycie gramofonowej idzie wzdłuż promienia mrówka ze stałą prędkością względem płyty. Torem ruchu mrówki

Bardziej szczegółowo

ZESTAW PYTAŃ I ZAGADNIEŃ NA EGZAMIN Z FIZYKI sem /13

ZESTAW PYTAŃ I ZAGADNIEŃ NA EGZAMIN Z FIZYKI sem /13 1 ZESTAW PYTAŃ I ZAGADNIEŃ NA EGZAMIN Z FIZYKI sem. 2 2012/13 Ruch falowy 1. Co to jest fala mechaniczna? Podaj warunki niezbędne do zaobserwowania rozchodzenia się fali mechanicznej. 2. Jaka wielkość

Bardziej szczegółowo

Przejścia promieniste

Przejścia promieniste Przejście promieniste proces rekombinacji elektronu i dziury (przejście ze stanu o większej energii do stanu o energii mniejszej), w wyniku którego następuje emisja promieniowania. E Długość wyemitowanej

Bardziej szczegółowo

WŁASNOŚCI FAL ELEKTROMAGNETYCZNYCH: INTERFERENCJA, DYFRAKCJA, POLARYZACJA

WŁASNOŚCI FAL ELEKTROMAGNETYCZNYCH: INTERFERENCJA, DYFRAKCJA, POLARYZACJA WŁASNOŚCI FAL ELEKTROMAGNETYCZNYCH: INTERFERENCJA, DYFRAKCJA, POLARYZACJA 1. Interferencja fal z dwóch źródeł 2. Fale koherentne i niekoherentne 3. Interferencja fal z wielu źródeł 4. Zasada Huygensa 5.

Bardziej szczegółowo

Metody badań spektroskopowych

Metody badań spektroskopowych Metody badań spektroskopowych Program wykładu Wstęp A. Spektroskopia optyczna 1. Podstawy spektroskopii optycznej 1.1 Promieniowanie elektromagnetyczne 1.2 Kwantowanie energii 1.3 Emisja i absorpcja promieniowania

Bardziej szczegółowo

Elektronowa mikroskopia. T. 2, Mikroskopia skaningowa / Wiesław Dziadur, Janusz Mikuła. Kraków, Spis treści

Elektronowa mikroskopia. T. 2, Mikroskopia skaningowa / Wiesław Dziadur, Janusz Mikuła. Kraków, Spis treści Elektronowa mikroskopia. T. 2, Mikroskopia skaningowa / Wiesław Dziadur, Janusz Mikuła. Kraków, 2016 Spis treści Wykaz ważniejszych skrótów i oznaczeń 11 Przedmowa 17 Wstęp 19 Literatura 26 Rozdział I.

Bardziej szczegółowo

Spektroskopia Fluorescencyjna promieniowania X

Spektroskopia Fluorescencyjna promieniowania X Spektroskopia Fluorescencyjna promieniowania X Technika X-ray Energy Spectroscopy (XES) a) XES dla określenia składu substancji (jakie pierwiastki) b) XES dla ustalenia struktury elektronicznej (informacja

Bardziej szczegółowo

Pytania do ćwiczeń na I-szej Pracowni Fizyki

Pytania do ćwiczeń na I-szej Pracowni Fizyki Ćw. nr 5 Oscylator harmoniczny. 1. Ruch harmoniczny prosty. Pojęcia: okres, wychylenie, amplituda. 2. Jaka siła powoduje ruch harmoniczny spręŝyny i ciała do niej zawieszonego? 3. Wzór na okres (Studenci

Bardziej szczegółowo

Dyfrakcja rentgenowska (XRD) w analizie fazowej Wykład 2 i 3

Dyfrakcja rentgenowska (XRD) w analizie fazowej Wykład 2 i 3 Dyfrakcja rentgenowska () w analizie fazowej Wykład 2 i 3 1. Historia odkrycie promieniowania X i pierwsze eksperymenty z jego zastosowaniem. 2. Fale elektromagnetyczne. 3. Źródła promieniowania X, promieniowanie

Bardziej szczegółowo

r. akad. 2012/2013 wykład III-IV Mechanika kwantowa Podstawy Procesów i Konstrukcji Inżynierskich Mechanika kwantowa

r. akad. 2012/2013 wykład III-IV Mechanika kwantowa Podstawy Procesów i Konstrukcji Inżynierskich Mechanika kwantowa r. akad. 01/013 wykład III-IV Podstawy Procesów i Konstrukcji Inżynierskich Mechanika kwantowa Zakład Zakład Biofizyki Biofizyki 1 Falowa natura materii Zarówno fale elektromagnetyczne (fotony) jaki i

Bardziej szczegółowo

MAGNETYZM, INDUKCJA ELEKTROMAGNETYCZNA. Zadania MODUŁ 11 FIZYKA ZAKRES ROZSZERZONY

MAGNETYZM, INDUKCJA ELEKTROMAGNETYCZNA. Zadania MODUŁ 11 FIZYKA ZAKRES ROZSZERZONY MODUŁ MAGNETYZM, INDUKCJA ELEKTROMAGNETYCZNA OPRACOWANE W RAMACH PROJEKTU: FIZYKA ZAKRES ROZSZERZONY WIRTUALNE LABORATORIA FIZYCZNE NOWOCZESNĄ METODĄ NAUCZANIA. PROGRAM NAUCZANIA FIZYKI Z ELEMENTAMI TECHNOLOGII

Bardziej szczegółowo

Fizyka i technologia złącza PN. Adam Drózd 25.04.2006r.

Fizyka i technologia złącza PN. Adam Drózd 25.04.2006r. Fizyka i technologia złącza P Adam Drózd 25.04.2006r. O czym będę mówił: Półprzewodnik definicja, model wiązań walencyjnych i model pasmowy, samoistny i niesamoistny, domieszki donorowe i akceptorowe,

Bardziej szczegółowo

3. Jaka jest masa atomowa pierwiastka E w następujących związkach? Który to pierwiastek? EO o masie cząsteczkowej 28 [u]

3. Jaka jest masa atomowa pierwiastka E w następujących związkach? Który to pierwiastek? EO o masie cząsteczkowej 28 [u] 1. Masa cząsteczkowa tlenku dwuwartościowego metalu wynosi 56 [u]. Masa atomowa tlenu wynosi 16 [u]. Ustal jaki to metal i podaj jego nazwę. Napisz wzór sumaryczny tego tlenku. 2. Ile razy masa atomowa

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z FIZYKI

PRÓBNY EGZAMIN MATURALNY Z FIZYKI Miejsce na naklejkę z kodem (Wpisuje zdający przed rozpoczęciem pracy) KOD ZDAJĄCEGO OKRĘGOWA K O M I S J A EGZAMINACYJNA w KRAKOWIE PRÓBNY EGZAMIN MATURALNY Z FIZYKI Czas pracy 90 minut Informacje 1.

Bardziej szczegółowo

Elektrostatyka, część pierwsza

Elektrostatyka, część pierwsza Elektrostatyka, część pierwsza ZADANIA DO PRZEROBIENIA NA LEKJI 1. Dwie kulki naładowano ładunkiem q 1 = 1 i q 2 = 3 i umieszczono w odległości r = 1m od siebie. Oblicz siłę ich wzajemnego oddziaływania.

Bardziej szczegółowo

FIZYKA-egzamin opracowanie pozostałych pytań

FIZYKA-egzamin opracowanie pozostałych pytań FIZYKA-egzamin opracowanie pozostałych pytań Andrzej Przybyszewski Michał Witczak Marcin Talarek. Definicja pracy na odcinku A-B 2. Zdefiniować różnicę energii potencjalnych gdy ciało przenosimy z do B

Bardziej szczegółowo

POMIARY OPTYCZNE 1. Wykład 1. Dr hab. inż. Władysław Artur Woźniak

POMIARY OPTYCZNE 1. Wykład 1.  Dr hab. inż. Władysław Artur Woźniak POMIARY OPTYCZNE Wykład Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej Pokój 8/ bud. A- http://www.if.pwr.wroc.pl/~wozniak/ OPTYKA GEOMETRYCZNA Codzienne obserwacje: światło

Bardziej szczegółowo

Własności światła laserowego

Własności światła laserowego Własności światła laserowego Cechy światła laserowego: rozbieżność (równoległość) wiązki, pasmo spektralne, gęstość mocy oraz spójność (koherencja). Równoległość wiązki Dyfrakcyjną rozbieżność kątową awkącie

Bardziej szczegółowo

MATERIAŁ DIAGNOSTYCZNY Z FIZYKI I ASTRONOMII

MATERIAŁ DIAGNOSTYCZNY Z FIZYKI I ASTRONOMII Miejsce na naklejkę z kodem szkoły dysleksja MATERIAŁ DIAGNOSTYCZNY Z FIZYKI I ASTRONOMII POZIOM PODSTAWOWY Czas pracy 120 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 13

Bardziej szczegółowo

FIZYKA Podręcznik: Fizyka i astronomia dla każdego pod red. Barbary Sagnowskiej, wyd. ZamKor.

FIZYKA Podręcznik: Fizyka i astronomia dla każdego pod red. Barbary Sagnowskiej, wyd. ZamKor. DKOS-5002-2\04 Anna Basza-Szuland FIZYKA Podręcznik: Fizyka i astronomia dla każdego pod red. Barbary Sagnowskiej, wyd. ZamKor. WYMAGANIA NA OCENĘ DOPUSZCZAJĄCĄ DLA REALIZOWANYCH TREŚCI PROGRAMOWYCH Kinematyka

Bardziej szczegółowo

Ćwiczenia z mikroskopii optycznej

Ćwiczenia z mikroskopii optycznej Ćwiczenia z mikroskopii optycznej Anna Gorczyca Rok akademicki 2013/2014 Literatura D. Halliday, R. Resnick, Fizyka t. 2, PWN 1999 r. J.R.Meyer-Arendt, Wstęp do optyki, PWN Warszawa 1979 M. Pluta, Mikroskopia

Bardziej szczegółowo

Promieniowanie cieplne ciał.

Promieniowanie cieplne ciał. Wypromieniowanie fal elektromagnetycznych przez ciała Promieniowanie cieplne (termiczne) Luminescencja Chemiluminescencja Elektroluminescencja Katodoluminescencja Fotoluminescencja Emitowanie fal elektromagnetycznych

Bardziej szczegółowo

Kwantowa teoria promieniowania

Kwantowa teoria promieniowania Rozdział 3 Kwantowa teoria promieniowania 3.1 Zjawisko fotoelektryczne 3.1.1 Kwanty promieniowania Szereg faktów doświadczalnych wskazuje, że promieniowanie elektromagnetyczne, w szczególności światło,

Bardziej szczegółowo

Leon Murawski, Katedra Fizyki Ciała Stałego Wydział Fizyki Technicznej i Matematyki Stosowanej

Leon Murawski, Katedra Fizyki Ciała Stałego Wydział Fizyki Technicznej i Matematyki Stosowanej Nanomateriałów Leon Murawski, Katedra Fizyki Ciała Stałego Wydział Fizyki Technicznej i Matematyki Stosowanej POLITECHNIKA GDAŃSKA Centrum Zawansowanych Technologii Pomorze ul. Al. Zwycięstwa 27 80-233

Bardziej szczegółowo

Ćw.6. Badanie własności soczewek elektronowych

Ćw.6. Badanie własności soczewek elektronowych Pracownia Molekularne Ciało Stałe Ćw.6. Badanie własności soczewek elektronowych Brygida Mielewska, Tomasz Neumann Zagadnienia do przygotowania: 1. Budowa mikroskopu elektronowego 2. Wytwarzanie wiązki

Bardziej szczegółowo

Fizyka Ciała Stałego. Struktura krystaliczna. Struktura amorficzna

Fizyka Ciała Stałego. Struktura krystaliczna. Struktura amorficzna Wykład II Struktura krystaliczna Fizyka Ciała Stałego Ciała stałe można podzielić na: Amorficzne, brak uporządkowania, np. szkła; Krystaliczne, o uporządkowanym ułożeniu atomów lub molekuł tworzącym sieć

Bardziej szczegółowo

Dualizm korpuskularno falowy

Dualizm korpuskularno falowy Dualizm korpuskularno falowy Fala elektromagnetyczna o długości λ w pewnych zjawiskach zachowuje się jak cząstka (foton) o pędzie p=h/λ i energii E = h = h. c/λ p Cząstki niosą pęd p Cząstce o pędzie p

Bardziej szczegółowo

DYFRAKTOMETRIA RENTGENOWSKA W BADANIACH NIENISZCZĄCYCH - NOWE NORMY EUROPEJSKIE

DYFRAKTOMETRIA RENTGENOWSKA W BADANIACH NIENISZCZĄCYCH - NOWE NORMY EUROPEJSKIE Sławomir Mackiewicz IPPT PAN DYFRAKTOMETRIA RENTGENOWSKA W BADANIACH NIENISZCZĄCYCH - NOWE NORMY EUROPEJSKIE 1. Wstęp Dyfraktometria rentgenowska jest techniką badawczą znaną i szeroko stosowaną w dziedzinie

Bardziej szczegółowo

Wykład FIZYKA II. 12. Mechanika kwantowa. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA II. 12. Mechanika kwantowa.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA II. Mechanika kwantowa Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ MECHANIKA KWANTOWA Podstawę mechaniki kwantowej stanowi

Bardziej szczegółowo

MIKROSKOPIA ELEKTRONOWA. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

MIKROSKOPIA ELEKTRONOWA. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego MIKROSKOPIA ELEKTRONOWA Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Tło historyczne Pod koniec XIX wieku stosowanie mikroskopów świetlnych w naukach

Bardziej szczegółowo

WYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ

WYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ ĆWICZENIE 84 WYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ Cel ćwiczenia: Wyznaczenie długości fali emisji lasera lub innego źródła światła monochromatycznego, wyznaczenie stałej siatki

Bardziej szczegółowo

Złącze p-n: dioda. Przewodnictwo półprzewodników. Dioda: element nieliniowy

Złącze p-n: dioda. Przewodnictwo półprzewodników. Dioda: element nieliniowy Złącze p-n: dioda Półprzewodniki Przewodnictwo półprzewodników Dioda Dioda: element nieliniowy Przewodnictwo kryształów Atomy dyskretne poziomy energetyczne (stany energetyczne); określone energie elektronów

Bardziej szczegółowo

Elementy teorii powierzchni metali

Elementy teorii powierzchni metali prof. dr hab. Adam Kiejna Elementy teorii powierzchni metali Wykład 2 v.16 Sieci płaskie i struktura powierzchni 1 Typy sieci dwuwymiarowych (płaskich) Przecinając monokryształ wzdłuż jednej z płaszczyzn

Bardziej szczegółowo

Podstawowe właściwości fizyczne półprzewodników WYKŁAD 1 SMK J. Hennel: Podstawy elektroniki półprzewodnikowej, WNT, W-wa 2003

Podstawowe właściwości fizyczne półprzewodników WYKŁAD 1 SMK J. Hennel: Podstawy elektroniki półprzewodnikowej, WNT, W-wa 2003 Podstawowe właściwości fizyczne półprzewodników WYKŁAD 1 SMK J. Hennel: Podstawy elektroniki półprzewodnikowej, WNT, W-wa 003 1. Wiązania atomów w krysztale Siły wiążące atomy w kryształ mają charakter

Bardziej szczegółowo

EGZAMIN MATURALNY 2013 FIZYKA I ASTRONOMIA

EGZAMIN MATURALNY 2013 FIZYKA I ASTRONOMIA Centralna Komisja Egzaminacyjna EGZAMIN MATURALNY 2013 FIZYKA I ASTRONOMIA POZIOM PODSTAWOWY Kryteria oceniania odpowiedzi MAJ 2013 2 Egzamin maturalny z fizyki i astronomii Zadanie 1. (0 1) Obszar standardów

Bardziej szczegółowo

Skończona studnia potencjału

Skończona studnia potencjału Skończona studnia potencjału U = 450 ev, L = 100 pm Fala wnika w ściany skończonej studni długość fali jest większa (a energia mniejsza) Teoria pasmowa ciał stałych Poziomy elektronowe atomów w cząsteczkach

Bardziej szczegółowo

Ćwiczenie: "Zagadnienia optyki"

Ćwiczenie: Zagadnienia optyki Ćwiczenie: "Zagadnienia optyki" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: 1.

Bardziej szczegółowo

Badanie zjawisk optycznych przy użyciu zestawu Laser Kit

Badanie zjawisk optycznych przy użyciu zestawu Laser Kit LABORATORIUM OPTOELEKTRONIKI Ćwiczenie 5 Badanie zjawisk optycznych przy użyciu zestawu Laser Kit Cel ćwiczenia: Zapoznanie studentów ze zjawiskami optycznymi. Badane elementy: Zestaw ćwiczeniowy Laser

Bardziej szczegółowo

Zjawisko Halla Referujący: Tomasz Winiarski

Zjawisko Halla Referujący: Tomasz Winiarski Plan referatu Zjawisko Halla Referujący: Tomasz Winiarski 1. Podstawowe definicje ffl wektory: E, B, ffl nośniki ładunku: elektrony i dziury, ffl podział ciał stałych ze względu na własności elektryczne:

Bardziej szczegółowo

Fizyka elektryczność i magnetyzm

Fizyka elektryczność i magnetyzm Fizyka elektryczność i magnetyzm W5 5. Wybrane zagadnienia z optyki 5.1. Światło jako część widma fal elektromagnetycznych. Fale elektromagnetyczne, które współczesny człowiek potrafi wytwarzać, i wykorzystywać

Bardziej szczegółowo

Fale elektromagnetyczne w dielektrykach

Fale elektromagnetyczne w dielektrykach Fale elektromagnetyczne w dielektrykach Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Krótka historia odkrycia

Bardziej szczegółowo

KLUCZ PUNKTOWANIA ODPOWIEDZI

KLUCZ PUNKTOWANIA ODPOWIEDZI Egzamin maturalny maj 009 FIZYKA I ASTRONOMIA POZIOM ROZSZERZONY KLUCZ PUNKTOWANIA ODPOWIEDZI Zadanie 1.1 Narysowanie toru ruchu ciała w rzucie ukośnym. Narysowanie wektora siły działającej na ciało w

Bardziej szczegółowo

FALOWA NATURA MATERII

FALOWA NATURA MATERII FALOWA NATURA MATERII Zadawniony podział: fizyka klasyczna (do 1900 r.) fizyka współczesna (od 1900 r., prawo Plancka). Przekonanie o falowej naturze materii ugruntowało się w latach dwudziestych XX w.

Bardziej szczegółowo

PDF stworzony przez wersję demonstracyjną pdffactory

PDF stworzony przez wersję demonstracyjną pdffactory Promieniowanie elektromagnetyczne (fala elektromagnetyczna) rozchodzące się w przestrzeni zaburzenie pola elektromagnetycznego. Zaburzenie to ma charakter fali poprzecznej, w której składowa elektryczna

Bardziej szczegółowo

Rozpad alfa. albo od stanów wzbudzonych (np. po rozpadzie beta) są to tzw. długozasięgowe cząstki alfa

Rozpad alfa. albo od stanów wzbudzonych (np. po rozpadzie beta) są to tzw. długozasięgowe cząstki alfa Rozpad alfa Samorzutny rozpad jądra (Z,A) na cząstkę α i jądro (Z-2,A-4) tj. rozpad 2-ciałowy, stąd Widmo cząstek α jest dyskretne bo przejścia zachodzą między określonymi stanami jądra początkowego i

Bardziej szczegółowo

Lasery półprzewodnikowe. przewodnikowe. Bernard Ziętek

Lasery półprzewodnikowe. przewodnikowe. Bernard Ziętek Lasery półprzewodnikowe przewodnikowe Bernard Ziętek Plan 1. Rodzaje półprzewodników 2. Parametry półprzewodników 3. Złącze p-n 4. Rekombinacja dziura-elektron 5. Wzmocnienie 6. Rezonatory 7. Lasery niskowymiarowe

Bardziej szczegółowo

Projekt FPP "O" Kosma Jędrzejewski 13-12-2013

Projekt FPP O Kosma Jędrzejewski 13-12-2013 Projekt FPP "O" Kosma Jędrzejewski --0 Projekt polega na wyznaczeniu charakterystyk gęstości stanów nośników ładunku elektrycznego w obszarze aktywnym lasera półprzewodnikowego GaAs. Wyprowadzenie wzoru

Bardziej szczegółowo

Informacje ogólne. 45 min. test na podstawie wykładu Zaliczenie ćwiczeń na podstawie prezentacji Punkty: test: 60 %, prezentacja: 40 %.

Informacje ogólne. 45 min. test na podstawie wykładu Zaliczenie ćwiczeń na podstawie prezentacji Punkty: test: 60 %, prezentacja: 40 %. Informacje ogólne Wykład 28 h Ćwiczenia 14 Charakter seminaryjny zespołu dwuosobowe ~20 min. prezentacje Lista tematów na stronie Materiały do wykładu na stronie: http://urbaniak.fizyka.pw.edu.pl Zaliczenie:

Bardziej szczegółowo