Naprężenia w ośrodku gruntowym

Wielkość: px
Rozpocząć pokaz od strony:

Download "Naprężenia w ośrodku gruntowym"

Transkrypt

1 Napężena w ośodku guntowym Napężena geostatycne(pewotne) Wpływ wody guntowej na napężena pewotne Napężena wywołane słą skuponą Napężena pocodące od obcążena ównomene ołożonego Napężena pod fundamentem bepośednm Osadana fundamentu bepośednego Napężena wywołane cężaem własnym guntu (n. geostatycne) jednoodne podłoże guntowe o cężae objętoścowym wó ogólny w pypadku podłoża uwastwonego: n m

2 Wpływ wody guntowej na napężena pewotne w.w.g. w jednoodne podłoże guntowe ( ) ' w w Napężena wywołane cężaem własnym guntu (n. geostatycne) Podałka głębokośc: m Podałka napężeń: 0 kpa 0 wg m ' 0 m ' 0 m m ( m ) ' 4 ' m4

3 Osadane teenu wywołane obnżenem poomu wód podemnyc Zwąek pomędy osadanem teenu a poomem wody guntowej na teene Santa Claa Valley, Kalfona. Źódło: Envonmental Geology. ennett. R., oyle P, Jon Wlley & Sons, 997 Osadane teenu w latac na teene Santa Claa Valley, Kalfona. Źódło: Goundwate. Feee A. R., Cey A. J. Pentce Hall, 979 Napężena ponowe w półpesten guntowej obcążonej słą skuponą -owąane oussnesq a (88) Założena:. Ośodek guntowy jest jednoodny otopowy (tn. dałane jednakowyc napężeń w dowolnym keunku powoduje jednakowe odkstałcena. Gunt jest mateałem spężystym, tn. podlega pawu Hooke a. Napężena ocodą sę pomenśce od punktu pyłożena sły 4. Ne uwględna sę cężau własnego guntu. Obowąuje asada supepoycj 6. Ponowo dałające sła powoduje obnżene sę półkul o dowolnym pomenu e śodkem w punkce acepena sły o jednakową watość S

4 Napężena adalne w półpesten guntowej obcążonej słą skuponą -owąane oussnesq a(88) R R A A A A cosα A' α R R α ZRcosα A R cosα Z Rcosα Rcos α cos α A' A A cosα Napężena ponowe w półpesten guntowej obcążonej słą skuponą -owąane oussnesq a (88) Scemat obcążena podłoża Woy α R cos α cos Podstawowe ależnośc: α R cosα R R R ( ) / / 4

5 Gafcna lustacja napężeń Iobay napężeń adalnyc napężeń ponowyc Napężena ponowe Napężena adalne Gafcna lustacja napężeń Iobay napężeń ponowyc konstukcja gafcna

6 Gafcna lustacja napężeń Rokład napężeń na óżnyc głębokoścac Kywa ankana napężeń Gafcna lustacja napężeń Rokład napężeń wdłuż postej a, ównoległej do keunku dałana sły a 6

7 7.0 m 4.0 m.0 m Zasada supepoycj (olmana) -sumowana napężeń Jeżel sła, powoduje w okeślonym mejscu ośodka guntowego napężene, aś sła wywołuje w tym samym mejscu napężene, to całkowte napężene w tym punkce ośodka jest sumą napężeń wywołanyc pe każdą sł osobna. ( ) ( ) ] [ cos cos ) ( ) ( kpa α α Pykład oblcena napężena: Zamana obcążena ównomene ołożonego na astępce sły skupone Δ Δ R / Napężene ponowe wywołane pojedyncą słą astępcą wynos: n n / Całkowte napężene ponowe stanow sumę napężeń od wsystkc sł astępcyc (asada supepoycj) q q

8 8 y x dx dy d R ds y x Wynacene napężena ponowego s od obcążena cągłego q a pomocą elementanyc sł skuponyc / / y x q d d dxdy y x q / 0 0 Napężene ponowe wywołane pe elementaną słę skuponą (q): Całkowte napężene ponowe stanow sumę napężeń od wsystkc elementanyc sł astępcyc (asada supepoycj): q etoda punktów śodkowyc (Newmak Polsn, 9) W pypadku gdy opatywany punkt najduje sę pod geometycnym śodkem obcążającej powecn postokątnej napężene ponowe w tym punkce oblca sę e wou: η 0 q gde: actg η

9 9 Nomogam do wynacana współcynnka 0 0,0 0,,0,,0,,0, 4,0 4,,0 0,000 0,00 0,00 0,00 0,400 0,00 0,600 0,700 0,800 0,900,000 0 Z/ / /. / / / auto: Seweyn Slaccc etoda punktów naożnyc (Stenbenne, 96) W pypadku gdy opatywany punkt najduje sę pod naożnkem obcążającej powecn postokątnej napężene ponowe w tym punkce oblca sę e wou: q η n gde: n actg η

10 Nomogam do wynacana współcynnka n n 0,000 0,00 0,00 0,0 0,00 0,0 0 / 4 6 / /. / / / auto: Seweyn Slaccc Zastosowane metody punktów naożnyc do oblcana napężeń ponowyc w dowolnym mejscu półpesten guntowej (). W pypadku, gdy opatywany punkt leży pod obysem powecn postokątnej należy podelć tak powecnę postokątną, aby punkt ten stanowł naoże nowo utwoonyc postokątów posłużyć sę następującym scematem: A C η nha f, H η nc f, G F E η nef f, ( η η η ) q nha nc nef ηnfgh η nfgh f, 0

11 Zastosowane metody punktów naożnyc do oblcana napężeń ponowyc w dowolnym mejscu półpesten guntowej (). W pypadku, gdy opatywany punkt leży poa obysem powecn postokątnej należy wpowadć dodatkowe powecne postokątne w tak sposób, aby punkt ten stanowł naoże nowo powstałyc postokątów posłużyć sę następującym scematem: H η nfgh f, A C η nef f, η nah f, G F E η nc f, ( η η η ) q nfgh nef nah ηnc Fundamenty budowl (podał) FUNAENTY UOWI FUNAENTY PŁYTKIE (bepośedne) FUNAENTY GŁĘOKIE (pośedne) Stopy fundamentowe Ławy fundamentowe Płyty Rusty Skyne Pale Studne Kesony

12 Napężena pod fundamentem bepośednm I. Stan ped opocęcem budowy Podałka głębokośc: Podałka napężeń: 0 m wg ' ' ' 4 m m m 4 m 0 kpa Napężena pod fundamentem bepośednm II. Stan po wykonanu wykopu fundamentowego Podałka głębokośc: m Podałka napężeń: 0 kpa 0 m wg s m m m m 4

13 Napężena pod fundamentem bepośednm III. Stan po asypanu wykopu fundamentowego s m Podałka głębokośc: m Podałka napężeń: 0 kpa 0 m wg m m m 4 Napężena pod fundamentem bepośednm IV. Stan po wykonanu obektu budowlanego q / s m d t Podałka głębokośc: m Podałka napężeń: 0 kpa 0 m wg m m m 4

14 Oblcane osadana fundamentów Oblcane osadana aleca sę pepowadć metodą napężeń. Osadane S wastwy należy wynacyć jako sumę osadana wtónego S w akese napężena wtónego s, astosowanem modułu ścślwośc wtónej guntu (lub modułu wtónego odkstałcena E, w ależnośc od metody oblcana), oa osadana pewotnego S w akese napężena dodatkowego d, astosowanem modułu ścślwośc pewotnej guntu o (lub E o ). Osadane S wastwy podłoża o mążsośc m oblca sę wg woów: S S S '' ' S '' λ s m d ' m S o " S ' S s, d, o osadane wtóne wastwy, [cm], osadane pewotne wastwy, [cm], odpowedno wtóne dodatkowe napężene w podłożu pod fundamentem, wpołowegubośc wastwy, [kpa], edometycny moduł ścślwośc, odpowedno wtónej pewotnej, ustalony dla guntu wastwy, kpa, m gubość wastwy, cm, λ współcynnk uwględnający stopeń odpężena podłoża po wykonanu wykopu, któego watość należy pyjmować: λ 0 λ gdy cas wnosena budowl (od wykonana wykopów fundamentowyc do akońcena stanu suowego, montażem uądeń stanowącyc obcążene stałe) ne twa dłużej nż ok, gdy cas wnosena budowl jest dłużsy nż ok. Wastwy o gubośc węksej nż połowa seokośc fundamentu należy delć dodatkowo na cęśc o mążsośc ne pekacającej 0.. 4

15 Całkowte osadane podłoża pod fundamentem bepośednm, a atem osadane całej budowl oblca sę sumując osadana wsystkc wastw cąstkowyc według wou: S n S gde: nume wastwy cąstkowej; n lość wastw, S osadane wastwy tej. Podałka głębokośc: m q / Podałka napężeń: 0 kpa 0 wg m m m / m / s d S m m 4

16 Wynacene głębokośc podłoża budowlanego ( max ) Podałka głębokośc: m q / Podałka napężeń: 0 kpa 0 wg m 0. d max m m wykes napężeń m 4 pewotnyc 0. lna pomocnca 0. 6

Naprężenia wywołane ciężarem własnym gruntu (n. geostatyczne)

Naprężenia wywołane ciężarem własnym gruntu (n. geostatyczne) Naprężena wywołane cężarem własnym gruntu (n. geostatycne) wór ogólny w prypadku podłoża uwarstwonego: h γ h γ h jednorodne podłoże gruntowe o cężare objętoścowym γ γ h n m γ Wpływ wody gruntowej na naprężena

Bardziej szczegółowo

Naprężenia w ośrodku gruntowym

Naprężenia w ośrodku gruntowym Naprężenia w ośrodku gruntowym Naprężenia geostatycne (pierwotne, bytowe) Wpływ wody gruntowej na naprężenia pierwotne Naprężenia wywołane siłą skupioną rowiąanie oussinesq a Naprężenia pochodące od obciążenia

Bardziej szczegółowo

γ i ciężar objętościowy warstwy [kn/m 3 ].

γ i ciężar objętościowy warstwy [kn/m 3 ]. NAPRĘŻENIA PO FUNAMENTEM BEZPOŚRENIM Naprężena po funaente oblca ę w celu oceny poewanego oaana położa. tan naprężeń w ośroku gruntowy po geoetrycny śroke bepośrenego, protokątnego funaentu, poaowonego

Bardziej szczegółowo

Wstępne przyjęcie wymiarów i głębokości posadowienia

Wstępne przyjęcie wymiarów i głębokości posadowienia MARCIN BRAS POSADOWIENIE SŁUPA 1 Dane do projektu: INSTYTUT GEOTECHNIKI Poltechnka Krakowska m. T. Koścuszk w Krakowe Wydzał Inżyner Środowska MECHANIKA GRUNTÓW I FUNDAMENTOWANIE P :=.0MN H := 10kN M :=

Bardziej szczegółowo

Energia potencjalna jest energią zgromadzoną w układzie. Energia potencjalna może być zmieniona w inną formę energii (na przykład energię kinetyczną)

Energia potencjalna jest energią zgromadzoną w układzie. Energia potencjalna może być zmieniona w inną formę energii (na przykład energię kinetyczną) 1 Enega potencjalna jest enegą zgomadzoną w układze. Enega potencjalna może być zmenona w nną omę eneg (na pzykład enegę knetyczną) może być wykozystana do wykonana pacy. Sumę eneg potencjalnej knetycznej

Bardziej szczegółowo

TWIERDZENIA O WZAJEMNOŚCIACH

TWIERDZENIA O WZAJEMNOŚCIACH 1 Olga Kopac, Adam Łodygows, Wojcech Pawłows, Mchał Płotowa, Krystof Tymber Konsultacje nauowe: prof. dr hab. JERZY RAKOWSKI Ponań 2002/2003 MECHANIKA BUDOWI 7 ACH TWIERDZENIE BETTIEGO (o wajemnośc prac)

Bardziej szczegółowo

TEORIA SPRĘŻYSTOŚCI 10

TEORIA SPRĘŻYSTOŚCI 10 W YKŁ ADY Z T EOII S ĘŻYSTOŚCI ZADANIE BOUSSINESQA I FLAMANTA olitechnika onańska Kopac, Kawck, Łodgowski, łotkowiak, Świtek, Tmpe Olga Kopac, Kstof Kawck, Adam Łodgowski, Michał łotkowiak, Agnieska Świtek,

Bardziej szczegółowo

DODATEK 6. Pole elektryczne nieskończenie długiego walca z równomiernie rozłożonym w nim ładunkiem objętościowym. Φ = = = = = π

DODATEK 6. Pole elektryczne nieskończenie długiego walca z równomiernie rozłożonym w nim ładunkiem objętościowym. Φ = = = = = π DODATEK 6 Pole elektycne nieskońcenie długiego walca ównomienie ołożonym w nim ładunkiem objętościowym Nieskońcenie długi walec o pomieniu jest ównomienie naładowany ładunkiem objętościowym o stałej gęstości

Bardziej szczegółowo

Przykład 3.2. Rama wolnopodparta

Przykład 3.2. Rama wolnopodparta rzykład ama wonopodparta oecene: Korzystając ze wzoru axwea-ohra wyznaczyć wektor przemeszczena w punkce w ponższym układze oszukwać będzemy składowych (ponowej pozomej) wektora przemeszczena punktu, poneważ

Bardziej szczegółowo

cz. 2. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321

cz. 2. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 Wkład 7: Bła stwna c.. D nż. Zbgnew Sklask Kateda Elektonk, paw. C-1, pok.1 skla@agh.edu.pl http://lae.uc.agh.edu.pl/z.sklask/..17 Wdał nfoatk, Elektonk Telekounkacj - Telenfoatka 1 6..17 Wdał nfoatk,

Bardziej szczegółowo

Wyznaczanie przemieszczeń

Wyznaczanie przemieszczeń ór Maxwea-Mora δ ynacane premesceń ór Maxwea-Mora: Bea recywsym obcążenem δ MM JE NN E ( ) M d g N o P q P TT κ G ór służy do wynacena premescena od obcążena recywsego. równanu wysępuą weośc, wywołane

Bardziej szczegółowo

Pręty silnie zakrzywione 1

Pręty silnie zakrzywione 1 Pęt silnie akwione. DEFIICJ Pętem silnie akwionm nawam pęt, któego oś jest płaską kwą, a stosunek wmiau pekoju popecnego (leżącego w płascźnie kwin) do pomienia kwin osi ciężkości () pęta spełnia waunek.

Bardziej szczegółowo

PN-81/B Dane do projektowania posadowienia bezpośredniego ( pkt 2.1, PN-81/B-03020):

PN-81/B Dane do projektowania posadowienia bezpośredniego ( pkt 2.1, PN-81/B-03020): Opacowane pzygotowal studenc Technolog Oganzac udownctwa na Poltechnce Poznańske gupy 4TO ok akademck 2004/2005. Opacowane pobane ze stony PN-8/-03020. ane do poektowana posadowena bezpośednego ( pkt 2.,

Bardziej szczegółowo

1/k Obliczenia statyczne.

1/k Obliczenia statyczne. /k Obliczenia statyczne. 48,0 8,7 94, 94, 94, A 0,0,4 4,9 4,9 4,9 78,7 798, B,0 0 7, 8,8 00,0 680,0 00,0 9,0 DANE: Szkic wiązaa A 0,0,4 48,0 8,7 94, 94, 94, 4,9 4,9 4,9 78,7 798, 00,0 680,0 00,0 9,0 B,0

Bardziej szczegółowo

Kolokwium z mechaniki gruntów

Kolokwium z mechaniki gruntów Zestaw 1 Zadanie 1. (6 pkt.) Narysować wykres i obliczyć wypadkowe parcia czynnego wywieranego na idealnie gładką i sztywną ściankę. 30 kpa γ=17,5 kn/m 3 Zadanie 2. (6 pkt.) Obliczyć ile wynosi obciążenie

Bardziej szczegółowo

8. PŁASKIE ZAGADNIENIA TEORII SPRĘŻYSTOŚCI

8. PŁASKIE ZAGADNIENIA TEORII SPRĘŻYSTOŚCI 8. PŁASKIE ZAGADNIENIA TEORII SPRĘŻYSTOŚCI 8. 8. PŁASKIE ZAGADNIENIA TEORII SPRĘŻYSTOŚCI 8.. Płaski stan napężenia Tacza układ, ustój ciągły jednoodny, w któym jeden wymia jest znacznie mniejszy od pozostałych,

Bardziej szczegółowo

3. Siła bezwładności występująca podczas ruchu ciała w układzie obracającym się siła Coriolisa

3. Siła bezwładności występująca podczas ruchu ciała w układzie obracającym się siła Coriolisa 3. Sła bezwładnośc występująca podczas uchu cała w układze obacającym sę sła Coolsa ω ω ω v a co wdz obsewato w układze necjalnym co wdz obsewato w układze nenecjalnym tajemncze pzyspeszene: to właśne

Bardziej szczegółowo

Funkcja momentu statycznego odciętej części przekroju dla prostokąta wyraża się wzorem. z. Po podstawieniu do definicji otrzymamy

Funkcja momentu statycznego odciętej części przekroju dla prostokąta wyraża się wzorem. z. Po podstawieniu do definicji otrzymamy etoy energetyczne rzykła Wyznaczyć współczynnk z - α z a przekroju prostokątnego który wzłuż os y ma wymar b wzłuż os Funkcja momentu statycznego ocętej częśc przekroju a prostokąta wyraża sę wzorem b

Bardziej szczegółowo

cz.1 Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321

cz.1 Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 Wkład 8: Bła stwna c. D nż. Zbgnew Sklask Kateda Elektonk, paw. C-, pok. skla@agh.edu.pl http://lae.uc.agh.edu.pl/z.sklask/ 8-- Wdał nfoatk, Elektonk Telekounkacj - Telenfoatka Śodek as/ śodek cężkośc

Bardziej szczegółowo

Podstawy Procesów i Konstrukcji Inżynierskich. Ruch obrotowy INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA

Podstawy Procesów i Konstrukcji Inżynierskich. Ruch obrotowy INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA Podstawy Pocesów Konstukcj Inżyneskch Ruch obotowy Keunek Wyóżnony pzez PKA 1 Ruch jednostajny po okęgu Ruch cząstk nazywamy uchem jednostajnym po okęgu jeśl pousza sę ona po okęgu lub kołowym łuku z pędkoścą

Bardziej szczegółowo

Janusz Typek TENSOR MOMENTU BEZWŁADNOŚCI

Janusz Typek TENSOR MOMENTU BEZWŁADNOŚCI Janus Tpek TENSOR MOMENTU BEZWŁADNOŚC Scecn, maec 994 Temat pac: Tenso momentu bewładnośc Cel pac: Oblcene tensoa momentu bewładnośc dla układu składającego sę klku mas punktowch oa jego wkostane do wnacena

Bardziej szczegółowo

Ruch kulisty bryły. Kinematyka

Ruch kulisty bryły. Kinematyka Ruch kulist bł. Kinematka Ruchem kulistm nawam uch, w casie któego jeden punktów bł jest stale nieuchom. Ruch kulist jest obotem dookoła chwilowej osi obotu (oś ta mienia swoje położenie w casie). a) b)

Bardziej szczegółowo

DYNAMIKA BRYŁY SZTYWNEJ. POLE GRAWITACYJNE. wewnętrznych i zewnętrznych (

DYNAMIKA BRYŁY SZTYWNEJ. POLE GRAWITACYJNE. wewnętrznych i zewnętrznych ( DYNAMIKA BYŁY STYWNJ POL GAWITACYJN Defncja były stywnej Δ Była stywna to bó neskońcene ałych unktów atealnych Odlełość ędy dwoa dowolny d j unkta d j ne ulea ane od wływe dałana sł Δ j wewnętnych ewnętnych

Bardziej szczegółowo

Wykład FIZYKA I. 7. Dynamika ruchu obrotowego. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 7. Dynamika ruchu obrotowego.  Dr hab. inż. Władysław Artur Woźniak D hab. ż. Władysław Atu Woźak Wykład FZYKA 7. Dyamka uchu obotowego D hab. ż. Władysław Atu Woźak stytut Fyk Poltechk Wocławskej http://www.f.pw.woc.pl/~woak/fyka.html D hab. ż. Władysław Atu Woźak ŚRODEK

Bardziej szczegółowo

Przykład 2.3 Układ belkowo-kratowy.

Przykład 2.3 Układ belkowo-kratowy. rzykład. Układ bekowo-kratowy. Dany jest układ bekowo-kratowy, który składa sę z bek o stałej sztywnośc EJ częśc kratowej złożonej z prętów o stałej sztywnośc, obcążony jak na rysunku. Wyznaczyć przemeszczene

Bardziej szczegółowo

elektrostatyka ver

elektrostatyka ver elektostatka ve-8.6.7 ładunek ładunek elementan asada achowana ładunku sła (centalna, achowawca) e.6 9 C stała absolutna pawo Coulomba: F ~ dwa ładunk punktowe w póżn: F 4πε ε 8.8585 e F m ε stała ł elektcna

Bardziej szczegółowo

Przykład 3.1. Projektowanie przekroju zginanego

Przykład 3.1. Projektowanie przekroju zginanego Prkład.1. Projektowane prekroju gnanego Na belkę wkonaną materału o wtrmałośc różnej na ścskane rocągane dałają dwe sł P 1 P. Znając wartośc tch sł, schemat statcn belk, wartośc dopuscalnego naprężena

Bardziej szczegółowo

Wykład FIZYKA I. 7. Dynamika ruchu obrotowego. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 7. Dynamika ruchu obrotowego. Dr hab. inż. Władysław Artur Woźniak D hab. ż. Władysław Atu Woźak Wykład FIZYKA I 7. Dyamka uchu obotowego D hab. ż. Władysław Atu Woźak Kateda Optyk Fotok Wydał Podstawowych Poblemów Techk Poltechka Wocławska http://www.f.pw.woc.pl/~woak/fyka1.html

Bardziej szczegółowo

Część 1 7. TWIERDZENIA O WZAJEMNOŚCI 1 7. TWIERDZENIA O WZAJEMNOŚCI Twierdzenie Bettiego (o wzajemności prac)

Część 1 7. TWIERDZENIA O WZAJEMNOŚCI 1 7. TWIERDZENIA O WZAJEMNOŚCI Twierdzenie Bettiego (o wzajemności prac) Część 1 7. TWIERDZENIA O WZAJEMNOŚCI 1 7. 7. TWIERDZENIA O WZAJEMNOŚCI 7.1. Twerdzene Bettego (o wzajemnośc prac) Nech na dowolny uład ramowy statyczne wyznaczalny lub newyznaczalny, ale o nepodatnych

Bardziej szczegółowo

Wykład: praca siły, pojęcie energii potencjalnej. Zasada zachowania energii.

Wykład: praca siły, pojęcie energii potencjalnej. Zasada zachowania energii. Wykład: paca siły, pojęcie enegii potencjalnej. Zasada zachowania enegii. Uwaga: Obazki w tym steszczeniu znajdują się stonie www: http://www.whfeeman.com/tiple/content /instucto/inde.htm Pytanie: Co to

Bardziej szczegółowo

Moment siły (z ang. torque, inna nazwa moment obrotowy)

Moment siły (z ang. torque, inna nazwa moment obrotowy) Moment sły (z ang. torque, nna nazwa moment obrotowy) Sły zmenają ruch translacyjny odpowednkem sły w ruchu obrotowym jest moment sły. Tak jak sła powoduje przyspeszene, tak moment sły powoduje przyspeszene

Bardziej szczegółowo

Laboratorium wytrzymałości materiałów

Laboratorium wytrzymałości materiałów Poltechnka ubelska MECHNK aboratorum wytrymałośc materałów Ćwcene - Wynacane momentu bewładnośc prekroju gnanej belk defncj woru Gegera Prygotował: ndrej Teter (do użytku wewnętrnego) Wynacane momentu

Bardziej szczegółowo

Optyka wiązek - Wiązka Gaussowska

Optyka wiązek - Wiązka Gaussowska Optyka wiąek - iąka Gaussowska iąka Gaussowska Rokład espolonego pola optycnego } exp{ ik U jest espolonym okładem pola któy musi być owiąaniem ównania Helmholt a: Gdie k jest licbą alową chaakteyującą

Bardziej szczegółowo

Grupa obrotów. - grupa symetrii kuli, R - wszystkie możliwe obroty o dowolne kąty wokół osi przechodzących przez środek kuli

Grupa obrotów. - grupa symetrii kuli, R - wszystkie możliwe obroty o dowolne kąty wokół osi przechodzących przez środek kuli Grupa obrotów - grupa smetr kul R - wsstke możlwe obrot o dowolne kąt wokół os prechodącch pre środek kul nacej O 3 grupa obrotów właścwch - grupa cągła - każd obrót określa sę pre podane os l kąta obrotu

Bardziej szczegółowo

Czarnodziurowy Wszechświat a ziemska grawitacja

Czarnodziurowy Wszechświat a ziemska grawitacja biniew Osiak Canodiuowy a iemska awitacja 07.06.08 Canodiuowy a iemska awitacja biniew Osiak -mail: biniew.osiak@mail.com http://ocid.o/0000-000-007-06x http://vixa.o/autho/biniew_osiak tescenie Pedstawiono

Bardziej szczegółowo

ZASADA ZACHOWANIA MOMENTU PĘDU: PODSTAWY DYNAMIKI BRYŁY SZTYWNEJ

ZASADA ZACHOWANIA MOMENTU PĘDU: PODSTAWY DYNAMIKI BRYŁY SZTYWNEJ ZASADA ZACHOWANIA MOMENTU PĘDU: PODSTAWY DYNAMIKI BYŁY SZTYWNEJ 1. Welkośc w uchu obotowym. Moment pędu moment sły 3. Zasada zachowana momentu pędu 4. uch obotowy były sztywnej względem ustalonej os -II

Bardziej szczegółowo

Katedra Geotechniki i Budownictwa Drogowego. WYDZIAŁ NAUK TECHNICZNYCH Uniwersytet Warmińsko-Mazurski

Katedra Geotechniki i Budownictwa Drogowego. WYDZIAŁ NAUK TECHNICZNYCH Uniwersytet Warmińsko-Mazurski Katedra Geotechniki i Budownictwa Drogowego WYDZIAŁ NAUK TECHNICZNYCH Uniwersytet Warmińsko-Maurski Mechanika Gruntów dr inż. Ireneus Dyka http://pracownicy.uwm.edu.pl/i.dyka e-mail: i.dyka@uwm.edu.pl

Bardziej szczegółowo

R w U R + R R V = U1. grr2 = V U U. P pobiera energię + R. R 1 g V s U 2 U 1. I z

R w U R + R R V = U1. grr2 = V U U. P pobiera energię + R. R 1 g V s U 2 U 1. I z adane W obwode, o schemace pokaanym na rysnk, oblcyć moc reystora. Dane: 4,5,,. ( ) K: [] G [W] adane Wynacyć stosnek napęć k / w obwode o schemace pokaanym na rysnk. Dane: k, 4 k, 5 k, g,5. g s s g s

Bardziej szczegółowo

H P1 H L1 A 1 N L A 5 A 6 H P 2 H L 2. Pojedynczy rekord obserwacyjny: Schemat opracowania jednej serii obserwacyjnej:

H P1 H L1 A 1 N L A 5 A 6 H P 2 H L 2. Pojedynczy rekord obserwacyjny: Schemat opracowania jednej serii obserwacyjnej: Pojedyncy rekord obserwacyjny: SS,PG,.,,3.746,357.774,9:39:8, OZNCZENIE REKORDU NZW ODLEGŁOŚĆ KĄ POZIOY KĄ PIONOWY CZS Schema opracowana jednej ser obserwacyjnej: Ką poomy H L H P H P H P H P3 H L H L

Bardziej szczegółowo

Praca dwustanowa półprzewodnikowych elementów mocy straty statyczne i dynamiczne.

Praca dwustanowa półprzewodnikowych elementów mocy straty statyczne i dynamiczne. aca dwusanowa półpewodnkowych elemenów mocy say saycne dynamcne. anysoy mocy w układach enegoelekoncnych anysoy mocy pacują w układach alownków peywacy pądu sałego dwusanowo, współpacują one uądenam o

Bardziej szczegółowo

Ż ż Ł ż ż ż Ż Ś ż ż ż Ł Ż Ż ć ż Ż Ż Ż Ń Ż Ź ż Ź Ź ż Ż ż ż Ż Ł Ż Ł Ż ż Ż ż Ż Ż Ń Ą Ż Ń Ż Ń ć ż Ż ź Ś ć Ł Ł Ź Ż Ż ż Ł ż Ż Ł Ż Ł ź ć ż Ż Ż ż ż Ó ż Ł Ż ć Ż Ż Ę Ż Ż Ż ż Ż ż ż Ś ż Ż ż ż ź Ż Ń ć Ż ż Ż Ż ż ż ż

Bardziej szczegółowo

Ś Ł Ą Ś Ś ź Ś ń ż ż Ó ż ż Ś Ł ż ń ń ń ż ń Ś ń ć ŚĘ Ó Ł Ę Ł Ś Ę Ę ń ń ń ń ń Ź ń ń ń ń ń ż ń ń ń ń ń Ę ż ż ć Ść ń ń ż Ń ż ż ń ń Ś Ą ń Ś ń ń ż Ó ż Ź ń ż ń Ś Ń Ó ż Ł ż Ą ź ź Ś Ł ć Ś ć ż ź ż ć ć Ę Ó Ś Ó ż ż

Bardziej szczegółowo

Ł Ł Ś Ę ź ń ź ź Ś Ę Ę Ś Ą Ś Ę Ż Ł ń Ę Ś ć ć ń ć ń ń ń ź ń Ę ź ń ń ń ź ź Ś ź ź ć ń ń ń ń Ś ć Ś ń ń Ś ź ń Ę ń Ś ź ź ź ź ź Ę Ę Ę Ś ń Ś ć ń ń ń ń ń ń Ę ń ń ń ń ć ń ń ń ń ć ń Ś ć Ł ń ń ń ć ń ć ź ń ź ć ń ń ć

Bardziej szczegółowo

Ł Ł Ś ź ń ź ź ź Ś Ł Ę Ę Ś ż Ś ń Ą Ś Ą Ł ż ż ń ż ć ż ż ż ź ż ć ź Ę Ę ń ć ż Ł ń ż ż ż Ś ż Ś ż ż ż ż ż ż ż ń ń ż ż ż ć ż ń ż ń ź ż ć ż ż ć ń ż Ę Ę ć ń Ę ż ż ń ń ź Ę ź ż ń ż ń ź ż ż ż ń ż ż ż ż ż ż ż ż ń ń

Bardziej szczegółowo

[ ] D r ( ) ( ) ( ) POLE ELEKTRYCZNE

[ ] D r ( ) ( ) ( ) POLE ELEKTRYCZNE LKTYCZNOŚĆ Pole elektcne Lne sł pola elektcnego Pawo Gaussa Dpol elektcn Pole elektcne w delektkach Pawo Gaussa w delektkach Polaacja elektcna Potencjał pola elektcnego Bewowość pola elektcnego óŝnckowa

Bardziej szczegółowo

MODELOWANIE UKŁADU ABSORPCYJNO-DYFUZYJNEGO (część I)

MODELOWANIE UKŁADU ABSORPCYJNO-DYFUZYJNEGO (część I) Dr nŝ Janus Echler Dr nŝ Jacek Kaspersk 1 Zakład Chłodnctwa Krogenk Instytut Technk Ceplnej echank Płynów Poltechnka Wrocławska ODELOWANIE UKŁADU ABSORPCYJNO-DYFUZYJNEGO (cęść I) etoda dentyfkacj obegu

Bardziej szczegółowo

23. CAŁKA POWIERZCHNIOWA NIEZORIENTOWANA

23. CAŁKA POWIERZCHNIOWA NIEZORIENTOWANA . CAŁKA POWIERZCHNIOWA NIEZORIENTOWANA Płat powiechniow o ównaniach paametcnch: ( ) ( ) ( ) () gdie oba jet obaem eglanm nawam płatem gładkim (płatem eglanm) gd w każdm pnkcie tego płata itnieje płacna

Bardziej szczegółowo

GAZY DOSKONAŁE I PÓŁDOSKONAŁE

GAZY DOSKONAŁE I PÓŁDOSKONAŁE TERMODYNAMIKA GAZY DOSKONAŁE I PÓŁDOSKONAŁE Prawo Boyle a Marotte a p V = const gdy T = const Prawo Gay-Lussaca V = const gdy p = const T Równane stanu gau dosonałego półdosonałego p v = R T gde: p cśnene

Bardziej szczegółowo

5. MES w mechanice ośrodka ciągłego

5. MES w mechanice ośrodka ciągłego . MES w mechance ośroda cągłego P.Pucńs. MES w mechance ośroda cągłego.. Stan równowag t S P x z y n ρb(x, y, z) u(x, y, z) P Wetor gęstośc sł masowych N/m 3 ρb ρ g Wetor gęstośc sł powerzchnowych N/m

Bardziej szczegółowo

Ćwiczenie projektowe z Podstaw Inżynierii Komunikacyjnej

Ćwiczenie projektowe z Podstaw Inżynierii Komunikacyjnej Poltecnka ałostocka Wydzał udownctwa Inżyner Środowska Zakład Inżyner Drogowej Ćwczene projektowe z Podstaw Inżyner Komunkacyjnej Projekt tecnczny odcnka drog klasy tecncznej Z V p 50 km/. Założena do

Bardziej szczegółowo

I. Elementy analizy matematycznej

I. Elementy analizy matematycznej WSTAWKA MATEMATYCZNA I. Elementy analzy matematycznej Pochodna funkcj f(x) Pochodna funkcj podaje nam prędkość zman funkcj: df f (x + x) f (x) f '(x) = = lm x 0 (1) dx x Pochodna funkcj podaje nam zarazem

Bardziej szczegółowo

ROZWIAZANIA ZAGADNIEŃ PRZEPŁYWU FILTRACYJNEGO METODAMI ANALITYCZNYMI.

ROZWIAZANIA ZAGADNIEŃ PRZEPŁYWU FILTRACYJNEGO METODAMI ANALITYCZNYMI. Modelowanie pzepływu cieczy pzez ośodki poowate Wykład VII ROZWIAZANIA ZAGADNIEŃ PRZEPŁYWU FILTRACYJNEGO METODAMI ANALITYCZNYMI. 7. Pzepływ pzez goblę z uwzględnieniem zasilania wodami infiltacyjnymi.

Bardziej szczegółowo

Przykład 4.1. Belka dwukrotnie statycznie niewyznaczalna o stałej sztywności zginania

Przykład 4.1. Belka dwukrotnie statycznie niewyznaczalna o stałej sztywności zginania Przykład.. Beka dwukrotne statyczne newyznaczana o stałej sztywnośc zgnana Poecene: korzystając z metody sł sporządzć wykresy sł przekrojowych da ponŝszej bek. Wyznaczyć ugęce oraz wzgędną zmanę kąta w

Bardziej szczegółowo

(r) (n) C u. γ (n) kn/ m 3 [ ] kpa. 1 Pπ 0.34 mw ,5 14,85 11,8 23,13 12,6 4,32

(r) (n) C u. γ (n) kn/ m 3 [ ] kpa. 1 Pπ 0.34 mw ,5 14,85 11,8 23,13 12,6 4,32 N r Rodzaj gruntu I /I L Stan gr. K l. Ф u (n) [ ] Ф u (r) [ ] C u (n) kpa γ (n) kn/ m γ (r) kn/m γ' (n) kn/ m N C N N 1 Pπ 0.4 mw - 9.6 6.64-16,5 14,85 11,8,1 1,6 4, Пp 0.19 mw C 15.1 1.59 16 1,0 18,9

Bardziej szczegółowo

Elektrostatyka. + (proton) - (elektron)

Elektrostatyka. + (proton) - (elektron) lektostatyka Za oddziaływania elektyczne ( i magnetyczne ) odpowiedzialny jest: ładunek elektyczny Ładunek jest skwantowany Ładunek elementany e.6-9 C (D. Millikan). Wszystkie ładunki są wielokotnością

Bardziej szczegółowo

Regulamin promocji upalne lato 2014 2.0

Regulamin promocji upalne lato 2014 2.0 upalne lato 2014 2.0 strona 1/5 Regulamn promocj upalne lato 2014 2.0 1. Organzatorem promocj upalne lato 2014 2.0, zwanej dalej promocją, jest JPK Jarosław Paweł Krzymn, zwany dalej JPK. 2. Promocja trwa

Bardziej szczegółowo

Wykład 4. Zasada zachowania energii. Siły zachowawcze i niezachowawcze

Wykład 4. Zasada zachowania energii. Siły zachowawcze i niezachowawcze Wład 4 Zasada achowania enegii Sił achowawce i nieachowawce Wsstie istniejące sił możem podielić na sił achowawce i sił nie achowawce. Siła jest achowawca jeżeli paca tóą wonuję ta siła nad puntem mateialnm

Bardziej szczegółowo

Ł Ł Ś Ó ć ć ć Ą Ć ć ć Ł Ś Ą Ó Ń Ą ź ź ź Ń ć ć Ł ć Ł Ł Ł Ś Ó Ń ć ć Ł ć Ł ć ć Ś Ł ć Ą Ą ź ź ź ć ć ć Ńć ć Ś Ś Ś Ń Ą ć ć ć ć ć Ń Ą Ł ź ź Ą ź ź ć ć ź ć Ą ć ć ć ź ź ź Ą ź ź ź ź ź ź ć ć ć ć ć ć ć Ą ć ć ź ć ć

Bardziej szczegółowo

20 ELEKTROSTATYKA. PRAWO COULOMBA.

20 ELEKTROSTATYKA. PRAWO COULOMBA. Włodzimiez Wolczyński Pawo Coulomba 20 ELEKTROSTATYKA. PRAWO COULOMBA. POLE CENTRALNE I JEDNORODNE Q q = k- stała, dla póżni = 9 10 = 1 4 = 8,9 10 -stała dielektyczna póżni ε względna stała dielektyczna

Bardziej szczegółowo

ZADANIA. PYTANIA I ZADANIA v ZADANIA za 2pkt.

ZADANIA. PYTANIA I ZADANIA v ZADANIA za 2pkt. PYTANIA I ZADANIA v.1.3 26.01.12 ZADANIA za 2pkt. ZADANIA Podać wartości zredukowanych wymiarów fundamentu dla następujących danych: B = 2,00 m, L = 2,40 m, e L = -0,31 m, e B = +0,11 m. Obliczyć wartość

Bardziej szczegółowo

OBLICZANIE SIŁ WEWNĘTRZNYCH W POWŁOKACH ZBIORNIKÓW OSIOWO SYMETRYCZNYCH

OBLICZANIE SIŁ WEWNĘTRZNYCH W POWŁOKACH ZBIORNIKÓW OSIOWO SYMETRYCZNYCH OBLICZANIE SIŁ WEWNĘTRZNYCH W POWŁOKACH ZBIORNIKÓW OSIOWO SYMETRYCZNYCH Sporządził: Bartosz Pregłowski Grupa : II Rok akadem: 2004/2005 OBLICZANIE SIŁ WEWNĘTRZNYCH W POWŁOKACH ZBIORNIKÓW OSIOWO SYMETRYCZNYCH

Bardziej szczegółowo

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku w popzednim odcinku 1 Zasady dynamiki Newtona I II Każde ciało twa w stanie spoczynku lub pousza się uchem postoliniowym i jednostajnym, jeśli siły pzyłożone nie zmuszają ciała do zmiany tego stanu Zmiana

Bardziej szczegółowo

FUNDAMENTY ZASADY KSZTAŁTOWANIA I ZBROJENIA FUNDAMENTY

FUNDAMENTY ZASADY KSZTAŁTOWANIA I ZBROJENIA FUNDAMENTY FUNDAMENTY ZASADY KSZTAŁTOWANIA I ZBROJENIA FUNDAMENTY Fundamenty są częścią budowli przekazującą obciążenia i odkształcenia konstrukcji budowli na podłoże gruntowe i równocześnie przekazującą odkształcenia

Bardziej szczegółowo

Wykład 15 Elektrostatyka

Wykład 15 Elektrostatyka Wykład 5 Elektostatyka Obecne wadome są cztey fundamentalne oddzaływana: slne, elektomagnetyczne, słabe gawtacyjne. Slne słabe oddzaływana odgywają decydującą ole w budowe jąde atomowych cząstek elementanych.

Bardziej szczegółowo

Optymalizacja (w matematyce) termin optymalizacja odnosi się do problemu znalezienia ekstremum (minimum lub maksimum) zadanej funkcji celu.

Optymalizacja (w matematyce) termin optymalizacja odnosi się do problemu znalezienia ekstremum (minimum lub maksimum) zadanej funkcji celu. TEMATYKA: Optymaliacja nakładania wyników pomiarów Ćwicenia nr 6 DEFINICJE: Optymaliacja: metoda wynacania najlepsego (sukamy wartości ekstremalnej) rowiąania punktu widenia określonego kryterium (musimy

Bardziej szczegółowo

Spis treści 1. ZAGADNIENIA OGÓLNE... 11 2. BUDYNEK... 23

Spis treści 1. ZAGADNIENIA OGÓLNE... 11 2. BUDYNEK... 23 1. ZAGADNIENIA OGÓLNE... 11 1.1. Wiadomości ogólne o budownictwie... 11 1.2. Przepisy prawne w budownictwie... 13 1.2.1. Prawo budowlane... 13 1.2.2. Normy państwowe... 15 1.2.3. Rodzaje i typy norm...

Bardziej szczegółowo

Regulamin promocji 14 wiosna

Regulamin promocji 14 wiosna promocja_14_wosna strona 1/5 Regulamn promocj 14 wosna 1. Organzatorem promocj 14 wosna, zwanej dalej promocją, jest JPK Jarosław Paweł Krzymn, zwany dalej JPK. 2. Promocja trwa od 01 lutego 2014 do 30

Bardziej szczegółowo

BRYŁA SZTYWNA. Zestaw foliogramów. Opracowała Lucja Duda II Liceum Ogólnokształcące w Pabianicach

BRYŁA SZTYWNA. Zestaw foliogramów. Opracowała Lucja Duda II Liceum Ogólnokształcące w Pabianicach BRYŁA SZTYWNA Zestaw fologamów Opacowała Lucja Duda II Lceum Ogólokształcące w Pabacach Pabace 003 Byłą sztywą azywamy cało, któe e defomuje sę pod wpływem sł zewętzych. Poszczególe częśc były sztywej

Bardziej szczegółowo

Publiczne Gimnazjum w Miechowicach Wielkich 1 września na i rozumie pojęcie potęgi o wykładniku naturalnym,

Publiczne Gimnazjum w Miechowicach Wielkich 1 września na i rozumie pojęcie potęgi o wykładniku naturalnym, Pblicne Gimnajm w Miechowicach Wielkich 1 weśnia 2010 Dopscający na i omie pojęcie potęgi o wykładnik natalnym, mie apisać potęgę w postaci ilocyn, mie apisać ilocyn jednakowych cynników w postaci potęgi,

Bardziej szczegółowo

(M2) Dynamika 1. ŚRODEK MASY. T. Środek ciężkości i środek masy

(M2) Dynamika 1. ŚRODEK MASY. T. Środek ciężkości i środek masy (MD) MECHANIKA - Dynamka T. Środek cężkośc środek masy (M) Dynamka T: Środek cężkośc środek masy robert.szczotka(at)gmal.com Fzyka astronoma, Lceum 01/014 1 (MD) MECHANIKA - Dynamka T. Środek cężkośc środek

Bardziej szczegółowo

14. Zasady zachowania dla punktu i układu punktów materialnych: pędu, krętu, energii, zasada d Alemberta.

14. Zasady zachowania dla punktu i układu punktów materialnych: pędu, krętu, energii, zasada d Alemberta. 4. Zasad achowaa da puktu układu puktów ateach: pędu, kętu, eeg, asada d ebeta. υ p = pęd (ość uchu puktu ateaego υ F d ( υ = F pochoda wgęde casu pędu ówa jest se dałającej a da pukt v v t2 ( υ2 υ = t

Bardziej szczegółowo

24-01-0124-01-01 G:\AA_Wyklad 2000\FIN\DOC\Geom20.doc. Drgania i fale III rok Fizyki BC

24-01-0124-01-01 G:\AA_Wyklad 2000\FIN\DOC\Geom20.doc. Drgania i fale III rok Fizyki BC 4-0-04-0-0 G:\AA_Wyklad 000\FIN\DOC\Geom0.doc Dgaa ale III ok Fzyk BC OPTYKA GEOMETRYCZNA. W ośodku jedoodym śwatło ozcodz sę ostolowo.. Pzecające sę omee śwetle e zabuzają sę awzajem. 3. Pawo odbca śwatła.

Bardziej szczegółowo

4. Prąd stały Prąd i prawo Ohma. C s. i = i = t. i S. j = V u prędkość unoszenia ładunków. r r

4. Prąd stały Prąd i prawo Ohma. C s. i = i = t. i S. j = V u prędkość unoszenia ładunków. r r 4. Pąd sały. 4.. Pąd pawo Ohma. l U - + u u pędkość unoszena ładunków S j o ds gdze j jes gęsoścą pądu: j S j S A s A m W pzewodnku o objęośc S l znajduje sę ładunek n e S l m lczbą elekonów w jednosce

Bardziej szczegółowo

MECHANIKA OGÓLNA (II)

MECHANIKA OGÓLNA (II) MECHNIK GÓLN (II) Semest: II (Mechanika I), III (Mechanika II), ok akademicki 2017/2018 Liczba godzin: sem. II*) - wykład 30 godz., ćwiczenia 30 godz. sem. III*) - wykład 30 godz., ćwiczenia 30 godz. (dla

Bardziej szczegółowo

Przykład 3.1. Wyznaczenie zmiany odległości między punktami ramy trójprzegubowej

Przykład 3.1. Wyznaczenie zmiany odległości między punktami ramy trójprzegubowej Przykład Wyznaczene zmany odegłośc mędzy unktam ramy trójrzegubowej Poecene: Korzystając ze wzoru axwea-ohra wyznaczyć zmanę odegłośc mędzy unktam w onższym układze Przyjąć da wszystkch rętów EI = const

Bardziej szczegółowo

gdzie: L( G ++ )- współczynnik złożoności struktury , -i-ty węzeł, = - stopień rozgałęzienia i-tego węzła,

gdzie: L( G ++ )- współczynnik złożoności struktury , -i-ty węzeł, = - stopień rozgałęzienia i-tego węzła, Struktury drewaste rogrywające parametrycne od każdego werchołka pocątkowego różną sę medy sobą kstałtem własnoścam. Stopeń łożonośc struktury może być okreśony pre współcynnk łożonośc L G ++ ) ++ L G

Bardziej szczegółowo

v = v i e i v 1 ] T v =

v = v i e i v 1 ] T v = v U = e i,..., e n ) v = n v i e i i= e i i v T v = = v v n v n U v v v +q 3q +q +q b c d XY X +q Y 3q r +q = r 3q = r +q = r +q = r 3q = r +q = E = E +q + E 3q + E +q = k q r+q 3 + k 3q r 3q 3 b V = kq

Bardziej szczegółowo

Fundamenty z bloczków betonowych na zaprawie cementowo-wapiennej

Fundamenty z bloczków betonowych na zaprawie cementowo-wapiennej Tabela przedmiaru robót Strona 2/6 Roboty fundamentowe Nr ST: B.02.00.00. Kod CPV: 45000000-7 1 Ława fundamentowa 1.1 KNR-W 2-01 0212/02 1.2 KNR 4-01 0102/02 1.3 KNR 4-01 0105/02 1.4 KNR-W 2-02 1101/03

Bardziej szczegółowo

v = v i e i v 1 ] T v = = v 1 v n v n ] a r +q = a a r 3q =

v = v i e i v 1 ] T v = = v 1 v n v n ] a r +q = a a r 3q = v U = e i,..., e n ) v = n v i e i i= e i i v T v = = v v n v v v v n 3q q q q r q = r 3q = E = E q E 3q E q = k q rq 3 k 3q r 3q 3 r q = k q rq 3 = kq 4 3 ) 4 q d b d c d d X d ± = d r = x y T d ± r ±

Bardziej szczegółowo

ver ruch bryły

ver ruch bryły ver-25.10.11 ruch bryły ruch obrotowy najperw punkt materalny: m d v dt = F m r d v dt = r F d dt r p = r F d dt d v r v = r dt d r d v v= r dt dt def r p = J def r F = M moment pędu moment sły d J dt

Bardziej szczegółowo

Warunek równowagi bryły. Znikanie sumy sił przyłoŝonych i sumy momentów sił przyłoŝonych.

Warunek równowagi bryły. Znikanie sumy sił przyłoŝonych i sumy momentów sił przyłoŝonych. Waunek ównowag były stywnej: Znkane suy sł pyłoŝonych suy oentów sł pyłoŝonych. Pecesja koła oweowego J Onacena na popench wykłaach ϕ ϕ t M M F t g F Cęstość pecesj: Ω ϕ t g Newykłe własnośc Ŝyoskopów

Bardziej szczegółowo

12. Obliczenie stateczności skarp i stateczności filtracyjnej Tomasz Strzelecki

12. Obliczenie stateczności skarp i stateczności filtracyjnej Tomasz Strzelecki 2. Oblczene statecznośc skap statecznośc fltacyjnej Tomasz Stzeleck 2. Blokowe metody nżyneske okeślana statecznośc skap w mechance guntów. Lczne metody oblczeń pzyblżonych stowanych w paktyce nżyneskej,

Bardziej szczegółowo

ZADANIA Z FUNKCJI ANALITYCZNYCH LICZBY ZESPOLONE

ZADANIA Z FUNKCJI ANALITYCZNYCH LICZBY ZESPOLONE . Oblicyć: ZADANIA Z FUNKCJI ANALITYCZNYCH a) ( 7i) ( 9i); b) (5 i)( + i); c) 4+3i ; LICZBY ZESPOLONE d) 3i 3i ; e) pierwiastki kwadratowe 8 + i.. Narysować biór tych licb espolonych, które spełniają warunek:

Bardziej szczegółowo

STATECZNOŚĆ SKARP. α - kąt nachylenia skarpy [ o ], φ - kąt tarcia wewnętrznego gruntu [ o ],

STATECZNOŚĆ SKARP. α - kąt nachylenia skarpy [ o ], φ - kąt tarcia wewnętrznego gruntu [ o ], STATECZNOŚĆ SKARP W przypadku obektu wykonanego z gruntów nespostych zaprojektowane bezpecznego nachylena skarp sprowadza sę do przekształcena wzoru na współczynnk statecznośc do postac: tgφ tgα = n gdze:

Bardziej szczegółowo

Badania nad kształtowaniem się wartości współczynnika podatności podłoża dla celów obliczeń statycznych obudowy tuneli

Badania nad kształtowaniem się wartości współczynnika podatności podłoża dla celów obliczeń statycznych obudowy tuneli AKADEMIA GÓRNICZO HUTNICZA im. Stanisława Staszica WYDZIAŁ GÓRNICTWA I GEOINŻYNIERII KATEDRA GEOMECHANIKI, BUDOWNICTWA I GEOTECHNIKI Rozpawa doktoska Badania nad kształtowaniem się watości współczynnika

Bardziej szczegółowo

Regulamin promocji zimowa piętnastka

Regulamin promocji zimowa piętnastka zmowa pętnastka strona 1/5 Regulamn promocj zmowa pętnastka 1. Organzatorem promocj zmowa pętnastka, zwanej dalej promocją, jest JPK Jarosław Paweł Krzymn, zwany dalej JPK. 2. Promocja trwa od 01 grudna

Bardziej szczegółowo

Dynamika punktu materialnego

Dynamika punktu materialnego Naa -Japonia W-3 (Jaosewic 1 slajdów Dynamika punku maeialnego Dynamika Układ inecjalny Zasady dynamiki: piewsa asada dynamiki duga asada dynamiki; pęd ciała popęd siły ecia asada dynamiki (pawo akcji

Bardziej szczegółowo

A r A r. r = , 2. + r r + r sr. Interferencja. Dwa źródła punktowe: Dla : Dla dużych 1,r2. błąd: 3D. W wyniku interferencji:

A r A r. r = , 2. + r r + r sr. Interferencja. Dwa źródła punktowe: Dla : Dla dużych 1,r2. błąd: 3D. W wyniku interferencji: -- G:\AA_Wyklad \FIN\DOC\Inte.doc Intefeencja. Dwa źódła punktowe: (, t) A( ) ( k ω t) U cos (, t) A( ) ( k ω t) U cos Dla : 3D ( ) Dla : A D ( ) A Dla dużych, d, A A : A ( ) A( ) A A( ) błąd: 3D % ~ U

Bardziej szczegółowo

A. POMIARY FOTOMETRYCZNE Z WYKORZYSTANIEM FOTOOGNIWA SELENOWEGO

A. POMIARY FOTOMETRYCZNE Z WYKORZYSTANIEM FOTOOGNIWA SELENOWEGO 10.X.010 ĆWCZENE NR 70 A. POMARY FOTOMETRYCZNE Z WYKORZYSTANEM FOTOOGNWA SELENOWEGO. Zestaw pzyządów 1. Ogniwo selenowe.. Źódło światła w obudowie 3. Zasilacz o wydajności pądowej min. 5A 4. Ampeomiez

Bardziej szczegółowo

Funkcje analityczne. Wykład 13. Zastosowanie rachunku residuów do rozwiązywania problemów analizy rzeczywistej. Paweł Mleczko

Funkcje analityczne. Wykład 13. Zastosowanie rachunku residuów do rozwiązywania problemów analizy rzeczywistej. Paweł Mleczko Funkcje analitycne Wykład 3. Zastosowanie achunku esiduów do owiąywania poblemów analiy ecywistej Paweł Mlecko Funkcje analitycne ok akademicki 8/9 Plan wykładu W casie wykładu omawiać będiemy astosowanie

Bardziej szczegółowo

16. Pole magnetyczne, indukcja. Wybór i opracowanie Marek Chmielewski

16. Pole magnetyczne, indukcja. Wybór i opracowanie Marek Chmielewski 6. Poe magnetczne, nukcja Wbó opacowane Maek meewsk 6.. Znaeźć nukcje poa magnetcznego w oegłośc o neskończone ługego pzewonka wacowego o pomenu pzekoju popzecznego a w któm płne pą I. 6.. Wznaczć nukcję

Bardziej szczegółowo

GEOMETRIA PŁASZCZYZNY

GEOMETRIA PŁASZCZYZNY GEOMETRIA PŁASZCZYZNY. Oblicz pole tapezu ównoamiennego, któego podstawy mają długość cm i 0 cm, a pzekątne są do siebie postopadłe.. Dany jest kwadat ABCD. Punkty E i F są śodkami boków BC i CD. Wiedząc,

Bardziej szczegółowo

Przykład 5.1. Kratownica dwukrotnie statycznie niewyznaczalna

Przykład 5.1. Kratownica dwukrotnie statycznie niewyznaczalna rzykład.. Kratownca dwukrotne statyczne newyznaczana oecene: korzystaąc z metody sł wyznaczyć sły w prętach ponższe kratowncy. const Rozwązane zadana rozpoczynamy od obczena stopna statyczne newyznaczanośc

Bardziej szczegółowo

Obliczenia statyczne

Obliczenia statyczne Obliczenia statyczne schodów wejściowych na wiatę nad stanowiskami odpraw, budynku dla zespołu pomp oraz fundamentu pod zbiornik na olej opałowy o V=40m 3 na Drogowym Przejściu Granicznym w Grzechotkach

Bardziej szczegółowo