A.Z. Górski, S. Drożdż, J. Kwapień, P. Oświęcimka. Zakład Teorii Systemów Złożonych, Instytut Fizyki Jądrowej PAN, Kraków

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "A.Z. Górski, S. Drożdż, J. Kwapień, P. Oświęcimka. Zakład Teorii Systemów Złożonych, Instytut Fizyki Jądrowej PAN, Kraków"

Transkrypt

1 COMPLEXITY CHARACTERISTICS OF CURRENCY NETWORKS A.Z. Górski, S. Drożdż, J. Kwapień, P. Oświęcimka Zakład Teorii Sstemów Złożoch, Isttut Fizki Jądrowej PAN, Kraków

2 Układ o wielkiej złożoości moża przedstawiać jako sieci oddziałującch elemetów-węzłów WWW (World Wide Web i sieci komputerowe; sieci komuikacje trasport; sieci komuikacje łączość; sieci eergetcze; sieci euroowe; sieci ctacji; sieci relacji międzludzkich; G.W. Domhoff ( etworks theor of Power ideologicza, ekoomicza, militara i politcza sieci w fiasach i ie sociolog.ucsc.edu/whorulesamerica/ FENS, 22 kwietia

3 GRAFY -- podstaw L.Euler 7 mostów Królewca (1736; prawa Kirchhoffa (1845; problem 4 kolorów (F.Guthrie 1852 => Appel & Hake 1976; Graf przpadkowe (XX w.: własości wzaczają rozkład prawdopodobieństwa; zmiea liczba węzłów i połączeń; graf spóje i ieplaare; przejścia fazowe powżej progu komplikacji; Teoria grafów => grafami statcze, bez ewolucji w czasie FENS, 22 kwietia

4 SIECI (ewolucja w czasie początki powstawaie/zikaie połączeń; zmiee w czasie wagi; SIECI NEURONOWE* : model McCullocha-Pittsa (1943; ieliiowa trasformacja sgału: i = f ( Wij j j sprzężeia zwrote, architektura rekurecja ==> Hopfield i ii, uczeie (zmiaa wag, Hebb 1949; Perceptro (patter recogitio Roseblatt-Wightma 1957-Corell; * Termi euro (jak i chromosom! wprowadził H.W. Gottfried vo Waldeer-Hartz w 1891 roku. FENS, 22 kwietia

5 SIECI ZŁOŻONE małe świat (Small Worlds 6th degree of separatio [Milgram 1967] efekt podob jak dla grafów przpadkowch; tworzeie klastrów clusterig coefficiet C i dla i-tego węzła: C i = k i 2Ei ( k i k i liczba połączeń z węzła (stopień, k i (k i 1/2 ma. liczba połączeń w klastrze, E i faktcza liczba połączeń; potęgow rozkład stopi węzłów sieci bezskalowe (scale free: prwadopodobieństwo zalezieia węzła w stopiu k jest potęgowe: P ( k k PROBEM: Jak ilościowo zdefiiować połączeia i węzł w sieci ekoofizczej? Jak wgląda rozkład stopi węzłów? 1 α FENS, 22 kwietia

6 SIECI W FIZYCE - zaczeie liczb połączeń/sąsiadów model Isiga (E. Isig 1924 L. Osager 1944 i uogólieia: proste sieci spiów wkazują przejścia fazowe prz zmiaie temperatur; modele pochode; oddziałwaia długozasięgowe ==> zwiększeie liczb oddziałującch sąsiadów ==> efekt jak zwiększeie wm. przestrzei (Kac model 1963; powoduje to wzrost stopia komplikacji sstemu przejścia fazowe; ieskończeie zasięgowe oddziałwaia ==> wielka komplikacja (grawitacja struktur kosmologicze, elektromagetzm struktur biochemicze; aalogiczie: wielka ilość połączeń (sąsiadów w sieci euroów mózgowch, jak i w sieciach społeczch ; WNIOSEK: Ilość połączeń (oddziałującch sąsiadów sieci ważiejsza iż wmiar! FENS, 22 kwietia

7 FENS, 22 kwietia SERIE CZASOWE STÓP ZWROTU stopa zwrotu dla serii fiasowej =(t wrażoej w jakiejś walucie dla serii FOREX wartość walut jest wrażoa poprzez walutę dla K walut mam K(K-1 serii postaci serie te są zależe co w jęzku zwrotów daje dla 3 walut mam dodatkow waruek RAGUŁĘ TRÓJKĄTA a w jęzku zwrotów mam tożsamość G / ( l l ( 1 1 = + + ( ( l l, ( 1 1 G G G = = + +, (, ( G G = 1 = z z 0, (, (, ( = + + z G z G G 1 =

8 MACIERZ KORELACJI serii czasowch asze serie czasowe: dae dziee, lata (ok puktów, filtr 5σ, źródło: (Uiv. B.C., Bak of Caada; dla N serii czasowch zwrotów G i (t smetrcza macierz współczików korelacji N(N-1/2 iezależch: Gi ( t Gj( t T Gi ( t T Gj( t T gdzie T oko uśrediaia, Cij = a ślad macierz = N σ ( Gi σ ( Gj WARTOŚCI WŁASNE rozkład pomiędz semi-circle (Wiger a Wisharta; duża maksmala wartość własa kolektwość serii stóp zwrotu; mod zerowe dla serii silie skorelowach (p. USD i SAR; Jak przełożć jęzk macierz korelacji a jęzk grafów? FENS, 22 kwietia

9 SPEKTRUM MACIERZY KORELACJI Wg teorii dla macierz przpadkowch dla serii o długości serii czasowej T, ilości serii N i q = T/N, mam widmo w zakresie: λ mi = 1+ 1 q 2 q oraz 1 λ ma = 1+ + q 2 q co w tm przpadku daje umerczie: λ oraz λ mi ma FENS, 22 kwietia

10 SPEKTRUM MACIERZY KORELACJI (1 Serie tasowae, ieskorelowae (rd zaczie różią się od pozostałch! FENS, 22 kwietia

11 SPEKTRUM MACIERZY KORELACJI (2 Waluta losowa ieskorelowaa (fictitious zachowuje się podobie do walut słabch FENS, 22 kwietia

12 GRAFY Miimal Spaig Tree (MST macierze korelacji wiele elemetów ==> problem z wizualizacją; Wprowadzam metrkę d ij : d ij = ij ij 2( C 1 (0 d 2 algortm kostrukcji grafu opart a tej metrce; zastosowaie MST dla rku akcji: Matega [Eur. Phs. J. B11 ( ] dla FX EFEKT TRÓJKĄTA moża pokazać, że implikuje to (N-1 iezależch otowań/zwrotów spośród N(N-1 możliwch; graf wrażae są dla serii o ustaloej walucie bazowej, co daje (N-1 węzłów; wbór walut bazowej uwidaczia klastrzację w jęzku pozostałch walut; tasowaie serii wraźie zmieia strukturę grafu [Oford group, Phs. Rev. 2005] FENS, 22 kwietia

13 Potęż klaster USD (EUR jako waluta bazowa FENS, 22 kwietia

14 Słabsz klaster EUR (USD walutą bazową FENS, 22 kwietia

15 Dwa rwalizujące klastr EUR i USD (PLN walutą bazową FENS, 22 kwietia

16 Losowe serie czasowe dla walut zdecdowaa różica... FENS, 22 kwietia

17 Potęgow rozkład krotości węzłów. Grubsz ogo dla EUR, cieńsz dla USD USD: 1.91 (± EUR: 1.33 (± PLN: 1.67 (± rd: 2.33 (± FENS, 22 kwietia

18 PODSUMOWANIE układ złożoe traktować możem jako sieci grafowa reprezetacja macierz korelacji dla FX (MST reguła trójkąta dodatkowe więz dla zwrotów spektrum m. korelacji: mod zerowe, kolektwość; tasowaie drastczie zmieia spektrum; walut słabe bliskie losowm widocza klastrzacja wokół silch walut potęgowe skalowaie krotości węzłów, wkładik 1 < α < 2 dla fitów: -- kilkuprocetowe odchleia stadardowe -- współcziki korelacji r-pearsoa > 0.97 FENS, 22 kwietia

Modelowanie sieci złożonych

Modelowanie sieci złożonych Modelowanie sieci złożonych B. Wacław Instytut Fizyki UJ Czym są sieci złożone? wiele układów ma strukturę sieci: Internet, WWW, sieć cytowań, sieci komunikacyjne, społeczne itd. sieć = graf: węzły połączone

Bardziej szczegółowo

Ćwiczenie 5 ITERACYJNY ALGORYTM LS. IDENTYFIKACJA OBIEKTÓW NIESTACJONARNYCH ALGORYTM Z WYKŁADNICZYM ZAPOMINANIEM.

Ćwiczenie 5 ITERACYJNY ALGORYTM LS. IDENTYFIKACJA OBIEKTÓW NIESTACJONARNYCH ALGORYTM Z WYKŁADNICZYM ZAPOMINANIEM. Kompterowe Sstem Idetfikacji Laboratorim Ćwiczeie 5 IERACYJY ALGORY LS. IDEYFIKACJA OBIEKÓW IESACJOARYCH ALGORY Z WYKŁADICZY ZAPOIAIE. gr iż. Piotr Bros, bros@agh.ed.pl Kraków 26 Kompterowe Sstem Idetfikacji

Bardziej szczegółowo

( ) WŁASNOŚCI MACIERZY

( ) WŁASNOŚCI MACIERZY .Kowalski własości macierzy WŁSNOŚC MCERZY Własości iloczyu i traspozycji a) możeie macierzy jest łącze, tz. (C) ()C, dlatego zapis C jest jedozaczy, b) możeie macierzy jest rozdziele względem dodawaia,

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka W12: Statystyczna analiza danych jakościowych. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.

Rachunek prawdopodobieństwa i statystyka W12: Statystyczna analiza danych jakościowych. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu. Rachuek prawdopodobieństwa i statystyka W12: Statystycza aaliza daych jakościowych Dr Aa ADRIAN Paw B5, pok 407 ada@agh.edu.pl Wprowadzeie Rozróżia się dwa typy daych jakościowych: Nomiale jeśli opisują

Bardziej szczegółowo

Elementy modelowania matematycznego

Elementy modelowania matematycznego Elemety modelowaia matematyczego Wstęp Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Modelowaie daych (ilościowe): Metody statystycze: estymacja parametrów modelu,

Bardziej szczegółowo

MINIMALIZACJA PUSTYCH PRZEBIEGÓW PRZEZ ŚRODKI TRANSPORTU

MINIMALIZACJA PUSTYCH PRZEBIEGÓW PRZEZ ŚRODKI TRANSPORTU Przedmiot: Iformatyka w logistyce Forma: Laboratorium Temat: Zadaie 2. Automatyzacja obsługi usług logistyczych z wykorzystaiem zaawasowaych fukcji oprogramowaia Excel. Miimalizacja pustych przebiegów

Bardziej szczegółowo

Obszary strukturalne i funkcyjne mózgu

Obszary strukturalne i funkcyjne mózgu Spis treści 2010-03-16 Spis treści 1 Spis treści 2 Jak charakteryzować grafy? 3 4 Wielkości charakterystyczne Jak charakteryzować grafy? Średni stopień wierzchołków Rozkład stopni wierzchołków Graf jest

Bardziej szczegółowo

Wprowadzenie. metody elementów skończonych

Wprowadzenie. metody elementów skończonych Metody komputerowe Wprowadzeie Podstawy fizycze i matematycze metody elemetów skończoych Literatura O.C.Ziekiewicz: Metoda elemetów skończoych. Arkady, Warszawa 972. Rakowski G., acprzyk Z.: Metoda elemetów

Bardziej szczegółowo

Metoda analizy hierarchii Saaty ego Ważnym problemem podejmowania decyzji optymalizowanej jest często występująca hierarchiczność zagadnień.

Metoda analizy hierarchii Saaty ego Ważnym problemem podejmowania decyzji optymalizowanej jest często występująca hierarchiczność zagadnień. Metoda aalizy hierarchii Saaty ego Ważym problemem podejmowaia decyzji optymalizowaej jest często występująca hierarchiczość zagadień. Istieje wiele heurystyczych podejść do rozwiązaia tego problemu, jedak

Bardziej szczegółowo

UKŁADY RÓWNAŃ LINOWYCH

UKŁADY RÓWNAŃ LINOWYCH Ekoeergetyka Matematyka. Wykład 4. UKŁADY RÓWNAŃ LINOWYCH Defiicja (Układ rówań liiowych, rozwiązaie układu rówań) Układem m rówań liiowych z iewiadomymi,,,, gdzie m, azywamy układ rówań postaci: a a a

Bardziej szczegółowo

Podprzestrzenie macierzowe

Podprzestrzenie macierzowe Podprzestrzeie macierzowe Defiicja: Zakresem macierzy AŒ mâ azywamy podprzestrzeń R(A) przestrzei m geerowaą przez zakres fukcji ( ) : m f x = Ax ( A) { Ax x } = Defiicja: Zakresem macierzy A Œ âm azywamy

Bardziej szczegółowo

Niezależność zmiennych, funkcje i charakterystyki wektora losowego, centralne twierdzenia graniczne

Niezależność zmiennych, funkcje i charakterystyki wektora losowego, centralne twierdzenia graniczne Wykład 4 Niezależość zmieych, fukcje i charakterystyki wektora losowego, cetrale twierdzeia graicze Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki

Bardziej szczegółowo

Estymacja przedziałowa

Estymacja przedziałowa Metody probabilistycze i statystyka Estymacja przedziałowa Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Metody probabilistycze

Bardziej szczegółowo

3. Wykład III: Warunki optymalności dla zadań bez ograniczeń

3. Wykład III: Warunki optymalności dla zadań bez ograniczeń 3 Wkład III: Waruki optmalości dla zadań bez ograiczeń Podae poiże waruki optmalości dla są uogólieiem powszechie zach waruków dla fukci ede zmiee (zerowaie się pierwsze pochode i lokala wpukłość) 3 Twierdzeie

Bardziej szczegółowo

Przykładowe zadania dla poziomu rozszerzonego

Przykładowe zadania dla poziomu rozszerzonego Przkładowe zadaia dla poziomu rozszerzoego Zadaie. ( pkt W baku w pierwszm roku oszczędzaia stopa procetowa bła rówa p%, a w drugim roku bła o % iższa. Po dwóch latach, prz roczej kapitalizacji odsetek,

Bardziej szczegółowo

Co to jest grupowanie

Co to jest grupowanie Grupowanie danych Co to jest grupowanie 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Szukanie grup, obszarów stanowiących lokalne gromady punktów Co to jest grupowanie

Bardziej szczegółowo

STATYSTYKA I ANALIZA DANYCH

STATYSTYKA I ANALIZA DANYCH TATYTYKA I ANALIZA DANYCH Zad. Z pewej partii włókie weły wylosowao dwie próbki włókie, a w każdej z ich zmierzoo średicę włókie różymi metodami. Otrzymao astępujące wyiki: I próbka: 50; średia średica

Bardziej szczegółowo

Warsztaty metod fizyki teoretycznej

Warsztaty metod fizyki teoretycznej Warsztaty metod fizyki teoretycznej Zestaw 6 Układy złożone- sieci w otaczającym nas świecie Marcin Zagórski, Jan Kaczmarczyk 17.04.2012 1 Wprowadzenie W otaczającym nas świecie odnajdujemy wiele struktur,

Bardziej szczegółowo

Algorytmy analizy skupień / Sławomir Wierzchoń, Mieczysław Kłopotek. wyd. 1, 1. dodr. (PWN). Warszawa, Spis treści

Algorytmy analizy skupień / Sławomir Wierzchoń, Mieczysław Kłopotek. wyd. 1, 1. dodr. (PWN). Warszawa, Spis treści Algorytmy analizy skupień / Sławomir Wierzchoń, Mieczysław Kłopotek. wyd. 1, 1. dodr. (PWN). Warszawa, 2017 Spis treści Lista ważniejszych oznaczeń 5 Przedmowa 7 1. Analiza skupień 19 1.1. Formalizacja

Bardziej szczegółowo

Teoria. a k. Wskaźnik sumowania można oznaczać dowolną literą. Mamy np. a j = a i =

Teoria. a k. Wskaźnik sumowania można oznaczać dowolną literą. Mamy np. a j = a i = Zastosowaie symboli Σ i Π do zapisu sum i iloczyów Teoria Niech a, a 2,..., a będą dowolymi liczbami. Sumę a + a 2 +... + a zapisuje się zazwyczaj w postaci (czytaj: suma od k do a k ). Zak Σ to duża grecka

Bardziej szczegółowo

Definicja interpolacji

Definicja interpolacji INTERPOLACJA Defiicja iterpolacji Defiicja iterpolacji 3 Daa jest fukcja y = f (x), x[x 0, x ]. Zamy tablice wartości tej fukcji, czyli: f ( x ) y 0 0 f ( x ) y 1 1 Defiicja iterpolacji Wyzaczamy fukcję

Bardziej szczegółowo

Zeszyty naukowe nr 9

Zeszyty naukowe nr 9 Zeszyty aukowe r 9 Wyższej Szkoły Ekoomiczej w Bochi 2011 Piotr Fijałkowski Model zależości otowań giełdowych a przykładzie otowań ołowiu i spółki Orzeł Biały S.A. Streszczeie Niiejsza praca opisuje próbę

Bardziej szczegółowo

COLLEGIUM MAZOVIA INNOWACYJNA SZKOŁA WYŻSZA WYDZIAŁ NAUK STOSOWANYCH. Kierunek: Finanse i rachunkowość. Robert Bąkowski Nr albumu: 9871

COLLEGIUM MAZOVIA INNOWACYJNA SZKOŁA WYŻSZA WYDZIAŁ NAUK STOSOWANYCH. Kierunek: Finanse i rachunkowość. Robert Bąkowski Nr albumu: 9871 COLLEGIUM MAZOVIA INNOWACYJNA SZKOŁA WYŻSZA WYDZIAŁ NAUK STOSOWANYCH Kieruek: Fiase i rachukowość Robert Bąkowski Nr albumu: 9871 Projekt: Badaie statystycze cey baryłki ropy aftowej i wartości dolara

Bardziej szczegółowo

Termodynamika defektów sieci krystalicznej

Termodynamika defektów sieci krystalicznej Termodyamika defektów sieci krystaliczej Defekty sieci krystaliczej puktowe (wakasje, atomy międzywęzłowe, obce atomy) jedowymiarowe (dyslokacje krawędziowe i śrubowe) dwuwymiarowe (graice międzyziarowe,

Bardziej szczegółowo

Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne. Temat ćwiczenia: Problemy transportowe cd, Problem komiwojażera

Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne. Temat ćwiczenia: Problemy transportowe cd, Problem komiwojażera Istrukcja do ćwiczeń laboratoryjych z przedmiotu: Badaia operacyje Temat ćwiczeia: Problemy trasportowe cd Problem komiwojażera Zachodiopomorski Uiwersytet Techologiczy Wydział Iżyierii Mechaiczej i Mechatroiki

Bardziej szczegółowo

opisać wielowymiarową funkcją rozkładu gęstości prawdopodobieństwa f(x 1 , x xn

opisać wielowymiarową funkcją rozkładu gęstości prawdopodobieństwa f(x 1 , x xn ROZKŁAD PRAWDOPODBIEŃSTWA WIELU ZMIENNYCH LOSOWYCH W przpadku gd mam do czea z zmem losowm możem prawdopodobeństwo, ż przjmą oe wartośc,,, opsać welowmarową fukcją rozkładu gęstośc prawdopodobeństwa f(,,,.

Bardziej szczegółowo

TESTY LOSOWOŚCI. Badanie losowości próby - test serii.

TESTY LOSOWOŚCI. Badanie losowości próby - test serii. TESTY LOSOWOŚCI Badaie losowości próby - test serii. W wielu zagadieiach wioskowaia statystyczego istotym założeiem jest losowość próby. Prostym testem do weryfikacji tej własości jest test serii. 1 Dla

Bardziej szczegółowo

Fizyka na usługach inżynierii finansowej 1

Fizyka na usługach inżynierii finansowej 1 Fizyka na usługach inżynierii finansowej 1 Plan referatu 1. Zwiazek ekonomii z naukami ścisłymi 2. Ekonofizyka 3. Metody fizyki w inżynierii finansowej Bładzenie przypadkowe Uniwersalność Korelacje Macierze

Bardziej szczegółowo

P = 27, 8 27, 9 27 ). Przechodząc do granicy otrzymamy lim P(Y n > Y n+1 ) = P(Z 1 0 > Z 2 X 2 X 1 = 0)π 0 + P(Z 1 1 > Z 2 X 2 X 1 = 1)π 1 +

P = 27, 8 27, 9 27 ). Przechodząc do granicy otrzymamy lim P(Y n > Y n+1 ) = P(Z 1 0 > Z 2 X 2 X 1 = 0)π 0 + P(Z 1 1 > Z 2 X 2 X 1 = 1)π 1 + Zadaia róże W tym rozdziale zajdują się zadaia ietypowe, często dotyczące łańcuchów Markowa oraz własości zmieych losowych. Pojawią się także zadaia z estymacji Bayesowskiej.. (Eg 8/) Rozważamy łańcuch

Bardziej szczegółowo

7. Identyfikacja defektów badanego obiektu

7. Identyfikacja defektów badanego obiektu 7. Identyfikacja defektów badanego obiektu Pierwszym krokiem na drodze do identyfikacji defektów było przygotowanie tzw. odcisku palca poszczególnych defektów. W tym celu został napisany program Gaussian

Bardziej szczegółowo

1. Wnioskowanie statystyczne. Ponadto mianem statystyki określa się także funkcje zmiennych losowych o

1. Wnioskowanie statystyczne. Ponadto mianem statystyki określa się także funkcje zmiennych losowych o 1. Wioskowaie statystycze. W statystyce idetyfikujemy: Cecha-Zmiea losowa Rozkład cechy-rozkład populacji Poadto miaem statystyki określa się także fukcje zmieych losowych o tym samym rozkładzie. Rozkłady

Bardziej szczegółowo

Model ciągły wyceny opcji Blacka Scholesa - Mertona. Wzór Blacka - Scholesa na wycenę opcji europejskiej.

Model ciągły wyceny opcji Blacka Scholesa - Mertona. Wzór Blacka - Scholesa na wycenę opcji europejskiej. Model ciągły wycey opcji Blacka Scholesa - Mertoa Wzór Blacka - Scholesa a wyceę opcji europejskiej. Model Blacka Scholesa- Mertoa Przełomowe prace z zakresu wycey opcji: Fischer Black, Myro Scholes The

Bardziej szczegółowo

X i. X = 1 n. i=1. wartość tej statystyki nazywana jest wartością średnią empiryczną i oznaczamy ją symbolem x, przy czym x = 1. (X i X) 2.

X i. X = 1 n. i=1. wartość tej statystyki nazywana jest wartością średnią empiryczną i oznaczamy ją symbolem x, przy czym x = 1. (X i X) 2. Zagadieia estymacji Puktem wyjścia badaia statystyczego jest wylosowaie z całej populacji pewej skończoej liczby elemetów i zbadaie ich ze względu a zmieą losową cechę X Uzyskae w te sposób wartości x,

Bardziej szczegółowo

Wykład 11. a, b G a b = b a,

Wykład 11. a, b G a b = b a, Wykład 11 Grupy Grupą azywamy strukturę algebraiczą złożoą z iepustego zbioru G i działaia biarego które spełia własości: (i) Działaie jest łącze czyli a b c G a (b c) = (a b) c. (ii) Działaie posiada

Bardziej szczegółowo

Korelacje krzyżowe kryzysów finansowych w ujęciu korelacji potęgowych. Analiza ewolucji sieci na progu liniowości.

Korelacje krzyżowe kryzysów finansowych w ujęciu korelacji potęgowych. Analiza ewolucji sieci na progu liniowości. Korelacje krzyżowe kryzysów finansowych w ujęciu korelacji potęgowych. Analiza ewolucji sieci na progu liniowości. Cross-correlations of financial crisis analysed by power law classification scheme. Evolving

Bardziej szczegółowo

Bielecki Jakub Kawka Marcin Porczyk Krzysztof Węgrzyn Bartosz. Zbiorcze bazy danych

Bielecki Jakub Kawka Marcin Porczyk Krzysztof Węgrzyn Bartosz. Zbiorcze bazy danych Bielecki Jakub Kawka Marci Porczk Krzsztof Węgrz Bartosz Zbiorcze baz dach Marzec 2006 Spis treści. Opis działalości bizesowej firm... 3 2. Omówieie struktur orgaizacjej... 4 3. Opis obszaru bizesowego...

Bardziej szczegółowo

Matematyczne kolorowanki. Tomasz Szemberg. Wykład dla studentów IM UP Kraków, 18 maja 2016

Matematyczne kolorowanki. Tomasz Szemberg. Wykład dla studentów IM UP Kraków, 18 maja 2016 Wykład dla studentów IM UP Kraków, 18 maja 2016 Gra wstępna Dany jest prostokąt podzielony na 8 pól. Gracze zamalowują pola na zmianę. Jeden na kolor czerwony, a drugi na kolor niebieski. Gra wstępna Dany

Bardziej szczegółowo

Ocena dopasowania modelu do danych empirycznych

Ocena dopasowania modelu do danych empirycznych Ocea dopasowaia modelu do dach empirczch Po oszacowaiu parametrów modelu ależ zbadać, cz zbudowa model dobrze opisuje badae zależości. Jeśli okaże się, że rozbieżość międz otrzmam modelem a dami empirczmi

Bardziej szczegółowo

Ą Ń Ę Ę Ą Ę Ć ź Ż Ż Ą ń Ź Ż Ż ń ń Ź Ą Ń Ą Ą Ę ń ź Ę Ę Ż Ć Ą ź Ą Ę ń ź Ę ń ń Ą Ż Ę ń Ą ń ń Ę Ę Ę Ź ń Ę ń ń ń ń Ź Ę Ś ź Ą Ń ń Ż Ź Ę Ź ń ń ń Ę Ę ń Ż Ą ń ńń Ś ń ń Ż Ż Ę Ż Ń Ę Ą Ń Ł ń ń ń ń ń ń ń ń Ś Ź Ę Ś

Bardziej szczegółowo

Ł ŚĆ ń Ś Ł Ź Ć Ł Ą ńń ć Ż Ą Ł Ś ń Ł ć Ś ń ć ć ć Ó Ż ć ć Ą Ś ć Ś ć Ń Ś ć Ś ć Ś Ć Ś Ż Ś Ś Ż Ś Ó ń ć ć Ź Ł ć ć ć ń ń ć ć Ą ć ć ć Ź ć ć ć ć ć ć Ó Ź Ó Ł Ł Ń ć ć Ź Ą ć ć ń ć Ą ć ć ć Ł Ź Ź Ź Ż Ł Ż Ł Ż ć ń ć Ą

Bardziej szczegółowo

Imiona dzieci, prawo Zipfa i mapa Stanów Zjednoczonych

Imiona dzieci, prawo Zipfa i mapa Stanów Zjednoczonych Imiona dzieci, prawo Zipfa i mapa Stanów Zjednoczonych Mateusz Pomorski 1, Małgorzata J. Krawczyk 1, Jarosław Kwapień 2, Krzysztof Kułakowski 1, Marcel Ausloos 3 1 Wydział Fizyki i Informatyki Stosowanej,

Bardziej szczegółowo

Rozkłady zmiennych losowych

Rozkłady zmiennych losowych Rozkłady zmiennych losowych Wprowadzenie Badamy pewną zbiorowość czyli populację pod względem występowania jakiejś cechy. Pobieramy próbę i na podstawie tej próby wyznaczamy pewne charakterystyki. Jeśli

Bardziej szczegółowo

Ekonomiczny Uniwersytet Dziecięcy

Ekonomiczny Uniwersytet Dziecięcy Ekoomiczy Uiwersytet Dziecięcy Dlaczego jede kraje są biede a ie bogate? dr Baha Kaliowska-Sufiowicz Uiwersytet Ekoomiczy w Pozaiu 23 maja 2013 r. EKONOMICZNY UNIWERSYTET DZIECIĘCY WWW.UNIWERSYTET-DZIECIECY.PL

Bardziej szczegółowo

Ćwiczenia rachunkowe TEST ZGODNOŚCI χ 2 PEARSONA ROZKŁAD GAUSSA

Ćwiczenia rachunkowe TEST ZGODNOŚCI χ 2 PEARSONA ROZKŁAD GAUSSA Aaliza iepewości pomiarowych w esperymetach fizyczych Ćwiczeia rachuowe TEST ZGODNOŚCI χ PEARSONA ROZKŁAD GAUSSA UWAGA: Na stroie, z tórej pobrałaś/pobrałeś istrucję zajduje się gotowy do załadowaia arusz

Bardziej szczegółowo

Przejście fazowe w sieciach złożonych w modelu Axelroda

Przejście fazowe w sieciach złożonych w modelu Axelroda Przejście fazowe w sieciach złożonych w modelu Axelroda Korzeń W., Maćkowski M., Rozwadowski P., Szczeblewska P., Sznajder W. 1 Opiekun: Tomasz Raducha 1 Uniwersytet Warszawski, Wydział Fizyki 3 Streszczenie

Bardziej szczegółowo

Sieci złożone. Modelarnia 2014/2015 Katarzyna Sznajd-Weron

Sieci złożone. Modelarnia 2014/2015 Katarzyna Sznajd-Weron Sieci złożone Modelarnia 2014/2015 Katarzyna Sznajd-Weron Sieć = network Węzły Węzły jednego typu lub wielu Połączenia Połączenia kierunkowe lub nie Czy fizycy zawsze muszą mieć inne zdanie? Fizycy sieć

Bardziej szczegółowo

Badanie zależności cech

Badanie zależności cech PODSTAWY STATYSTYKI 1. Teoria prawdopodobieństwa i element kombinatorki. Zmienne losowe i ich rozkład 3. Populacje i prób danch, estmacja parametrów 4. Testowanie hipotez 5. Test parametrczne (na przkładzie

Bardziej szczegółowo

Wprowadzenie do środowiska MATLAB z zastosowaniami w modelowaniu i analizie danych

Wprowadzenie do środowiska MATLAB z zastosowaniami w modelowaniu i analizie danych Wprowadzenie do środowiska MATLAB z zastosowaniami w modelowaniu i analizie danych Daniel Wójcik Instytut Biologii Doświadczalnej PAN Szkoła Wyższa Psychologii Społecznej d.wojcik@nencki.gov.pl tel. 022

Bardziej szczegółowo

O pewnych zastosowaniach rachunku różniczkowego funkcji dwóch zmiennych w ekonomii

O pewnych zastosowaniach rachunku różniczkowego funkcji dwóch zmiennych w ekonomii O pewych zastosowaiach rachuku różiczkowego fukcji dwóch zmieych w ekoomii 1 Wielkość wytwarzaego dochodu arodowego D zależa jest od wielkości produkcyjego majątku trwałego M i akładów pracy żywej Z Fukcję

Bardziej szczegółowo

Całkowanie przez podstawianie i dwa zadania

Całkowanie przez podstawianie i dwa zadania Całkowanie przez podstawianie i dwa zadania Antoni Kościelski Funkcje dwóch zmiennch i podstawianie Dla funkcji dwóch zmiennch zachodzi następując wzór na całkowanie przez podstawianie: f(x(a, b), (a,

Bardziej szczegółowo

Teoria grafów dla małolatów. Andrzej Przemysław Urbański Instytut Informatyki Politechnika Poznańska

Teoria grafów dla małolatów. Andrzej Przemysław Urbański Instytut Informatyki Politechnika Poznańska Teoria grafów dla małolatów Andrzej Przemysław Urbański Instytut Informatyki Politechnika Poznańska Wstęp Matematyka to wiele różnych dyscyplin Bowiem świat jest bardzo skomplikowany wymaga rozważenia

Bardziej szczegółowo

Podstawowe oznaczenia i wzory stosowane na wykładzie i laboratorium Część I: estymacja

Podstawowe oznaczenia i wzory stosowane na wykładzie i laboratorium Część I: estymacja Podstawowe ozaczeia i wzory stosowae a wykładzie i laboratorium Część I: estymacja 1 Ozaczeia Zmiee losowe (cechy) ozaczamy a wykładzie dużymi literami z końca alfabetu. Próby proste odpowiadającymi im

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 9 Sieci rekurencyjne. Autoasocjator Hopfielda

Wstęp do sieci neuronowych, wykład 9 Sieci rekurencyjne. Autoasocjator Hopfielda Wstęp do sieci neuronowych, wykład 9. M. Czoków, J. Piersa 2010-12-07 1 Sieci skierowane 2 Modele sieci rekurencyjnej Energia sieci 3 Sieci skierowane Sieci skierowane Sieci skierowane graf połączeń synaptycznych

Bardziej szczegółowo

Wartość przyszła FV. Zmienna wartość pieniądza w czasie. złotówka w garści jest warta więcej niŝ złotówka spodziewana w przyszłości

Wartość przyszła FV. Zmienna wartość pieniądza w czasie. złotówka w garści jest warta więcej niŝ złotówka spodziewana w przyszłości Zmiea wartość pieiądza w czasie Zmiea wartość pieiądza w czasie Zmiea wartość pieiądza w czasie jeda z podstawowych prawidłowości wykorzystywaych w fiasach polegająca a tym, Ŝe: złotówka w garści jest

Bardziej szczegółowo

Szkolny plan nauczania w 3-letnim okresie nauczania. Klasa A z rozszerzoną edukacją humanistyczno - społeczną. Liczba godzin tygodniowo

Szkolny plan nauczania w 3-letnim okresie nauczania. Klasa A z rozszerzoną edukacją humanistyczno - społeczną. Liczba godzin tygodniowo Szkoln plan nauczania w 3-letnim okresie nauczania z ą edukacją humanistczno - społeczną Liczba godzin tgodniowo inimalna liczba Jęzk polski 5 13 390 Jęzk angielski/francuski 2 1 2 3 2 2 12 180 180 Jęzk

Bardziej szczegółowo

CZEŚĆ PIERWSZA. Wymagania na poszczególne oceny,,matematyka wokół nas Klasa III I. POTĘGI

CZEŚĆ PIERWSZA. Wymagania na poszczególne oceny,,matematyka wokół nas Klasa III I. POTĘGI Wymagania na poszczególne oceny,,matematyka wokół nas Klasa III CZEŚĆ PIERWSZA I. POTĘGI Zamienia potęgi o wykładniku całkowitym ujemnym na odpowiednie potęgi o wykładniku naturalnym. Oblicza wartości

Bardziej szczegółowo

G. Wybrane elementy teorii grafów

G. Wybrane elementy teorii grafów Dorota Miszczyńska, Marek Miszczyński KBO UŁ Wybrane elementy teorii grafów 1 G. Wybrane elementy teorii grafów Grafy są stosowane współcześnie w różnych działach nauki i techniki. Za pomocą grafów znakomicie

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna Wykład 13: Teoria Grafów Gniewomir Sarbicki Literatura R.J. Wilson Wprowadzenie do teorii grafów Definicja: Grafem (skończonym, nieskierowanym) G nazywamy parę zbiorów (V (G), E(G)),

Bardziej szczegółowo

3 Arytmetyka. 3.1 Zbiory liczbowe.

3 Arytmetyka. 3.1 Zbiory liczbowe. 3 Arytmetyka. 3.1 Zbiory liczbowe. Bóg stworzył liczby aturale, wszystko ie jest dziełem człowieka. Leopold Kroecker Ozaczeia: zbiór liczb aturalych: N = {1, 2,...} zbiór liczb całkowitych ieujemych: N

Bardziej szczegółowo

BADANIA DOCHODU I RYZYKA INWESTYCJI

BADANIA DOCHODU I RYZYKA INWESTYCJI StatSoft Polska, tel. () 484300, (60) 445, ifo@statsoft.pl, www.statsoft.pl BADANIA DOCHODU I RYZYKA INWESTYCJI ZA POMOCĄ ANALIZY ROZKŁADÓW Agieszka Pasztyła Akademia Ekoomicza w Krakowie, Katedra Statystyki;

Bardziej szczegółowo

Zadania z Matematyka 2 - SIMR 2008/ szeregi zadania z rozwiązaniami. n 1. n n. ( 1) n n. n n + 4

Zadania z Matematyka 2 - SIMR 2008/ szeregi zadania z rozwiązaniami. n 1. n n. ( 1) n n. n n + 4 Zadaia z Matematyka - SIMR 00/009 - szeregi zadaia z rozwiązaiami. Zbadać zbieżość szeregu Rozwiązaie: 0 4 4 + 6 0 : Dla dostateczie dużych 0 wyrazy szeregu są ieujeme 0 a = 4 4 + 6 0 0 Stosujemy kryterium

Bardziej szczegółowo

KARTA KURSU. Probability theory

KARTA KURSU. Probability theory KARTA KURSU Nazwa Nazwa w j. ang. Rachunek prawdopodobieństwa Probability theory Kod Punktacja ECTS* 4 Koordynator Dr Ireneusz Krech Zespół dydaktyczny Dr Ireneusz Krech Dr Robert Pluta Opis kursu (cele

Bardziej szczegółowo

Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA?

Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA? /9/ Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład --9 Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów

Bardziej szczegółowo

Akademia Młodego Ekonomisty

Akademia Młodego Ekonomisty Akademia Młodego Ekoomisty Mieriki wzrostu gospodarczego dr Baha Kaliowska-Sufiowicz Uiwersytet Ekoomiczy w Pozaiu 7 marca 2013 r. Ayoe who believes that expotetial growth ca go o for ever i a fiite world

Bardziej szczegółowo

Zdarzenia losowe, definicja prawdopodobieństwa, zmienne losowe

Zdarzenia losowe, definicja prawdopodobieństwa, zmienne losowe Metody probabilistycze i statystyka Wykład 1 Zdarzeia losowe, defiicja prawdopodobieństwa, zmiee losowe Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki

Bardziej szczegółowo

Zasady budowania prognoz ekonometrycznych

Zasady budowania prognoz ekonometrycznych Zasad budowania prognoz ekonometrcznch Klasczne założenia teorii predkcji 1. Znajomość modelu kształtowania się zmiennej prognozowanej Znajomość postaci analitcznej wstępującch zależności międz zmiennmi

Bardziej szczegółowo

MODELOWANIE RZECZYWISTOŚCI

MODELOWANIE RZECZYWISTOŚCI MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN Szkoła Wyższa Psychologii Społecznej d.wojcik@nencki.gov.pl dwojcik@swps.edu.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/

Bardziej szczegółowo

ELEKTROTECHNIKA Semestr 1 Rok akad / ZADANIA Z MATEMATYKI Zestaw Przedstaw w postaci algebraicznej liczby zespolone: (3 + 2j)(5 2j),

ELEKTROTECHNIKA Semestr 1 Rok akad / ZADANIA Z MATEMATYKI Zestaw Przedstaw w postaci algebraicznej liczby zespolone: (3 + 2j)(5 2j), ELEKTROTECHNIKA Semestr Rok akad. / 5 ZADANIA Z MATEMATYKI Zestaw. Przedstaw w postaci algebraicznej liczby zespolone: (3 + j)(5 j) 3 j +j (5 + j) (3 + j) 3. Narysuj zbiory punktów na płaszczyźnie: +j

Bardziej szczegółowo

Formowanie opinii w układach społecznych na przykładzie wyborów parlamentarnych

Formowanie opinii w układach społecznych na przykładzie wyborów parlamentarnych Formowanie opinii w układach społecznych na przykładzie wyborów parlamentarnych Tomasz Gradowski Seminarium Dynamiki Układów Złożonych 5. 11. 2007 Motywacja Wybory są fundamentalnym procesem społecznym

Bardziej szczegółowo

MATURA 2014 z WSiP. Zasady oceniania zadań

MATURA 2014 z WSiP. Zasady oceniania zadań MATURA 0 z WSiP Matematyka Poziom rozszerzoy Zasady oceiaia zadań Copyright by Wydawictwa Szkole i Pedagogicze sp z oo, Warszawa 0 Matematyka Poziom rozszerzoy Kartoteka testu Numer zadaia Sprawdzaa umiejętość

Bardziej szczegółowo

Kolorowanie wierzchołków

Kolorowanie wierzchołków Kolorowanie wierzchołków Mając dany graf, pokolorować jego wierzchołki w taki sposób, aby każde dwa wierzchołki sąsiednie miały inny kolor. Każda krawędź łączy wierzchołki różnych kolorów. Takie pokolorowanie

Bardziej szczegółowo

Ekonomia matematyczna 2-2

Ekonomia matematyczna 2-2 Ekoomia matematycza - Fukcja produkcji Defiicja Efektywym przekształceiem techologiczym azywamy odwzorowaie (iekiedy wielowartościowe), które kazdemu wektorowi akładów R przyporządkowuje zbiór wektorów

Bardziej szczegółowo

Rozkład normalny (Gaussa)

Rozkład normalny (Gaussa) Rozład ormal (Gaussa Wprowadzeie rozładu Gaussa w modelu Laplace a błędów pomiarowch. Rozważm pomiar wielości, tór jest zaburza przez losowch efetów o wielości ε ażd, zarówo zaiżającch ja i zawżającch

Bardziej szczegółowo

Obrona rozprawy doktorskiej Neuro-genetyczny system komputerowy do prognozowania zmiany indeksu giełdowego

Obrona rozprawy doktorskiej Neuro-genetyczny system komputerowy do prognozowania zmiany indeksu giełdowego IBS PAN, Warszawa 9 kwietnia 2008 Obrona rozprawy doktorskiej Neuro-genetyczny system komputerowy do prognozowania zmiany indeksu giełdowego mgr inż. Marcin Jaruszewicz promotor: dr hab. inż. Jacek Mańdziuk,

Bardziej szczegółowo

0.1 ROZKŁADY WYBRANYCH STATYSTYK

0.1 ROZKŁADY WYBRANYCH STATYSTYK 0.1. ROZKŁADY WYBRANYCH STATYSTYK 1 0.1 ROZKŁADY WYBRANYCH STATYSTYK Zadaia 0.1.1. Niech X 1,..., X będą iezależymi zmieymi losowymi o tym samym rozkładzie. Obliczyć ES 2 oraz D 2 ( 1 i=1 X 2 i ). 0.1.2.

Bardziej szczegółowo

Hierarchical Cont-Bouchaud model

Hierarchical Cont-Bouchaud model Hierarchical Cont-Bouchaud model inż. Robert Paluch dr inż. Krzysztof Suchecki prof. dr hab. inż. Janusz Hołyst Pracownia Fizyki w Ekonomii i Naukach Społecznych Wydział Fizyki Politechniki Warszawskiej

Bardziej szczegółowo

INWESTYCJE MATERIALNE

INWESTYCJE MATERIALNE OCENA EFEKTYWNOŚCI INWESTYCJI INWESTCJE: proces wydatkowaia środków a aktywa, z których moża oczekiwać dochodów pieiężych w późiejszym okresie. Każde przedsiębiorstwo posiada pewą liczbę możliwych projektów

Bardziej szczegółowo

Korelacja i regresja. Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych. Wykład 12

Korelacja i regresja. Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych. Wykład 12 Wykład Korelacja i regresja Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Wykład 8. Badaie statystycze ze względu

Bardziej szczegółowo

Konspekt lekcji (Kółko matematyczne, kółko przedsiębiorczości)

Konspekt lekcji (Kółko matematyczne, kółko przedsiębiorczości) Kospekt lekcji (Kółko matematycze, kółko przedsiębiorczości) Łukasz Godzia Temat: Paradoks skąpej wdowy. O procecie składaym ogólie. Czas lekcji 45 miut Cele ogóle: Uczeń: Umie obliczyć procet składay

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 10 Sieci rekurencyjne. Autoasocjator Hopfielda

Wstęp do sieci neuronowych, wykład 10 Sieci rekurencyjne. Autoasocjator Hopfielda Wstęp do sieci neuronowych, wykład 10. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2012-12-19 Projekt pn. Wzmocnienie potencjału dydaktycznego UMK w Toruniu

Bardziej szczegółowo

1 Macierze i wyznaczniki

1 Macierze i wyznaczniki 1 Macierze i wyznaczniki 11 Definicje, twierdzenia, wzory 1 Macierzą rzeczywistą (zespoloną) wymiaru m n, gdzie m N oraz n N, nazywamy prostokątną tablicę złożoną z mn liczb rzeczywistych (zespolonych)

Bardziej szczegółowo

Sieci i systemy operacyjne I Ćwiczenie 3. Przekierowania strumieni we/wy. Filtry.

Sieci i systemy operacyjne I Ćwiczenie 3. Przekierowania strumieni we/wy. Filtry. Wdział Zarządzania i Modelowania Komputerowego Specjalność: Informatka Stosowana Rok III Semestr V 1. Zaloguj się w sstemie Unix. Sieci i sstem operacjne I Ćwiczenie 3. Przekierowania strumieni we/w. Filtr.

Bardziej szczegółowo

M0008 STAN PORTFELA W ASNEGO OBLIGACJI SKARBOWYCH WYEMITOWANYCH PRZEZ REZYDENTA, NOMINOWANYCH W PLN I WALUTACH OBCYCH

M0008 STAN PORTFELA W ASNEGO OBLIGACJI SKARBOWYCH WYEMITOWANYCH PRZEZ REZYDENTA, NOMINOWANYCH W PLN I WALUTACH OBCYCH M0008 STAN PORTFELA W ASNEGO OBLIGACJI SKARBOWYCH WYEMITOWANYCH PRZEZ REZYDENTA, NOMINOWANYCH W PLN I WALUTACH OBCYCH WG WARTO CI NOMINALNEJ 1.Obligacje Nominowane w PLN stan na dzie...w tys. z Nominowane

Bardziej szczegółowo

WERSJA TESTU A. Komisja Egzaminacyjna dla Aktuariuszy. LX Egzamin dla Aktuariuszy z 28 maja 2012 r. Część I. Matematyka finansowa

WERSJA TESTU A. Komisja Egzaminacyjna dla Aktuariuszy. LX Egzamin dla Aktuariuszy z 28 maja 2012 r. Część I. Matematyka finansowa Matematyka fiasowa 8.05.0 r. Komisja Egzamiacyja dla Aktuariuszy LX Egzami dla Aktuariuszy z 8 maja 0 r. Część I Matematyka fiasowa WERJA EU A Imię i azwisko osoby egzamiowaej:... Czas egzamiu: 00 miut

Bardziej szczegółowo

Struktura czasowa stóp procentowych (term structure of interest rates)

Struktura czasowa stóp procentowych (term structure of interest rates) Struktura czasowa stóp procetowych (term structure of iterest rates) Wysokość rykowych stóp procetowych Na ryku istieje wiele różorodych stóp procetowych. Poziom rykowej stopy procetowej (lub omialej stopy,

Bardziej szczegółowo

Zagadnienie transportowe

Zagadnienie transportowe 9//9 Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów

Bardziej szczegółowo

KRZYSZTOF WÓJTOWICZ Instytut Filozofii Uniwersytetu Warszawskiego

KRZYSZTOF WÓJTOWICZ Instytut Filozofii Uniwersytetu Warszawskiego KRZYSZTOF WÓJTOWICZ Instytut Filozofii Uniwersytetu Warszawskiego wojtow@uw.edu.pl 1 2 1. SFORMUŁOWANIE PROBLEMU Czy są empiryczne aspekty dowodów matematycznych? Jeśli tak to jakie stanowisko filozoficzne

Bardziej szczegółowo

GRAFY JAKO MODELE TOPOLOGICZNE DANYCH MAPY NUMERYCZNEJ

GRAFY JAKO MODELE TOPOLOGICZNE DANYCH MAPY NUMERYCZNEJ Lewandowicz E., 2007; Kartografia numeryczna i informatyka geodezyjna. Materiały II Ogólnopolskiej Konferencji Naukowo-Technicznej, Rzeszów 2007, str. 17-24 Elżbieta LEWANDOWICZ 1 GRAFY JAKO MODELE TOPOLOGICZNE

Bardziej szczegółowo

Scenariusz lekcji. podać definicję matematyczną grafu; wymienić podstawowe rodzaje grafów;

Scenariusz lekcji. podać definicję matematyczną grafu; wymienić podstawowe rodzaje grafów; Scenariusz lekcji 1 TEMAT LEKCJI: Grafy wprowadzenie 2 CELE LEKCJI: 2.1 Wiadomości: Uczeń potrafi: podać definicję matematyczną grafu; wymienić podstawowe rodzaje grafów; podać definicje podstawowych pojęć

Bardziej szczegółowo

Ć wiczenie 9 SILNIK TRÓJFAZOWY ZWARTY

Ć wiczenie 9 SILNIK TRÓJFAZOWY ZWARTY 145 Ć wiczeie 9 SILNIK TRÓJFAZOWY ZWARTY 1. Wiadomości ogóle 1.1. Ogóla budowa Siliki asychroicze trójfazowe, dzięki swoim zaletom ruchowym, prostocie kostrukcji, łatwej obsłudze są powszechie stosowae

Bardziej szczegółowo

Wyk ad II. Stacjonarne szeregi czasowe.

Wyk ad II. Stacjonarne szeregi czasowe. Wyk ad II. Stacjonarne szeregi czasowe. W wi ekszości przypadków poszukiwanie modelu, który dok adnie by opisywa zachowanie sk adnika losowego " t, polega na analizie pewnej klasy losowych ciagów czasowych

Bardziej szczegółowo