Model ciągły wyceny opcji Blacka Scholesa - Mertona. Wzór Blacka - Scholesa na wycenę opcji europejskiej.

Wielkość: px
Rozpocząć pokaz od strony:

Download "Model ciągły wyceny opcji Blacka Scholesa - Mertona. Wzór Blacka - Scholesa na wycenę opcji europejskiej."

Transkrypt

1 Model ciągły wycey opcji Blacka Scholesa - Mertoa Wzór Blacka - Scholesa a wyceę opcji europejskiej.

2 Model Blacka Scholesa- Mertoa Przełomowe prace z zakresu wycey opcji: Fischer Black, Myro Scholes The pricig of Optios ad Corporate Liabilities, Joural of Political Ecoomy (Mai/Jui 1973) Robert C. Merto Theory of Ratioal Optio Pricig Bell Joural of Ecoomics ad Maagemet Sciece (1973) Modele które do chwili obecej są cetralym obiektem matematyki fiasowej i przyczyiły się do gwałtowego rozwoju iżyierii fiasowej opartej a istrumetach pochodych W 1997, Robert Merto i Myro Scholes otrzymali agrodę Nobla w ekoomii (Fischer Black zmarł w 1995)

3 Uogólieie defiicji wycey opcji Wzór a wyceę opcji w modelu dwumiaowym wieloetapowym moża było iterpretować jako zdyskotowaą, oczekiwaą wartość fukcji wypłaty opcji, przy tzw. prawdopodobieństwie eutralym wobec ryzyka (risk free probability), przy którym oczekiwaa stopa zwrotu z akcji jest rówa stopie wolej od ryzyka. Uwzględiając to podejście i zakładając ciągłą kapitalizację odsetek moża przyjąć ogólą defiicję wycey opcji kupa a T lat przed datą wygaśięcia opcji jako zdyskotowaą, oczekiwaą wartość fukcji wypłaty r C = e - r T E [max(s(t) K, 0)] rocza stopa wola od ryzyka przy ciągłej kapitalizacji S(T) cea istrumetu bazowego w diu wygaśięcia opcji K cea realizacji opcji

4 Uogólieie defiicji wycey opcji sprzedaży Wprowadźmy ozaczeie: zatem (S(T) K) + := max(s(t) K,0), C = e - r T E[(S(T) K) + ] Podobie dla opcji sprzedaży, jej wartość określimy jako zdyskotowaą, oczekiwaą wartość fukcji wypłaty w chwili T lub krócej P = e -rt E [max(k S(T), 0)] P = e -rt E [(K S(T)) + ]

5 Waruki wycey Cey akcji podlegają błądzeiu przypadkowemu Oczekiwaa stopa zwrotu z akcji w krótkim okresie czasu jest rówa krótkotermiowej wolej od ryzyka stopie procetowej (tzw. waruek powszechej obojętości względem ryzyka) wola od ryzyka stopa procetowa oraz współczyik zmieości akcji są stałe w rozpatrywaym okresie W okresie ważości opcji akcje bazowe ie przyoszą dywidedy Nie istieją możliwości arbitrażu Papiery wartościowe są ieskończeie podziele, koszty trasakcyje zerowe Pożyczki i lokaty podlegają tej samej wolej od ryzyka stopie procetowej Obrót papierami wartościowymi jest ciągły

6 Zmieość cey akcji Współczyik roczej zmieości akcji defiiujemy jako odchyleie stadardowe roczych logarytmiczych stóp zwrotu akcji i = l (S i / S i-1 ), i - logarytmicza stopa zwrotu w i-tym roku, S i cea akcji w i-tym roku) Współczyik zmieości często obliczaa jest w oparciu o miesięcze logarytmicze stopy zwrotu. Poieważ zakłada się iezależość logarytmiczych stóp zwrotu, wiec rocza wariacja jest iloczyem miesięczej wariacji i liczby 12. Zatem rocze odchyleie std. jest rówe miesięczemu pomożoemu przez pierwiastek z 12. Aalogiczie moża wyliczać roczą zmieość ze zmieości tygodiowej, dzieej, itd.

7 Ciągły model zmieości ce akcji UWAGA Tzw. model ciągły zmieości akcji jest wyikiem przejścia graiczego, czyli zastosowaia odpowiediej wersji cetralego twierdzeia graiczego dla dyskretego modelu zmieości cey akcji. Wykażemy, że S(T) = S(0) e X(T) gdzie X(T) jest pewą zmieą losową o rozkładzie ormalym S(T) - zmiea losowa określająca ceę akcji w chwili T

8 Założeia kostrukcji ciągu zmieych losowych S (T) przybliżających zachowaie się ce akcji w chwili T (i) Zmiee losowe l[s (T)/S(0)] mają jedakową wariację dla każdego, wyoszącą Tσ 2. (ii) Cey akcji zmieiają się multiplikatywym jak w modelu (iii) Wartość oczekiwaa współczyika zmiay cey akcji w jedym etapie jest rówa współczyikowi wzrostu dla iwestycji wolej od ryzyka.

9 Pojęcia i ozaczeia liczba etapów w okresie czasu o długości T, (T wyrażoe w latach) T/ - długość etapu (1) R rt exp( R jest współczyikiem wzrostu dla iwestycji wolej od ryzyka w jedym etapie, przy ciągłej kapitalizacji odsetek, r stopa rocza przy kapitalizacji ciągłej )

10 Kostrukcja modelu multiplikatywego zmieości akcji Fluktuacje z modelu multiplikatywego staowią ciąg iezależych zmieych losowych η (i), o jedakowych rozkładach zdefiiowaych wzorem (2) (i) u d dla każdego i = 1,2,,. Litera i jest umerem etapu, u i d to współczyiki zmiay cey akcji. Zakładamy, że u > d. Zakładamy, że każda z tych dwóch wartości przyjmowaa jest z prawdopodobieństwem rówym 0,5.

11 Kostrukcja modelu multiplikatywego zmieości akcji Mamy zatem Z założeia (iii) (wartość oczekiwaa współczyika zmiay cey akcji w jedym etapie jest rówa współczyikowi wzrostu dla iwestycji wolej od ryzyka) wyika, że (3) R = 0,5 (u + d ) Z przyjęcia modelu multiplikatywego - cea w momecie T wyosi S 0 ( i) i 1 ( T) S S (4) l ( T S 0) ( ) = l ( i 1 η (i))= i 1 l ( i)

12 Kostrukcja modelu multiplikatywego zmieości akcji Z założeia o jedakowych wariacjach dla zmieych l [ S (T) / S (0) ] (5) Var ( l ( i 1 η ( i ) ) ) = T σ 2 Z iezależości zmieych losowych η ( i ), i = 1,2,, wyika, że zmiee l η ( i ) są także iezależe. Mamy więc Var ( i 1 l η ( i ) ) = i 1 Var ( l η ( 1 ) ) = Var ( l η (1 ) ). Wariacja zmieej l η (1) obliczoa z defiicji daje wzór: Var (l η (1)) = 1 ( l ( u ) l (d ) ) 2 4

13 DOWÓD WZORU Var (l η (1)) = 1 4 ( l ( u ) l (d ) ) 2

14 Kostrukcja modelu multiplikatywego zmieości akcji Stąd i z otrzymujemy: założeia o jedakowych wariacjach 4 1 ( l (u ) - l (d )) 2 = Tσ 2 a z ostatiej rówości mamy l( u d ) = 2σ T Wyliczając u z powyższej rówości : (6) u = d exp(2σ T )

15 Kostrukcja modelu multiplikatywego zmieości akcji Z układu rówań utworzoych z (1), (3), (6) czyli: rt 1 (1) R = exp ( ), (3) R = 2 T ( u +d ), (6) u = d exp(2σ ) otrzymujemy układ (6b) rt d = exp( ) 1 2 e 2 T (6) u = d exp(2σ T ) (Rówaie (6b) powstało z porówaia (1) i (2) i wstawieiu (6) pod u )

16 Z rówaia (6b) oraz (6) otrzymujemy wyrażeie a u d :

17

18

19 Kostrukcja modelu multiplikatywego zmieości akcji S ( T ) : ( Wartość oczekiwaa zmieej losowej l S 0) E (l S ( T ) S(0) ) = E [l ( i 1 η ( i ) ) ] = E [ i 1 l η ( i ) ] = E [ l η (1) ] = ( / 2) (l u + l d ) Ozaczyliśmy przez a wyrażeie ( / 2) (l u + l d ). 1 Pokazaliśmy, że a dąży do (r - 2 σ 2 ) T, przy. 1 Wprowadźmy ozaczeie μ : = ( r - 2 σ 2 ) T

20 Kostrukcja modelu multiplikatywego zmieości akcji S ( T ) Ozaczmy zmieą losową l przez X. Wtedy S(0) = l ( i) Dzięki wcześiej opisaej kostrukcji otrzymujemy tablicę trójkątą zmieych losowych η (i) i=1,2,..., zaś =1,2,3, l η 1 (1) l η 2 (1), l η 2 (2) l η 3 (1), l η 3 (2), l η 3 (3) l η (1), l η (2),, l η ().. Zmiee losowe w każdym wierszu są iezależe i mają jedakowy rozkład. Suma zmieych losowych z -tego wiersza daje zmiea losową l S(0) losowych występujących w wierszu jest stała i wyosi σ 2 T. i 1 S ( T ). Wariacja sumy zmieych

21 Logarytmiczo-ormaly rozkład cey końcowej akcji Z odpowiediej wersji Lideberga-Levy ego cetralego twierdzeia graiczego, (tw Measure, itegral ad probability - M. Capiński,E. Kopp, Spriger 2004) wioskujemy, że ciąg l S ( T ) S(0) zbiega słabo do zmieej losowej (ozaczmy ją przez l S( T ) S(0) ) o rozkładzie ormalym o parametrach (μ, Wprowadźmy ozaczeie S( X = l T ) S(0) T ), gdzie μ = rt - 2 T 2 mamy wtedy S( T ) S(0) = exp(x). WNIOSEK 1. Przy przyjętych założeiach otrzymaliśmy wzór modelujący ceę akcji S(T) = S(0) exp(x) gdzie X jest zmieą losową o rozkładzie ormalym, o wartości oczekiwaej μ = rt - oraz wariacji σ 2 T. 2 T 2 WNIOSEK 2 Zmiea losowa wyrażająca ceę końcową S(T) ma rozkład logarytmiczoormaly.

22 Logarytmiczo-ormaly rozkład cey końcowej akcji WNIOSEK 3. Zmieą S(T) moża przedstawić w postaci S(T) = S 0 exp[(r- 2 /2)T+ (T)] gdzie zmiea losowa (T) ma rozkład ormaly o parametrach ( 0, T ). Rzeczywiście, wtedy suma [(r- 2 /2)T+ (T)] ma rozkład ormaly o parametrach ((r- 2 /2)T, T ), czyli taki jaki miała graicza zmiea losowa X.

23 Wzór Blacka - Scholesa a wyceę opcji europejskiej Przy wcześiej przyjętych założeiach o ryku, modelu zmieości akcji oraz wprowadzoych ozaczeiach, cea C europejskiej opcji kupa a T lat przed termiem realizacji, przy ceie realizacji K wyraża się wzorem d 1 C = S(0) N(d 1 ) Ke r T N(d 2 ) gdzie S(0) 1 l rt Ke 2 T 2 T = d 2 S(0) 1 l rt Ke 2 T zaś N(d) ozacza wartość dystrybuaty w pukcie d rozkładu ormalego o parametrach (0,1). 2 T

24

25

26

27

28

29

30 Literatura Measure, Itegral ad Probability M. Capiński, E. Kopp Teoria iwestycji fiasowych D. Lueberger Istrumety pochode sympozjum matematyki fiasowej. Kraków UJ 1997 Kotrakty termiowe i opcje. Wprowadzeie J. Hull Warszawa 1997

WERSJA TESTU A. Komisja Egzaminacyjna dla Aktuariuszy. LX Egzamin dla Aktuariuszy z 28 maja 2012 r. Część I. Matematyka finansowa

WERSJA TESTU A. Komisja Egzaminacyjna dla Aktuariuszy. LX Egzamin dla Aktuariuszy z 28 maja 2012 r. Część I. Matematyka finansowa Matematyka fiasowa 8.05.0 r. Komisja Egzamiacyja dla Aktuariuszy LX Egzami dla Aktuariuszy z 8 maja 0 r. Część I Matematyka fiasowa WERJA EU A Imię i azwisko osoby egzamiowaej:... Czas egzamiu: 00 miut

Bardziej szczegółowo

Matematyka finansowa 06.10.2008 r. Komisja Egzaminacyjna dla Aktuariuszy. XLVII Egzamin dla Aktuariuszy z 6 października 2008 r.

Matematyka finansowa 06.10.2008 r. Komisja Egzaminacyjna dla Aktuariuszy. XLVII Egzamin dla Aktuariuszy z 6 października 2008 r. Komisja Egzamiacyja dla Aktuariuszy XLVII Egzami dla Aktuariuszy z 6 paździerika 2008 r. Część I Matematyka fiasowa WERSJA TESTU A Imię i azwisko osoby egzamiowaej:... Czas egzamiu: 00 miut . Kredytobiorca

Bardziej szczegółowo

ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y

ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y Zadaie. Łącza wartość szkód z pewego ubezpieczeia W = Y + Y +... + YN ma rozkład złożoy Poissoa z oczekiwaą liczbą szkód rówą λ i rozkładem wartości pojedyczej szkody takim, że ( Y { 0,,,3,... }) =. Niech:

Bardziej szczegółowo

Matematyka finansowa 08.10.2007 r. Komisja Egzaminacyjna dla Aktuariuszy. XLIII Egzamin dla Aktuariuszy z 8 października 2007 r.

Matematyka finansowa 08.10.2007 r. Komisja Egzaminacyjna dla Aktuariuszy. XLIII Egzamin dla Aktuariuszy z 8 października 2007 r. Matematyka fiasowa 08.10.2007 r. Komisja Egzamiacyja dla Aktuariuszy XLIII Egzami dla Aktuariuszy z 8 paździerika 2007 r. Część I Matematyka fiasowa WERSJA TESTU A Imię i azwisko osoby egzamiowaej:...

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych 9.10.2006 r. Zadanie 1. Rozważamy proces nadwyżki ubezpieczyciela z czasem dyskretnym postaci: n

Matematyka ubezpieczeń majątkowych 9.10.2006 r. Zadanie 1. Rozważamy proces nadwyżki ubezpieczyciela z czasem dyskretnym postaci: n Maemayka ubezpieczeń mająkowych 9.0.006 r. Zadaie. Rozważamy proces adwyżki ubezpieczyciela z czasem dyskreym posaci: U = u + c S = 0... S = W + W +... + W W W W gdzie zmiee... są iezależe i mają e sam

Bardziej szczegółowo

Estymacja przedziałowa

Estymacja przedziałowa Metody probabilistycze i statystyka Estymacja przedziałowa Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Metody probabilistycze

Bardziej szczegółowo

Struktura czasowa stóp procentowych (term structure of interest rates)

Struktura czasowa stóp procentowych (term structure of interest rates) Struktura czasowa stóp procetowych (term structure of iterest rates) Wysokość rykowych stóp procetowych Na ryku istieje wiele różorodych stóp procetowych. Poziom rykowej stopy procetowej (lub omialej stopy,

Bardziej szczegółowo

40:5. 40:5 = 500000υ5 5p 40, 40:5 = 500000 5p 40.

40:5. 40:5 = 500000υ5 5p 40, 40:5 = 500000 5p 40. Portfele polis Poieważ składka jest ustalaa jako wartość oczekiwaa rzeczywistego, losowego kosztu ubezpieczeia, więc jest tym bliższa średiej wydatków im większa jest liczba ubezpieczoych Polisy grupuje

Bardziej szczegółowo

WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ

WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ LABORATORIUM RACHUNEK EKONOMICZNY W ELEKTROENERGETYCE INSTRUKCJA DO ĆWICZENIA

Bardziej szczegółowo

COLLEGIUM MAZOVIA INNOWACYJNA SZKOŁA WYŻSZA WYDZIAŁ NAUK STOSOWANYCH. Kierunek: Finanse i rachunkowość. Robert Bąkowski Nr albumu: 9871

COLLEGIUM MAZOVIA INNOWACYJNA SZKOŁA WYŻSZA WYDZIAŁ NAUK STOSOWANYCH. Kierunek: Finanse i rachunkowość. Robert Bąkowski Nr albumu: 9871 COLLEGIUM MAZOVIA INNOWACYJNA SZKOŁA WYŻSZA WYDZIAŁ NAUK STOSOWANYCH Kieruek: Fiase i rachukowość Robert Bąkowski Nr albumu: 9871 Projekt: Badaie statystycze cey baryłki ropy aftowej i wartości dolara

Bardziej szczegółowo

ĆWICZENIA NR 1 Z MATEMATYKI (Finanse i Rachunkowość, studia zaoczne, I rok) Zad. 1. Wyznaczyć dziedziny funkcji: 1 = 1, b) ( x) , c) h ( x) x x

ĆWICZENIA NR 1 Z MATEMATYKI (Finanse i Rachunkowość, studia zaoczne, I rok) Zad. 1. Wyznaczyć dziedziny funkcji: 1 = 1, b) ( x) , c) h ( x) x x ĆWICZENIA NR Z MATEMATYKI (Fiase i Rachukowość studia zaocze I rok) Zad Wyzaczyć dziedziy fukcji: a) f ( ) b) ( ) + + 6 f c) f ( ) + + d) f ( ) + e) ( ) f l f) f ( ) l( + ) + l( ) g) f ( ) l( si ) h) f

Bardziej szczegółowo

POLITECHNIKA OPOLSKA

POLITECHNIKA OPOLSKA POLITCHIKA OPOLSKA ISTYTUT AUTOMATYKI I IFOMATYKI LABOATOIUM MTOLOII LKTOICZJ 7. KOMPSATOY U P U. KOMPSATOY APIĘCIA STAŁO.. Wstęp... Zasada pomiaru metodą kompesacyją. Metoda kompesacyja pomiaru apięcia

Bardziej szczegółowo

Przykładowe zadania dla poziomu rozszerzonego

Przykładowe zadania dla poziomu rozszerzonego Przkładowe zadaia dla poziomu rozszerzoego Zadaie. ( pkt W baku w pierwszm roku oszczędzaia stopa procetowa bła rówa p%, a w drugim roku bła o % iższa. Po dwóch latach, prz roczej kapitalizacji odsetek,

Bardziej szczegółowo

Wycena papierów wartościowych - instrumenty pochodne

Wycena papierów wartościowych - instrumenty pochodne Matematyka finansowa - 8 Wycena papierów wartościowych - instrumenty pochodne W ujęciu probabilistycznym cena akcji w momencie t jest zmienną losową P t o pewnym (zwykle nieznanym) rozkładzie prawdopodobieństwa,

Bardziej szczegółowo

0.1 ROZKŁADY WYBRANYCH STATYSTYK

0.1 ROZKŁADY WYBRANYCH STATYSTYK 0.1. ROZKŁADY WYBRANYCH STATYSTYK 1 0.1 ROZKŁADY WYBRANYCH STATYSTYK Zadaia 0.1.1. Niech X 1,..., X będą iezależymi zmieymi losowymi o tym samym rozkładzie. Obliczyć ES 2 oraz D 2 ( 1 i=1 X 2 i ). 0.1.2.

Bardziej szczegółowo

STATYSTYKA I ANALIZA DANYCH

STATYSTYKA I ANALIZA DANYCH TATYTYKA I ANALIZA DANYCH Zad. Z pewej partii włókie weły wylosowao dwie próbki włókie, a w każdej z ich zmierzoo średicę włókie różymi metodami. Otrzymao astępujące wyiki: I próbka: 50; średia średica

Bardziej szczegółowo

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie Metrologia: miary dokładości dr iż. Paweł Zalewski Akademia Morska w Szczeciie Miary dokładości: Najczęściej rozkład pomiarów w serii wokół wartości średiej X jest rozkładem Gaussa: Prawdopodobieństwem,

Bardziej szczegółowo

STRATEGIA STOP-LOSS & PROFIT OPTYMALIZACJA PORTFELA INWESTYCYJNEGO

STRATEGIA STOP-LOSS & PROFIT OPTYMALIZACJA PORTFELA INWESTYCYJNEGO Studia Ekoomicze. Zeszyty Naukowe Uiwersytetu Ekoomiczego w Katowicach ISSN 2083-8611 Nr 221 2015 Współczese Fiase 1 Tadeusz Czerik Uiwersytet Ekoomiczy w Katowicach Wydział Fiasów i Ubezpieczeń Katedra

Bardziej szczegółowo

System finansowy gospodarki

System finansowy gospodarki System fiasowy gospodarki Zajęcia r 5 Matematyka fiasowa Wartość pieiądza w czasie 1 złoty posiaday dzisiaj jest wart więcej iż 1 złoty posiaday w przyszłości, p. za rok. Powody: Suma posiadaa dzisiaj

Bardziej szczegółowo

Ekonometria Mirosław Wójciak

Ekonometria Mirosław Wójciak Ekoometria Mirosław Wójciak Literatura obowiązkowa Barczak A, ST. Biolik J, Podstawy Ekoometrii, Wydawictwo AE Katowice, Katowice 1998 Dziechciarz J. Ekoometria Metody, przykłady, zadaia (wyd. ) Kukuła

Bardziej szczegółowo

System finansowy gospodarki

System finansowy gospodarki System fasowy gospodark Zajęca r 7 Krzywa retowośc, zadaa (mat. f.), marża w hadlu, NPV IRR, Ustawa o kredyce kosumeckm, fukcje fasowe Excela Krzywa retowośc (dochodowośc) Yeld Curve Krzywa ta jest grafczym

Bardziej szczegółowo

ROZDZIAŁ 5 WPŁYW SYSTEMU OPODATKOWANIA DOCHODU NA EFEKTYWNOŚĆ PROCESU DECYZYJNEGO

ROZDZIAŁ 5 WPŁYW SYSTEMU OPODATKOWANIA DOCHODU NA EFEKTYWNOŚĆ PROCESU DECYZYJNEGO Agieszka Jakubowska ROZDZIAŁ 5 WPŁYW SYSTEMU OPODATKOWANIA DOCHODU NA EFEKTYWNOŚĆ PROCESU DECYZYJNEGO. Wstęp Skąplikowaie współczesego życia gospodarczego powoduje, iż do sterowaia procesem zarządzaia

Bardziej szczegółowo

a n 7 a jest ciągiem arytmetycznym.

a n 7 a jest ciągiem arytmetycznym. ZADANIA MATURALNE - CIĄGI LICZBOWE - POZIOM PODSTAWOWY Opracowała mgr Dauta Brzezińska Zad.1. ( pkt) Ciąg a określoy jest wzorem 5.Wyzacz liczbę ujemych wyrazów tego ciągu. Zad.. ( 6 pkt) a Day jest ciąg

Bardziej szczegółowo

P = 27, 8 27, 9 27 ). Przechodząc do granicy otrzymamy lim P(Y n > Y n+1 ) = P(Z 1 0 > Z 2 X 2 X 1 = 0)π 0 + P(Z 1 1 > Z 2 X 2 X 1 = 1)π 1 +

P = 27, 8 27, 9 27 ). Przechodząc do granicy otrzymamy lim P(Y n > Y n+1 ) = P(Z 1 0 > Z 2 X 2 X 1 = 0)π 0 + P(Z 1 1 > Z 2 X 2 X 1 = 1)π 1 + Zadaia róże W tym rozdziale zajdują się zadaia ietypowe, często dotyczące łańcuchów Markowa oraz własości zmieych losowych. Pojawią się także zadaia z estymacji Bayesowskiej.. (Eg 8/) Rozważamy łańcuch

Bardziej szczegółowo

3. Wzory skróconego mnożenia, działania na wielomianach. Procenty. Elementy kombinatoryki: dwumian Newtona i trójkąt Pascala. (c.d.

3. Wzory skróconego mnożenia, działania na wielomianach. Procenty. Elementy kombinatoryki: dwumian Newtona i trójkąt Pascala. (c.d. Jarosław Wróblewski Matematyka dla Myślących 009/10 3 Wzory skrócoego możeia działaia a wielomiaach Procety Elemety kombiatoryki: dwumia Newtoa i trójkąt Pascala (cd) paździerika 009 r 0 Skometować frgmet

Bardziej szczegółowo

Wprowadzenie do laboratorium 1

Wprowadzenie do laboratorium 1 Wprowadzeie do laboratorium 1 Etymacja jedorówaiowego modelu popytu a bilety loticze Etapy budowy modelu ekoometryczego Specyfikacja modelu Zebraie daych tatytyczych Etymacja parametrów modelu Weryfikacja

Bardziej szczegółowo

Egzamin maturalny z matematyki CZERWIEC 2011

Egzamin maturalny z matematyki CZERWIEC 2011 Egzami maturaly z matematyki CZERWIEC 0 Klucz puktowaia do zadań zamkiętych oraz schemat oceiaia do zadań otwartych POZIOM PODSTAWOWY Poziom podstawowy czerwiec 0 Klucz puktowaia do zadań zamkiętych Nr

Bardziej szczegółowo

MINIMALIZACJA PUSTYCH PRZEBIEGÓW PRZEZ ŚRODKI TRANSPORTU

MINIMALIZACJA PUSTYCH PRZEBIEGÓW PRZEZ ŚRODKI TRANSPORTU Przedmiot: Iformatyka w logistyce Forma: Laboratorium Temat: Zadaie 2. Automatyzacja obsługi usług logistyczych z wykorzystaiem zaawasowaych fukcji oprogramowaia Excel. Miimalizacja pustych przebiegów

Bardziej szczegółowo

PODSTAWY MATEMATYKI FINANSOWEJ

PODSTAWY MATEMATYKI FINANSOWEJ PODSTAWY MATEMATYKI INANSOWEJ WZORY I POJĘCIA PODSTAWOWE ODSETKI, A STOPA PROCENTOWA KREDYTU (5) ODSETKI OD KREDYTU KWOTA KREDYTU R R- rocza stopa oprocetowaia kredytu t - okres trwaia kredytu w diach

Bardziej szczegółowo

Wprowadzenie. metody elementów skończonych

Wprowadzenie. metody elementów skończonych Metody komputerowe Wprowadzeie Podstawy fizycze i matematycze metody elemetów skończoych Literatura O.C.Ziekiewicz: Metoda elemetów skończoych. Arkady, Warszawa 972. Rakowski G., acprzyk Z.: Metoda elemetów

Bardziej szczegółowo

Egzaminy. na wyższe uczelnie 2003. zadania

Egzaminy. na wyższe uczelnie 2003. zadania zadaia Egzamiy wstępe a wyższe uczelie 003 I. Akademia Ekoomicza we Wrocławiu. Rozwiąż układ rówań Æ_ -9 y - 5 _ y = 5 _ -9 _. Dla jakiej wartości parametru a suma kwadratów rozwiązań rzeczywistych rówaia

Bardziej szczegółowo

8. Optymalizacja decyzji inwestycyjnych

8. Optymalizacja decyzji inwestycyjnych 8. Optymalizacja decyzji iwestycyjych 8. Wprowadzeie W wielu różych sytuacjach, w tym rówież w czasie wyboru iwestycji do realizacji, podejmujemy decyzje. Sytuacje takie azywae są sytuacjami decyzyjymi.

Bardziej szczegółowo

BADANIA DOCHODU I RYZYKA INWESTYCJI

BADANIA DOCHODU I RYZYKA INWESTYCJI StatSoft Polska, tel. () 484300, (60) 445, ifo@statsoft.pl, www.statsoft.pl BADANIA DOCHODU I RYZYKA INWESTYCJI ZA POMOCĄ ANALIZY ROZKŁADÓW Agieszka Pasztyła Akademia Ekoomicza w Krakowie, Katedra Statystyki;

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka W12: Statystyczna analiza danych jakościowych. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.

Rachunek prawdopodobieństwa i statystyka W12: Statystyczna analiza danych jakościowych. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu. Rachuek prawdopodobieństwa i statystyka W12: Statystycza aaliza daych jakościowych Dr Aa ADRIAN Paw B5, pok 407 ada@agh.edu.pl Wprowadzeie Rozróżia się dwa typy daych jakościowych: Nomiale jeśli opisują

Bardziej szczegółowo

Arkusz ćwiczeniowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE. W zadaniach od 1. do 21. wybierz i zaznacz poprawną odpowiedź. 1 C. 3 D.

Arkusz ćwiczeniowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE. W zadaniach od 1. do 21. wybierz i zaznacz poprawną odpowiedź. 1 C. 3 D. Arkusz ćwiczeiowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE W zadaiach od. do. wybierz i zazacz poprawą odpowiedź. Zadaie. ( pkt) Liczbę moża przedstawić w postaci A. 8. C. 4 8 D. 4 Zadaie. ( pkt)

Bardziej szczegółowo

Analiza popytu na alkohol w Polsce z zastosowaniem modelu korekty błędem AIDS

Analiza popytu na alkohol w Polsce z zastosowaniem modelu korekty błędem AIDS Ekoomia Meedżerska 2011, r 10, s. 161 172 Jacek Wolak *, Grzegorz Pociejewski ** Aaliza popytu a alkohol w Polsce z zastosowaiem modelu korekty błędem AIDS 1. Wprowadzeie Okres trasformacji, zapoczątkoway

Bardziej szczegółowo

5. Zasada indukcji matematycznej. Dowody indukcyjne.

5. Zasada indukcji matematycznej. Dowody indukcyjne. Notatki do lekcji, klasa matematycza Mariusz Kawecki, II LO w Chełmie 5. Zasada idukcji matematyczej. Dowody idukcyje. W rozdziale sformułowaliśmy dla liczb aturalych zasadę miimum. Bezpośredią kosekwecją

Bardziej szczegółowo

MATEMATYKA (poziom podstawowy) przykładowy arkusz maturalny wraz ze schematem oceniania dla klasy II Liceum

MATEMATYKA (poziom podstawowy) przykładowy arkusz maturalny wraz ze schematem oceniania dla klasy II Liceum MATEMATYKA (poziom podstawowy) przykładowy arkusz maturaly wraz ze schematem oceiaia dla klasy II Liceum Propozycja zadań maturalych sprawdzających opaowaie wiadomości i umiejętości matematyczych z zakresu

Bardziej szczegółowo

Konspekt lekcji (Kółko matematyczne, kółko przedsiębiorczości)

Konspekt lekcji (Kółko matematyczne, kółko przedsiębiorczości) Kospekt lekcji (Kółko matematycze, kółko przedsiębiorczości) Łukasz Godzia Temat: Paradoks skąpej wdowy. O procecie składaym ogólie. Czas lekcji 45 miut Cele ogóle: Uczeń: Umie obliczyć procet składay

Bardziej szczegółowo

Wartość przyszła FV. Zmienna wartość pieniądza w czasie. złotówka w garści jest warta więcej niŝ złotówka spodziewana w przyszłości

Wartość przyszła FV. Zmienna wartość pieniądza w czasie. złotówka w garści jest warta więcej niŝ złotówka spodziewana w przyszłości Zmiea wartość pieiądza w czasie Zmiea wartość pieiądza w czasie Zmiea wartość pieiądza w czasie jeda z podstawowych prawidłowości wykorzystywaych w fiasach polegająca a tym, Ŝe: złotówka w garści jest

Bardziej szczegółowo

SIGMA KWADRAT LUBELSKI KONKURS STATYSTYCZNO- DEMOGRAFICZNY

SIGMA KWADRAT LUBELSKI KONKURS STATYSTYCZNO- DEMOGRAFICZNY SIGMA KWADRAT LUBELSKI KONKURS STATYSTYCZNO- DEMOGRAFICZNY Weryfikacja hipotez statystyczych WNIOSKOWANIE STATYSTYCZNE Wioskowaie statystycze, to proces uogóliaia wyików uzyskaych a podstawie próby a całą

Bardziej szczegółowo

Wycena equity derivatives notowanych na GPW w obliczu wysokiego ryzyka dywidendy

Wycena equity derivatives notowanych na GPW w obliczu wysokiego ryzyka dywidendy Instrumenty pochodne 2014 Wycena equity derivatives notowanych na GPW w obliczu wysokiego ryzyka dywidendy Jerzy Dzieża, WMS, AGH Kraków 28 maja 2014 (Instrumenty pochodne 2014 ) Wycena equity derivatives

Bardziej szczegółowo

Wynik finansowy transakcji w momencie jej zawierania jest nieznany z uwagi na zmienność ceny przedmiotu transakcji, czyli instrumentu bazowego

Wynik finansowy transakcji w momencie jej zawierania jest nieznany z uwagi na zmienność ceny przedmiotu transakcji, czyli instrumentu bazowego .Istmety ochoe otaty temiowe azywae sa istmetami ochoymi (eivatives. otat temiowy zobowiazje wie stoy o zeowazeia w zyszłosci ewej tasacji a wczesiej staloych waach. Jea stoa otatów (abywca - te, co je

Bardziej szczegółowo

Obligacja i jej cena wewnętrzna

Obligacja i jej cena wewnętrzna Obligacja i jej cea wewęrza Obligacja jes o isrume fiasowy (papier warościowy), w kórym jeda sroa, zwaa emieem obligacji, swierdza, że jes dłużikiem drugiej sroy, zwaej obligaariuszem (jes o właściciel

Bardziej szczegółowo

Funkcje trygonometryczne Moduł - dział -temat Funkcje trygonometry czne - powtórzenie Tożsamości trygonometry czne

Funkcje trygonometryczne Moduł - dział -temat Funkcje trygonometry czne - powtórzenie Tożsamości trygonometry czne Fukcje trygoometrycze Fukcje trygoometry cze - powtórzeie Tożsamości trygoometry cze 3 podstawowe tożsamości trygoometrycze metoda uzasadiaia tożsamości trygoometryczych Fukcje trygoometry cze sumy i różicy

Bardziej szczegółowo

ZARZĄDZANIE FINANSAMI

ZARZĄDZANIE FINANSAMI STOWARZYSZENIE KSIĘGOWYCH W POLSCE ODDZIAŁ WIELKOPOLSKI W POZNANIU ZARZĄDZANIE FINANSAMI WYBRANE ZAGADNIENIA (1/2) DR LESZEK CZAPIEWSKI - POZNAŃ - 1 SPIS TREŚCI 1. RYZYKO W ZARZĄDZANIU FINANSAMI... 4 1.1.

Bardziej szczegółowo

x 1 2 3 t 1 (x) 2 3 1 o 1 : x 1 2 3 s 3 (x) 2 1 3. Tym samym S(3) = {id 3,o 1,o 2,s 1,s 2,s 3 }. W zbiorze S(n) definiujemy działanie wzorem

x 1 2 3 t 1 (x) 2 3 1 o 1 : x 1 2 3 s 3 (x) 2 1 3. Tym samym S(3) = {id 3,o 1,o 2,s 1,s 2,s 3 }. W zbiorze S(n) definiujemy działanie wzorem 9.1. Izomorfizmy algebr.. Wykład Przykłady: 13) Działaia w grupach często wygodie jest zapisywać w tabelkach Cayleya. Na przykład tabelka działań w grupie Z 5, 5) wygląda astępująco: 5 1 3 1 1 3 1 3 3

Bardziej szczegółowo

Zarządzanie ryzykiem finansowym w przedsiębiorstwach transportowych i spedycyjnych

Zarządzanie ryzykiem finansowym w przedsiębiorstwach transportowych i spedycyjnych Zeo Marciiak Zarządzaie ryzykiem fiasowym w przedsiębiorstwach Szkoła Główa Hadlowa Kolegium Gospodarki Światowej Istytut Polityki Hadlu Zagraiczego i Studiów Europejskich Warszawa SPIS TREŚCI. SYSTEM

Bardziej szczegółowo

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Statystyka i opracowaie daych Podstawy wioskowaia statystyczego. Prawo wielkich liczb. Cetrale twierdzeie graicze. Estymacja i estymatory Dr Aa ADRIAN Paw B5, pok407 ada@agh.edu.pl Wprowadzeie Jeśli S

Bardziej szczegółowo

Wykład. Inwestycja. Inwestycje. Inwestowanie. Działalność inwestycyjna. Inwestycja

Wykład. Inwestycja. Inwestycje. Inwestowanie. Działalność inwestycyjna. Inwestycja Iwestycja Wykład Celowo wydatkowae środki firmy skierowae a powiększeie jej dochodów w przyszłości. Iwestycje w wyiku użycia środków fiasowych tworzą lub powiększają majątek rzeczowy, majątek fiasowy i

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13. Ciągi.

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13. Ciągi. Jarosław Wróblewski Aaliza Matematycza 1A, zima 2012/13 Ciągi. Ćwiczeia 5.11.2012: zad. 140-173 Kolokwium r 5, 6.11.2012: materiał z zad. 1-173 Ćwiczeia 12.11.2012: zad. 174-190 13.11.2012: zajęcia czwartkowe

Bardziej szczegółowo

Zadania z Rachunku Prawdopodobieństwa I - 1

Zadania z Rachunku Prawdopodobieństwa I - 1 Zadaia z Rachuku Prawdopodobieństwa I - 1 1. Grupę dzieci ustawioo w sposób losowy w szereg. Oblicz prawdopodobieństwo tego, że a) Jacek i Agatka stoją koło siebie, b) Jacek, Placek i Agatka stoją koło

Bardziej szczegółowo

Optymalizacja sieci powiązań układu nadrzędnego grupy kopalń ze względu na koszty transportu

Optymalizacja sieci powiązań układu nadrzędnego grupy kopalń ze względu na koszty transportu dr hab. iż. KRYSTIAN KALINOWSKI WSIiZ w Bielsku Białej, Politechika Śląska dr iż. ROMAN KAULA Politechika Śląska Optymalizacja sieci powiązań układu adrzędego grupy kopalń ze względu a koszty trasportu

Bardziej szczegółowo

Wykład 11. a, b G a b = b a,

Wykład 11. a, b G a b = b a, Wykład 11 Grupy Grupą azywamy strukturę algebraiczą złożoą z iepustego zbioru G i działaia biarego które spełia własości: (i) Działaie jest łącze czyli a b c G a (b c) = (a b) c. (ii) Działaie posiada

Bardziej szczegółowo

Poziom rozszerzony. 5. Ciągi. Uczeń:

Poziom rozszerzony. 5. Ciągi. Uczeń: PIOTR LUDWIKOWSKI Materiał z wykładu z aalizy dla uczestików koerecji Podstawa programowa z kometarzami Tom 6 Edukacja matematycza i techicza w szkole podstawowej, gimazjum i liceum matematyka, zajęcia

Bardziej szczegółowo

STATYSTYKA OPISOWA WYKŁAD 1 i 2

STATYSTYKA OPISOWA WYKŁAD 1 i 2 STATYSTYKA OPISOWA WYKŁAD i 2 Literatura: Marek Cieciura, Jausz Zacharski, Metody probabilistycze w ujęciu praktyczym, L. Kowalski, Statystyka, 2005 2 Statystyka to dyscyplia aukowa, której zadaiem jest

Bardziej szczegółowo

co wskazuje, że ciąg (P n ) jest ciągiem arytmetycznym o różnicy K 0 r. Pierwszy wyraz tego ciągu a więc P 1 z uwagi na wzór (3) ma postać P

co wskazuje, że ciąg (P n ) jest ciągiem arytmetycznym o różnicy K 0 r. Pierwszy wyraz tego ciągu a więc P 1 z uwagi na wzór (3) ma postać P Wiadomości wstępe Odsetki powstają w wyiku odjęcia od kwoty teraźiejszej K kwoty początkowej K, zatem Z = K K. Z ekoomiczego puktu widzeia właściciel kapitału K otrzymuje odsetki jako zapłatę od baku za

Bardziej szczegółowo

O TESTOWANIU ISTOTNOŚCI WSPÓŁCZYNNIKÓW KORELACJI CZĄSTKOWEJ I WIELORAKIEJ DLA WIELOWYMIAROWYCH TABLIC WIELODZIELCZYCH

O TESTOWANIU ISTOTNOŚCI WSPÓŁCZYNNIKÓW KORELACJI CZĄSTKOWEJ I WIELORAKIEJ DLA WIELOWYMIAROWYCH TABLIC WIELODZIELCZYCH Grzegorz Kończak Uiwersytet Ekoomiczy w Katowicach O TESTOWANIU ISTOTNOŚCI WSPÓŁCZYNNIKÓW KORELACJI CZĄSTKOWEJ I WIELORAKIEJ DLA WIELOWYMIAROWYCH TABLIC WIELODZIELCZYCH Wprowadzeie Do ajważiejszych zagadień

Bardziej szczegółowo

Temat: PRAWO SNELLIUSA. WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA W SZKLE I PLEKSIGLASIE.

Temat: PRAWO SNELLIUSA. WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA W SZKLE I PLEKSIGLASIE. W S E i Z WYDZIAŁ. L A B O R A T O R I U M F I Z Y C Z N E Nr ćwicz. 9 Temat: PRAWO SNELLIUSA. WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA W SZKLE I PLEKSIGLASIE. Semestr Grupa Zespół Ocea Data / Podpis Warszawa,

Bardziej szczegółowo

3. Funkcje elementarne

3. Funkcje elementarne 3. Fukcje elemetare Fukcjami elemetarymi będziemy azywać fukcję tożsamościową x x, fukcję wykładiczą, fukcje trygoometrycze oraz wszystkie fukcje, jakie moża otrzymać z wyżej wymieioych drogą astępujących

Bardziej szczegółowo

2. ANALIZA BŁĘDÓW I NIEPEWNOŚCI POMIARÓW

2. ANALIZA BŁĘDÓW I NIEPEWNOŚCI POMIARÓW . ANALIZA BŁĘDÓW I NIEPEWNOŚCI POMIARÓW Z powodu iedokładości przyrządów i metod pomiarowych, iedoskoałości zmysłów, iekotrolowaej zmieości waruków otoczeia (wielkości wpływających) i iych przyczy, wyik

Bardziej szczegółowo

L.Kowalski zadania ze statystyki matematycznej-zestaw 3 ZADANIA - ZESTAW 3

L.Kowalski zadania ze statystyki matematycznej-zestaw 3 ZADANIA - ZESTAW 3 L.Kowalski zadaia ze statystyki matematyczej-zestaw 3 ZADANIA - ZESTAW 3 Zadaie 3. Cecha X populacji ma rozkład N m,. Z populacji tej pobrao próbę 7 elemetową i otrzymao wyiki x7 = 9, 3, s7 =, 5 a Na poziomie

Bardziej szczegółowo

Analiza matematyczna. Robert Rałowski

Analiza matematyczna. Robert Rałowski Aaliza matematycza Robert Rałowski 6 paździerika 205 2 Spis treści 0. Liczby aturale.................................... 3 0.2 Liczby rzeczywiste.................................... 5 0.2. Nierówości...................................

Bardziej szczegółowo

Matematyka. Zakres podstawowy. Nawi zanie do gimnazjum. n/m Rozwi zywanie zada Zadanie domowe Dodatkowe Komunikaty Bie ce materiały

Matematyka. Zakres podstawowy. Nawi zanie do gimnazjum. n/m Rozwi zywanie zada Zadanie domowe Dodatkowe Komunikaty Bie ce materiały Lekcja 1. Lekcja orgaizacyja kotrakt Podręczik: W. Babiański, L. Chańko, D. Poczek Mateatyka. Zakres podstawowy. Wyd. Nowa Era. Zakres ateriału: Liczby rzeczywiste Wyrażeia algebraicze Rówaia i ierówości

Bardziej szczegółowo

Elementy modelowania matematycznego

Elementy modelowania matematycznego Elemety modelowaia matematyczego Wstęp Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Modelowaie daych (ilościowe): Metody statystycze: estymacja parametrów modelu,

Bardziej szczegółowo

PERSPECTIVES OF STATISTICAL METHODS IN DESIGN OF TRADING STRATEGIES FOR FINANCIAL MARKETS USING HIERARCHICAL STRUCTURES AND REGULARIZATION

PERSPECTIVES OF STATISTICAL METHODS IN DESIGN OF TRADING STRATEGIES FOR FINANCIAL MARKETS USING HIERARCHICAL STRUCTURES AND REGULARIZATION STUDIA INFORMATICA 2013 Volume 34 Number 2A (111) Alia MOMOT Politechika Śląska, Istytut Iformatyki Michał MOMOT Istytut Techiki i Aparatury Medyczej ITAM PERSPEKTYWY ZASTOSOWAŃ METOD STATYSTYCZNYCH W

Bardziej szczegółowo

Moduł 4. Granica funkcji, asymptoty

Moduł 4. Granica funkcji, asymptoty Materiały pomocicze do e-learigu Matematyka Jausz Górczyński Moduł. Graica fukcji, asymptoty Wyższa Szkoła Zarządzaia i Marketigu Sochaczew Od Autora Treści zawarte w tym materiale były pierwotie opublikowae

Bardziej szczegółowo

Kongruencje Wykład 4. Kongruencje kwadratowe symbole Legendre a i Jac

Kongruencje Wykład 4. Kongruencje kwadratowe symbole Legendre a i Jac Kogruecje kwadratowe symbole Legedre a i Jacobiego Kogruecje Wykład 4 Defiicja 1 Kogruecję w ostaci x a (mod m), gdzie a m, azywamy kogruecją kwadratową; jej bardziej ogóla ostać ax + bx + c może zostać

Bardziej szczegółowo

Zeszyty naukowe nr 9

Zeszyty naukowe nr 9 Zeszyty aukowe r 9 Wyższej Szkoły Ekoomiczej w Bochi 2011 Piotr Fijałkowski Model zależości otowań giełdowych a przykładzie otowań ołowiu i spółki Orzeł Biały S.A. Streszczeie Niiejsza praca opisuje próbę

Bardziej szczegółowo

Teoria Kolejek. dr inż. Piotr Gajowniczek. Instutut Telekomunikacji Politechnika Warszawska

Teoria Kolejek. dr inż. Piotr Gajowniczek. Instutut Telekomunikacji Politechnika Warszawska Teoria Kolejek dr iż. Piotr Gajowiczek Istutut Telekomuikacji Politechika Warszawska WPROWADZENIE Wprowadzeie Systemy masowej obsługi obsługa dużej ilości klietów przez system o ograiczoych zasobach Modele

Bardziej szczegółowo

Ochrona portfela obligacji przed ryzykiem stopy procentowej

Ochrona portfela obligacji przed ryzykiem stopy procentowej Produkty i Techiki Bakowe 39 Ochroa portfela obligacji przed ryzykiem stopy procetowej Izabela Pruchicka-Grabias Determiaty poziomu stóp procetowych Ryzyko stopy procetowej dotyczy portfela wra liwego

Bardziej szczegółowo

npq jest funkcją gęstości zmiennej losowej X? Po wyznaczeniu k proszę znaleźć: dystrybuantę, kwartyl drugi,

npq jest funkcją gęstości zmiennej losowej X? Po wyznaczeniu k proszę znaleźć: dystrybuantę, kwartyl drugi, Zadaie aa jest fucja gęstości zmieej losowej X: 9 8 Wyzacz: F (X ; Q ; ; ( X ; 9 9 P X P Zadaie ( Statystya II, X a b F( b F( a X e! P m ( ; m E( X ( X V ( X X R P ( X R ( X V ( X jest fucją gęstości zmieej

Bardziej szczegółowo

Influence of financial crisis on Hurst exponent estimates - fractal analysis of selected metals prices

Influence of financial crisis on Hurst exponent estimates - fractal analysis of selected metals prices MPRA Muich Persoal RePEc Archive Ifluece of fiacial crisis o Hurst expoet estimates - fractal aalysis of selected metals prices Rafa l Bu la Uiversity of Ecoomics i Katowice 0 Olie at http://mpra.ub.ui-mueche.de/5970/

Bardziej szczegółowo

Modelowanie i Analiza Danych Przestrzennych

Modelowanie i Analiza Danych Przestrzennych Modelowaie i Aaliza Daych Przestrzeych Wykład 3 Adrzej Leśiak Katedra Geoiformatyki i Iformatyki Stosowaej Akademia Góriczo-Huticza w Krakowie Wstęp do statystyki W statystyce pod pojęciem populacji rozumiemy

Bardziej szczegółowo

Czas trwania obligacji (duration)

Czas trwania obligacji (duration) Czas rwaia obligacji (duraio) Do aalizy ryzyka wyikającego ze zmia sóp proceowych (szczególie ryzyka zmiay cey) wykorzysuje się pojęcie zw. średiego ermiu wykupu obligacji, zwaego rówież czasem rwaia obligacji

Bardziej szczegółowo

Katalog wymagań programowych z matematyki od absolwenta II klasy (poziom rozszerzony).

Katalog wymagań programowych z matematyki od absolwenta II klasy (poziom rozszerzony). Katalog wymagań programowych z matematyki od absolweta II klasy (poziom rozszerzoy). LICZBY RZECZYWISTE Na poziomie wymagań koieczych lub podstawowych a oceę dopuszczającą () lub dostateczą (3) uczeń wykorzystać

Bardziej szczegółowo

3. Wykład III: Warunki optymalności dla zadań bez ograniczeń

3. Wykład III: Warunki optymalności dla zadań bez ograniczeń 3 Wkład III: Waruki optmalości dla zadań bez ograiczeń Podae poiże waruki optmalości dla są uogólieiem powszechie zach waruków dla fukci ede zmiee (zerowaie się pierwsze pochode i lokala wpukłość) 3 Twierdzeie

Bardziej szczegółowo

Matematyka finansowa w pakiecie Matlab

Matematyka finansowa w pakiecie Matlab Matematyka finansowa w pakiecie Matlab Wykład 5. Wycena opcji modele dyskretne Bartosz Ziemkiewicz Wydział Matematyki i Informatyki UMK Kurs letni dla studentów studiów zamawianych na kierunku Matematyka

Bardziej szczegółowo

Artykuł techniczny CVM-NET4+ Zgodny z normami dotyczącymi efektywności energetycznej

Artykuł techniczny CVM-NET4+ Zgodny z normami dotyczącymi efektywności energetycznej 1 Artykuł techiczy Joatha Azañó Dział ds. Zarządzaia Eergią i Jakości Sieci CVM-ET4+ Zgody z ormami dotyczącymi efektywości eergetyczej owy wielokaałowy aalizator sieci i poboru eergii Obeca sytuacja Obece

Bardziej szczegółowo

Jego zależy od wysokości i częstotliwości wypłat kuponów odsetkowych, ceny wykupu, oczekiwanej stopy zwrotu oraz zapłaconej ceny za obligację.

Jego zależy od wysokości i częstotliwości wypłat kuponów odsetkowych, ceny wykupu, oczekiwanej stopy zwrotu oraz zapłaconej ceny za obligację. Wrażlwość oblgacj Jedym z czyków ryzyka westowaa w oblgacje jest zmeość rykowych stóp procetowych. Iżyera fasowa dyspouje metodam pozwalającym zabezpeczyć portfel przed egatywym skutkam zma stóp procetowych.

Bardziej szczegółowo

Matematyka finansowa 10.12.2012 r. Komisja Egzaminacyjna dla Aktuariuszy. LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r.

Matematyka finansowa 10.12.2012 r. Komisja Egzaminacyjna dla Aktuariuszy. LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r. Komisja Egzaminacyjna dla Aktuariuszy LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

Zatem przyszła wartość kapitału po 1 okresie kapitalizacji wynosi

Zatem przyszła wartość kapitału po 1 okresie kapitalizacji wynosi Zatem rzyszła wartość kaitału o okresie kaitalizacji wyosi m k m* E Z E( m r) 2 Wielkość K iterretujemy jako umowa włatę, zastęującą w rówoważy sosób, w sesie kaitalizacji rostej, m włat w wysokości E

Bardziej szczegółowo

W wielu przypadkach zadanie teorii sprężystości daje się zredukować do dwóch

W wielu przypadkach zadanie teorii sprężystości daje się zredukować do dwóch Wykład 5 PŁASKI ZADANI TORII SPRĘŻYSTOŚCI Płaski sta arężeia W wielu rzyadkach zadaie teorii srężystości daje się zredukować do dwóch wymiarów Przykładem może być cieka tarcza obciążoa siłami działającymi

Bardziej szczegółowo

Materiał ćwiczeniowy z matematyki Marzec 2012

Materiał ćwiczeniowy z matematyki Marzec 2012 Materiał ćwiczeiowy z matematyki Marzec 0 Klucz puktowaia do zadań zamkiętych oraz schemat oceiaia do zadań otwartych POZIOM PODSTAWOWY Marzec 0 Klucz puktowaia do zadań zamkiętych Nr zad 3 5 6 7 8 9 0

Bardziej szczegółowo

A.Z. Górski, S. Drożdż, J. Kwapień, P. Oświęcimka. Zakład Teorii Systemów Złożonych, Instytut Fizyki Jądrowej PAN, Kraków

A.Z. Górski, S. Drożdż, J. Kwapień, P. Oświęcimka. Zakład Teorii Systemów Złożonych, Instytut Fizyki Jądrowej PAN, Kraków COMPLEXITY CHARACTERISTICS OF CURRENCY NETWORKS A.Z. Górski, S. Drożdż, J. Kwapień, P. Oświęcimka Zakład Teorii Sstemów Złożoch, Isttut Fizki Jądrowej PAN, Kraków Układ o wielkiej złożoości moża przedstawiać

Bardziej szczegółowo

Matematyka finansowa 13.12.2010 r. Komisja Egzaminacyjna dla Aktuariuszy. LV Egzamin dla Aktuariuszy z 13 grudnia 2010 r. Część I

Matematyka finansowa 13.12.2010 r. Komisja Egzaminacyjna dla Aktuariuszy. LV Egzamin dla Aktuariuszy z 13 grudnia 2010 r. Część I Komisja Egzaminacyjna dla Aktuariuszy LV Egzamin dla Aktuariuszy z 13 grudnia 2010 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Pan

Bardziej szczegółowo

Zasada indukcji matematycznej. Dowody indukcyjne.

Zasada indukcji matematycznej. Dowody indukcyjne. Zasada idukcji matematyczej Dowody idukcyje Z zasadą idukcji matematyczej i dowodami idukcyjymi sytuacja jest ajczęściej taka, że podaje się w szkole treść zasady idukcji matematyczej, a astępie omawia,

Bardziej szczegółowo

METODYKA WYKONYWANIA POMIARÓW ORAZ OCENA NIEPEWNOŚCI I BŁĘDÓW POMIARU

METODYKA WYKONYWANIA POMIARÓW ORAZ OCENA NIEPEWNOŚCI I BŁĘDÓW POMIARU METODYKA WYKONYWANIA POMIARÓW ORAZ OCENA NIEPEWNOŚCI I BŁĘDÓW POMIARU Celem każdego ćwiczeia w laboratorium studeckim jest zmierzeie pewych wielkości, a astępie obliczeie a podstawie tych wyików pomiarów

Bardziej szczegółowo

Fundamentalna tabelka atomu. eureka! to odkryli. p R = nh -

Fundamentalna tabelka atomu. eureka! to odkryli. p R = nh - TEKST TRUDNY Postulat kwatowaia Bohra, czyli założoy ad hoc związek pomiędzy falą de Broglie a a geometryczymi własościami rozważaego problemu, pozwolił bez większych trudości teoretyczie przewidzieć rozmiary

Bardziej szczegółowo

Przeczytaj, zanim zaczniesz rozwiązywać

Przeczytaj, zanim zaczniesz rozwiązywać Przeczytaj, zaim zacziesz rozwiązywać Maturzysto! Zaim rozpocziesz rozwiązywaie zadań z aszych arkuszy: Przygotuj: u Arkusz I 5 kartek papieru podaiowego w kratkę a czystopis i a brudopis; Arkusz II 5

Bardziej szczegółowo

WARTOŚĆ PIENIĄDZA W CZASIE

WARTOŚĆ PIENIĄDZA W CZASIE WARTOŚĆ PIENIĄDZA W CZASIE Czyiki wpływające a zmiaę watości pieiądza w czasie:. Spadek siły abywczej. 2. Możliwość iwestowaia. 3. Występowaie yzyka. 4. Pefeowaie bieżącej kosumpcji pzez człowieka. Watość

Bardziej szczegółowo

Matematyka finansowa 03.10.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVIII Egzamin dla Aktuariuszy z 3 października 2011 r.

Matematyka finansowa 03.10.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVIII Egzamin dla Aktuariuszy z 3 października 2011 r. Komisja Egzaminacyjna dla Aktuariuszy LVIII Egzamin dla Aktuariuszy z 3 października 2011 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut

Bardziej szczegółowo

Matematyka finansowa 04.04.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r. Część I

Matematyka finansowa 04.04.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r. Część I Komisja Egzaminacyjna dla Aktuariuszy LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

AGH, Wydział Elektrotechniki, Automatyki Informatyki i Elektroniki Katedra Automatyki METODY OPTYMALIZACJI. Wojciech Grega

AGH, Wydział Elektrotechniki, Automatyki Informatyki i Elektroniki Katedra Automatyki METODY OPTYMALIZACJI. Wojciech Grega AGH, Wydział Elektrotechiki, Automatyki Iformatyki i Elektroiki Katedra Automatyki METODY OPTYMALIZACJI Wojciech Grega Kraków, 6 . Wykład I. Problemy optymalizacji: formułowaie, klasyfikacja, przykłady.

Bardziej szczegółowo

System finansowy gospodarki

System finansowy gospodarki System fasowy gospodark Zajęca r 6 Matematyka fasowa c.d. Rachuek retowy (autetowy) Maem rachuku retowego określa sę regulare płatośc w stałych odstępach czasu przy założeu stałej stopy procetowej. Przykłady

Bardziej szczegółowo

ANALIZA SKORELOWANIA WYNIKÓW POMIAROWYCH W OCENACH STANU ZAGROŻEŃ HAŁASOWYCH ŚRODOWISKA

ANALIZA SKORELOWANIA WYNIKÓW POMIAROWYCH W OCENACH STANU ZAGROŻEŃ HAŁASOWYCH ŚRODOWISKA SYSTEMY WSPOMAGANIA W INŻYNIERII PRODUKCJI Środowisko i Bezpieczeństwo w Iżyierii Produkcji 2013 5 ANALIZA SKORELOWANIA WYNIKÓW POMIAROWYCH W OCENACH STANU ZAGROŻEŃ HAŁASOWYCH ŚRODOWISKA 5.1 WPROWADZENIE

Bardziej szczegółowo

Dlaczego ekonomiści głównego nurtu mogą ignorować czas?

Dlaczego ekonomiści głównego nurtu mogą ignorować czas? Dlaczego ekoomiści główego urtu mogą igorować cza? Autor: Wojciech Czariecki Poczyając od Joh B. Clarka w główym urcie ekoomii przyjął ię pogląd, że kapitał taowi permaety, homogeiczy fuduz, w którym dobra

Bardziej szczegółowo

OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B

OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B W przypadku gdy e występuje statystyczy rozrzut wyków (wszystke pomary dają te sam wyk epewość pomaru wyzaczamy w y sposób. Główą przyczyą epewośc pomaru jest epewość

Bardziej szczegółowo

EGZAMIN MATURALNY MATEMATYKA

EGZAMIN MATURALNY MATEMATYKA EGZAMIN MATURALNY MATEMATYKA Poziom rozszerzoy ZBIÓR ZADAŃ Materiały pomocicze dla ucziów i auczycieli Cetrala Komisja Egzamiacyja 05 Zadaia 5 Zadaia Liczby rzeczywiste i wyrażeia algebraicze Rówaia i

Bardziej szczegółowo