Wstęp do sieci neuronowych, wykład 9 Sieci rekurencyjne. Autoasocjator Hopfielda

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wstęp do sieci neuronowych, wykład 9 Sieci rekurencyjne. Autoasocjator Hopfielda"

Transkrypt

1 Wstęp do sieci neuronowych, wykład 9. M. Czoków, J. Piersa

2 1 Sieci skierowane 2 Modele sieci rekurencyjnej Energia sieci 3

3 Sieci skierowane Sieci skierowane Sieci skierowane graf połączeń synaptycznych nie zawiera cykli wierzchołki dają się posortować topologicznie, dynamika odbywa się synchronicznie zgodnie z kolejnością zadaną przez otrzymaną kolejność,

4 Modele sieci rekurencyjnej Energia sieci Graf sieci dopuszcza istnienie cykli skierowanych, sortowanie topologicznie nie jest możliwe, dynamika nabiera aspektu temporalnego: sieć rozijamy w szereg podsieci powiązanych ze sobą zależnościami czasowymi.

5 Model sieci rekurencyjnej Modele sieci rekurencyjnej Energia sieci

6 Model sieci rekurencyjnej Modele sieci rekurencyjnej Energia sieci każda jednostka ma przypisany swój spin σ i { 1, +1} jest to aktualna aktywacja neuronu i może się zmieniać podczas dynamiki, połączenia synaptyczne mają przypisane wagi w ij = w ji R, przyjmujemy w ii = 0, jeżeli krawędzi nie ma w grafie, to przyjmujemy w = 0, ponadto neurony otrzymują swoje pole zewnętrzne h i R podobnie jak wagi są to wartości ustalone w trakcie procesu uczenia.

7 Model sieci rekurencyjnej Modele sieci rekurencyjnej Energia sieci neuron zmienia swój spin i wysyła informację do sąsiadów, jednakże po zmianie jest nieaktywny przez pewien okres czasu τ r (czas refrakcji), ponadto przesył impulsu po krawędzi zajmuje pewien okres czasu τ p (czas przesyłu, może zależeć od rodzau lub długości krawędzi!)

8 Dynamika Glaubera Modele sieci rekurencyjnej Energia sieci Jeżeli τ p τ r, to sieć jest niewielka i można stosować następującą dynamikę:

9 Dynamika Glaubera Modele sieci rekurencyjnej Energia sieci Jeżeli τ p τ r, to sieć jest niewielka i można stosować następującą dynamikę: wylosuj neuron σ i, przypisz σ i = sign( j w ij σ j + h i ) powtarzaj 1 i 2 aż do ustabilizowania się sytuacji.

10 Dynamika Glaubera Modele sieci rekurencyjnej Energia sieci Jeżeli τ p τ r, to sieć jest niewielka i można stosować następującą dynamikę: wylosuj neuron σ i, przypisz σ i = sign( j w ij σ j + h i ) powtarzaj 1 i 2 aż do ustabilizowania się sytuacji. Oznaczmy M i = j w ijσ j + h i lokalne pole wypadkowe dla jednostki i.

11 Dynamika Little a Modele sieci rekurencyjnej Energia sieci Jeżeli τ p τ r, to działanie przybliżamy dynamiką synchroniczną:

12 Dynamika Little a Modele sieci rekurencyjnej Energia sieci Jeżeli τ p τ r, to działanie przybliżamy dynamiką synchroniczną: wszystkie neurony jednocześnie ustawiają się zgodnie z lokalnym polem wypadkowym, tj, przypisujemy: σ i = sign(m i ) przy wykorzystaniu zestawu spinów z porzedniej iteracji.

13 Dynamika Little a Modele sieci rekurencyjnej Energia sieci Alternatywne sformułowanie:

14 Dynamika Little a Modele sieci rekurencyjnej Energia sieci Alternatywne sformułowanie: Rozpocznij z losowego σ 0 Powtarzaj wielokrotnie: Przypisz σ t+1 := sign(w σ t ) gdzie W = [w ij ] i,j=1..n jest macierzą wag, σ t wektorem spinów w t-tym kroku.

15 Dynamika Hybrydowa Modele sieci rekurencyjnej Energia sieci Jeżeli τ p τ r, to dynamika staje się skomplikowana ze względu na znaczne opóźnienia w przesyle. można przybliżać lokalne małe fragmenty sieci (tj. bliskie jednoskti) dynamiką asynchroniczną (Glaubera), w dużej skali należy stosować dynamikę synchroniczną uwzględniającą różnice czasowe.

16 Energia sieci Modele sieci rekurencyjnej Energia sieci Określmy energię sieci (Hammiltonian) zależny od bieżącej konfiguracji spinów neuronów: E( σ) = 1 w ij σ i σ j 2 i i j h i σ i Wagi w ij oraz pola zewnętrzne h i są ustalone, więc energia zależy tylko od spinów.

17 Twierdzenie Modele sieci rekurencyjnej Energia sieci Twierdzenie W trakcie dynamiki Glaubera energia sieci nie ulega wzrostowi.

18 Dowód Modele sieci rekurencyjnej Energia sieci Załóżmy, że z konfiguracji σ przeszliśmy do σ. Niech σ i będzie neuronem, który zmieniliśmy, tj σ i = σ i = sign(m i ).

19 Dowód Modele sieci rekurencyjnej Energia sieci Załóżmy, że z konfiguracji σ przeszliśmy do σ. Niech σ i będzie neuronem, który zmieniliśmy, tj σ i = σ i = sign(m i ). Zauważmy, że E( σ) = 1 2 j i,k i w jk σ j σ k w ij σ i σ j h j σ j h i σ i j j i

20 Dowód Modele sieci rekurencyjnej Energia sieci Załóżmy, że z konfiguracji σ przeszliśmy do σ. Niech σ i będzie neuronem, który zmieniliśmy, tj σ i = σ i = sign(m i ). Zauważmy, że E( σ) = 1 2 j i,k i w jk σ j σ k w ij σ i σ j h j σ j h i σ i j j i Zmieniliśmy tylko spin σ i więc j i,k i w jkσ j σ k oraz j i h jσ j nie wpływają na zmianę energii.

21 Dowód Modele sieci rekurencyjnej Energia sieci Załóżmy, że z konfiguracji σ przeszliśmy do σ. Niech σ i będzie neuronem, który zmieniliśmy, tj σ i = σ i = sign(m i ). Zauważmy, że E( σ) = 1 2 j i,k i w jk σ j σ k w ij σ i σ j h j σ j h i σ i j j i Zmieniliśmy tylko spin σ i więc j i,k i w jkσ j σ k oraz j i h jσ j nie wpływają na zmianę energii. Obliczmy E( σ ) E( σ) = = j w ij σ iσ j h i σ i j w ij σ i σ j h i σ i =

22 Dowód cd. Modele sieci rekurencyjnej Energia sieci E( σ ) E( σ) = j w ij σ iσ j h i σ i + j w ij σ i σ j + h i σ i =

23 Dowód cd. Modele sieci rekurencyjnej Energia sieci E( σ ) E( σ) = j w ij σ iσ j h i σ i + j w ij σ i σ j + h i σ i = j w ij (σ i σ i )σ j h i (σ i σ i ) =

24 Dowód cd. Modele sieci rekurencyjnej Energia sieci E( σ ) E( σ) = j w ij σ iσ j h i σ i + j w ij σ i σ j + h i σ i = j w ij (σ i σ i )σ j h i (σ i σ i ) = (σ i σ i ) j w ij σ j h i = (σ i σ i )( M i )

25 Dowód cd. Modele sieci rekurencyjnej Energia sieci E( σ ) E( σ) = j w ij σ iσ j h i σ i + j w ij σ i σ j + h i σ i = j w ij (σ i σ i )σ j h i (σ i σ i ) = (σ i σ i ) j w ij σ j h i = (σ i σ i )( M i ) Przypomnijmy, że podstawialiśmy σ i := sign(m i ). E( σ ) E( σ) = (sign(m i ) ( sign(m i ))M i = 2 M i 0

26 Wniosek Modele sieci rekurencyjnej Energia sieci Jeżeli ilość neuronów w sieci n jest skończona, to ilość możliwych konfiguracji σ również i podczas dynamiki osiągane jest minimum (być może lokalne!) funkcji energetycznej w skończonym czasie.

27 Wniosek Modele sieci rekurencyjnej Energia sieci Jeżeli ilość neuronów w sieci n jest skończona, to ilość możliwych konfiguracji σ również i podczas dynamiki osiągane jest minimum (być może lokalne!) funkcji energetycznej w skończonym czasie. Wykorzystamy dynamikę asynchroniczną sieci do znajdowania rozwiązania problemów optymalizacyjnych. Wystarczy do tego sprecyzować wagi i pola lokalne.

28 Cel Chcemy stwirzyć pamięć adresowaną zawartością, tj mając dany fragment obrazu będzie w stanie go odtworzyć.

29 Cel Chcemy stwirzyć pamięć adresowaną zawartością, tj mając dany fragment obrazu będzie w stanie go odtworzyć. Oznaczmy: I µ = {ξ µ i } obraz wzorcowy, i = 1..N ilość pikseli, µ = 1..P ilość wzorców σ i neurony sieci, po jednym neuronie na każdy piksel obrazu, w ij wagi między neuronami, h i pola zewnętrzne,

30 Oznaczmy stopień zgodności stanu sieci σ ze wzorcem I µ M µ ( σ) = 1 N N σ i ξ µ i = 1 N σ, I µ i=1

31 Oznaczmy stopień zgodności stanu sieci σ ze wzorcem I µ M µ ( σ) = 1 N N σ i ξ µ i = 1 N σ, I µ i=1 M µ ( σ) = 1 oznacza pełną zgodność, M µ ( σ) = 1 całkowitą niezgodność, ale przy naszych oznaczeniach należy pamiętać, że jest to idealny negatyw.

32 Energia Zdefiniujmy energię E( σ) = N 2 P (M µ ( σ)) 2 = µ=1

33 Energia Zdefiniujmy energię E( σ) = N 2 = N 2 µ=1 P (M µ ( σ)) 2 = µ=1 ( ) 2 P 1 N σ i ξ µ i = N i=1

34 Energia Zdefiniujmy energię E( σ) = N 2 = N 2 µ=1 P (M µ ( σ)) 2 = µ=1 ( ) 2 P 1 N σ i ξ µ i = N i=1 N 2 P 1 N N 2 µ=1 N i=1 j=1,j i σ i σ j ξ µ i ξ µ j + 1 N 2 N σi 2 ξ µ i i=1 2

35 Energia Zdefiniujmy energię E( σ) = N 2 = N 2 µ=1 P (M µ ( σ)) 2 = µ=1 ( ) 2 P 1 N σ i ξ µ i = N i=1 N 2 P 1 N N 2 µ=1 N i=1 j=1,j i σ i σ j ξ µ i ξ µ j + 1 N 2 N σi 2 ξ µ i i=1 2

36 Energia E( σ) = 1 2N P i j µ=1 σ i σ j ξ µ i ξ µ j

37 Energia E( σ) = 1 2N P i j µ=1 σ i σ j ξ µ i ξ µ j = 1 2N N i j µ=1 P σ i σ j ξ µ i ξ µ j

38 Energia E( σ) = 1 2N P i j µ=1 σ i σ j ξ µ i ξ µ j = 1 2N = 1 2 N i j µ=1 N σ i σ j 1 N i j P σ i σ j ξ µ i ξ µ j P ξ µ i ξ µ j µ=1

39 Wagi Otzymujemy zależności na wagi: w ij = 1 N P ξ µ i ξ µ j µ=1

40 Wagi Otzymujemy zależności na wagi: w ij = 1 N P ξ µ i ξ µ j µ=1 oraz na pola zewnętrzne h i = 0

41 Wagi Otzymujemy zależności na wagi: w ij = 1 N P ξ µ i ξ µ j µ=1 oraz na pola zewnętrzne h i = 0 Zerowe pola zewnętrzne sprawiają, że sieć nie ma preferencji odnośnie kolorów. Negatywy są rozpoznawane tak samo jak obrazy oryginalne.

42 Rekonstrukcja obrazu dynamika Glaudera Gdy sieć jest już nauczona możemy odsyskać wejściowy zaszumiony obraz: 1 obraz wejściowy konwertujemy na konfigurację spinów σ,

43 Rekonstrukcja obrazu dynamika Glaudera Gdy sieć jest już nauczona możemy odsyskać wejściowy zaszumiony obraz: 1 obraz wejściowy konwertujemy na konfigurację spinów σ, 2 poddajemy bieżącą konfigurację ewolucji Glaudera:

44 Rekonstrukcja obrazu dynamika Glaudera Gdy sieć jest już nauczona możemy odsyskać wejściowy zaszumiony obraz: 1 obraz wejściowy konwertujemy na konfigurację spinów σ, 2 poddajemy bieżącą konfigurację ewolucji Glaudera: 1 losujemy jednostkę i,

45 Rekonstrukcja obrazu dynamika Glaudera Gdy sieć jest już nauczona możemy odsyskać wejściowy zaszumiony obraz: 1 obraz wejściowy konwertujemy na konfigurację spinów σ, 2 poddajemy bieżącą konfigurację ewolucji Glaudera: 1 losujemy jednostkę i, 2 ustawiamy spin σ i := sign( j w ijσ j ),

46 Rekonstrukcja obrazu dynamika Glaudera Gdy sieć jest już nauczona możemy odsyskać wejściowy zaszumiony obraz: 1 obraz wejściowy konwertujemy na konfigurację spinów σ, 2 poddajemy bieżącą konfigurację ewolucji Glaudera: 1 losujemy jednostkę i, 2 ustawiamy spin σ i := sign( j w ijσ j ), 3 powtarzamy 2.1 i 2.2 aż stan sieci się ustabilizuje,

47 Rekonstrukcja obrazu dynamika Glaudera Gdy sieć jest już nauczona możemy odsyskać wejściowy zaszumiony obraz: 1 obraz wejściowy konwertujemy na konfigurację spinów σ, 2 poddajemy bieżącą konfigurację ewolucji Glaudera: 1 losujemy jednostkę i, 2 ustawiamy spin σ i := sign( j w ijσ j ), 3 powtarzamy 2.1 i 2.2 aż stan sieci się ustabilizuje, 3 wyjściowy obraz odzyskujemy dekodując wyjściową konfigurację sponów σ.

48 Rekonstrukcja obrazu dynamika Little a Ustaloną mamy macierz wag W = (w ij ) N i,j=1 1 obraz wejściowy konwertujemy na konfigurację początkową (t = 0) spinów σ 0,

49 Rekonstrukcja obrazu dynamika Little a Ustaloną mamy macierz wag W = (w ij ) N i,j=1 1 obraz wejściowy konwertujemy na konfigurację początkową (t = 0) spinów σ 0, 2 poddajemy konfigurację ewolucji:

50 Rekonstrukcja obrazu dynamika Little a Ustaloną mamy macierz wag W = (w ij ) N i,j=1 1 obraz wejściowy konwertujemy na konfigurację początkową (t = 0) spinów σ 0, 2 poddajemy konfigurację ewolucji: 1 Przypisujemy σ t+1 := W σ t σ t+1 i := sign(σ t+1 i )

51 Rekonstrukcja obrazu dynamika Little a Ustaloną mamy macierz wag W = (w ij ) N i,j=1 1 obraz wejściowy konwertujemy na konfigurację początkową (t = 0) spinów σ 0, 2 poddajemy konfigurację ewolucji: 1 Przypisujemy σ t+1 := W σ t σ t+1 i := sign(σ t+1 i ) 2 powtarzamy 2.1 aż stan sieci się ustabilizuje,

52 Rekonstrukcja obrazu dynamika Little a Ustaloną mamy macierz wag W = (w ij ) N i,j=1 1 obraz wejściowy konwertujemy na konfigurację początkową (t = 0) spinów σ 0, 2 poddajemy konfigurację ewolucji: 1 Przypisujemy σ t+1 := W σ t σ t+1 i := sign(σ t+1 i ) 2 powtarzamy 2.1 aż stan sieci się ustabilizuje, 3 wyjściowy obraz odzyskujemy dekodując wyjściową konfigurację spinów σ T.

53 Trajektoria odzyskiwania obrazu

54 Stabilność wzorca Załóżmy, że wzorce I µ są niezależne, tj. prawdopodobieństwo, że losowy piksel jest włączony jest to samo P(ξ µ i = +1) = P(ξ µ i = 1) = 1 2

55 Stabilność wzorca Załóżmy, że wzorce I µ są niezależne, tj. prawdopodobieństwo, że losowy piksel jest włączony jest to samo Pytamy: P(ξ µ i = +1) = P(ξ µ i = 1) = 1 2 kiedy I µ jest punktem stałym dynamiki sieci?

56 Stabilność wzorca Policzmy: M i ( σ) = j w ij σ i =

57 Stabilność wzorca Policzmy: M i ( σ) = j w ij σ i = j ( ) 1 ξ µ i ξ µ j N µ σ j

58 Stabilność wzorca Policzmy: M i ( σ) = j w ij σ i = j ( ) 1 ξ µ i ξ µ j σ j = N µ µ M µ ( σ)ξ µ i

59 Stabilność wzorca Policzmy: M i ( σ) = j w ij σ i = j ( ) 1 ξ µ i ξ µ j σ j = N µ µ M µ ( σ)ξ µ i Podstawmy za konfigurację wzorzec σ := I µ 0.

60 Stabilność wzorca Policzmy: M i ( σ) = j w ij σ i = j ( ) 1 ξ µ i ξ µ j σ j = N µ µ M µ ( σ)ξ µ i Podstawmy za konfigurację wzorzec σ := I µ 0. M i (I µ 0 ) = ξ µ 0 i + µ µ 0 M µ (I µ 0 )ξ µ i

61 Stabilność wzorca Policzmy: M i ( σ) = j w ij σ i = j ( ) 1 ξ µ i ξ µ j σ j = N µ µ M µ ( σ)ξ µ i Podstawmy za konfigurację wzorzec σ := I µ 0. M i (I µ 0 ) = ξ µ 0 i + µ µ 0 M µ (I µ 0 )ξ µ i }{{} } {{ } sygnał szum

62 Stabilność wzorca Założyliśmy, że: P(ξ µ i ξ µ j = +1) = P(ξ µ i ξ µ j = 1) = 1 2

63 Stabilność wzorca Założyliśmy, że: Zdefiniujmy zmienną losową Ξ: P(ξ µ i ξ µ j = +1) = P(ξ µ i ξ µ j = 1) = 1 2 Ξ = ξ µ i ξ µ j

64 Stabilność wzorca Założyliśmy, że: P(ξ µ i ξ µ j = +1) = P(ξ µ i ξ µ j = 1) = 1 2 Zdefiniujmy zmienną losową Ξ: Ξ = ξ µ i ξ µ j Wartość oczekiwana wynosi EΞ = 0, wariancja D 2 Ξ = 1:

65 Stabilność wzorca Założyliśmy, że: Zdefiniujmy zmienną losową Ξ: P(ξ µ i ξ µ j = +1) = P(ξ µ i ξ µ j = 1) = 1 2 Ξ = ξ µ i ξ µ j Wartość oczekiwana wynosi EΞ = 0, wariancja D 2 Ξ = 1: Z centralnego twiedzenia granicznego. M µ (I µ 0 ) =

66 Stabilność wzorca Założyliśmy, że: P(ξ µ i ξ µ j = +1) = P(ξ µ i ξ µ j = 1) = 1 2 Zdefiniujmy zmienną losową Ξ: Ξ = ξ µ i ξ µ j Wartość oczekiwana wynosi EΞ = 0, wariancja D 2 Ξ = 1: Z centralnego twiedzenia granicznego. M µ (I µ 0 ) = 1 ξ µ i ξ µ j = N j

67 Stabilność wzorca Założyliśmy, że: Zdefiniujmy zmienną losową Ξ: P(ξ µ i ξ µ j = +1) = P(ξ µ i ξ µ j = 1) = 1 2 Ξ = ξ µ i ξ µ j Wartość oczekiwana wynosi EΞ = 0, wariancja D 2 Ξ = 1: Z centralnego twiedzenia granicznego. M µ (I µ 0 ) = 1 ξ µ i ξ µ i j = Ξ i N 0 N N N 1 j

68 Stabilność wzorca Założyliśmy, że: Zdefiniujmy zmienną losową Ξ: P(ξ µ i ξ µ j = +1) = P(ξ µ i ξ µ j = 1) = 1 2 Ξ = ξ µ i ξ µ j Wartość oczekiwana wynosi EΞ = 0, wariancja D 2 Ξ = 1: Z centralnego twiedzenia granicznego. M µ (I µ 0 ) = 1 ξ µ i ξ µ i j = Ξ i N 0 1 D N(0, 1) N N N 1 N j

69 Stabilność wzorca Założyliśmy, że: Zdefiniujmy zmienną losową Ξ: P(ξ µ i ξ µ j = +1) = P(ξ µ i ξ µ j = 1) = 1 2 Ξ = ξ µ i ξ µ j Wartość oczekiwana wynosi EΞ = 0, wariancja D 2 Ξ = 1: Z centralnego twiedzenia granicznego. M µ (I µ 0 ) = 1 ξ µ i ξ µ i j = Ξ i N 0 1 D N(0, 1) N(0, 1 N N N 1 N N ) j

70 Stabilność wzorca Założyliśmy, że: Zdefiniujmy zmienną losową Ξ: P(ξ µ i ξ µ j = +1) = P(ξ µ i ξ µ j = 1) = 1 2 Ξ = ξ µ i ξ µ j Wartość oczekiwana wynosi EΞ = 0, wariancja D 2 Ξ = 1: Z centralnego twiedzenia granicznego. M µ (I µ 0 ) = 1 ξ µ i ξ µ i j = Ξ i N 0 1 D N(0, 1) N(0, 1 N N N 1 N N ) j I dalej: M µ (I µ0 )ξ µ i N(0, P 1 N ) µ µ 0

71 Stabilność wzorca Aby nie zepsuć wzorca musi być µ µ 0 M µ (I µ 0 )ξ µ i N(0, P 1 N ) < 1

72 Stabilność wzorca Aby nie zepsuć wzorca musi być µ µ 0 M µ (I µ 0 )ξ µ i N(0, P 1 N ) < 1 Wariancja musi być bardzo mała P 1 N 1

73 Stabilność wzorca Aby nie zepsuć wzorca musi być µ µ 0 M µ (I µ 0 )ξ µ i N(0, P 1 N ) < 1 Wariancja musi być bardzo mała czyli P 1 N 1 P N

74 Wzorzec I µ 0 zaburzamy w R punktach. Szum nadal wynosi N(0, P N ), natomiast sygnał (1 R N )ξµ 0 i. Szukamy bezpiecznego α = P N, aby wciąż dało się odzyskać obraz.

75 Wzorzec I µ 0 zaburzamy w R punktach. Szum nadal wynosi N(0, P N ), natomiast sygnał (1 R N )ξµ 0 i. Szukamy bezpiecznego α = P N, aby wciąż dało się odzyskać obraz. Prawdopodobieństwo że uda się odtworzyć i-ty piksel wynosi: P(N(0, α) < 1 2R N ) =

76 Wzorzec I µ 0 zaburzamy w R punktach. Szum nadal wynosi N(0, P N ), natomiast sygnał (1 R N )ξµ 0 i. Szukamy bezpiecznego α = P N, aby wciąż dało się odzyskać obraz. Prawdopodobieństwo że uda się odtworzyć i-ty piksel wynosi: P(N(0, α) < 1 2R N ) = Φ(1 2R/N α ) =

77 Wzorzec I µ 0 zaburzamy w R punktach. Szum nadal wynosi N(0, P N ), natomiast sygnał (1 R N )ξµ 0 i. Szukamy bezpiecznego α = P N, aby wciąż dało się odzyskać obraz. Prawdopodobieństwo że uda się odtworzyć i-ty piksel wynosi: P(N(0, α) < 1 2R N 2R/N ) = Φ(1 ) = 1 Φ( 1 2R/N ) α α

78 Wzorzec I µ 0 zaburzamy w R punktach. Szum nadal wynosi N(0, P N ), natomiast sygnał (1 R N )ξµ 0 i. Szukamy bezpiecznego α = P N, aby wciąż dało się odzyskać obraz. Prawdopodobieństwo że uda się odtworzyć i-ty piksel wynosi: P(N(0, α) < 1 2R N 2R/N ) = Φ(1 ) = 1 Φ( 1 2R/N ) α α Chcemy odtworzyć wszystkie piksele (a nie jeden), więc prawdopodobieństwo wyniesie ( 1 Φ( 1 2R/N α )) N

79 Wzorzec I µ 0 zaburzamy w R punktach. Szum nadal wynosi N(0, P N ), natomiast sygnał (1 R N )ξµ 0 i. Szukamy bezpiecznego α = P N, aby wciąż dało się odzyskać obraz. Prawdopodobieństwo że uda się odtworzyć i-ty piksel wynosi: P(N(0, α) < 1 2R N 2R/N ) = Φ(1 ) = 1 Φ( 1 2R/N ) α α Chcemy odtworzyć wszystkie piksele (a nie jeden), więc prawdopodobieństwo wyniesie ( 1 Φ( 1 2R/N ) N ) 1 N Φ( 1 2R/N ) α α

80 Skorzystamy z przybliżenia Φ 1 x x2 exp( 2π 2 ).

81 Skorzystamy z przybliżenia Φ 1 x x2 exp( 2π 2 ). Jeżeli ograniczymy dopuszczalny błąd przez δ, to δ > N 1 2R/N Φ( ) α

82 Skorzystamy z przybliżenia Φ 1 x x2 exp( 2π 2 ). Jeżeli ograniczymy dopuszczalny błąd przez δ, to δ > N 1 2R/N Φ( ) α N α (1 2R/N) 2π 2R/N)2 exp( (1 ) 2α

83 Skorzystamy z przybliżenia Φ 1 x x2 exp( 2π 2 ). Jeżeli ograniczymy dopuszczalny błąd przez δ, to δ > N 1 2R/N Φ( ) α N α (1 2R/N) 2π N α exp( (1 2R/N)2 2α ) 2π 2R/N)2 exp( (1 ) 2α

84 Skorzystamy z przybliżenia Φ 1 x x2 exp( 2π 2 ). Jeżeli ograniczymy dopuszczalny błąd przez δ, to δ > N 1 2R/N Φ( ) α Po zlogarytmowaniu: N α (1 2R/N) 2π N α exp( (1 2R/N)2 2α ) 2π (1 2R N )2 2α ( ln δ + ln N + ln α ) 2 2R/N)2 exp( (1 ) 2α

85 α (1 2R N )2 2 ln N 1 2 ln N

86 Wniosek α (1 2R N )2 2 ln N 1 2 ln N W sieci o N wierzchołkach można przechować maksymalnie wzorców. N 4 log N

87

88 Niepoprawne odzyskiwanie za dużo wzorców

Wstęp do sieci neuronowych, wykład 10 Sieci rekurencyjne. Autoasocjator Hopfielda

Wstęp do sieci neuronowych, wykład 10 Sieci rekurencyjne. Autoasocjator Hopfielda Wstęp do sieci neuronowych, wykład 10. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2011-12-13 1 Modele sieci rekurencyjnej Energia sieci 2 3 Modele sieci

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 9 Sieci rekurencyjne. Autoasocjator Hopfielda

Wstęp do sieci neuronowych, wykład 9 Sieci rekurencyjne. Autoasocjator Hopfielda Wstęp do sieci neuronowych, wykład 9. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2018-12-10 Projekt pn. Wzmocnienie potencjału dydaktycznego UMK w Toruniu

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 10 Sieci rekurencyjne. Autoasocjator Hopfielda

Wstęp do sieci neuronowych, wykład 10 Sieci rekurencyjne. Autoasocjator Hopfielda Wstęp do sieci neuronowych, wykład 10. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2012-12-19 Projekt pn. Wzmocnienie potencjału dydaktycznego UMK w Toruniu

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 12 Wykorzystanie sieci rekurencyjnych w optymalizacji grafowej

Wstęp do sieci neuronowych, wykład 12 Wykorzystanie sieci rekurencyjnych w optymalizacji grafowej Wstęp do sieci neuronowych, wykład 12 Wykorzystanie sieci rekurencyjnych w optymalizacji grafowej Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2013-01-09

Bardziej szczegółowo

Najprostsze modele sieci z rekurencją. sieci Hopfielda; sieci uczone regułą Hebba; sieć Hamminga;

Najprostsze modele sieci z rekurencją. sieci Hopfielda; sieci uczone regułą Hebba; sieć Hamminga; Sieci Hopfielda Najprostsze modele sieci z rekurencją sieci Hopfielda; sieci uczone regułą Hebba; sieć Hamminga; Modele bardziej złoŝone: RTRN (Real Time Recurrent Network), przetwarzająca sygnały w czasie

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 14 Maszyna Boltzmanna

Wstęp do sieci neuronowych, wykład 14 Maszyna Boltzmanna do sieci neuronowych, wykład 14 Maszyna Boltzmanna M. Czoków, J. Piersa Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Toruń, Poland 2014-01-21 Problemy z siecią Hopfilda

Bardziej szczegółowo

Sieć Hopfielda. Sieci rekurencyjne. Ewa Adamus. ZUT Wydział Informatyki Instytut Sztucznej Inteligencji i Metod Matematycznych.

Sieć Hopfielda. Sieci rekurencyjne. Ewa Adamus. ZUT Wydział Informatyki Instytut Sztucznej Inteligencji i Metod Matematycznych. Sieci rekurencyjne Ewa Adamus ZUT Wydział Informatyki Instytut Sztucznej Inteligencji i Metod Matematycznych 7 maja 2012 Jednowarstwowa sieć Hopfielda, z n neuronami Bipolarna funkcja przejścia W wariancie

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 12 Łańcuchy Markowa

Wstęp do sieci neuronowych, wykład 12 Łańcuchy Markowa Wstęp do sieci neuronowych, wykład 12 Łańcuchy Markowa M. Czoków, J. Piersa 2012-01-10 1 Łańcucha Markowa 2 Istnienie Szukanie stanu stacjonarnego 3 1 Łańcucha Markowa 2 Istnienie Szukanie stanu stacjonarnego

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 11 Łańcuchy Markova

Wstęp do sieci neuronowych, wykład 11 Łańcuchy Markova Wstęp do sieci neuronowych, wykład 11 Łańcuchy Markova M. Czoków, J. Piersa 2010-12-21 1 Definicja Własności Losowanie z rozkładu dyskretnego 2 3 Łańcuch Markova Definicja Własności Losowanie z rozkładu

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 07 Uczenie nienadzorowane.

Wstęp do sieci neuronowych, wykład 07 Uczenie nienadzorowane. Wstęp do sieci neuronowych, wykład 7. M. Czoków, J. Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika w Toruniu 212-11-28 Projekt pn. Wzmocnienie potencjału dydaktycznego UMK w Toruniu

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 8 Uczenie nienadzorowane.

Wstęp do sieci neuronowych, wykład 8 Uczenie nienadzorowane. Wstęp do sieci neuronowych, wykład 8. M. Czoków, J. Piersa, A. Rutkowski Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika w Toruniu 1-811-6 Projekt pn. Wzmocnienie potencjału dydaktycznego

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 03 Warstwy RBF, jednostka Adaline.

Wstęp do sieci neuronowych, wykład 03 Warstwy RBF, jednostka Adaline. Wstęp do sieci neuronowych, wykład 3 Warstwy, jednostka Adaline. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 211-1-18 1 Pomysł Przykłady Zastosowanie 2

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 07 Uczenie nienadzorowane.

Wstęp do sieci neuronowych, wykład 07 Uczenie nienadzorowane. Wstęp do sieci neuronowych, wykład 7. M. Czoków, J. Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika w Toruniu 213-11-19 Projekt pn. Wzmocnienie potencjału dydaktycznego UMK w Toruniu

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 07 Uczenie nienadzorowane cd.

Wstęp do sieci neuronowych, wykład 07 Uczenie nienadzorowane cd. Wstęp do sieci neuronowych, wykład 07 Uczenie nienadzorowane cd. M. Czoków, J. Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika w Toruniu 2013-11-26 Projekt pn. Wzmocnienie potencjału

Bardziej szczegółowo

wiedzy Sieci neuronowe

wiedzy Sieci neuronowe Metody detekcji uszkodzeń oparte na wiedzy Sieci neuronowe Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 7 Wprowadzenie Okres kształtowania się teorii sztucznych sieci

Bardziej szczegółowo

Prognozowanie i Symulacje. Wykład I. Matematyczne metody prognozowania

Prognozowanie i Symulacje. Wykład I. Matematyczne metody prognozowania Prognozowanie i Symulacje. Wykład I. e-mail:e.kozlovski@pollub.pl Spis treści Szeregi czasowe 1 Szeregi czasowe 2 3 Szeregi czasowe Definicja 1 Szereg czasowy jest to proces stochastyczny z czasem dyskretnym

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 04. Skierowane sieci neuronowe. Algorytmy konstrukcyjne dla sieci skierowanych

Wstęp do sieci neuronowych, wykład 04. Skierowane sieci neuronowe. Algorytmy konstrukcyjne dla sieci skierowanych Wstęp do sieci neuronowych, wykład 04. Skierowane sieci neuronowe. dla sieci skierowanych Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2011-10-25 1 Motywacja

Bardziej szczegółowo

8. Neuron z ciągłą funkcją aktywacji.

8. Neuron z ciągłą funkcją aktywacji. 8. Neuron z ciągłą funkcją aktywacji. W tym ćwiczeniu zapoznamy się z modelem sztucznego neuronu oraz przykładem jego wykorzystania do rozwiązywanie prostego zadania klasyfikacji. Neuron biologiczny i

Bardziej szczegółowo

Prawa potęgowe w grafach przepływu informacji dla geometrycznych sieci neuronowych

Prawa potęgowe w grafach przepływu informacji dla geometrycznych sieci neuronowych w grafach przepływu informacji dla geometrycznych sieci neuronowych www.mat.uni.torun.pl/~piersaj 2009-06-10 1 2 3 symulacji Graf przepływu ładunku Wspóczynnik klasteryzacji X (p) p α Rozkłady prawdopodobieństwa

Bardziej szczegółowo

Podstawy Sztucznej Inteligencji (PSZT)

Podstawy Sztucznej Inteligencji (PSZT) Podstawy Sztucznej Inteligencji (PSZT) Paweł Wawrzyński Uczenie maszynowe Sztuczne sieci neuronowe Plan na dziś Uczenie maszynowe Problem aproksymacji funkcji Sieci neuronowe PSZT, zima 2013, wykład 12

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład XIII: Prognoza. 26 stycznia 2015 Wykład XIII: Prognoza. Prognoza (predykcja) Przypuśćmy, że mamy dany ciąg liczb x 1, x 2,..., x n, stanowiących wyniki pomiaru pewnej zmiennej w czasie wielkości

Bardziej szczegółowo

Sieci M. I. Jordana. Sieci rekurencyjne z parametrycznym biasem. Leszek Rybicki. 30 listopada Leszek Rybicki Sieci M. I.

Sieci M. I. Jordana. Sieci rekurencyjne z parametrycznym biasem. Leszek Rybicki. 30 listopada Leszek Rybicki Sieci M. I. Sieci M. I. Jordana Sieci rekurencyjne z parametrycznym biasem Leszek Rybicki 30 listopada 2007 Leszek Rybicki Sieci M. I. Jordana 1/21 Plan O czym będzie 1 Wstęp do sieci neuronowych Neurony i perceptrony

Bardziej szczegółowo

SIECI REKURENCYJNE SIECI HOPFIELDA

SIECI REKURENCYJNE SIECI HOPFIELDA SIECI REKURENCYJNE SIECI HOPFIELDA Joanna Grabska- Chrząstowska Wykłady w dużej mierze przygotowane w oparciu o materiały i pomysły PROF. RYSZARDA TADEUSIEWICZA SPRZĘŻENIE ZWROTNE W NEURONIE LINIOWYM sygnał

Bardziej szczegółowo

Elementy Sztucznej Inteligencji. Sztuczne sieci neuronowe cz. 2

Elementy Sztucznej Inteligencji. Sztuczne sieci neuronowe cz. 2 Elementy Sztucznej Inteligencji Sztuczne sieci neuronowe cz. 2 1 Plan wykładu Uczenie bez nauczyciela (nienadzorowane). Sieci Kohonena (konkurencyjna) Sieć ze sprzężeniem zwrotnym Hopfielda. 2 Cechy uczenia

Bardziej szczegółowo

Sztuczna Inteligencja Tematy projektów Sieci Neuronowe

Sztuczna Inteligencja Tematy projektów Sieci Neuronowe PB, 2009 2010 Sztuczna Inteligencja Tematy projektów Sieci Neuronowe Projekt 1 Stwórz projekt implementujący jednokierunkową sztuczną neuronową złożoną z neuronów typu sigmoidalnego z algorytmem uczenia

Bardziej szczegółowo

Uczenie sieci neuronowych i bayesowskich

Uczenie sieci neuronowych i bayesowskich Wstęp do metod sztucznej inteligencji www.mat.uni.torun.pl/~piersaj 2009-01-22 Co to jest neuron? Komputer, a mózg komputer mózg Jednostki obliczeniowe 1-4 CPU 10 11 neuronów Pojemność 10 9 b RAM, 10 10

Bardziej szczegółowo

Wykład 10 Estymacja przedziałowa - przedziały ufności dla średn

Wykład 10 Estymacja przedziałowa - przedziały ufności dla średn Wykład 10 Estymacja przedziałowa - przedziały ufności dla średniej Wrocław, 21 grudnia 2016r Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja 10.1 Przedziałem

Bardziej szczegółowo

synaptycznych wszystko to waży 1.5 kg i zajmuje objętość około 1.5 litra. A zużywa mniej energii niż lampka nocna.

synaptycznych wszystko to waży 1.5 kg i zajmuje objętość około 1.5 litra. A zużywa mniej energii niż lampka nocna. Sieci neuronowe model konekcjonistyczny Plan wykładu Mózg ludzki a komputer Modele konekcjonistycze Perceptron Sieć neuronowa Uczenie sieci Sieci Hopfielda Mózg ludzki a komputer Twój mózg to 00 000 000

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 6 Wsteczna propagacja błędu - cz. 3

Wstęp do sieci neuronowych, wykład 6 Wsteczna propagacja błędu - cz. 3 Wstęp do sieci neuronowych, wykład 6 Wsteczna propagacja błędu - cz. 3 Andrzej Rutkowski, Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2018-11-05 Projekt

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa, Andrzej Rutkowski Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2018-10-15 Projekt

Bardziej szczegółowo

Metody Sztucznej Inteligencji II

Metody Sztucznej Inteligencji II 17 marca 2013 Neuron biologiczny Neuron Jest podstawowym budulcem układu nerwowego. Jest komórką, która jest w stanie odbierać i przekazywać sygnały elektryczne. Neuron działanie Jeżeli wartość sygnału

Bardziej szczegółowo

Estymacja przedziałowa - przedziały ufności dla średnich. Wrocław, 5 grudnia 2014

Estymacja przedziałowa - przedziały ufności dla średnich. Wrocław, 5 grudnia 2014 Estymacja przedziałowa - przedziały ufności dla średnich Wrocław, 5 grudnia 2014 Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja Przedziałem ufności dla paramertu

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2011-10-11 1 Modelowanie funkcji logicznych

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 03 Warstwy RBF, jednostka ADALINE.

Wstęp do sieci neuronowych, wykład 03 Warstwy RBF, jednostka ADALINE. Wstęp do sieci neuronowych, wykład 3 Warstwy, jednostka ADALINE. Maja Czoków, Jarosław Piersa, Andrzej Rutkowski Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 218-1-15/22 Projekt pn.

Bardziej szczegółowo

Optymalizacja ciągła

Optymalizacja ciągła Optymalizacja ciągła 5. Metoda stochastycznego spadku wzdłuż gradientu Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 04.04.2019 1 / 20 Wprowadzenie Minimalizacja różniczkowalnej

Bardziej szczegółowo

Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe

Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe Trening jednokierunkowych sieci neuronowych wykład 2. dr inż. PawełŻwan Katedra Systemów Multimedialnych Politechnika Gdańska

Bardziej szczegółowo

Algorytm wstecznej propagacji błędów dla sieci RBF Michał Bereta

Algorytm wstecznej propagacji błędów dla sieci RBF Michał Bereta Algorytm wstecznej propagacji błędów dla sieci RBF Michał Bereta www.michalbereta.pl Sieci radialne zawsze posiadają jedną warstwę ukrytą, która składa się z neuronów radialnych. Warstwa wyjściowa składa

Bardziej szczegółowo

Sieć przesyłająca żetony CP (counter propagation)

Sieć przesyłająca żetony CP (counter propagation) Sieci neuropodobne IX, specyficzne architektury 1 Sieć przesyłająca żetony CP (counter propagation) warstwa Kohonena: wektory wejściowe są unormowane jednostki mają unormowane wektory wag jednostki są

Bardziej szczegółowo

1. Logika, funkcje logiczne, preceptron.

1. Logika, funkcje logiczne, preceptron. Sieci neuronowe 1. Logika, funkcje logiczne, preceptron. 1. (Logika) Udowodnij prawa de Morgana, prawo pochłaniania p (p q), prawo wyłączonego środka p p oraz prawo sprzeczności (p p). 2. Wyraź funkcję

Bardziej szczegółowo

Co to jest model Isinga?

Co to jest model Isinga? Co to jest model Isinga? Fakty eksperymentalne W pewnych metalach (np. Fe, Ni) następuje spontaniczne ustawianie się spinów wzdłuż pewnego kierunku, powodując powstanie makroskopowego pola magnetycznego.

Bardziej szczegółowo

Spacery losowe generowanie realizacji procesu losowego

Spacery losowe generowanie realizacji procesu losowego Spacery losowe generowanie realizacji procesu losowego Michał Krzemiński Streszczenie Omówimy metodę generowania trajektorii spacerów losowych (błądzenia losowego), tj. szczególnych procesów Markowa z

Bardziej szczegółowo

zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych

zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych 1. [E.A 5.10.1996/zad.4] Funkcja gęstości dana jest wzorem { 3 x + 2xy + 1 y dla (x y) (0 1) (0 1) 4 4 P (X > 1 2 Y > 1 2 ) wynosi:

Bardziej szczegółowo

PROCESY STOCHASTYCZNE. PEWNE KLASY PROCESÓW STOCHASTYCZNYCH Definicja. Procesem stochastycznym nazywamy rodzinę zmiennych losowych X(t) = X(t, ω)

PROCESY STOCHASTYCZNE. PEWNE KLASY PROCESÓW STOCHASTYCZNYCH Definicja. Procesem stochastycznym nazywamy rodzinę zmiennych losowych X(t) = X(t, ω) PROCESY STOCHASTYCZNE. PEWNE KLASY PROCESÓW STOCHASTYCZNYCH Definicja. Procesem stochastycznym nazywamy rodzinę zmiennych losowych X(t) = X(t, ω) określonych na tej samej przestrzeni probabilistycznej

Bardziej szczegółowo

Uczenie sieci typu MLP

Uczenie sieci typu MLP Uczenie sieci typu MLP Przypomnienie budowa sieci typu MLP Przypomnienie budowy neuronu Neuron ze skokową funkcją aktywacji jest zły!!! Powszechnie stosuje -> modele z sigmoidalną funkcją aktywacji - współczynnik

Bardziej szczegółowo

wiedzy Sieci neuronowe (c.d.)

wiedzy Sieci neuronowe (c.d.) Metody detekci uszkodzeń oparte na wiedzy Sieci neuronowe (c.d.) Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 8 Metody detekci uszkodzeń oparte na wiedzy Wprowadzenie

Bardziej szczegółowo

Janusz Adamowski METODY OBLICZENIOWE FIZYKI Kwantowa wariacyjna metoda Monte Carlo. Problem własny dla stanu podstawowego układu N cząstek

Janusz Adamowski METODY OBLICZENIOWE FIZYKI Kwantowa wariacyjna metoda Monte Carlo. Problem własny dla stanu podstawowego układu N cząstek Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdział 20 KWANTOWE METODY MONTE CARLO 20.1 Kwantowa wariacyjna metoda Monte Carlo Problem własny dla stanu podstawowego układu N cząstek (H E 0 )ψ 0 (r)

Bardziej szczegółowo

2. P (E) = 1. β B. TSIM W3: Sygnały stochastyczne 1/27

2. P (E) = 1. β B. TSIM W3: Sygnały stochastyczne 1/27 SYGNAŁY STOCHASTYCZNE Przestrzeń probabilistyczna i zmienna losowa Definicja Przestrzenią probabilistyczną (doświadczeniem) nazywamy trójkę uporządkowaną (E, B, P ), gdzie: E przestrzeń zdarzeń elementarnych;

Bardziej szczegółowo

Sztuczne sieci neuronowe

Sztuczne sieci neuronowe www.math.uni.lodz.pl/ radmat Cel wykładu Celem wykładu jest prezentacja różnych rodzajów sztucznych sieci neuronowych. Biologiczny model neuronu Mózg człowieka składa się z około 10 11 komórek nerwowych,

Bardziej szczegółowo

Wstęp do teorii sztucznej inteligencji Wykład II. Uczenie sztucznych neuronów.

Wstęp do teorii sztucznej inteligencji Wykład II. Uczenie sztucznych neuronów. Wstęp do teorii sztucznej inteligencji Wykład II Uczenie sztucznych neuronów. 1 - powtórzyć o klasyfikacji: Sieci liniowe I nieliniowe Sieci rekurencyjne Uczenie z nauczycielem lub bez Jednowarstwowe I

Bardziej szczegółowo

Reprezentacje grafów nieskierowanych Reprezentacje grafów skierowanych. Wykład 2. Reprezentacja komputerowa grafów

Reprezentacje grafów nieskierowanych Reprezentacje grafów skierowanych. Wykład 2. Reprezentacja komputerowa grafów Wykład 2. Reprezentacja komputerowa grafów 1 / 69 Macierz incydencji Niech graf G będzie grafem nieskierowanym bez pętli o n wierzchołkach (x 1, x 2,..., x n) i m krawędziach (e 1, e 2,..., e m). 2 / 69

Bardziej szczegółowo

Szeregi czasowe, analiza zależności krótkoi długozasięgowych

Szeregi czasowe, analiza zależności krótkoi długozasięgowych Szeregi czasowe, analiza zależności krótkoi długozasięgowych Rafał Weron rweron@im.pwr.wroc.pl Definicje Mając dany proces {X t } autokowariancję definiujemy jako : γ(t, t ) = cov(x t, X t ) = = E[(X t

Bardziej szczegółowo

Oprogramowanie Systemów Obrazowania SIECI NEURONOWE

Oprogramowanie Systemów Obrazowania SIECI NEURONOWE SIECI NEURONOWE Przedmiotem laboratorium jest stworzenie algorytmu rozpoznawania zwierząt z zastosowaniem sieci neuronowych w oparciu o 5 kryteriów: ile zwierzę ma nóg, czy żyje w wodzie, czy umie latać,

Bardziej szczegółowo

Systemy uczące się Lab 4

Systemy uczące się Lab 4 Systemy uczące się Lab 4 dr Przemysław Juszczuk Katedra Inżynierii Wiedzy, Uniwersytet Ekonomiczny 26 X 2018 Projekt zaliczeniowy Podstawą zaliczenia ćwiczeń jest indywidualne wykonanie projektu uwzględniającego

Bardziej szczegółowo

Rachunek prawdopodobieństwa Rozdział 6: Twierdzenia graniczne.

Rachunek prawdopodobieństwa Rozdział 6: Twierdzenia graniczne. Rachunek prawdopodobieństwa Rozdział 6: Twierdzenia graniczne. 6.2. Centralne Twierdzenie Graniczne Katarzyna Rybarczyk-Krzywdzińska semestr zimowy 2015/2016 Słabe prawo wielkich liczb przypomnienie Słabe

Bardziej szczegółowo

METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING

METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING NEURONOWE MAPY SAMOORGANIZUJĄCE SIĘ Self-Organizing Maps SOM Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki,

Bardziej szczegółowo

Testowanie hipotez statystycznych. Wprowadzenie

Testowanie hipotez statystycznych. Wprowadzenie Wrocław University of Technology Testowanie hipotez statystycznych. Wprowadzenie Jakub Tomczak Politechnika Wrocławska jakub.tomczak@pwr.edu.pl 10.04.2014 Pojęcia wstępne Populacja (statystyczna) zbiór,

Bardziej szczegółowo

Metody Rozmyte i Algorytmy Ewolucyjne

Metody Rozmyte i Algorytmy Ewolucyjne mgr inż. Wydział Matematyczno-Przyrodniczy Szkoła Nauk Ścisłych Uniwersytet Kardynała Stefana Wyszyńskiego Podstawowe operatory genetyczne Plan wykładu Przypomnienie 1 Przypomnienie Metody generacji liczb

Bardziej szczegółowo

Sztuczne sieci neuronowe Ćwiczenia. Piotr Fulmański, Marta Grzanek

Sztuczne sieci neuronowe Ćwiczenia. Piotr Fulmański, Marta Grzanek Sztuczne sieci neuronowe Ćwiczenia Piotr Fulmański, Marta Grzanek Piotr Fulmański 1 Wydział Matematyki i Informatyki, Marta Grzanek 2 Uniwersytet Łódzki Banacha 22, 90-232, Łódź Polska e-mail 1: fulmanp@math.uni.lodz.pl,

Bardziej szczegółowo

Sztuczne sieci neuronowe. Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyki, p. 335

Sztuczne sieci neuronowe. Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyki, p. 335 Sztuczne sieci neuronowe Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyki, p. 335 Wykład 10 Mapa cech Kohonena i jej modyfikacje - uczenie sieci samoorganizujących się - kwantowanie wektorowe

Bardziej szczegółowo

Metody probabilistyczne

Metody probabilistyczne Metody probabilistyczne. Twierdzenia graniczne Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 20.2.208 / 26 Motywacja Rzucamy wielokrotnie uczciwą monetą i zliczamy

Bardziej szczegółowo

Zadania z RP 2. seria Podać przykład rozkładów prawdopodobieństwa µ n, µ, takich, że µ n

Zadania z RP 2. seria Podać przykład rozkładów prawdopodobieństwa µ n, µ, takich, że µ n Zadania z RP 2. seria 1. 1. Dla x R n, niech δ x oznacza miarę Diraca, skupioną w punkcie x. Wykazać, że dla dowolnego ciągu x n R n zachodzi δ xn δ x wtedy i tylko wtedy, gdy x n x. 2. Podać przykład

Bardziej szczegółowo

Symulacje geometrycznych sieci neuronowych w środowisku rozproszonym

Symulacje geometrycznych sieci neuronowych w środowisku rozproszonym Symulacje geometrycznych sieci neuronowych w środowisku rozproszonym Jarosław Piersa, Tomasz Schreiber {piersaj, tomeks}(at)mat.umk.pl 2010-07-21 1 2 Dany podzbiór V R 3. N neuronów należących do V N Poiss(c

Bardziej szczegółowo

WYKŁAD 6. Witold Bednorz, Paweł Wolff. Rachunek Prawdopodobieństwa, WNE, Uniwersytet Warszawski. 1 Instytut Matematyki

WYKŁAD 6. Witold Bednorz, Paweł Wolff. Rachunek Prawdopodobieństwa, WNE, Uniwersytet Warszawski. 1 Instytut Matematyki WYKŁAD 6 Witold Bednorz, Paweł Wolff 1 Instytut Matematyki Uniwersytet Warszawski Rachunek Prawdopodobieństwa, WNE, 2010-2011 Własności Wariancji Przypomnijmy, że VarX = E(X EX) 2 = EX 2 (EX) 2. Własności

Bardziej szczegółowo

Równoległy algorytm wyznaczania bloków dla cyklicznego problemu przepływowego z przezbrojeniami

Równoległy algorytm wyznaczania bloków dla cyklicznego problemu przepływowego z przezbrojeniami Równoległy algorytm wyznaczania bloków dla cyklicznego problemu przepływowego z przezbrojeniami dr inż. Mariusz Uchroński Wrocławskie Centrum Sieciowo-Superkomputerowe Agenda Cykliczny problem przepływowy

Bardziej szczegółowo

Obliczenia iteracyjne

Obliczenia iteracyjne Lekcja Strona z Obliczenia iteracyjne Zmienne iteracyjne (wyliczeniowe) Obliczenia iteracyjne wymagają zdefiniowania specjalnej zmiennej nazywanej iteracyjną lub wyliczeniową. Zmienną iteracyjną od zwykłej

Bardziej szczegółowo

Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe

Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe Nierówność Czebyszewa Niech X będzie zmienną losową o skończonej wariancji V ar(x). Wtedy wartość oczekiwana E(X) też jest skończona i

Bardziej szczegółowo

Grafy Alberta-Barabasiego

Grafy Alberta-Barabasiego Spis treści 2010-01-18 Spis treści 1 Spis treści 2 Wielkości charakterystyczne 3 Cechy 4 5 6 7 Wielkości charakterystyczne Wielkości charakterystyczne Rozkład stopnie wierzchołków P(deg(x) = k) Graf jest

Bardziej szczegółowo

Procesy stochastyczne

Procesy stochastyczne Wykład I: Istnienie procesów stochastycznych 2 marca 2015 Forma zaliczenia przedmiotu Forma zaliczenia Literatura 1 Zaliczenie ćwiczeń rachunkowych. 2 Egzamin ustny z teorii 3 Do wykładu przygotowane są

Bardziej szczegółowo

Podstawy OpenCL część 2

Podstawy OpenCL część 2 Podstawy OpenCL część 2 1. Napisz program dokonujący mnożenia dwóch macierzy w wersji sekwencyjnej oraz OpenCL. Porównaj czasy działania obu wersji dla różnych wielkości macierzy, np. 16 16, 128 128, 1024

Bardziej szczegółowo

Harmonogramowanie przedsięwzięć

Harmonogramowanie przedsięwzięć Harmonogramowanie przedsięwzięć Mariusz Kaleta Instytut Automatyki i Informatyki Stosowanej Politechnika Warszawska luty 2014, Warszawa Politechnika Warszawska Harmonogramowanie przedsięwzięć 1 / 25 Wstęp

Bardziej szczegółowo

Wstęp do Rachunku Prawdopodobieństwa, IIr. WMS

Wstęp do Rachunku Prawdopodobieństwa, IIr. WMS Wstęp do Rachunku Prawdopodobieństwa, IIr. WMS przykładowe zadania na. kolokwium czerwca 6r. Poniżej podany jest przykładowy zestaw zadań. Podczas kolokwium na ich rozwiązanie przeznaczone będzie ok. 85

Bardziej szczegółowo

SIECI NEURONOWE Liniowe i nieliniowe sieci neuronowe

SIECI NEURONOWE Liniowe i nieliniowe sieci neuronowe SIECI NEURONOWE Liniowe i nieliniowe sieci neuronowe JOANNA GRABSKA-CHRZĄSTOWSKA Wykłady w dużej mierze przygotowane w oparciu o materiały i pomysły PROF. RYSZARDA TADEUSIEWICZA BUDOWA RZECZYWISTEGO NEURONU

Bardziej szczegółowo

Rozpoznawanie obrazów

Rozpoznawanie obrazów Rozpoznawanie obrazów Ćwiczenia lista zadań nr 7 autorzy: A. Gonczarek, J.M. Tomczak Przykładowe problemy Klasyfikacja binarna Dla obrazu x zaproponowano dwie cechy φ(x) = (φ 1 (x) φ 2 (x)) T. Na obrazie

Bardziej szczegółowo

Wprowadzenie do Sieci Neuronowych Laboratorium 05 Algorytm wstecznej propagacji błędu

Wprowadzenie do Sieci Neuronowych Laboratorium 05 Algorytm wstecznej propagacji błędu Wprowadzenie do Sieci Neuronowych Laboratorium Algorytm wstecznej propagacji błędu Maja Czoków, Jarosław Piersa --7. Powtórzenie Perceptron sigmoidalny Funkcja sigmoidalna: σ(x) = + exp( c (x p)) () Parametr

Bardziej szczegółowo

Rachunek prawdopodobieństwa 1B; zadania egzaminacyjne.

Rachunek prawdopodobieństwa 1B; zadania egzaminacyjne. Rachunek prawdopodobieństwa B; zadania egzaminacyjne.. Niech µ będzie rozkładem probabilistycznym na (0, ) (0, ): µ(b) = l({x (0,) : (x, x) B}), dla B B((0, ) (0, ))), gdzie l jest miarą Lebesgue a na

Bardziej szczegółowo

Weryfikacja hipotez statystycznych

Weryfikacja hipotez statystycznych Weryfikacja hipotez statystycznych Przykład (wstępny). Producent twierdzi, że wadliwość produkcji wynosi 5%. My podejrzewamy, że rzeczywista wadliwość produkcji wynosi 15%. Pobieramy próbę stuelementową

Bardziej szczegółowo

Procesy stochastyczne

Procesy stochastyczne Wykład I: Istnienie procesów stochastycznych 21 lutego 2017 Forma zaliczenia przedmiotu Forma zaliczenia Literatura 1 Zaliczenie ćwiczeń rachunkowych. 2 Egzamin ustny z teorii 3 Do wykładu przygotowane

Bardziej szczegółowo

Lekcja 5: Sieć Kohonena i sieć ART

Lekcja 5: Sieć Kohonena i sieć ART Lekcja 5: Sieć Kohonena i sieć ART S. Hoa Nguyen 1 Materiał Sieci Kohonena (Sieć samo-organizująca) Rysunek 1: Sieć Kohonena Charakterystyka sieci: Jednowarstwowa jednokierunkowa sieć. Na ogół neurony

Bardziej szczegółowo

Rachunek prawdopodobieństwa Rozdział 6: Twierdzenia graniczne.

Rachunek prawdopodobieństwa Rozdział 6: Twierdzenia graniczne. Rachunek prawdopodobieństwa Rozdział 6: Twierdzenia graniczne. 6.2. Centralne Twierdzenie Graniczne Katarzyna Rybarczyk-Krzywdzińska semestr zimowy 2015/2016 Słabe prawo wielkich liczb przypomnienie Słabe

Bardziej szczegółowo

Hipotezy statystyczne

Hipotezy statystyczne Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy populacji, o którego prawdziwości lub fałszywości wnioskuje się na podstawie pobranej próbki losowej. Hipotezy

Bardziej szczegółowo

Algorytm grupowania danych typu kwantyzacji wektorów

Algorytm grupowania danych typu kwantyzacji wektorów Algorytm grupowania danych typu kwantyzacji wektorów Wstęp Definicja problemu: Typowe, problemem często spotykanym w zagadnieniach eksploracji danych (ang. data mining) jest zagadnienie grupowania danych

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2012-10-10 Projekt pn. Wzmocnienie

Bardziej szczegółowo

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywsitej

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywsitej Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus listopada 07r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej

Bardziej szczegółowo

Hipotezy statystyczne

Hipotezy statystyczne Hipotezy statystyczne Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy populacji, o którego prawdziwości lub fałszywości wnioskuje się na podstawie pobranej

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r. Matematyka ubezpieczeń majątkowych 3..007 r. Zadanie. Każde z ryzyk pochodzących z pewnej populacji charakteryzuje się tym że przy danej wartości λ parametru ryzyka Λ rozkład wartości szkód z tego ryzyka

Bardziej szczegółowo

Algorytmy stochastyczne laboratorium 03

Algorytmy stochastyczne laboratorium 03 Algorytmy stochastyczne laboratorium 03 Jarosław Piersa 10 marca 2014 1 Projekty 1.1 Problem plecakowy (1p) Oznaczenia: dany zbiór przedmiotów x 1,.., x N, każdy przedmiot ma określoną wagę w(x i ) i wartość

Bardziej szczegółowo

Podstawy sztucznej inteligencji

Podstawy sztucznej inteligencji wykład 5 Sztuczne sieci neuronowe (SSN) 8 grudnia 2011 Plan wykładu 1 Biologiczne wzorce sztucznej sieci neuronowej 2 3 4 Neuron biologiczny Neuron Jest podstawowym budulcem układu nerwowego. Jest komórką,

Bardziej szczegółowo

Prawdopodobieństwo i rozkład normalny cd.

Prawdopodobieństwo i rozkład normalny cd. # # Prawdopodobieństwo i rozkład normalny cd. Michał Daszykowski, Ivana Stanimirova Instytut Chemii Uniwersytet Śląski w Katowicach Ul. Szkolna 9 40-006 Katowice E-mail: www: mdaszyk@us.edu.pl istanimi@us.edu.pl

Bardziej szczegółowo

Testowanie hipotez statystycznych.

Testowanie hipotez statystycznych. Statystyka Wykład 10 Wrocław, 22 grudnia 2011 Testowanie hipotez statystycznych Definicja. Hipotezą statystyczną nazywamy stwierdzenie dotyczące parametrów populacji. Definicja. Dwie komplementarne w problemie

Bardziej szczegółowo

Sztuczne sieci neuronowe (SNN)

Sztuczne sieci neuronowe (SNN) Sztuczne sieci neuronowe (SNN) Pozyskanie informacji (danych) Wstępne przetwarzanie danych przygotowanie ich do dalszej analizy Selekcja informacji Ostateczny model decyzyjny SSN - podstawy Sieci neuronowe

Bardziej szczegółowo

Co to jest grupowanie

Co to jest grupowanie Grupowanie danych Co to jest grupowanie 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Szukanie grup, obszarów stanowiących lokalne gromady punktów Co to jest grupowanie

Bardziej szczegółowo

Fuzja sygnałów i filtry bayesowskie

Fuzja sygnałów i filtry bayesowskie Fuzja sygnałów i filtry bayesowskie Roboty Manipulacyjne i Mobilne dr inż. Janusz Jakubiak Katedra Cybernetyki i Robotyki Wydział Elektroniki, Politechnika Wrocławska Wrocław, 10.03.2015 Dlaczego potrzebna

Bardziej szczegółowo

4 Równania różniczkowe w postaci Leibniza, równania różniczkowe zupełne

4 Równania różniczkowe w postaci Leibniza, równania różniczkowe zupełne Równania w postaci Leibniza 4 1 4 Równania różniczkowe w postaci Leibniza, równania różniczkowe zupełne 4.1 Równania różniczkowe w postaci Leibniza Załóżmy, że P : D R i Q: D R są funkcjami ciągłymi określonymi

Bardziej szczegółowo

Rozkłady wielu zmiennych

Rozkłady wielu zmiennych Rozkłady wielu zmiennych Uogólnienie pojęć na rozkład wielu zmiennych Dystrybuanta, gęstość prawdopodobieństwa, rozkład brzegowy, wartości średnie i odchylenia standardowe, momenty Notacja macierzowa Macierz

Bardziej szczegółowo

Wykład z Technologii Informacyjnych. Piotr Mika

Wykład z Technologii Informacyjnych. Piotr Mika Wykład z Technologii Informacyjnych Piotr Mika Uniwersalna forma graficznego zapisu algorytmów Schemat blokowy zbiór bloków, powiązanych ze sobą liniami zorientowanymi. Jest to rodzaj grafu, którego węzły

Bardziej szczegółowo

Inteligentne systemy przeciw atakom sieciowym

Inteligentne systemy przeciw atakom sieciowym Inteligentne systemy przeciw atakom sieciowym wykład Sztuczne sieci neuronowe (SSN) Joanna Kołodziejczyk 2016 Joanna Kołodziejczyk Inteligentne systemy przeciw atakom sieciowym 2016 1 / 36 Biologiczne

Bardziej szczegółowo

2. Układy równań liniowych

2. Układy równań liniowych 2. Układy równań liniowych Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2017/2018 rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 2. Układy równań liniowych zima 2017/2018 1 /

Bardziej szczegółowo

Przykłady grafów. Graf prosty, to graf bez pętli i bez krawędzi wielokrotnych.

Przykłady grafów. Graf prosty, to graf bez pętli i bez krawędzi wielokrotnych. Grafy Graf Graf (ang. graph) to zbiór wierzchołków (ang. vertices), które mogą być połączone krawędziami (ang. edges) w taki sposób, że każda krawędź kończy się i zaczyna w którymś z wierzchołków. Graf

Bardziej szczegółowo

Proces rezerwy w czasie dyskretnym z losową stopą procentową i losową składką

Proces rezerwy w czasie dyskretnym z losową stopą procentową i losową składką z losową stopą procentową i losową składką Instytut Matematyki i Informatyki Politechniki Wrocławskiej 10 czerwca 2008 Oznaczenia Wprowadzenie ξ n liczba wypłat w (n 1, n], Oznaczenia Wprowadzenie ξ n

Bardziej szczegółowo

Dystrybucje, wiadomości wstępne (I)

Dystrybucje, wiadomości wstępne (I) Temat 8 Dystrybucje, wiadomości wstępne (I) Wielkości fizyczne opisujemy najczęściej przyporządkowując im funkcje (np. zależne od czasu). Inną drogą opisu tych wielkości jest przyporządkowanie im funkcjonałów

Bardziej szczegółowo