7. Identyfikacja defektów badanego obiektu

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "7. Identyfikacja defektów badanego obiektu"

Transkrypt

1 7. Identyfikacja defektów badanego obiektu Pierwszym krokiem na drodze do identyfikacji defektów było przygotowanie tzw. odcisku palca poszczególnych defektów. W tym celu został napisany program Gaussian [45], którego okno przedstawia rysunku 7.1. Wszystkie parametry opisujące rozkłady częstościowo amplitudowe zostały poddane takiej samej procedurze. W kolumnę o nazwie Seria liczb zostały wpisane wszystkie wartości danego parametru, które znajdują się w Załączniku 1. Wynikiem działania programu na wprowadzonej serii liczb były parametry statystyczne opisujące tę serię. Parametry opisujące wprowadzoną serię liczb: - współczynnik koncentracji serii iloraz dolnego i górnego kwantylu serii liczb rzędu 0,15, - średnia arytmetyczna serii, - odchylenie standardowe serii, - procentowe odchylenie standardowe serii. Rys Okno programu Gaussian [45] Wartość rzędu kwantylu została narzucona a priori w celu zminimalizowania wpływu na wartość współczynnika koncentracji 69

2 przypadkowej wartości liczby w serii. Dla celów identyfikacji defektów przyjęto, że wartość współczynnika koncentracji serii jest równoznaczna wadze danego parametru. Program Gaussian umożliwia również porównanie dodatkowo wprowadzonej liczby z serią, podając jej gęstość prawdopodobieństwa. Analiza wszystkich rozkładów czasowych impulsów wyładowań niezupełnych doprowadziła do zredukowania liczby parametrów opisujących rozkłady fazowe do jednego: Qmax+/Qmax-. Wartość kąta fazowego, przy którym rejestrowano impulsy wnz, nie pozwalała na jednoznaczne uzależnienie wartości parametrów kątowych (kąt początkowy, kąt końcowy i kąt średni dla dodatniej i ujemnej połowy sinusoidy napięcia) od rodzaju defektu. Odcisk palca wszystkich badanych defektów jest przedstawiony w Załączniku 2. Kolejnym krokiem pracy było wyselekcjonowanie i usunięcie z odcisku palca tych parametrów, które nie nosiły informacji pozwalającej odróżnić poszczególne defekty. Po selekcji pozostały tylko te parametry, które choć dla jednego defektu spełniały kryterium braku części wspólnej zakresu zmienności parametru tego defektu z zakresami zmienności innych defektów. Zakres zmienności parametru należy rozumieć jako zakres od średniej arytmetycznej tego parametru pomniejszonej o odchylenie standardowe do średniej arytmetycznej tego parametru powiększonej o odchylenie standardowe. W ten sposób z odcisku palca zostały usunięte następujące parametry: - minimalna liczba wyładowań, - maksymalna liczba wyładowań, - dominanta ładunku, - współczynnik asymetrii ładunku, - współczynnik ekscesu liczby wyładowań, - współczynnik ekscesu ładunku, Dodatkowo z odcisku palca został usunięty parametr ładunek minimalny, którego wartość była w dużej części uzależniona od nastaw czułości aparatury pomiarowej. Załącznik 3 przedstawia odcisk palca wszystkich defektów po usunięciu wyżej wymienionych parametrów. Komórki zaznaczone kolorem oznaczają parametry, których zakres zmienności dla wskazywanego defektu nie pokrywa się z zakresem zmienności tego parametru dla pozostałych defektów. 70

3 Kolejnym krokiem było nadanie wagi zerowej tym wszystkim parametrom każdego defektu, których obszar zmienności choć częściowo pokrywał się z obszarami zmienności innych defektów. W ten sposób, do celów identyfikacji defektów, zostały wykorzystane tylko te parametry, których wartość pozwalała jednoznacznie zidentyfikować jeden z czterech defektów. Dodatkowym zabiegom poddano dwa ostatnie parametry: liczba mod oraz Qmax+/Qmax-. Z pomiarów wynika, że liczba mod rozkładu częstościowo amplitudowego tylko i wyłącznie dla defektu drugiego ma wartość równą dwa. We wszystkich pozostałych rozkładach stwierdzono pojedynczą modę. Niestety pewna, niewielka liczba zarejestrowanych rozkładów częstościowo amplitudowych tego defektu nie posiadała drugiej mody. Fakt ten został uwzględniony w odcisku palca w ten sposób, że zmodyfikowano wagę tego parametru. Jeśli badany rozkład miał dwie mody to waga tego parametru została ustalona na 100 %, natomiast w przypadku, gdy rozpoznana była tylko jedna moda, to waga tego parametru została ustalona na zero. Podobnie został rozwiązany problem parametru Qmax+/Qmax-. Defekt 4 ma zwykle zerową wartość tego parametru, co oznacza brak wyładowań niezupełnych w dodatniej połowie sinusoidy napięcia. Jednak zauważono, że sporadycznie takie wyładowania mogły się pojawić w obu połowach sinusoidy napięcia. Możliwość tę uwzględniono w ten sposób, że waga parametru Qmax+/Qmax- została ustalona na 100 % wtedy, gdy wartość tego parametru jest zerowa. Jeśli jednak wartość tego parametru była różna od zera to jego waga zostanie ustalona na zero. Na komentarz jeszcze zasługuje wartość parametru Qmax+/Qmaxdla defektu trzeciego. Została ona ustalona na więcej niż 12,4. Wynika ona z tego, że mikrowyładowania między stykami w badanych komorach gaszeniowych były rejestrowane przede wszystkim w dodatniej połowie sinusoidy napięcia. Jednak czasami były rejestrowane pojedyncze impulsy w ujemnej części sinusoidy napięcia co implikowało zmniejszeniem wartości Qmax+/Qmax- z nieskończoności do kilkudziesięciu lub kilkunastu. Wartość tego parametru równa 12,4 jest najmniejszą zarejestrowaną wartością podczas wszystkich pomiarów. Tablica z ostateczną zawartością odcisku palca przedstawiona jest w Załączniku 4. Na podstawie tej tablicy napisano program do identyfikacji defektów. Okno startowe programu Identyfikacja defektów [46] jest pokazane na rysunku

4 Rys Okno startowe programu Identyfikacja defektów [46] W celu zidentyfikowania defektu należy przejść następujące kroki: - zbadanie zdefektowanej komory gaszeniowej przy użyciu WAA oraz karty przetwornika A/C i uzyskanie plików wynikowych z obu urządzeń, - wprowadzenie plików wynikowych do programu Statys i AnSin oraz zapisanie wyników na pliku, - wskazanie programowi Identyfikacja defektów położenia pliku wynikowego z programu Statys oraz wskazanie obliczonej przez AnSin wartości w polu wyboru, - uruchomienie procedury identyfikacji defektów. Po wykonaniu obliczeń program generuje okno końcowe z hipotezą końcową rozpoznania defektów. Okno to, wraz z przykładowym rozwiązaniem, przedstawione jest na rysunku 7.3. Program rozpoznaje defekt wypisując w procentach stopień rozpoznania. Stopień rozpoznania jest liczony według wzoru: R n = ( r w ) n n w n, (7.1) gdzie: R n stopień rozpoznania defektu numer n, r n rozpoznanie parametru dla defektu n; gdy parametr nieznanego defektu zawiera się w zakresie wyznaczonym przez średnią arytmetyczną parametru i jej odchylenie standardowe, to r n =1, w przeciwnym wypadku r n =0, 72

5 w n suma wartości wszystkich wag odcisku palca dla defektu n, (r n w n ) suma wartości wszystkich iloczynów rozpoznania parametru i wagi dla defektu n, Stopień rozpoznania dla poszczególnych defektów nie musi po zsumowaniu wynosić 100%, gdyż są to wartości niezależne od siebie. Rys Okno programu Identyfikacja defektów z przykładowym wynikiem rozpoznania [46] Program Identyfikacja defektów może również pokazać szczegóły rozpoznania wszystkich defektów. Jest to przedstawione na rysunku 7.4. wraz z przykładowymi wartościami. 73

6 Rys Przykładowy stopień rozpoznania poszczególnych defektów, wygenerowany przez program Identyfikacja defektów [46] 74

8. Wyniki procesu identyfikacji

8. Wyniki procesu identyfikacji 8. Wyniki procesu identyfikacji Podczas badań laboratoryjnych zostały wyodrębnione serie pomiarowe, które nie były brane pod uwagę w trakcie tworzenia odcisku palca defektów. Następnie serie te zostały

Bardziej szczegółowo

3. Metody identyfikacji defektów 3.1. Wprowadzenie

3. Metody identyfikacji defektów 3.1. Wprowadzenie 3. Metody identyfikacji defektów 3.1. Wprowadzenie Uzyskanie informacji na temat rodzaju defektu, a co za tym idzie stopnia zagrożenia dla poprawnego działania systemu izolacyjnego, pozwala na podjęcie

Bardziej szczegółowo

Sterowanie wielkością zamówienia w Excelu - cz. 3

Sterowanie wielkością zamówienia w Excelu - cz. 3 Sterowanie wielkością zamówienia w Excelu - cz. 3 21.06.2005 r. 4. Planowanie eksperymentów symulacyjnych Podczas tego etapu ważne jest określenie typu rozkładu badanej charakterystyki. Dzięki tej informacji

Bardziej szczegółowo

OCENA PARAMETRÓW JAKOŚCI ENERGII ELEKTRYCZNEJ DOSTARCZANEJ ODBIORCOM WIEJSKIM NA PODSTAWIE WYNIKÓW BADAŃ

OCENA PARAMETRÓW JAKOŚCI ENERGII ELEKTRYCZNEJ DOSTARCZANEJ ODBIORCOM WIEJSKIM NA PODSTAWIE WYNIKÓW BADAŃ OCENA PARAMETRÓW JAKOŚCI ENERGII ELEKTRYCZNEJ DOSTARCZANEJ ODBIORCOM WIEJSKIM NA PODSTAWIE WYNIKÓW BADAŃ Jerzy Niebrzydowski, Grzegorz Hołdyński Politechnika Białostocka Streszczenie W referacie przedstawiono

Bardziej szczegółowo

Często spotykany jest również asymetryczny rozkład gamma (Г), opisany za pomocą parametru skali θ i parametru kształtu k:

Często spotykany jest również asymetryczny rozkład gamma (Г), opisany za pomocą parametru skali θ i parametru kształtu k: Statystyczne opracowanie danych pomiarowych W praktyce pomiarowej często spotykamy się z pomiarami wielokrotnymi, gdy podczas pomiaru błędy pomiarowe (szumy miernika, czynniki zewnętrzne) są na tyle duże,

Bardziej szczegółowo

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

Prognozowanie na podstawie modelu ekonometrycznego

Prognozowanie na podstawie modelu ekonometrycznego Prognozowanie na podstawie modelu ekonometrycznego Przykład. Firma usługowa świadcząca usługi doradcze w ostatnich kwartałach (t) odnotowała wynik finansowy (yt - tys. zł), obsługując liczbę klientów (x1t)

Bardziej szczegółowo

Tom 4 Prace analityczne

Tom 4 Prace analityczne Diagnostyka Stanu Nawierzchni - DSN Generalna Dyrekcja Dróg Krajowych i Autostrad Warszawa, 15 czerwca 2012 Historia dokumentu Nazwa dokumentu Nazwa pliku Tom 4 Prace analityczne,, Diagnostyka Stanu Nawierzchni

Bardziej szczegółowo

-> Średnia arytmetyczna (5) (4) ->Kwartyl dolny, mediana, kwartyl górny, moda - analogicznie jak

-> Średnia arytmetyczna (5) (4) ->Kwartyl dolny, mediana, kwartyl górny, moda - analogicznie jak Wzory dla szeregu szczegółowego: Wzory dla szeregu rozdzielczego punktowego: ->Średnia arytmetyczna ważona -> Średnia arytmetyczna (5) ->Średnia harmoniczna (1) ->Średnia harmoniczna (6) (2) ->Średnia

Bardziej szczegółowo

Testowanie hipotez statystycznych.

Testowanie hipotez statystycznych. Statystyka Wykład 10 Wrocław, 22 grudnia 2011 Testowanie hipotez statystycznych Definicja. Hipotezą statystyczną nazywamy stwierdzenie dotyczące parametrów populacji. Definicja. Dwie komplementarne w problemie

Bardziej szczegółowo

W1. Wprowadzenie. Statystyka opisowa

W1. Wprowadzenie. Statystyka opisowa W1. Wprowadzenie. Statystyka opisowa dr hab. Jerzy Nakielski Zakład Biofizyki i Morfogenezy Roślin Plan wykładu: 1. O co chodzi w statystyce 2. Etapy badania statystycznego 3. Zmienna losowa, rozkład

Bardziej szczegółowo

RÓWNOWAŻNOŚĆ METOD BADAWCZYCH

RÓWNOWAŻNOŚĆ METOD BADAWCZYCH RÓWNOWAŻNOŚĆ METOD BADAWCZYCH Piotr Konieczka Katedra Chemii Analitycznej Wydział Chemiczny Politechnika Gdańska Równoważność metod??? 2 Zgodność wyników analitycznych otrzymanych z wykorzystaniem porównywanych

Bardziej szczegółowo

Statystyka. Opisowa analiza zjawisk masowych

Statystyka. Opisowa analiza zjawisk masowych Statystyka Opisowa analiza zjawisk masowych Typy rozkładów empirycznych jednej zmiennej Rozkładem empirycznym zmiennej nazywamy przyporządkowanie kolejnym wartościom zmiennej (x i ) odpowiadających im

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela Wykład 3: Analiza struktury zbiorowości statystycznej. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.

Statystyka w pracy badawczej nauczyciela Wykład 3: Analiza struktury zbiorowości statystycznej. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin. Statystyka w pracy badawczej nauczyciela Wykład 3: Analiza struktury zbiorowości statystycznej dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Zadania analityczne (1) Analiza przewiduje badanie podobieństw

Bardziej szczegółowo

Pozyskiwanie wiedzy z danych

Pozyskiwanie wiedzy z danych Pozyskiwanie wiedzy z danych dr Agnieszka Goroncy Wydział Matematyki i Informatyki UMK PROJEKT WSPÓŁFINANSOWANY ZE ŚRODKÓW UNII EUROPEJSKIEJ W RAMACH EUROPEJSKIEGO FUNDUSZU SPOŁECZNEGO Pozyskiwanie wiedzy

Bardziej szczegółowo

Charakterystyka mierników do badania oświetlenia Obiektywne badania warunków oświetlenia opierają się na wynikach pomiarów parametrów świetlnych. Podobnie jak każdy pomiar, również te pomiary, obarczone

Bardziej szczegółowo

Korzystanie z podstawowych rozkładów prawdopodobieństwa (tablice i arkusze kalkulacyjne)

Korzystanie z podstawowych rozkładów prawdopodobieństwa (tablice i arkusze kalkulacyjne) Korzystanie z podstawowych rozkładów prawdopodobieństwa (tablice i arkusze kalkulacyjne) Przygotował: Dr inż. Wojciech Artichowicz Katedra Hydrotechniki PG Zima 2014/15 1 TABLICE ROZKŁADÓW... 3 ROZKŁAD

Bardziej szczegółowo

Ćw. 8: POMIARY Z WYKORZYSTANIE OSCYLOSKOPU Ocena: Podpis prowadzącego: Uwagi:

Ćw. 8: POMIARY Z WYKORZYSTANIE OSCYLOSKOPU Ocena: Podpis prowadzącego: Uwagi: Wydział: EAIiE Imię i nazwisko (e mail): Rok: Grupa: Zespół: Data wykonania: LABORATORIUM METROLOGII Ćw. 8: POMIARY Z WYKORZYSTANIE OSCYLOSKOPU Ocena: Podpis prowadzącego: Uwagi: Wstęp Celem ćwiczenia

Bardziej szczegółowo

Inteligentna analiza danych

Inteligentna analiza danych Numer indeksu 150946 Michał Moroz Imię i nazwisko Numer indeksu 150875 Grzegorz Graczyk Imię i nazwisko kierunek: Informatyka rok akademicki: 2010/2011 Inteligentna analiza danych Ćwiczenie I Wskaźniki

Bardziej szczegółowo

Skrypt 29. Statystyka. Opracowanie L2

Skrypt 29. Statystyka. Opracowanie L2 Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 29 Statystyka 1. Przypomnienie

Bardziej szczegółowo

Analiza Statystyczna

Analiza Statystyczna Lekcja 5. Strona 1 z 12 Analiza Statystyczna Do analizy statystycznej wykorzystać można wbudowany w MS Excel pakiet Analysis Toolpak. Jest on instalowany w programie Excel jako pakiet dodatkowy. Oznacza

Bardziej szczegółowo

Po co nam charakterystyki liczbowe? Katarzyna Lubnauer 34

Po co nam charakterystyki liczbowe? Katarzyna Lubnauer 34 Po co nam charakterystyki liczbowe? Katarzyna Lubnauer 34 Def. Charakterystyki liczbowe to wielkości wyznaczone na podstawie danych statystycznych, charakteryzujące własności badanej cechy. Klasyfikacja

Bardziej szczegółowo

Testowanie hipotez statystycznych.

Testowanie hipotez statystycznych. Bioinformatyka Wykład 9 Wrocław, 5 grudnia 2011 Temat. Test zgodności χ 2 Pearsona. Statystyka χ 2 Pearsona Rozpatrzmy ciąg niezależnych zmiennych losowych X 1,..., X n o jednakowym dyskretnym rozkładzie

Bardziej szczegółowo

ESTYMACJA PRZEDZIAŁOWA WYBRANYCH PARAMETRÓW

ESTYMACJA PRZEDZIAŁOWA WYBRANYCH PARAMETRÓW ESTYMACJA PRZEDZIAŁOWA WYBRANYCH PARAMETRÓW POPULACJI Szkic wykładu Wprowadzenie 1 Wprowadzenie 2 3 4 Przypomnienie dotychczasowych rozważań Przedziałem ufności nazywamy przedział losowy, o którym przypuszczamy

Bardziej szczegółowo

Tworzenie tabeli przestawnej krok po kroku

Tworzenie tabeli przestawnej krok po kroku Tabele przestawne Arkusz kalkulacyjny jest narzędziem przeznaczonym do zapisu, przechowywania i analizy danych. Jeśli w arkuszu zamierzamy gromadzić dane o osobach i cechach je opisujących (np. skąd pochodzą,

Bardziej szczegółowo

Rozkład normalny, niepewność standardowa typu A

Rozkład normalny, niepewność standardowa typu A Podstawy Metrologii i Technik Eksperymentu Laboratorium Rozkład normalny, niepewność standardowa typu A Instrukcja do ćwiczenia nr 1 Zakład Miernictwa i Ochrony Atmosfery Wrocław, listopad 2010 r. Podstawy

Bardziej szczegółowo

Wykład 4: Statystyki opisowe (część 1)

Wykład 4: Statystyki opisowe (część 1) Wykład 4: Statystyki opisowe (część 1) Wprowadzenie W przypadku danych mających charakter liczbowy do ich charakterystyki można wykorzystać tak zwane STATYSTYKI OPISOWE. Za pomocą statystyk opisowych można

Bardziej szczegółowo

OBLICZENIE PRZEPŁYWÓW MAKSYMALNYCH ROCZNYCH O OKREŚLONYM PRAWDOPODOBIEŃSTWIE PRZEWYŻSZENIA. z wykorzystaniem programu obliczeniowego Q maxp

OBLICZENIE PRZEPŁYWÓW MAKSYMALNYCH ROCZNYCH O OKREŚLONYM PRAWDOPODOBIEŃSTWIE PRZEWYŻSZENIA. z wykorzystaniem programu obliczeniowego Q maxp tel.: +48 662 635 712 Liczba stron: 15 Data: 20.07.2010r OBLICZENIE PRZEPŁYWÓW MAKSYMALNYCH ROCZNYCH O OKREŚLONYM PRAWDOPODOBIEŃSTWIE PRZEWYŻSZENIA z wykorzystaniem programu obliczeniowego Q maxp DŁUGIE

Bardziej szczegółowo

Narodowe Centrum Badań Jądrowych Dział Edukacji i Szkoleń ul. Andrzeja Sołtana 7, Otwock-Świerk

Narodowe Centrum Badań Jądrowych Dział Edukacji i Szkoleń ul. Andrzeja Sołtana 7, Otwock-Świerk Narodowe Centrum Badań Jądrowych Dział Edukacji i Szkoleń ul. Andrzeja Sołtana 7, 05-400 Otwock-Świerk ĆWICZENIE L A B O R A T O R I U M F I Z Y K I A T O M O W E J I J Ą D R O W E J Zastosowanie pojęć

Bardziej szczegółowo

Szkoła z przyszłością. Zastosowanie pojęć analizy statystycznej do opracowania pomiarów promieniowania jonizującego

Szkoła z przyszłością. Zastosowanie pojęć analizy statystycznej do opracowania pomiarów promieniowania jonizującego Szkoła z przyszłością szkolenie współfinansowane przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Narodowe Centrum Badań Jądrowych, ul. Andrzeja Sołtana 7, 05-400 Otwock-Świerk ĆWICZENIE

Bardziej szczegółowo

MIARY KLASYCZNE Miary opisujące rozkład badanej cechy w zbiorowości, które obliczamy na podstawie wszystkich zaobserwowanych wartości cechy

MIARY KLASYCZNE Miary opisujące rozkład badanej cechy w zbiorowości, które obliczamy na podstawie wszystkich zaobserwowanych wartości cechy MIARY POŁOŻENIA Opisują średni lub typowy poziom wartości cechy. Określają tą wartość cechy, wokół której skupiają się wszystkie pozostałe wartości badanej cechy. Wśród nich można wyróżnić miary tendencji

Bardziej szczegółowo

Wskaźnik asymetrii Jeżeli: rozkład jest symetryczny, to = 0, rozkład jest asymetryczny lewostronnie, to < 0. Kwartylowy wskaźnik asymetrii

Wskaźnik asymetrii Jeżeli: rozkład jest symetryczny, to = 0, rozkład jest asymetryczny lewostronnie, to < 0. Kwartylowy wskaźnik asymetrii Miary asymetrii Miary asymetrii (skośności) określają kierunek rozkładu cech zmiennych w zbiorowości (rozkład może być symetryczny lub asymetryczny lewostronnie lub prawostronnie) oraz stopień odchylenia

Bardziej szczegółowo

Wprowadzenie 2010-10-20

Wprowadzenie 2010-10-20 PODSTAWY STATYSTYKI Dr hab. inż. Piotr Konieczka piotr.konieczka@pg.gda.pl 1 Wprowadzenie Wynik analityczny to efekt przeprowadzonego pomiaru(ów). Pomiar to zatem narzędzie wykorzystywane w celu uzyskania

Bardziej szczegółowo

MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ

MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ Opracowała: Milena Suliga Wszystkie pliki pomocnicze wymienione w treści

Bardziej szczegółowo

Opisowa analiza struktury zjawisk statystycznych

Opisowa analiza struktury zjawisk statystycznych Statystyka Opisowa z Demografią oraz Biostatystyka Opisowa analiza struktury zjawisk statystycznych Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2

Bardziej szczegółowo

Statystyka opisowa. Robert Pietrzykowski.

Statystyka opisowa. Robert Pietrzykowski. Statystyka opisowa Robert Pietrzykowski email: robert_pietrzykowski@sggw.pl www.ekonometria.info 2 Na dziś Sprawy bieżące Przypominam, że 14.11.2015 pierwszy sprawdzian Konsultacje Sobota 9:00 10:00 pok.

Bardziej szczegółowo

Porównanie generatorów liczb losowych wykorzystywanych w arkuszach kalkulacyjnych

Porównanie generatorów liczb losowych wykorzystywanych w arkuszach kalkulacyjnych dr Piotr Sulewski POMORSKA AKADEMIA PEDAGOGICZNA W SŁUPSKU KATEDRA INFORMATYKI I STATYSTYKI Porównanie generatorów liczb losowych wykorzystywanych w arkuszach kalkulacyjnych Wprowadzenie Obecnie bardzo

Bardziej szczegółowo

Ćw. 8: OCENA DOKŁADNOŚCI PRZYRZĄDÓW POMIAROWYCH

Ćw. 8: OCENA DOKŁADNOŚCI PRZYRZĄDÓW POMIAROWYCH Ćw. 8: OCENA DOKŁADNOŚCI PRZYRZĄDÓW POMIAROWYCH I. Cel ćwiczenia Celem ćwiczenia jest poznanie zasad sprawdzania dokładności wskazań użytkowych przyrządów pomiarowych analogowych i cyfrowych oraz praktyczne

Bardziej szczegółowo

Testowanie hipotez statystycznych.

Testowanie hipotez statystycznych. Bioinformatyka Wykład 4 Wrocław, 17 października 2011 Temat. Weryfikacja hipotez statystycznych dotyczących wartości oczekiwanej w dwóch populacjach o rozkładach normalnych. Model 3. Porównanie średnich

Bardziej szczegółowo

Odchudzamy serię danych, czyli jak wykryć i usunąć wyniki obarczone błędami grubymi

Odchudzamy serię danych, czyli jak wykryć i usunąć wyniki obarczone błędami grubymi Odchudzamy serię danych, czyli jak wykryć i usunąć wyniki obarczone błędami grubymi Piotr Konieczka Katedra Chemii Analitycznej Wydział Chemiczny Politechnika Gdańska D syst D śr m 1 3 5 2 4 6 śr j D 1

Bardziej szczegółowo

5. Badania eksperymentalne

5. Badania eksperymentalne 5. Badania eksperymentalne 5.1. Obiekt badań Obiektem badań była komora gaszeniowa wyłącznika próżniowego średniego napięcia typu KG 12166A, produkcji Zakładów Elektronowych LAMINA w Piasecznie (fotografia

Bardziej szczegółowo

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH Dr Benedykt R. Jany I Pracownia Fizyczna Ochrona Środowiska grupa F1 Rodzaje Pomiarów Pomiar bezpośredni - bezpośrednio

Bardziej szczegółowo

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI ROZKŁAD EMPIRYCZNY

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI ROZKŁAD EMPIRYCZNY WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI ROZKŁAD EMPIRYCZNY Liczebności i częstości Liczebność liczba osób/respondentów/badanych, którzy udzielili tej konkretnej odpowiedzi. Podawana w osobach. Częstość odsetek,

Bardziej szczegółowo

Wykład 1. Podstawowe pojęcia Metody opisowe w analizie rozkładu cechy

Wykład 1. Podstawowe pojęcia Metody opisowe w analizie rozkładu cechy Wykład Podstawowe pojęcia Metody opisowe w analizie rozkładu cechy Zbiorowość statystyczna - zbiór elementów lub wyników jakiegoś procesu powiązanych ze sobą logicznie (tzn. posiadających wspólne cechy

Bardziej szczegółowo

Plan wykładu. Statystyka opisowa. Statystyka matematyczna. Dane statystyczne miary położenia miary rozproszenia miary asymetrii

Plan wykładu. Statystyka opisowa. Statystyka matematyczna. Dane statystyczne miary położenia miary rozproszenia miary asymetrii Plan wykładu Statystyka opisowa Dane statystyczne miary położenia miary rozproszenia miary asymetrii Statystyka matematyczna Podstawy estymacji Testowanie hipotez statystycznych Żródła Korzystałam z ksiażek:

Bardziej szczegółowo

Instytut Fizyki Politechniki Łódzkiej Laboratorium Metod Analizy Danych Doświadczalnych Ćwiczenie 3 Generator liczb losowych o rozkładzie Rayleigha.

Instytut Fizyki Politechniki Łódzkiej Laboratorium Metod Analizy Danych Doświadczalnych Ćwiczenie 3 Generator liczb losowych o rozkładzie Rayleigha. Instytut Fizyki Politechniki Łódzkiej Laboratorium Metod Analizy Danych Doświadczalnych Generator liczb losowych o rozkładzie Rayleigha. Generator liczb losowych o rozkładzie Rayleigha. 1. Cel ćwiczenia

Bardziej szczegółowo

4. Ultradźwięki Instrukcja

4. Ultradźwięki Instrukcja 4. Ultradźwięki Instrukcja 1. Cel ćwiczenia Celem ćwiczenia jest poznanie właściwości fal ultradźwiękowych i ich wykorzystania w badaniach defektoskopowych. 2. Układ pomiarowy Układ pomiarowy składa się

Bardziej szczegółowo

Projektowanie systemów pomiarowych

Projektowanie systemów pomiarowych Projektowanie systemów pomiarowych 03 Konstrukcja mierników analogowych Zasada działania mierników cyfrowych Przetworniki pomiarowe wielkości elektrycznych 1 Analogowe przyrządy pomiarowe Podział ze względu

Bardziej szczegółowo

Wymagania egzaminacyjne z matematyki. Klasa 3C. MATeMATyka. Nowa Era. Klasa 3

Wymagania egzaminacyjne z matematyki. Klasa 3C. MATeMATyka. Nowa Era. Klasa 3 Wymagania egzaminacyjne z matematyki. lasa 3C. MATeMATyka. Nowa Era. y są ze sobą ściśle powiązane ( + P + R + D + W), stanowiąc ocenę szkolną, i tak: ocenę dopuszczającą (2) otrzymuje uczeń, który spełnił

Bardziej szczegółowo

1. Opis tabelaryczny. 2. Graficzna prezentacja wyników. Do technik statystyki opisowej można zaliczyć:

1. Opis tabelaryczny. 2. Graficzna prezentacja wyników. Do technik statystyki opisowej można zaliczyć: Wprowadzenie Statystyka opisowa to dział statystyki zajmujący się metodami opisu danych statystycznych (np. środowiskowych) uzyskanych podczas badania statystycznego (np. badań terenowych, laboratoryjnych).

Bardziej szczegółowo

Teoria błędów. Wszystkie wartości wielkości fizycznych obarczone są pewnym błędem.

Teoria błędów. Wszystkie wartości wielkości fizycznych obarczone są pewnym błędem. Teoria błędów Wskutek niedoskonałości przyrządów, jak również niedoskonałości organów zmysłów wszystkie pomiary są dokonywane z określonym stopniem dokładności. Nie otrzymujemy prawidłowych wartości mierzonej

Bardziej szczegółowo

Kolokwium ze statystyki matematycznej

Kolokwium ze statystyki matematycznej Kolokwium ze statystyki matematycznej 28.05.2011 Zadanie 1 Niech X będzie zmienną losową z rozkładu o gęstości dla, gdzie 0 jest nieznanym parametrem. Na podstawie pojedynczej obserwacji weryfikujemy hipotezę

Bardziej szczegółowo

7.4 Automatyczne stawianie prognoz

7.4 Automatyczne stawianie prognoz szeregów czasowych za pomocą pakietu SPSS Następnie korzystamy z menu DANE WYBIERZ OBSERWACJE i wybieramy opcję WSZYSTKIE OBSERWACJE (wówczas wszystkie obserwacje są aktywne). Wreszcie wybieramy z menu

Bardziej szczegółowo

Edytor materiału nauczania

Edytor materiału nauczania Edytor materiału nauczania I. Uruchomienie modułu zarządzania rozkładami planów nauczania... 2 II. Opuszczanie elektronicznej biblioteki rozkładów... 5 III. Wyszukiwanie rozkładu materiałów... 6 IV. Modyfikowanie

Bardziej szczegółowo

Rozpoznawanie obrazów

Rozpoznawanie obrazów Rozpoznawanie obrazów Laboratorium Python Zadanie nr 1 Regresja liniowa autorzy: A. Gonczarek, J.M. Tomczak, S. Zaręba, M. Zięba, J. Kaczmar Cel zadania Celem zadania jest implementacja liniowego zadania

Bardziej szczegółowo

UWAGA. Wszystkie wyniki zapisywać na dysku Dane E: Program i przebieg ćwiczenia:

UWAGA. Wszystkie wyniki zapisywać na dysku Dane E: Program i przebieg ćwiczenia: Cel ćwiczenia: Zapoznanie się z. metodami badania i analitycznego wyznaczania parametrów dynamicznych obiektów rzeczywistych na przykładzie mikrotermostatu oraz z metodami symulacyjnymi umożliwiającymi

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO. Wykład 2

STATYSTYKA I DOŚWIADCZALNICTWO. Wykład 2 STATYSTYKA I DOŚWIADCZALNICTWO Wykład Parametry przedziałowe rozkładów ciągłych określane na podstawie próby (przedziały ufności) Przedział ufności dla średniej s X t( α;n 1),X + t( α;n 1) n s n t (α;

Bardziej szczegółowo

Wykład 3 Hipotezy statystyczne

Wykład 3 Hipotezy statystyczne Wykład 3 Hipotezy statystyczne Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu obserwowanej zmiennej losowej (cechy populacji generalnej) Hipoteza zerowa (H 0 ) jest hipoteza

Bardziej szczegółowo

Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej

Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Politechnika Białostocka Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Instrukcja do zajęć laboratoryjnych z przedmiotu: Przetwarzanie Sygnałów Kod: TS1A400027 Temat ćwiczenia:

Bardziej szczegółowo

Raport pochodzi z portalu

Raport pochodzi z portalu B3.1 Wartość dodana Analiza szczegółowa obszaru B3 rozpoczyna się od oceny sektorów/sekcji/działów gospodarki regionu pod względem spełnienia podstawowego kryterium wzrostu i innowacyjności. Pierwszym

Bardziej szczegółowo

Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej

Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Politechnika Białostocka Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Instrukcja do zajęć laboratoryjnych z przedmiotu: Przetwarzanie Sygnałów Kod: TS1A400027 Temat ćwiczenia:

Bardziej szczegółowo

Porównaj płace pracowników obu zakładów, dokonując kompleksowej analizy struktury. Zastanów się, w którym zakładzie jest korzystniej pracować?

Porównaj płace pracowników obu zakładów, dokonując kompleksowej analizy struktury. Zastanów się, w którym zakładzie jest korzystniej pracować? 1 Zadanie 1.1 W dwóch zakładach produkcyjnych Złomex I i Złomex II, należących do tego samego przedsiębiorstwa Złomowanie na zawołanie w ostatnim miesiącu następująco kształtowały się wynagrodzenia pracowników.

Bardziej szczegółowo

Licznik rewersyjny MD100 rev. 2.48

Licznik rewersyjny MD100 rev. 2.48 Licznik rewersyjny MD100 rev. 2.48 Instrukcja obsługi programu PPH WObit mgr inż. Witold Ober 61-474 Poznań, ul. Gruszkowa 4 tel.061/8350-620, -800 fax. 061/8350704 e-mail: wobit@wobit.com.pl Instrukcja

Bardziej szczegółowo

WYZNACZANIE NIEPEWNOŚCI POMIARU METODAMI SYMULACYJNYMI

WYZNACZANIE NIEPEWNOŚCI POMIARU METODAMI SYMULACYJNYMI WYZNACZANIE NIEPEWNOŚCI POMIARU METODAMI SYMULACYJNYMI Stefan WÓJTOWICZ, Katarzyna BIERNAT ZAKŁAD METROLOGII I BADAŃ NIENISZCZĄCYCH INSTYTUT ELEKTROTECHNIKI ul. Pożaryskiego 8, 04-703 Warszawa tel. (0)

Bardziej szczegółowo

Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki

Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Spis treści I. Wzory ogólne... 2 1. Średnia arytmetyczna:... 2 2. Rozstęp:... 2 3. Kwantyle:... 2 4. Wariancja:... 2 5. Odchylenie standardowe:...

Bardziej szczegółowo

VI WYKŁAD STATYSTYKA. 9/04/2014 B8 sala 0.10B Godz. 15:15

VI WYKŁAD STATYSTYKA. 9/04/2014 B8 sala 0.10B Godz. 15:15 VI WYKŁAD STATYSTYKA 9/04/2014 B8 sala 0.10B Godz. 15:15 WYKŁAD 6 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI Weryfikacja hipotez ( błędy I i II rodzaju, poziom istotności, zasady

Bardziej szczegółowo

Klasa 6. Liczby dodatnie i liczby ujemne

Klasa 6. Liczby dodatnie i liczby ujemne Klasa 6 Liczby dodatnie i liczby ujemne gr A str 1/3 imię i nazwisko klasa data 1 Wyobraź sobie, że na osi liczbowej zaznaczono liczby: 6, 7, 1, 3, 2, 1, 0, 3, 4 Ile z nich znajduje się po lewej stronie

Bardziej szczegółowo

Wykład 2. Statystyka opisowa - Miary rozkładu: Miary położenia

Wykład 2. Statystyka opisowa - Miary rozkładu: Miary położenia Wykład 2 Statystyka opisowa - Miary rozkładu: Miary położenia Podział miar Miary położenia (measures of location): 1. Miary tendencji centralnej (measures of central tendency, averages): Średnia arytmetyczna

Bardziej szczegółowo

Zbiór liczb rzeczywistych, to zbiór wszystkich liczb - wymiernych i niewymiernych. Zbiór liczb rzeczywistych oznaczamy symbolem R.

Zbiór liczb rzeczywistych, to zbiór wszystkich liczb - wymiernych i niewymiernych. Zbiór liczb rzeczywistych oznaczamy symbolem R. Zbiór liczb rzeczywistych, to zbiór wszystkich liczb - wymiernych i niewymiernych. Zbiór liczb rzeczywistych oznaczamy symbolem R. Liczby naturalne - to liczby całkowite, dodatnie: 1,2,3,4,5,6,... Czasami

Bardziej szczegółowo

INFORMATYKA W CHEMII Dr Piotr Szczepański

INFORMATYKA W CHEMII Dr Piotr Szczepański INFORMATYKA W CHEMII Dr Piotr Szczepański Katedra Chemii Fizycznej i Fizykochemii Polimerów WPROWADZENIE DO STATYSTYCZNEJ OCENY WYNIKÓW DOŚWIADCZEŃ 1. BŁĄD I STATYSTYKA błąd systematyczny, błąd przypadkowy,

Bardziej szczegółowo

ANALIZA SPRZEDAŻY: - rozproszenia

ANALIZA SPRZEDAŻY: - rozproszenia KOŁO NAUKOWE CONTROLLINGU UNIWERSYTET ZIELONOGÓRSKI ANALIZA SPRZEDAŻY: - rozproszenia - koncentracji - sezonowości Spis treści Wstęp... 3 Analiza rozproszenia sprzedaży... 4 Analiza koncentracji sprzedaży...

Bardziej szczegółowo

LABORATORIUM: ROZDZIELANIE UKŁADÓW HETEROGENICZNYCH ĆWICZENIE 1 - PRZESIEWANIE

LABORATORIUM: ROZDZIELANIE UKŁADÓW HETEROGENICZNYCH ĆWICZENIE 1 - PRZESIEWANIE LABORATORIUM: ROZDZIELANIE UKŁADÓW HETEROGENICZNYCH ĆWICZENIE 1 - PRZESIEWANIE CEL ĆWICZENIA Celem ćwiczenia jest wykonanie analizy sitowej materiału ziarnistego poddanego mieleniu w młynie kulowym oraz

Bardziej szczegółowo

Wskazówki: 1. Proszę wypełnić dwie sąsiadujące komórki zgodne z zasadą ciągu, a następnie zaznaczyć komórki w następujący sposób:

Wskazówki: 1. Proszę wypełnić dwie sąsiadujące komórki zgodne z zasadą ciągu, a następnie zaznaczyć komórki w następujący sposób: Zadaniem tego laboratorium będzie zaznajomienie się z podstawowymi możliwościami wprowadzania, przetwarzania i prezentacji danych z wykorzystaniem Excel 2010. Ms Excel umożliwia wprowadzanie, przetwarzanie

Bardziej szczegółowo

DOKUMENTACJA SYSTEMU ZARZĄDZANIA LABORATORIUM. Procedura szacowania niepewności

DOKUMENTACJA SYSTEMU ZARZĄDZANIA LABORATORIUM. Procedura szacowania niepewności DOKUMENTACJA SYSTEMU ZARZĄDZANIA LABORATORIUM Procedura szacowania niepewności Szacowanie niepewności oznaczania / pomiaru zawartości... metodą... Data Imię i Nazwisko Podpis Opracował Sprawdził Zatwierdził

Bardziej szczegółowo

Miary statystyczne w badaniach pedagogicznych

Miary statystyczne w badaniach pedagogicznych Miary statystyczne w badaniach pedagogicznych Szeregi statystyczne Szczegółowy - gdzie materiał uporządkowany jest rosnąco lub malejąco Rozdzielczy - gdzie poszczególnym wariantom zmiennej przyporządkowane

Bardziej szczegółowo

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie:

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie: ma postać y = ax + b Równanie regresji liniowej By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : xy b = a = b lub x Gdzie: xy = też a = x = ( b ) i to dane empiryczne, a ilość

Bardziej szczegółowo

Zadania z rysowania i dopasowania funkcji

Zadania z rysowania i dopasowania funkcji Spis treści 1 Zadania z rysowania i dopasowania funkcji 1.1 Znajdowanie miejsca zerowego funkcji 1.2 Wczytywanie danych i wykres 1.3 Dopasowywanie krzywej do danych i wykres 1.3.1 Wskazówki Zadania z rysowania

Bardziej szczegółowo

Programowanie w języku C++ Agnieszka Nowak Brzezińska Laboratorium nr 2

Programowanie w języku C++ Agnieszka Nowak Brzezińska Laboratorium nr 2 Programowanie w języku C++ Agnieszka Nowak Brzezińska Laboratorium nr 2 1 program Kontynuujemy program który wczytuje dystans i ilości paliwa zużytego na trasie, ale z kontrolą danych. A więc jeśli coś

Bardziej szczegółowo

A B. 2 5 8 18 2 x x x 5 x x 8 x 18

A B. 2 5 8 18 2 x x x 5 x x 8 x 18 Narzędzia modelowania niezawodności 1 Arkusz kalkulacyjny - jest to program zbudowany na schemacie relacyjnych baz danych. Relacje pomiędzy dwiema (lub więcej) cechami można zapisać na kilka sposobów.

Bardziej szczegółowo

Zagadnienia: równanie soczewki, ogniskowa soczewki, powiększenie, geometryczna konstrukcja obrazu, działanie prostych przyrządów optycznych.

Zagadnienia: równanie soczewki, ogniskowa soczewki, powiększenie, geometryczna konstrukcja obrazu, działanie prostych przyrządów optycznych. msg O 7 - - Temat: Badanie soczewek, wyznaczanie odległości ogniskowej. Zagadnienia: równanie soczewki, ogniskowa soczewki, powiększenie, geometryczna konstrukcja obrazu, działanie prostych przyrządów

Bardziej szczegółowo

Statystyka w analizie i planowaniu eksperymentu

Statystyka w analizie i planowaniu eksperymentu 29 marca 2011 Przestrzeń statystyczna - podstawowe zadania statystyki Zdarzeniom losowym określonym na pewnej przestrzeni zdarzeń elementarnych Ω można zazwyczaj na wiele różnych sposobów przypisać jakieś

Bardziej szczegółowo

Szukanie rozwiązań funkcji uwikłanych (równań nieliniowych)

Szukanie rozwiązań funkcji uwikłanych (równań nieliniowych) Szukanie rozwiązań funkcji uwikłanych (równań nieliniowych) Funkcja uwikłana (równanie nieliniowe) jest to funkcja, która nie jest przedstawiona jawnym przepisem, wzorem wyrażającym zależność wartości

Bardziej szczegółowo

Usługi Informatyczne "SZANSA" - Gabriela Ciszyńska-Matuszek ul. Świerkowa 25, Bielsko-Biała

Usługi Informatyczne SZANSA - Gabriela Ciszyńska-Matuszek ul. Świerkowa 25, Bielsko-Biała Usługi Informatyczne "SZANSA" - Gabriela Ciszyńska-Matuszek ul. Świerkowa 25, 43-305 Bielsko-Biała NIP 937-22-97-52 tel. +48 33 488 89 39 zwcad@zwcad.pl www.zwcad.pl Aplikacja do rysowania wykresów i oznaczania

Bardziej szczegółowo

Regulacja dwupołożeniowa (dwustawna)

Regulacja dwupołożeniowa (dwustawna) Regulacja dwupołożeniowa (dwustawna) I. Wprowadzenie Regulacja dwustawna (dwupołożeniowa) jest często stosowaną metodą regulacji temperatury w urządzeniach grzejnictwa elektrycznego. Polega ona na cyklicznym

Bardziej szczegółowo

1. Opis okna podstawowego programu TPrezenter.

1. Opis okna podstawowego programu TPrezenter. OPIS PROGRAMU TPREZENTER. Program TPrezenter przeznaczony jest do pełnej graficznej prezentacji danych bieżących lub archiwalnych dla systemów serii AL154. Umożliwia wygodną i dokładną analizę na monitorze

Bardziej szczegółowo

Załącznik nr 6 do rozporządzenia Ministra Gospodarki i Pracy ZASADNICZE WYMAGANIA SPECYFICZNE DLA WAG AUTOMATYCZNYCH CZĘŚĆ I. Przepisy ogólne. 1.

Załącznik nr 6 do rozporządzenia Ministra Gospodarki i Pracy ZASADNICZE WYMAGANIA SPECYFICZNE DLA WAG AUTOMATYCZNYCH CZĘŚĆ I. Przepisy ogólne. 1. Załącznik nr 6 do rozporządzenia Ministra Gospodarki i Pracy ZASADNICZE WYMAGANIA SPECYFICZNE DLA WAG AUTOMATYCZNYCH CZĘŚĆ I. Przepisy ogólne. 1. Odpowiednie zasadnicze wymagania i wymagania specyficzne

Bardziej szczegółowo

Statystyka w analizie i planowaniu eksperymentu

Statystyka w analizie i planowaniu eksperymentu 31 marca 2014 Przestrzeń statystyczna - podstawowe zadania statystyki Zdarzeniom losowym określonym na pewnej przestrzeni zdarzeń elementarnych Ω można zazwyczaj na wiele różnych sposobów przypisać jakieś

Bardziej szczegółowo

ODRZUCANIE WYNIKÓW POJEDYNCZYCH POMIARÓW

ODRZUCANIE WYNIKÓW POJEDYNCZYCH POMIARÓW ODRZUCANIE WYNIKÓW OJEDYNCZYCH OMIARÓW W praktyce pomiarowej zdarzają się sytuacje gdy jeden z pomiarów odstaje od pozostałych. Jeżeli wykorzystamy fakt, że wyniki pomiarów są zmienną losową opisywaną

Bardziej szczegółowo

Funkcje Tablicowe podstawy

Funkcje Tablicowe podstawy Funkcje Tablicowe podstawy Funkcje Tablicowe są dość rzadko używane w biznesie, a pomocne przede wszystkim w przypadku zaawansowanych obliczeń matematycznych i statystycznych. Lekcja ta ograniczy się tylko

Bardziej szczegółowo

Sposoby opisu i modelowania zakłóceń kanałowych

Sposoby opisu i modelowania zakłóceń kanałowych INSTYTUT TELEKOMUNIKACJI ZAKŁAD RADIOKOMUNIKACJI Instrukcja laboratoryjna z przedmiotu Podstawy Telekomunikacji Sposoby opisu i modelowania zakłóceń kanałowych Warszawa 2010r. 1. Cel ćwiczeń: Celem ćwiczeń

Bardziej szczegółowo

Jak ciężka jest masa?

Jak ciężka jest masa? "Masa jest nie tylko miarą bezwładności, posiada również ciężar". Co oznacza, że nie tylko wpływa na przyspieszenie pod wpływem siły, ale powoduje, że gdy znajduje się w polu grawitacyjnym Ziemi, doświadcza

Bardziej szczegółowo

Weryfikacja hipotez statystycznych za pomocą testów statystycznych

Weryfikacja hipotez statystycznych za pomocą testów statystycznych Weryfikacja hipotez statystycznych za pomocą testów statystycznych Weryfikacja hipotez statystycznych za pomocą testów stat. Hipoteza statystyczna Dowolne przypuszczenie co do rozkładu populacji generalnej

Bardziej szczegółowo

Typy zmiennych. Zmienne i rekordy. Rodzaje zmiennych. Graficzne reprezentacje danych Statystyki opisowe

Typy zmiennych. Zmienne i rekordy. Rodzaje zmiennych. Graficzne reprezentacje danych Statystyki opisowe Typy zmiennych Graficzne reprezentacje danych Statystyki opisowe Jakościowe charakterystyka przyjmuje kilka możliwych wartości, które definiują klasy Porządkowe: odpowiedzi na pytania w ankiecie ; nigdy,

Bardziej szczegółowo

CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE

CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE Do opisu członów i układów automatyki stosuje się, oprócz transmitancji operatorowej (), tzw. transmitancję widmową. Transmitancję widmową () wyznaczyć można na podstawie

Bardziej szczegółowo

Statystyki: miary opisujące rozkład! np. : średnia, frakcja (procent), odchylenie standardowe, wariancja, mediana itd.

Statystyki: miary opisujące rozkład! np. : średnia, frakcja (procent), odchylenie standardowe, wariancja, mediana itd. Wnioskowanie statystyczne obejmujące metody pozwalające na uogólnianie wyników z próby na nieznane wartości parametrów oraz szacowanie błędów tego uogólnienia. Przewidujemy nieznaną wartości parametru

Bardziej szczegółowo

Ćwiczenie 2 Numeryczna symulacja swobodnego spadku ciała w ośrodku lepkim (Instrukcja obsługi interfejsu użytkownika)

Ćwiczenie 2 Numeryczna symulacja swobodnego spadku ciała w ośrodku lepkim (Instrukcja obsługi interfejsu użytkownika) Ćwiczenie 2 Numeryczna symulacja swobodnego spadku ciała w ośrodku lepkim (Instrukcja obsługi interfejsu użytkownika) 1 1 Cel ćwiczenia Celem ćwiczenia jest rozwiązanie równań ruchu ciała (kuli) w ośrodku

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący

Bardziej szczegółowo

Ćwiczenie: Badanie normalności rozkładu. Wyznaczanie przedziałów ufności.

Ćwiczenie: Badanie normalności rozkładu. Wyznaczanie przedziałów ufności. Ćwiczenie: Badanie normalności rozkładu. Wyznaczanie przedziałów ufności. Badanie normalności rozkładu Shapiro-Wilka: jest on najbardziej zalecanym testem normalności rozkładu. Jednak wskazane jest, aby

Bardziej szczegółowo

Stochastyczne Metody Analizy Danych. PROJEKT: Analiza kluczowych parametrów turbin wiatrowych

Stochastyczne Metody Analizy Danych. PROJEKT: Analiza kluczowych parametrów turbin wiatrowych PROJEKT: Analiza kluczowych parametrów turbin wiatrowych Projekt jest wykonywany z wykorzystaniem pakietu statystycznego STATISTICA. Praca odbywa się w grupach 2-3 osobowych. Aby zaliczyć projekt, należy

Bardziej szczegółowo