STATYSTYKA MATEMATYCZNA dla ZPM I dr inż Krzysztof Bryś wyk lad 1,2 KLASYCZNY RACHUNEK PRAWDOPODOBIEŃSTWA

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "STATYSTYKA MATEMATYCZNA dla ZPM I dr inż Krzysztof Bryś wyk lad 1,2 KLASYCZNY RACHUNEK PRAWDOPODOBIEŃSTWA"

Transkrypt

1 1 STATYSTYKA MATEMATYCZNA dla ZPM I dr inż Krzysztof Bryś wyk lad 1,2 KLASYCZNY RACHUNEK PRAWDOPODOBIEŃSTWA 1. Pojȩcia wstȩpne. Doświadczeniem losowym nazywamy doświadczenie, którego wynik nie jest znany. Posiadamy jedynie informacje o zbiorze możliwych wyników tego doświadczenia. Wynik doświadczenia losowego wykluczaj acy inne możliwe wyniki nazywamy zdarzeniem elementarnym. UWAGA: Zak lada siȩ, że w wyniku doświadczenia losowego zachodzi dok ladnie jedno zdarzenie elementarne. Zbiór wszystkich zdarzeń losowych nazywamy przestrzeni a zdarzeń elementarnych i oznaczamy przez Ω. Zdarzeniem losowym nazywamy dowolny wynik doświadczenia losowego. Każde zdarzenie losowe jest zbiorem zdarzeń elementarnych UWAGA: Jeżeli Ω jest zbiorem skończonym lub przeliczalnym, to zdarzeniem losowym jest dowolny podzbiór zbioru Ω Zdarzenie nazywamy zdarzeniem niemożliwym. Zdarzenie Ω nazywamy zdarzeniem pewnym. Zdarzenie A = Ω \ A nazywamy zdarzeniem przeciwnym do A. Jeżeli dla dwóch zdarzeń A i B zachodzi A B =, to mówimy, że zdarzenia te wykluczaj a siȩ (s a roz l aczne). Przyk lady. Zdarzenie A = miesi ac kwiecień ma 31 dni jest zdarzeniem niemożliwym. Zdarzenie B = miesi ac kwiecień ma 30 dni jest zdarzeniem pewnym. Zdarzeniem przeciwnym do C = dzisiaj jest niedziela jest zdarzenie C = dzisiaj jest inny dzień tygodnia niż niedziela. Rozważmy teraz przyk lad bardzo prostego doświadczenia losowego. Przyk lad. Rozważmy doświadczenie losowe polegaj ace na jednokrotnym rzucie monet a. Przestrzeń zdarzeń elementarnych sk lada sie z dwóch elementów, zdarzenia ω O polegajacego na wypadniȩciu or la i ω O, które oznacza wypadniȩcie reszki. Wypiszmy wszystkie możliwe podzbiory zbioru Ω (zdarzenia losowe): A 1 = Ω = {ω O, ω R }, A 2 = {ω O }, A 3 = {ω R }, A 4 =. Zdarzenie A 1 polega na wypadniȩciu or la lub reszki. Jest to zdarzenie pewne. Zdarzenie A 4 polegaj ace na niewypadniȩciu ani or la ani reszki nie może zajść w wyniku naszego doświadczenia losowego. Jest to zdarzenie niemożliwe. Zdarzeniem przeciwnym do A 2 - wypad l orze l jest zdarzenie A 3 - wypad la reszka. Zwróćmy uwagȩ na to, że A 2 A 3 = Ω (w wyniku rzutu monet a wypadnie orze l lub reszka) oraz A 2 A 3 = (nie może wypaść jednocześnie orze l i reszka). 2. Klasyczna definicja prawdopodobieństwa. Niech Ω bȩdzie zbiorem skończonym, to znaczy Ω = {ω 1, ω 2..., ω N }. Dla dowolnego zdarzenia

2 2 A Ω takiego, że A = {ω i1, ω i2,..., ω ik }, gdzie i 1, i 2,..., i k prawdopodobieństwa w nastȩpuj acy sposób: {1, 2,... N}, definiuje siȩ funkcjȩ P (A) = P ({ω i1 }) + P ({ω i2 }) P ({ω ik }). W przypadku, gdy zdarzenia elementarne s a jednakowo prawdopodobne, to znaczy P (ω 1 ) = P (ω 2 ) =... = P (ω N ) = 1, otrzymujemy nastȩpuj acy wzór: N P (A) = A Ω = k N liczba zdarzeń elementarnych sprzyjaj acych zdarzeniu A =. liczba wszystkich zdarzeń elementarnych Powyższa definicja prawdopodobieństwa nie jest poprawna w ogólności, gdyż zbiór Ω nie musi być skończony a zdarzenia elementarne nie musz a byċ jednakowo prawdopodobne. 3. Aksjomatyczna definicja prawdopodobieństwa. Niech Ω bȩdzie przestrzeni a zdarzeń elementarnych, Z 2 Ω = P(Ω) zbiorem zdarzeń losowych. Funkcj a prawdopodobieństwa nazywamy funkcjȩ: spe lniaj ac a nastȩpuj ace trzy aksjomaty: P : Z [0, 1] P 1) P (A) 0 dla każdego A Z, P 2) P (Ω) = 1 P 3) jeżeli A 1, A 2,..., A n jest ci agiem zdarzeń roz l acznych (to znaczy A i A j = dla i j), to P ( + i=1 A i ) = + i=1 P (A i ). Wartość funckji P na zbiorze A nazywamy prawdopodobieństwem zdarzenia A W lasności prawdopodobieństwa: 1. P ( ) = Jeśli A B, to P (A) P (B). 3. Dla dowolnego A Ω P (A) Jeśli A B, to P (B \ A) = P (B) P (A). 5. Dla dowolnego A Ω P (A) + P (A) = P (A B) = P (A) + P (B) P (A B). 7. Jeżeli zdarzenia A 1, A 2,..., A n s a parami roz l aczne, to P (A 1 A 2... A n ) = P (A 1 )+P (A 2 ) P (A n ).

3 3 Prawdopodobieństwo warunkowe Prawdopodobieństwo zajścia zdarzenia A pod warunkiem, że zasz lo zdarzenie B: P (A B) = P (A B) P (B) albo Doświadczenia niezależne = dowolny wynik jednego z nich nie wpywa na wynik drugiego. Zdarzenia niezależne = zdarzenia A, B, dla których: P (A B) = P (A) P (B) P (A B) = P (A) lub P (B A) = P (B) Informacja o zajściu jednego z nich nie zmienia szans wyst apienia drugiego.

4 4 ZMIENNA LOSOWA JEDNOWYMIAROWA Intuicyjnie: zmienna, która przyjmuje pewn a wartość liczbow a w wyniku doświadczenia losowego. Formalnie: Funkcja X : Ω R przyporz adkowuj aca każdemu zdarzeniu losowemu pewn a wartość liczbow a Dystrybuanta zmiennej losowej X - funkcja F X : R R zdefiniowana nastȩpuj aco: F (x) = P (X < x) dla każdego x R Zmienna losowa typu skokowego Zmienna X, dla której zbiór wartości przyjmowanych przez t a zmienn a jest skończony lub przeliczalny, tzn W X = {x 1, x 2,..., x n } albo W X = {x 1, x 2,..., x n,...} Rozk lad prawdopodobieństwa: funkcja P, która każdemu punktowi skokowemu x i W X przyporz adkowuje skok prawdopodobieństwa p i = P (X = x i ) w taki sposób, że: 1) dla każdego i : p i > 0 oraz. 2) i p i = 1 Zmienna losowa typu ci ag lego Zmienna X, dla której zbiór wartości przyjmowanych przez t a zmienn a jest przedzia lem liczbowym lub sum a przedzia lów. Rozk lad prawdopodobieństwa: funkcja f zwana gȩstości a prawdopodobieństwa taka, że. 1) dla każdego x R : f(x) 0 oraz 2) + f(x)dx = 1 Podstawowe parametry zmiennej losowej 1. Wartość oczekiwana zmiennej losowej X = liczba E(X) bȩd aca średnia ważon a rozk ladu prawdopodobieństwa przy za lożeniu, że wag a jest prawdopodobieństwo (dla zmiennej losowej typu skokowego) albo środkiem ciȩżkości rozk ladu prawdopodobieństwa przy za lożeniu, że gȩstości a jest funkcja gȩstości prawdopodobieństwa (dla zmiennej losowej typu ci ag lego). 2. Wariancja zmiennej losowej X= D 2 (X) = wartość oczekiwana kwadratu odchylenia zmiennej od jej wartości oczekiwanej - miara średniego odchylenia kwadratowego. 3. Odchylenie standardowe zmiennej losowej X = D(X)= pierwiastek z wariancji - miara średniego odchylenia zmiennej od jej wartości oczekiwanej. 4. Kwantyl rzȩdu p = x p = punkt, w którym skumulowane prawdopodobieństwo (dystrybuanta) osi aga (przekracza) wartość p. mediana=me=kwantyl rzȩdu 1 2

5 5 kwartyl dolny=q 1 =kwantyl rzȩdu 1 4 kwartyl dolny=q 3 =kwantyl rzedu 3 4 i-ty decyl= przedzia l miȩdzy kwantylem rzȩdu (i 1) 0.1 a kwantylem rzȩdu i 0.1 i-ty percentyl= przedzia l miȩdzy kwantylem rzȩdu (i 1) 0.01 a kwantylem rzȩdu i Moda (dominanta; wartośċ modalna) = punkt, w którym funkcja prawdopodobieństwa osi aga najwiȩksz a wartośċ. Podstawowe teoretyczne rozk lady prawdopodobieństwa zmiennej losowej jednowymiarowej Typu skokowego 1. Rozk lad jednopunktowy. Funkcja prawdopodobieństwa : P (X = c) = 1 dla pewnej sta lej c Wartośċ oczekiwana: E(X) = c Wariancja: D 2 (X) = 0 Interpretacja: Rozk lad dowolnej sta lej liczbowej X. 2. Rozk lad dwupunktowy (zerojedynkowy). Funkcja prawdopodobieństwa : P (X = 1) = p, P (X = 0) = q = 1 p Wartośċ oczekiwana: E(X) = p Wariancja: D 2 (X) = p q = p (1 p) Interpretacja: Rozk lad dowolnej zmiennej X, która odpowiada na pewne pytanie albo TAK (X = 1- sukces ) albo NIE (X = 0- porażka ), rozk lad dowolnej cechy zero-jedynkowej (obiekt albo j a posiada (X = 1) albo nie posiada (X = 0). 3. Rozk lad Bernoulliego (dwumianowy) - B(n, p) Schemat doświadczeń Bernoulliego: - n niezależnych doświadczeń, - w każdym doświadczeniu albo sukces z prawdopodobieństwem p albo porażka (z prawdopodobieństwem q = 1 p); Interpretacja: Zmienna losowa X ma rozk lad B(n, p) jeśli mówi o liczbie sukcesów w schemacie n niezależnych doświadczeń Bernoulliego z prawdopodobieństwem sukcesu p w każdym z nich. Jest sum a n niezależnych zmiennych losowych o rozk ladzie zerojedynkowym. ) pk q n k dla k = 0, 1, 2,..., n, q = 1 p. Funkcja prawdopodobieństwa : P (X = k) = ( n k Wartośċ oczekiwana: E(X) = np Wariancja: D 2 (X) = n p q 4. Rozk lad Poissona - Po(λ) Funkcja prawdopodobieństwa : P (X = k) = e λ λk k! dla k = 0, 1, 2,... Wartośċ oczekiwana: E(X) = λ Wariancja: D 2 (X) = λ Interpretacja: Rozk lad graniczny dla rozk laadu B(n, p) przy n +. Dla dostatecznie dużych n, zmienna losowa o rozk ladzie B(n, p) ma w przybliżeniu rozk lad Poissona z parametrem λ = n p. Typu ci ag lego

6 1. Rozk lad jednostajny na przedziale (a; b) - U(a, b) Funkcja gȩstości prawdopodobieństwa : f(x) = { 1 b a, dla a < x < b 0, dla pozosta lych x Wartośċ oczekiwana: E(X) = a+b 2 Wariancja: D 2 (X) = (b a)2 12 Interpretacja Zmienna losowa X ma rozk lad U(a, b) jeśli przyjȩcie przez t a zmienn a dowolnej wartości z przedzia lu (a; b) jest jednakowo prawdopodobne. 2. Rozk lad normalny (Gaussa) - N(m, σ) Funkcja gȩstości prawdopodobieństwa : f(x) = 1 2πσ e (x m)2 2σ 2 dla x R Wartośċ oczekiwana: E(X) = m Wariancja: D 2 (X) = σ 2 Wykresem powyższej funkcji gȩstości prawdopodobieństwa jest krzywa Gaussa Zmienna losowa standaryzowa dla zmiennej losowej o rozk ladzie N(m, σ): X = X m σ ma rozk lad normalny standardowy N(0, 1). Dystrybuanta rozk ladu normalnego standardowego N(0, 1): x 1 Φ(x) = e t2 2 dt dla x R 2π Z parzystości funkcji gȩstości prawdopodobieństwa rozk ladu N(0, 1) wynika, że: Φ( x) = 1 Φ(x). u α - kwantyl rzȩdu α zmiennej losowej o rozk ladzie N(0, 1) (tzn. Φ(u α ) = α) 6 3. Rozk lad chi kwadrat o n stopniach swobody Zmienna losowa χ 2 = X X X 2 n, gdzie X 1, X 2,... X n zmienne o rozk ladzie N(0, 1) ma rozk lad chi-kwadrat o n stopniach swobody Wartośċ oczekiwana: E(χ 2 ) = n Wariancja: D 2 (χ 2 ) = 2n Dla dużych n (n > 40) rozk lad chi-kwadrat o n stopniach swobody można przybliżaċ rozk ladem N(n, 2n). χ 2 (α, n) = kwantyl rzȩdu 1 α zmiennej o rozk ladzie chi-kwadrat o n stopniach swobody 4. Rozk lad t-studenta o n stopniach swobody. Zmienna losowa T = X, gdzie X zmienna losowa o rozk ladzie N(0, 1) a zmienna χ 2 ma rozk lad χ 2 n chi-kwadrat o n stopniach swobody. Wartośċ oczekiwana: E(T ) = 0. Wariancja: D 2 (T ) = n. n 2 Dla dużych n (n > 40) rozk lad t-studenta o n stopniach swobody można przybliżaċ rozk ladem N(0, 1). t(α, n) = kwantyl rzȩdu 1 α zmiennej o rozk ladzie t-studenta o n stopniach swobody. 2

II WYKŁAD STATYSTYKA. 12/03/2014 B8 sala 0.10B Godz. 15:15

II WYKŁAD STATYSTYKA. 12/03/2014 B8 sala 0.10B Godz. 15:15 II WYKŁAD STATYSTYKA 12/03/2014 B8 sala 0.10B Godz. 15:15 WYKŁAD 2 Rachunek prawdopodobieństwa zdarzenia elementarne zdarzenia losowe zmienna losowa skokowa i ciągła prawdopodobieństwo i gęstość prawdopodobieństwa

Bardziej szczegółowo

III. ZMIENNE LOSOWE JEDNOWYMIAROWE

III. ZMIENNE LOSOWE JEDNOWYMIAROWE III. ZMIENNE LOSOWE JEDNOWYMIAROWE.. Zmienna losowa i pojęcie rozkładu prawdopodobieństwa W dotychczas rozpatrywanych przykładach każdemu zdarzeniu była przyporządkowana odpowiednia wartość liczbowa. Ta

Bardziej szczegółowo

MATEMATYKA DYSKRETNA - wyk lad 1 dr inż Krzysztof Bryś. Wprowadzenie

MATEMATYKA DYSKRETNA - wyk lad 1 dr inż Krzysztof Bryś. Wprowadzenie 1 MATEMATYKA DYSKRETNA - wyk lad 1 dr inż Krzysztof Bryś Wprowadzenie Istniej a dwa różne kryteria mówi ace, które narzȩdzia matematyczne należy zaliczyć do matematyki dyskretnej. Pierwsze definiuje matematykȩ

Bardziej szczegółowo

Rozkłady statystyk z próby

Rozkłady statystyk z próby Rozkłady statystyk z próby Rozkłady statystyk z próby Przypuśćmy, że wykonujemy serię doświadczeń polegających na 4 krotnym rzucie symetryczną kostką do gry, obserwując liczbę wyrzuconych oczek Nr kolejny

Bardziej szczegółowo

Zmienna losowa i jej rozkład Dystrybuanta zmiennej losowej Wartość oczekiwana zmiennej losowej

Zmienna losowa i jej rozkład Dystrybuanta zmiennej losowej Wartość oczekiwana zmiennej losowej Zmienna losowa i jej rozkład Dystrybuanta zmiennej losowej Wartość oczekiwana zmiennej losowej c Copyright by Ireneusz Krech ikrech@ap.krakow.pl Instytut Matematyki Uniwersytet Pedagogiczny im. KEN w Krakowie

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 1 i 2

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 1 i 2 STATYSTYKA I DOŚWIADCZALNICTWO Wykład 1 i 2 Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Słowo statystyka pochodzi od łacińskiego słowa status, które oznacza

Bardziej szczegółowo

Statystyka Opisowa z Demografią oraz Biostatystyka. Zmienne losowe. Aleksander Denisiuk. denisjuk@euh-e.edu.pl

Statystyka Opisowa z Demografią oraz Biostatystyka. Zmienne losowe. Aleksander Denisiuk. denisjuk@euh-e.edu.pl Statystyka Opisowa z Demografią oraz Biostatystyka Zmienne losowe Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2 82-300 Elblag oraz Biostatystyka p.

Bardziej szczegółowo

Statystyczna analiza danych

Statystyczna analiza danych Statystyczna analiza danych Marek Ptak 21 października 2013 Marek Ptak Statystyka 21 października 2013 1 / 70 Część I Wstęp Marek Ptak Statystyka 21 października 2013 2 / 70 LITERATURA A. Łomnicki, Wprowadzenie

Bardziej szczegółowo

Przegląd ważniejszych rozkładów

Przegląd ważniejszych rozkładów Przegląd ważniejszych rozkładów Rozkład dwupunktowy P (X = x) = { p dla x = a, 1 p dla x = b, to zmienna losowa X ma rozkład dwupunktowy z parametrem p (0 < p < 1). Rozkład ten pojawia się przy opisie

Bardziej szczegółowo

Zmienne losowe, statystyki próbkowe. Wrocław, 2 marca 2015

Zmienne losowe, statystyki próbkowe. Wrocław, 2 marca 2015 Zmienne losowe, statystyki próbkowe Wrocław, 2 marca 2015 Zasady zaliczenia 2 kolokwia (każde po 20 punktów) projekt (20 punktów) aktywność Zasady zaliczenia 2 kolokwia (każde po 20 punktów) projekt (20

Bardziej szczegółowo

Spis treści 3 SPIS TREŚCI

Spis treści 3 SPIS TREŚCI Spis treści 3 SPIS TREŚCI PRZEDMOWA... 1. WNIOSKOWANIE STATYSTYCZNE JAKO DYSCYPLINA MATEMATYCZNA... Metody statystyczne w analizie i prognozowaniu zjawisk ekonomicznych... Badania statystyczne podstawowe

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA Zadanie 0.1 Zmienna losowa X ma rozkład określony funkcją prawdopodobieństwa: x k 0 4 p k 1/3 1/6 1/ obliczyć EX, D X. (odp. 4/3;

Bardziej szczegółowo

Weryfikacja hipotez statystycznych

Weryfikacja hipotez statystycznych Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta

Bardziej szczegółowo

Mariusz Kaszubowski Katedra Statystyki Wydział Zarządzania i Ekonomii Politechnika Gdańska. Statystyka Mariusz Kaszubowski

Mariusz Kaszubowski Katedra Statystyki Wydział Zarządzania i Ekonomii Politechnika Gdańska. Statystyka Mariusz Kaszubowski Mariusz Kaszubowski Katedra Statystyki Wydział Zarządzania i Ekonomii Politechnika Gdańska Zmienna losowa i jej rozkład Statystyka matematyczna Podstawowe pojęcia Zmienna losowa (skokowa, ciągła) Rozkład

Bardziej szczegółowo

Rozkłady zmiennych losowych

Rozkłady zmiennych losowych Rozkłady zmiennych losowych Wprowadzenie Badamy pewną zbiorowość czyli populację pod względem występowania jakiejś cechy. Pobieramy próbę i na podstawie tej próby wyznaczamy pewne charakterystyki. Jeśli

Bardziej szczegółowo

Rozkład normalny Parametry rozkładu zmiennej losowej Zmienne losowe wielowymiarowe

Rozkład normalny Parametry rozkładu zmiennej losowej Zmienne losowe wielowymiarowe Statystyka i opracowanie danych W4 Rozkład normalny Parametry rozkładu zmiennej losowej Zmienne losowe wielowymiarowe Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Rozkład normalny wykres funkcji gęstości

Bardziej szczegółowo

Diagramy Venna. Uwagi:

Diagramy Venna. Uwagi: Wykład 3: Prawdopodobieństwopodstawowe pojęcia i modele Często modelujemy zmienność używając rachunku prawdopodobieństwa. Prawdopodobieństwo opadów deszczu wynosi 80%. (zinterpretuj) Prawdopodobieństwo

Bardziej szczegółowo

LOGIKA ALGORYTMICZNA

LOGIKA ALGORYTMICZNA LOGIKA ALGORYTMICZNA 0.0. Relacje. Iloczyn kartezjański: A B := (a, b) : a A i b B} (zak ladamy, że (x, y) i (u, v) s a równe wtedy i tylko wtedy gdy x = u i y = v); A n := (x 1,..., x n ) : x i A}; R

Bardziej szczegółowo

Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe

Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe Nierówność Czebyszewa Niech X będzie zmienną losową o skończonej wariancji V ar(x). Wtedy wartość oczekiwana E(X) też jest skończona i

Bardziej szczegółowo

WYKŁAD 2 i 3. Podstawowe pojęcia związane z prawdopodobieństwem. Podstawy teoretyczne. autor: Maciej Zięba. Politechnika Wrocławska

WYKŁAD 2 i 3. Podstawowe pojęcia związane z prawdopodobieństwem. Podstawy teoretyczne. autor: Maciej Zięba. Politechnika Wrocławska Wrocław University of Technology WYKŁAD 2 i 3 Podstawowe pojęcia związane z prawdopodobieństwem. Podstawy teoretyczne autor: Maciej Zięba Politechnika Wrocławska Pojęcie prawdopodobieństwa Prawdopodobieństwo

Bardziej szczegółowo

Zadania o numerze 4 z zestawów licencjat 2014.

Zadania o numerze 4 z zestawów licencjat 2014. Zadania o numerze 4 z zestawów licencjat 2014. W nawiasie przy zadaniu jego występowanie w numerze zestawu Spis treści (Z1, Z22, Z43) Definicja granicy ciągu. Obliczyć granicę:... 3 Definicja granicy ciągu...

Bardziej szczegółowo

Plan wykładu. Statystyka opisowa. Statystyka matematyczna. Dane statystyczne miary położenia miary rozproszenia miary asymetrii

Plan wykładu. Statystyka opisowa. Statystyka matematyczna. Dane statystyczne miary położenia miary rozproszenia miary asymetrii Plan wykładu Statystyka opisowa Dane statystyczne miary położenia miary rozproszenia miary asymetrii Statystyka matematyczna Podstawy estymacji Testowanie hipotez statystycznych Żródła Korzystałam z ksiażek:

Bardziej szczegółowo

Rachunek prawdopodobieństwa - Teoria - Przypomnienie.. A i B są niezależne, gdy P(A B) = P(A)P(B). P(A B i )P(B i )

Rachunek prawdopodobieństwa - Teoria - Przypomnienie.. A i B są niezależne, gdy P(A B) = P(A)P(B). P(A B i )P(B i ) Rachunek prawdopodobieństwa - Teoria - Przypomnienie Podstawy Definicja 1. Schemat klasyczny - wszystkie zdarzenia elementarne są równo prawdopodobne, licząc prawdopodobieństwo liczymy stosunek liczby

Bardziej szczegółowo

Matematyka 2. dr inż. Rajmund Stasiewicz

Matematyka 2. dr inż. Rajmund Stasiewicz Matematyka 2 dr inż. Rajmund Stasiewicz Skala ocen Punkty Ocena 0 50 2,0 51 60 3,0 61 70 3,5 71 80 4,0 81 90 4,5 91-5,0 Zwolnienie z egzaminu Ocena z egzaminu liczba punktów z ćwiczeń - 5 Warunki zaliczenia

Bardziej szczegółowo

b) Niech: - wśród trzech wylosowanych opakowań jest co najwyżej jedno o dawce 15 mg. Wówczas:

b) Niech: - wśród trzech wylosowanych opakowań jest co najwyżej jedno o dawce 15 mg. Wówczas: ROZWIĄZANIA I ODPOWIEDZI Zadanie A1. Można założyć, że przy losowaniu trzech kul jednocześnie kolejność ich wylosowania nie jest istotna. A więc: Ω = 20 3. a) Niech: - wśród trzech wylosowanych opakowań

Bardziej szczegółowo

Probabilistyczne podstawy statystyki matematycznej. Dr inż. Małgorzata Michalcewicz-Kaniowska

Probabilistyczne podstawy statystyki matematycznej. Dr inż. Małgorzata Michalcewicz-Kaniowska Probabilistyczne podstawy statystyki matematycznej Dr inż. Małgorzata Michalcewicz-Kaniowska 1 Zdarzenia losowe, algebra zdarzeń Do podstawowych pojęć w rachunku prawdopodobieństwa zaliczamy: doświadczenie

Bardziej szczegółowo

Elementy rachunku prawdopodobieństwa (M. Skośkiewicz, A. Siejka, K. Walczak, A. Szpakowska)

Elementy rachunku prawdopodobieństwa (M. Skośkiewicz, A. Siejka, K. Walczak, A. Szpakowska) Elementy rachunku prawdopodobieństwa (M. Skośkiewicz, A. Siejka, K. Walczak, A. Szpakowska) Twierdzenie (o mnożeniu) Podstawowe pojęcia i wzory kombinatoryczne. Niech,, będą zbiorami mającymi odpowiednio,,

Bardziej szczegółowo

x x 0.5. x Przykłady do zadania 4.1 :

x x 0.5. x Przykłady do zadania 4.1 : Rachunek prawdopodobieństwa MAP5 Wydział Elektroniki, rok akad. /, sem. letni Wykładowca: dr hab. A. Jurlewicz Przykłady do listy 4: Wartość oczekiwana, wariancja, mediana, kwartyle rozkładu prawdopodobieństwa.

Bardziej szczegółowo

Z Wikipedii, wolnej encyklopedii.

Z Wikipedii, wolnej encyklopedii. Rozkład normalny Rozkład normalny jest niezwykle ważnym rozkładem prawdopodobieństwa w wielu dziedzinach. Nazywa się go także rozkładem Gaussa, w szczególności w fizyce i inżynierii. W zasadzie jest to

Bardziej szczegółowo

Statystyka matematyczna. w zastosowaniach

Statystyka matematyczna. w zastosowaniach Statystyka matematyczna w zastosowaniach Robert Pietrzykowski STATYSTYKA: nauka poświęcona metodom badania (analizowania) zjawisk masowych; polega na systematyzowaniu obserwowanych cech ilościowych i jakościowych

Bardziej szczegółowo

176 Wstȩp do statystyki matematycznej = 0, 346. uczelni zdaje wszystkie egzaminy w pierwszym terminie.

176 Wstȩp do statystyki matematycznej = 0, 346. uczelni zdaje wszystkie egzaminy w pierwszym terminie. 176 Wtȩp do tatytyki matematycznej trści wynika że H o : p 1 przeciwko hipotezie H 3 1: p< 1. Aby zweryfikować tȩ 3 hipotezȩ zatujemy tet dla frekwencji. Wtedy z ob 45 1 150 3 1 3 2 3 150 0 346. Tymczaem

Bardziej szczegółowo

Recenzenci: prof. dr hab. Henryk Domański dr hab. Jarosław Górniak

Recenzenci: prof. dr hab. Henryk Domański dr hab. Jarosław Górniak Recenzenci: prof. dr hab. Henryk Domański dr hab. Jarosław Górniak Redakcja i korekta Bogdan Baran Projekt graficzny okładki Katarzyna Juras Copyright by Wydawnictwo Naukowe Scholar, Warszawa 2011 ISBN

Bardziej szczegółowo

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

Zadania zestaw 1: Zadania zestaw 2

Zadania zestaw 1: Zadania zestaw 2 Zadania zestaw 1: Zadania zestaw 2 Zadania zestaw 3. 1 Rozkład zmiennej losowej skokowej X przedstawia tabela. x i m 0 n p i 0,4 0,3 0,3 a) Wyznacz m i n jeśli: są całkowite, m

Bardziej szczegółowo

STATYSTYKA wykład 5-6

STATYSTYKA wykład 5-6 TATYTYKA wykład 5-6 Twierdzenia graniczne Rozkłady statystyk z próby Wanda Olech Twierdzenia graniczne Jeżeli rozpatrujemy ciąg zmiennych losowych {X ; X ;...; X n }, to zdarza się, że ich rozkłady przy

Bardziej szczegółowo

Bardzo często podejmujemy decyzję, nie wiedząc, co się stanie w przyszłości:

Bardzo często podejmujemy decyzję, nie wiedząc, co się stanie w przyszłości: 1 Prawdopodobieństwo Bardzo często podejmujemy decyzję, nie wiedząc, co się stanie w przyszłości: 1. Czy zainwestować pieniądze na giełdzie? 2. Czy ubezpieczyć laptop przed uszkodzeniami mechanicznymi?

Bardziej szczegółowo

Statystyka matematyczna

Statystyka matematyczna Statystyka matematyczna dla kierunku Zarządzanie na studiach drugiego stopnia Wojciech Kordecki Wyższa Szkoła Handlowa we Wrocławiu Wrocław 2012 Materiał wyłącznie do użytku edukacyjnego. Reprodukcja do

Bardziej szczegółowo

Testowanie hipotez. Hipoteza prosta zawiera jeden element, np. H 0 : θ = 2, hipoteza złożona zawiera więcej niż jeden element, np. H 0 : θ > 4.

Testowanie hipotez. Hipoteza prosta zawiera jeden element, np. H 0 : θ = 2, hipoteza złożona zawiera więcej niż jeden element, np. H 0 : θ > 4. Testowanie hipotez Niech X = (X 1... X n ) będzie próbą losową na przestrzeni X zaś P = {P θ θ Θ} rodziną rozkładów prawdopodobieństwa określonych na przestrzeni próby X. Definicja 1. Hipotezą zerową Θ

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład I: Formalizm teorii prawdopodonieństwa 6 października 2014 Forma zaliczenia przedmiotu Forma zaliczenia Literatura Dostępność treści wykładów 1 Zaliczenie ćwiczeń rachunkowych. 2 Egzamin dwuczęściowy:

Bardziej szczegółowo

Aleksander Adamowski (s1869) zmienn ą losow ą T o rozkładzie wykładniczym o średniej 5 minut.

Aleksander Adamowski (s1869) zmienn ą losow ą T o rozkładzie wykładniczym o średniej 5 minut. Zadanie Statystyczna Analiza Danych - Zadania 6 Aleksander Adamowski (s869) W pewnym biurze czas losowo wybranej rozmowy telefonicznej jest zmienn ą losow ą T o rozkładzie wykładniczym o średniej 5 minut.

Bardziej szczegółowo

166 Wstęp do statystyki matematycznej

166 Wstęp do statystyki matematycznej 166 Wstęp do statystyki matematycznej Etap trzeci realizacji procesu analizy danych statystycznych w zasadzie powinien rozwiązać nasz zasadniczy problem związany z identyfikacją cechy populacji generalnej

Bardziej szczegółowo

RACHUNEK PRAWDOPODOBIEŃSTWA A.

RACHUNEK PRAWDOPODOBIEŃSTWA A. RACHUNEK PRAWDOPODOBIEŃSTWA A. Semestr letni 2014. Poniedziałki 12:15-15:00, sala HS. Wykładowca: Ryszard Szekli, pok. 514, konsultacje: poniedziałki 10-12, terminy egzaminów: I termin 18.06.2014, (ŚRODA)

Bardziej szczegółowo

STATYSTYKA Statistics. Inżynieria Środowiska. II stopień ogólnoakademicki

STATYSTYKA Statistics. Inżynieria Środowiska. II stopień ogólnoakademicki Załącznik nr 7 do Zarządzenia Rektora nr../12 z dnia.... 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/13 STATYSTYKA

Bardziej szczegółowo

W1. Wprowadzenie. Statystyka opisowa

W1. Wprowadzenie. Statystyka opisowa W1. Wprowadzenie. Statystyka opisowa dr hab. Jerzy Nakielski Zakład Biofizyki i Morfogenezy Roślin Plan wykładu: 1. O co chodzi w statystyce 2. Etapy badania statystycznego 3. Zmienna losowa, rozkład

Bardziej szczegółowo

166 Wstȩp do statystyki matematycznej

166 Wstȩp do statystyki matematycznej 166 Wstȩp do statystyki matematycznej Etap trzeci realizacji procesu analizy danych statystycznych w zasadzie powinien rozwi azać nasz zasadniczy problem zwi azany z identyfikacj a cechy populacji generalnej

Bardziej szczegółowo

R ozkład norm alny Bardzo często używany do modelowania symetrycznych rozkładów zmiennych losowych ciągłych

R ozkład norm alny Bardzo często używany do modelowania symetrycznych rozkładów zmiennych losowych ciągłych R ozkład norm alny Bardzo często używany do modelowania symetrycznych rozkładów zmiennych losowych ciągłych Przykłady: Błąd pomiarowy Wzrost, wydajność Temperatura ciała Zawartość różnych składników we

Bardziej szczegółowo

Statystyka i opracowanie danych W5: Wprowadzenie do statystycznej analizy danych. Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl

Statystyka i opracowanie danych W5: Wprowadzenie do statystycznej analizy danych. Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Statystyka i opracowanie danych W5: Wprowadzenie do statystycznej analizy danych Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Wprowadzenie Podstawowe cele analizy zbiorów danych Uogólniony opis poszczególnych

Bardziej szczegółowo

Zestaw nr 7 Ekstremum funkcji jednej zmiennej. Punkty przegiȩcia wykresu. Asymptoty

Zestaw nr 7 Ekstremum funkcji jednej zmiennej. Punkty przegiȩcia wykresu. Asymptoty Zestaw nr 7 Ekstremum funkcji jednej zmiennej. Punkty przegiȩcia wykresu. Asymptoty November 20, 2009 Przyk ladowe zadania z rozwi azaniami Zadanie 1. Znajdź równanie asymptot funkcji f jeśli: a) f(x)

Bardziej szczegółowo

Rozkład normalny. Marcin Zajenkowski. Marcin Zajenkowski () Rozkład normalny 1 / 26

Rozkład normalny. Marcin Zajenkowski. Marcin Zajenkowski () Rozkład normalny 1 / 26 Rozkład normalny Marcin Zajenkowski Marcin Zajenkowski () Rozkład normalny 1 / 26 Rozkład normalny Krzywa normalna, krzywa Gaussa, rozkład normalny Rozkłady liczebności wielu pomiarów fizycznych, biologicznych

Bardziej szczegółowo

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 STATYSTYKA Rafał Kucharski Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 Karl Popper... no matter how many instances of white swans we may have observed, this does not

Bardziej szczegółowo

Pobieranie próby. Rozkład χ 2

Pobieranie próby. Rozkład χ 2 Graficzne przedsawianie próby Hisogram Esymaory przykład Próby z rozkładów cząskowych Próby ze skończonej populacji Próby z rozkładu normalnego Rozkład χ Pobieranie próby. Rozkład χ Posać i własności Znaczenie

Bardziej szczegółowo

Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe.

Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Rachunek prawdopodobieństwa MAP3040 WPPT FT, rok akad. 2010/11, sem. zimowy Wykładowca: dr hab. Agnieszka Jurlewicz Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Warunkowa wartość oczekiwana.

Bardziej szczegółowo

Matematyka i statystyka matematyczna dla rolników w SGGW WYKŁAD 9. TESTOWANIE HIPOTEZ STATYSTYCZNYCH cd.

Matematyka i statystyka matematyczna dla rolników w SGGW WYKŁAD 9. TESTOWANIE HIPOTEZ STATYSTYCZNYCH cd. WYKŁAD 9 TESTOWANIE HIPOTEZ STATYSTYCZNYCH cd. Było: Przykład 1. Badano krąŝek o wymiarach zbliŝonych do monety jednozłotowej ze stronami oznaczonymi: A, B. NaleŜy ustalić, czy krąŝek jest symetryczny?

Bardziej szczegółowo

Rozkłady dwóch zmiennych losowych

Rozkłady dwóch zmiennych losowych Rozkłady dwóch zmiennych losowych Uogólnienie pojęć na rozkład dwóch zmiennych Dystrybuanta i gęstość prawdopodobieństwa Rozkład brzegowy Prawdopodobieństwo warunkowe Wartości średnie i odchylenia standardowe

Bardziej szczegółowo

Rozkład normalny Parametry rozkładu zmiennej losowej Zmienne losowe wielowymiarowe

Rozkład normalny Parametry rozkładu zmiennej losowej Zmienne losowe wielowymiarowe Rachunek Prawdopodobieństwa istatystyka W4 Rozkład normalny Parametry rozkładu zmienne losowe Zmienne losowe wielowymiarowe Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Rozkład normalny - standaryzaca

Bardziej szczegółowo

Statystyka i analiza danych Wstępne opracowanie danych Statystyka opisowa. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.pl

Statystyka i analiza danych Wstępne opracowanie danych Statystyka opisowa. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.pl Statystyka i analiza danych Wstępne opracowanie danych Statystyka opisowa Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.pl Wprowadzenie Podstawowe cele analizy zbiorów danych Uogólniony opis poszczególnych

Bardziej szczegółowo

Statystyczne metody analizy danych

Statystyczne metody analizy danych Statystyczne metody analizy danych Statystyka opisowa Wykład I-III Agnieszka Nowak - Brzezińska Definicje Statystyka (ang.statistics) - to nauka zajmująca się zbieraniem, prezentowaniem i analizowaniem

Bardziej szczegółowo

Metoda Monte Carlo i jej zastosowania

Metoda Monte Carlo i jej zastosowania i jej zastosowania Tomasz Mostowski Zajęcia 31.03.2008 Plan 1 PWL 2 3 Plan PWL 1 PWL 2 3 Przypomnienie PWL Istnieje wiele wariantów praw wielkich liczb. Wspólna ich cecha jest asymptotyczne zachowanie

Bardziej szczegółowo

ODRZUCANIE WYNIKÓW POJEDYNCZYCH POMIARÓW

ODRZUCANIE WYNIKÓW POJEDYNCZYCH POMIARÓW ODRZUCANIE WYNIKÓW OJEDYNCZYCH OMIARÓW W praktyce pomiarowej zdarzają się sytuacje gdy jeden z pomiarów odstaje od pozostałych. Jeżeli wykorzystamy fakt, że wyniki pomiarów są zmienną losową opisywaną

Bardziej szczegółowo

Statystyka. Katarzyna Chudy Laskowska

Statystyka. Katarzyna Chudy Laskowska Statystyka Katarzyna Chudy Laskowska http://kc.sd.prz.edu.pl/ MIENNE LOSOWE I ICH ROKŁADY Rozkłady zmiennych losowych mienna losowa skokowa Rozkład dwumianowy Rozkład oissona mienna losowa ciągła Rozkład

Bardziej szczegółowo

Zastosowanie Excela w matematyce

Zastosowanie Excela w matematyce Zastosowanie Excela w matematyce Komputer w dzisiejszych czasach zajmuje bardzo znamienne miejsce. Trudno sobie wyobrazić jakąkolwiek firmę czy instytucję działającą bez tego urządzenia. W szkołach pierwsze

Bardziej szczegółowo

Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów.

Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów. Rachunek prawdopodobieństwa MAP1181 Wydział PPT, MS, rok akad. 213/14, sem. zimowy Wykładowca: dr hab. Agnieszka Jurlewicz Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów.

Bardziej szczegółowo

( ) ( ) Przykład: Z trzech danych elementów: a, b, c, można utworzyć trzy następujące 2-elementowe kombinacje: ( ) ( ) ( ).

( ) ( ) Przykład: Z trzech danych elementów: a, b, c, można utworzyć trzy następujące 2-elementowe kombinacje: ( ) ( ) ( ). KOMBINATORYKA Kombinatoryka zajmuje się wyznaczaniem liczby elementów zbiorów skończonych utworzonych zgodnie z określonymi zasadami. Do podstawowych pojęć kombinatorycznych należą: PERMUTACJE Silnia.

Bardziej szczegółowo

STATYSTYKA IV SEMESTR ALK (PwZ) STATYSTYKA OPISOWA RODZAJE CECH W POPULACJACH I SKALE POMIAROWE

STATYSTYKA IV SEMESTR ALK (PwZ) STATYSTYKA OPISOWA RODZAJE CECH W POPULACJACH I SKALE POMIAROWE STATYSTYKA IV SEMESTR ALK (PwZ) STATYSTYKA OPISOWA RODZAJE CECH W POPULACJACH I SKALE POMIAROWE CECHY mogą być: jakościowe nieuporządkowane - skala nominalna płeć, rasa, kolor oczu, narodowość, marka samochodu,

Bardziej szczegółowo

Grupy i cia la, liczby zespolone

Grupy i cia la, liczby zespolone Rozdzia l 1 Grupy i cia la, liczby zespolone Dla ustalenia uwagi, b edziemy używać nast epuj acych oznaczeń: N = { 1, 2, 3,... } - liczby naturalne, Z = { 0, ±1, ±2,... } - liczby ca lkowite, W = { m n

Bardziej szczegółowo

ĆWICZENIA nr Dane ilościowe (próba n-elementowa) 2. Parametry opisowe a) Średnia arytmetyczna : EXCEL Formuły Wstaw funkcję Statystyczne ŚREDNIA

ĆWICZENIA nr Dane ilościowe (próba n-elementowa) 2. Parametry opisowe a) Średnia arytmetyczna : EXCEL Formuły Wstaw funkcję Statystyczne ŚREDNIA ĆWICZENIA nr 3 Parametry opisowe danych ilościowych Funkcje statystyczne Gęstośd prawdopodobieostwa, dystrybuanta Prawdopodobieostwo rozkładu ciągłego Rozkłady zmiennych losowych ĆWICZENIA nr 2 1. Dane

Bardziej szczegółowo

Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r

Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r Statystyka matematyczna Testowanie hipotez i estymacja parametrów Wrocław, 18.03.2016r Plan wykładu: 1. Testowanie hipotez 2. Etapy testowania hipotez 3. Błędy 4. Testowanie wielokrotne 5. Estymacja parametrów

Bardziej szczegółowo

SYSTEM DIAGNOSTYCZNY OPARTY NA LOGICE DOMNIEMAŃ. Ewa Madalińska. na podstawie prac:

SYSTEM DIAGNOSTYCZNY OPARTY NA LOGICE DOMNIEMAŃ. Ewa Madalińska. na podstawie prac: SYSTEM DIAGNOSTYCZNY OPARTY NA LOGICE DOMNIEMAŃ Ewa Madalińska na podstawie prac: [1] Lukaszewicz,W. (1988) Considerations on Default Logic: An Alternative Approach. Computational Intelligence, 44[1],

Bardziej szczegółowo

ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 5 Kalkulacja sk ladki netto I

ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 5 Kalkulacja sk ladki netto I Wst ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 5 Kalkulacja sk ladki netto I 1 Kodeks cywilny Tytu l XXVII, Umowa ubezpieczenia Dzia l I. Przepisy ogólne Dzia l II. Ubezpieczenia majatkowe

Bardziej szczegółowo

Rachunek prawdopodobieństwa. Stanisław Jaworski

Rachunek prawdopodobieństwa. Stanisław Jaworski Rachunek prawdopodobieństwa Stanisław Jaworski Rachunek prawdopodobieństwa: dział matematyki zajmujący się badaniem modeli zjawisk losowych (przypadkowych) i praw nimi rządzących (Encyklopedia Popularna

Bardziej szczegółowo

P (A B) P (B) = 1/4 1/2 = 1 2. Zakładamy, że wszystkie układy dwójki dzieci: cc, cd, dc, dd są jednakowo prawdopodobne.

P (A B) P (B) = 1/4 1/2 = 1 2. Zakładamy, że wszystkie układy dwójki dzieci: cc, cd, dc, dd są jednakowo prawdopodobne. Wykład Prawdopodobieństwo warunkowe Dwukrotny rzut symetryczną monetą Ω {OO, OR, RO, RR}. Zdarzenia: Awypadną dwa orły, Bw pierwszym rzucie orzeł. P (A) 1 4, 1. Jeżeli już wykonaliśmy pierwszy rzut i wiemy,

Bardziej szczegółowo

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 STATYSTYKA Rafał Kucharski Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 Wybrane litery alfabetu greckiego α alfa β beta Γ γ gamma δ delta ɛ, ε epsilon η eta Θ θ theta

Bardziej szczegółowo

Wykład 2. Wpływ stałej (odejmujemy 20) Liniowa transformacja zmiennych, cd. Liniowa transformacja zmiennych, cd. Liniowa transformacja zmiennych, cd.

Wykład 2. Wpływ stałej (odejmujemy 20) Liniowa transformacja zmiennych, cd. Liniowa transformacja zmiennych, cd. Liniowa transformacja zmiennych, cd. Wykład 2 Wpływ przekształceń Co się stanie ze średnią i odchyleniem standardowym gdy zmienimy jednostki? stopnie Celsiusza stopnie Fahrenheita dolary 1,000 dolarów wartość faktyczna odległość od minimum

Bardziej szczegółowo

Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej

Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej cechy. Średnia arytmetyczna suma wartości zmiennej wszystkich

Bardziej szczegółowo

Rachunek prawdopodobieństwa dla informatyków

Rachunek prawdopodobieństwa dla informatyków Rachunek prawdopodobieństwa dla informatyków Adam Roman Instytut Informatyki UJ Wykład 1 rys historyczny zdarzenia i ich prawdopodobieństwa aksjomaty i reguły prawdopodobieństwa prawdopodobieństwo warunkowe

Bardziej szczegółowo

a)dane są wartości zmiennej losowej: 2, 4, 2, 1, 1, 3, 2, 1. Obliczyć wartość średnią i wariancję.

a)dane są wartości zmiennej losowej: 2, 4, 2, 1, 1, 3, 2, 1. Obliczyć wartość średnią i wariancję. Zad Rozkład zmiennej losowej dyskretnej : a)dane są wartości zmiennej losowej: 2, 4, 2,,, 3, 2,. Obliczyć wartość średnią i wariancję. b)oceny z pracy klasowej w tabeli: Ocena 2 3 4 5 6 Liczba uczniów

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela

Statystyka w pracy badawczej nauczyciela Statystyka w pracy badawczej nauczyciela Wykład 1: Terminologia badań statystycznych dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka (1) Statystyka to nauka zajmująca się zbieraniem, badaniem

Bardziej szczegółowo

Opisowa analiza struktury zjawisk statystycznych

Opisowa analiza struktury zjawisk statystycznych Statystyka Opisowa z Demografią oraz Biostatystyka Opisowa analiza struktury zjawisk statystycznych Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2

Bardziej szczegółowo

Dolne oszacowania wartości rekordowych

Dolne oszacowania wartości rekordowych Dole oszacowaia wartości rekordowych Agieszka Gorocy Uiwersytet Miko laja Koperika, Toruń Tomasz Rychlik Uiwersytet Miko laja Koperika, IM PAN, Toruń XXXV Koferecja Statystyka Matematycza, Wis la. 8 grudia

Bardziej szczegółowo

Zadanie 1. Zmienne losowe X 1, X 2 są niezależne i mają taki sam rozkład z atomami:

Zadanie 1. Zmienne losowe X 1, X 2 są niezależne i mają taki sam rozkład z atomami: Zadanie 1. Zmienne losowe X 1, X 2 są niezależne i mają taki sam rozkład z atomami: Pr(X 1 = 0) = 6/10, Pr(X 1 = 1) = 1/10, i gęstością: f(x) = 3/10 na przedziale (0, 1). Wobec tego Pr(X 1 + X 2 5/3) wynosi:

Bardziej szczegółowo

I STATYSTYKA STOSOWANA, LISTA 1

I STATYSTYKA STOSOWANA, LISTA 1 I STATYSTYKA STOSOWANA, LISTA 1 1.Urządzenie składa się z 3 elementów. Każdy z elementów może mieć jedną z trzech jakości. Opisać zbiór zdarzeń elementarnych. Wypisać zdarzenia elementarne sprzyjające

Bardziej szczegółowo

Generatory takie mają niestety okres, po którym sekwencja liczb powtarza się.

Generatory takie mają niestety okres, po którym sekwencja liczb powtarza się. 1 Wstęp Będziemyrozważaćgeneratorytypux n+1 =f(x n,x n 1,...,x n k )(modm). Zakładamy,żeargumentamifunkcjifsąliczbycałkowitezezbioru0,1,...,M 1. Dla ustalenia uwagi mogą to być generatory liniowe typu:

Bardziej szczegółowo

A i. i=1. i=1. i=1. i=1. W dalszej części skryptu będziemy mieli najczęściej do czynienia z miarami określonymi na rodzinach, które są σ - algebrami.

A i. i=1. i=1. i=1. i=1. W dalszej części skryptu będziemy mieli najczęściej do czynienia z miarami określonymi na rodzinach, które są σ - algebrami. M. Beśka, Wstęp do teorii miary, rozdz. 3 25 3 Miara 3.1 Definicja miary i jej podstawowe własności Niech X będzie niepustym zbiorem, a A 2 X niepustą rodziną podzbiorów. Wtedy dowolne odwzorowanie : A

Bardziej szczegółowo

ANALIZA STATYSTYCZNA WYNIKÓW BADAŃ

ANALIZA STATYSTYCZNA WYNIKÓW BADAŃ ANALIZA STATYSTYCZNA WYNIKÓW BADAŃ Dopasowanie rozkładów Dopasowanie rozkładów- ogólny cel Porównanie średnich dwóch zmiennych 2 zmienne posiadają rozkład normalny -> test parametryczny (t- studenta) 2

Bardziej szczegółowo

1. Opis tabelaryczny. 2. Graficzna prezentacja wyników. Do technik statystyki opisowej można zaliczyć:

1. Opis tabelaryczny. 2. Graficzna prezentacja wyników. Do technik statystyki opisowej można zaliczyć: Wprowadzenie Statystyka opisowa to dział statystyki zajmujący się metodami opisu danych statystycznych (np. środowiskowych) uzyskanych podczas badania statystycznego (np. badań terenowych, laboratoryjnych).

Bardziej szczegółowo

PODSTAWOWE ROZKŁADY ZMIENNYCH LOSOWYCH CIĄGŁYCH

PODSTAWOWE ROZKŁADY ZMIENNYCH LOSOWYCH CIĄGŁYCH Opracowała: Joanna Kisielińska 1 PODSTAWOWE ROZKŁADY ZMIENNYCH LOSOWYCH CIĄGŁYCH Rozkład normalny Zmienna losowa X ma rozkład normalny z parametrami µ i σ (średnia i odchylenie standardowe), jeśli jej

Bardziej szczegółowo

dr Jarosław Kotowicz 24 lutego 2003 roku 1 c Copyright J.Kotowicz

dr Jarosław Kotowicz 24 lutego 2003 roku 1 c Copyright J.Kotowicz Szkice do wykładu z Rachunku prawdopodobieństwa 1 II rok matematyki finansowej III roku matematyki ogólnej III roku matematyki z metodami informatycznymi dr Jarosław Kotowicz 24 lutego 2003 roku 1 c Copyright

Bardziej szczegółowo

Testowanie hipotez statystycznych. Wnioskowanie statystyczne

Testowanie hipotez statystycznych. Wnioskowanie statystyczne Testowanie hipotez statystycznych Wnioskowanie statystyczne Hipoteza statystyczna to dowolne przypuszczenie co do rozkładu populacji generalnej (jego postaci funkcyjnej lub wartości parametrów). Hipotezy

Bardziej szczegółowo

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej 7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej Definicja 1 n-elementowa losowa próba prosta nazywamy ciag n niezależnych zmiennych losowych o jednakowych rozkładach

Bardziej szczegółowo

Statystyka i opracowanie danych- W 8 Wnioskowanie statystyczne. Testy statystyczne. Weryfikacja hipotez statystycznych.

Statystyka i opracowanie danych- W 8 Wnioskowanie statystyczne. Testy statystyczne. Weryfikacja hipotez statystycznych. Statystyka i opracowanie danych- W 8 Wnioskowanie statystyczne. Testy statystyczne. Weryfikacja hipotez statystycznych. Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Hipotezy i Testy statystyczne Każde

Bardziej szczegółowo

Uzgadnianie wyrażeń rachunku predykatów. Adam i orzeszki. Joanna Józefowska. Poznań, rok akademicki 2009/2010

Uzgadnianie wyrażeń rachunku predykatów. Adam i orzeszki. Joanna Józefowska. Poznań, rok akademicki 2009/2010 Instytut Informatyki Poznań, rok akademicki 2009/2010 Instytut Informatyki Poznań, rok akademicki 2009/2010 1 Podstawienia Motywacja Podstawienie 2 Sk ladanie podstawień Motywacja Z lożenie podstawień

Bardziej szczegółowo

Państwowa Wyższa Szkoła Zawodowa w Nowym Sączu. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2011/2012

Państwowa Wyższa Szkoła Zawodowa w Nowym Sączu. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2011/2012 Państwowa Wyższa Szkoła Zawodowa w Nowym Sączu Karta Instytut Pedagogiczny obowiązuje studentów rozpoczynających studia w roku akademickim 011/01 Kierunek studiów: Matematyka Profil: Ogólnoakademicki Forma

Bardziej szczegółowo

Komputerowa Analiza Danych Doświadczalnych

Komputerowa Analiza Danych Doświadczalnych Komputerowa Analiza Danych Doświadczalnych dr inż. Adam Kisiel kisiel@if.pw.edu.pl pokój 117b (12b) 1 Materiały do wykładu Transparencje do wykładów: http://www.if.pw.edu.pl/~kisiel/kadd/kadd.html Literatura

Bardziej szczegółowo

EGZAMIN MAGISTERSKI, czerwiec 2014 Matematyka w ekonomii i ubezpieczeniach

EGZAMIN MAGISTERSKI, czerwiec 2014 Matematyka w ekonomii i ubezpieczeniach Matematyka w ekonomii i ubezpieczeniach Sprawdź, czy wektor x 0 = (0,5,,0,0) jest rozwiązaniem dopuszczalnym zagadnienia programowania liniowego: Zminimalizować 3x 1 +x +x 3 +4x 4 +6x 5, przy ograniczeniach

Bardziej szczegółowo

Pozyskiwanie wiedzy z danych

Pozyskiwanie wiedzy z danych Pozyskiwanie wiedzy z danych dr Agnieszka Goroncy Wydział Matematyki i Informatyki UMK PROJEKT WSPÓŁFINANSOWANY ZE ŚRODKÓW UNII EUROPEJSKIEJ W RAMACH EUROPEJSKIEGO FUNDUSZU SPOŁECZNEGO Pozyskiwanie wiedzy

Bardziej szczegółowo

Pawe l G ladki. Problem przetargu.

Pawe l G ladki. Problem przetargu. 1 Problem przertargu Pawe l G ladki Problem przetargu. Co to jest przetarg w potocznym znaczeniu wyjaśniać chyba nie trzeba. W ujȩciu eknomicznym, za przetarg uważamy takie sytuacje, jak negocjacje handlowe

Bardziej szczegółowo

Probabilistyka i statystyka - Teoria

Probabilistyka i statystyka - Teoria Probabilistyka i statystyka - Teoria 1 Prawdopodobieństwo 1. Aksjomatyczna definicja prawdopodobieństwa Kołmogorowa: P (E) 0 - prawdopodobieństwo dowolnego zdarzenia jest większe lub równe 0 by Antek Grzanka,

Bardziej szczegółowo

Mat. Fin. i Bio., Gdańsk, Zestaw zadań ze statystyki matematycznej. Zestaw 1 1 N

Mat. Fin. i Bio., Gdańsk, Zestaw zadań ze statystyki matematycznej. Zestaw 1 1 N Marek Beśka, Statystyka matematyczna 1 Mat. Fin. i Bio., Gdańsk, 26.09.2016 Zestaw zadań ze statystyki matematycznej Zestaw 1 Zad. 1. Wykazać, że jeśli X 1, X 2,... są zmiennymi losowymi o jednakowych

Bardziej szczegółowo

KURS PRAWDOPODOBIEŃSTWO

KURS PRAWDOPODOBIEŃSTWO KURS PRAWDOPODOBIEŃSTWO Lekcja 4 Prawdopodobieństwo całkowite i twierdzenie Bayesa. Drzewko stochastyczne. Schemat Bernoulliego. ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź

Bardziej szczegółowo

Elektrotechnika II [ Ćwiczenia ] 2016/2017 Zimowy

Elektrotechnika II [ Ćwiczenia ] 2016/2017 Zimowy Elektrotechnika II [ Ćwiczenia ] 206/207 Zimowy Lp Nazwisko i imię Pkt Kol Suma Popr Ocena Data Egzamin Basaj Mateusz 2 Ciechowski Dawid Dst Dst 3 Cieślik Piotr 4 Glica Mateusz 5 Głuszkowski Michał 6 Kikulski

Bardziej szczegółowo