Analiza dla informatyków 2 DANI LI2 Pawe l Domański szkicowe notatki do wyk ladu

Wielkość: px
Rozpocząć pokaz od strony:

Download "Analiza dla informatyków 2 DANI LI2 Pawe l Domański szkicowe notatki do wyk ladu"

Transkrypt

1 Analiza dla informatyków 2 DANI LI2 Pawe l Domański szkicowe notatki do wyk ladu Wyk lad 5 1. Iloczyn ortogonalny funkcji Wróćmy na chwilȩ do dowodu wzorów Eulera-Fouriera. Kluczow a rolȩ odgrywa l wzór: π { π e ix(n k) 2π, dla n = k; dx = (cos(n k)x + i sin(n k)x) dx = 0, dla n k. Definiuj ac: poprzedni wzór można zapisać: f, g := 1 π f(x)g(x)dx 2π e inx, e ikx = { 1, dla n = k; 0, dla n k. Oznaczenie, nie przypadkiem jest podobne do oznaczenia iloczynu skalarnego, w lasności s a takie same: W lasności iloczynu ortogonalnego: liniowy ze wzglȩdu na pierwsz a zmienn a; zamiana kolejności zmiennych to sprzȩżenie wartości; f, f 0 i jest równe zeru tylko jeśli f = 0 (dla funkcji ci ag lych). W poprzednich dowodach wykorzystywaliśmy tak naprawde tylko te w lasności i dalej też to bȩdziemy robić. Wprowadzony iloczyn nazywamy iloczynem ortogonalnym i mówimy, że dwie funkcje s a ortogonalne jeśli ich iloczyn ortogonalny jest równy zeru. Normȩ funkcji ( d lugość ) definiujemy: f 2 := f, f Wprowadziliśmy d lugość funkcji (normȩ) wiȩc możemy liczyć odleg lość dwóch funkcji: d 2 (f, g) := f g 2. 1

2 Wniosek 1 Uk lad funkcji e inx gdy n Z jest ortonormalny tj. każde dwie różne funkcje s a ortogonalne i wszystkie maj a norme 1. Wzory Eulera-Fouriera można zapisać: c n = f, e inx Warto zauważyć, że jeśli funkcja f jest równa jednostajnie zbieżnej sumie szeregu ortogonalnego d n g n n= gdzie (g n ) jest uk ladem ortonormalnym to wówczas d n = f, g n Dowód jest identyczny jak wzorów Eulera-Fouriera. Ta obserwacja jest wykorzystywana w metodach numerycznych wielokrotnie stosuj ac różne uk lady ortonormalne (wielomiany Hermite a, Czebyszewa, Lagrange a itp. itd.) i wzglȩdem różnie zdefiniowanych iloczynów ortogonalnych. Nie bȩdziemy wyjasniać szczegó lów. Ta metoda jest wykorzystywana np. w przetwarzaniu danych, obrazów itp. Rozwija siȩ sygna l, obraz itp. wzglȩdem odpowiednio dobranego uk ladu ortonormalnego i zastȩpuje dany sygna l skończenie wieloma wspó lczynnikami rozwiniȩcia. 2

3 2. Geometryczne spojrzenie na szereg Fouriera Wielomian trygonometryczny ma postać: T (x) := w n e inx Najmniejsza liczba N nazywana jest stopniem wielomianu T. Lemat 2 Funkcja f s N, gdzie f jest ca lkowalna a s N jest N-t a suma czȩsciow a jej szeregu Fouriera jest ortogonalna do wszystkich wielomianów trygonometrycznych stopnia N. Dowód: Niech N k N, wówczas f s N, e ikx = f, e ikx c n e inx, e ikx = f, e ikx c n e inx, e ikx = c k c k = 0. Zatem z w lasności iloczynu ortogonalnego mamy lemat. Wniosek 3 (w lasność minimum wspó lczynników Fouriera) N-ta suma czȩściowa s N szeregu Fouriera funkcji ca lkowalnej f jest najbliższym funkcji f (w sensie odleg lości d 2 ) wielomianem trygonometrycznym stopnia N. Dowód: Niech T = n w ne inx bȩdzie dowolnym wielomianem trygonometrycznym stopnia N. Policzmy d 2 (f, T ) 2 = f T 2 2 = f T, f T = (f s N ) + (s N T ), (f s N ) + (s N T ) = f s N, f s N + f s N, s N T + s N T, f s N + s N T, s N T Z lematu drugi i trzeci sk ladnik ostatniej sumy znika wiȩc otrzymujemy wzór Pitagorasa : d 2 (f, T ) 2 = d 2 (f, s N ) 2 + d 2 (s N, T ) 2 Drugi sk ladnik jest równy (jak latwo sprawdzić) sumie kwadratów z modu lów wspólczynników wielomianu trygonometrycznego s N T zatem jest równy zeru wtedy i tylko wtedy, gdy s N = T. Pokazaliśmy, że d 2 (f, T ) d 2 (f, s N ) 3

4 Wniosek 4 (nierówność Bessela) Dla dowolnej funkcji ca lkowalnej f na [, π] zachodzi: a n= c n 2 1 2π ( a n 2 + b n 2 ) 1 π π π f(x) 2 dx; f(x) 2 dx. Dowód: Obliczmy: 1 π f(x) 2 dx = f, f = (f s N ) + s N, (f s N ) + s N 2π = f s N, f s N + f s N, s N + s N, f s N + s N, s N Z lematu drugi i trzeci cz lon ostatniej linii jest równy zeru a pierwszy jest dodatni, zatem: 1 π 2π f(x) 2 dx s N, s N = = c n e inx, c n e inx, c n e inx = c n e inx c n 2. Uwaga: Z powyższego dowodu wynika, że różnica miȩdzy stronami nierówności Bessela wynosi: f s N, f s N = d 2 (f, s N ) 2 zatem jeśli szereg Fouriera jest zbieżny do f w metryce d 2, to w nierówności Bessela mamy równość! W przysz lości zobaczymy, że tak rzeczywiście jest. 4

5 3. W lasność lokalizacji szeregów Fouriera Jest to jedna z najdziwniejszych w lasności szeregów Fouriera. Pamiȩtamy, że obliczenie wspó lczynników Fouriera wymaga znajomości ca lej funkcji na przedziale o d lugości równej okresowi. Tym nie mniej zachodzi: Twierdzenie 5 (twierdzenie Riemanna o lokalizacji) Niech f, g bed a dwiema 2π-okresowymi funkcjami ca lkowalnymi w sensie Riemanna pokrywaj acymi sie na odcinku (x δ, x + δ) dla pewnego ustalonego x R i δ > 0. Wówczas szereg Fouriera funkcji f jest zbieżny w punkcie x do liczby a wtedy i tylko wtedy, gdy szereg Fouriera funkcji g jest zbieżny w punkcie x do tej samej granicy. Dowód w ksi ażce So ltysiaka. 5

6 4. Zbieżność szeregów Fouriera Problem zbieżności szeregu Fouriera jest trudny i wiele podstawowych zagadnień zosta lo rozstrzygniȩtych dopiero w drugiej po lowie XX wieku (i nadal jest to żywy obszar badań naukowych). Poniższe twierdzenie zestawia g lówne wyniki: Twierdzenie 6 (o zbieżności szeregu Fouriera) (Du Bois-Reymond) Istnieje funkcja ci ag la 2π-okresowa, której szereg Fouriera w pewnym punkcie nie jest zbieżny. (Carleson) Dla każdej 2π-okresowej funkcji ci ag lej f zbiór punktów, w których jej szereg Fouriera nie jest zbieżny punktowo do f jest miary zero Lebesgue a tj. dla każdego ε > 0 może być pokryty sum a ci agu odcinków, których l aczna d lugość nie przekracza ε. (o zbieżności punktowej) Dla każdej 2π-okresowej funkcji f przedzia lami różniczkowalnej (tj. rózniczkowalnej za wyj atkiem skończenie wielu punktów i maj acej w tych punktach skończone granice jednostronne i skończone pochodne jednostronne) szereg Fouriera jest zbieżny punktowo do f(x) w punktach ci ag lości i jest zbieżny do średniej arytmetycznej granic jednostronnych w punktach nieci ag lości. (tożsamość Parsevala) Jeśli funkcja f jest 2π-okresowa i ci ag la (albo ca lkowalna z kwadratem), to jej szereg Fouriera jest zbieżny do f wzglȩdem metryki d 2 i ponadto mamy równość w nierówności Bessela (czyli zachodzi tożsamość Parsevala): a n= c n 2 = 1 2π ( a n 2 + b n 2 ) = 1 π π π f(x) 2 dx; f(x) 2 dx. (twierdzenie Fejéra) Jeśli f jest ci ag la i 2π-okresowa, to ci ag średnich arytmetycznych sum czȩściowych szeregu Fouriera jest zbieżny jednostajnie do f. 6

7 W tym miejscu warto wrócić do pliku rozwiniecia fouriera w4.nb i przypomnieć jak zbiegaj a szeregi Fouriera konkretnych funkcji. W pliku: twierdzenie fejera w5.nb porównano przybliżenia danej funkcji jej sumami czȩściowymi szeregu Fouriera i średnimi arytmetycznymi jej sum czȩściowych (por. tw. Fejéra). 7

8 Dowód twierdzenia Du Bois-Reymond i twierdzenia Carlesona (bardzo trudny) s a poza możliwościami tego wyk ladu. Dowód twierdzenia o zbieżności punktowej jestw ksiażce So ltysiaka. Tam też udowodnione jest tw. Fejéra. Zauważmy, że średnie arytmetyczne sum czȩściowych s a wielomianami trygonometrycznymi zatem mamy: Wniosek 7 (twierdzenie Weierstrassa o aproksymacji wielomianami trygonometrycznymi) Każda 2π-okresowa funkcja ci ag la może być dowolnie dobrze jednostajnie przybliżona wielomianem trygonometrycznym. Niech f bedzie ciag l a funkcj a 2π-okresow a. Weźmy ε > 0 wówczas istnieje wielomian trygonometryczny T stopnia N taki, że sup f(x) T (x) ε. x [,π] Z w lasności minimum wspó lczynników Fouriera wynika, że 1 π d 2 (f, s N ) d 2 (f, T ) = f(x) T (x) 2π 2 dx ε czyli sumy czȩściowe szeregu Fouriera d aż a do f w metryce d 2. St ad (patrz uwaga po dowodzie nierówności Bessela) wynika tożsamość Parsevala. Ponieważ, każda funkcja ci ag l a f na przedziale [a, b] może być przed lużona do funkcji ci ag lej o okresie 2(b a) wiȩc skaluj ac można z twierdzenia Weierstrassa o aproksymacji wielomianami trygonometrycznymi uzyskać jednostajne przybliżenie f wielomianami trygonometrycznymi o okresie 2(b a). Zauważmy jeszcze, że funkcje wyk ladnicze s a na każdym kole jednostajn a granic a sum czȩściowych szeregu Taylora, a wiȩc mog a być jednostajnie przybliżane na dowolnym przedziale skończonym wielomianami algebraicznymi. Zatem można to zrobić także dla wielomianów trygonometrycznych. St ad: Wniosek 8 (twierdzenie Weierstrassa o aproksymacji wielomianami) Każda funkcja ci ag la na przedziale [a, b] może być jednostajnie dowolnie dobrze przybliżona wielomianem (algebraicznym). Twierdzenie Fejéra ma jeszcze jeden ważny wniosek: ze wspó lczynników Fouriera funkcji ci ag lej 2π-okresowej można z powrotem odtworzyć wyjściow a funkcjȩ zatem: 8

9 Wniosek 9 (o jednoznaczności szeregu Fouriera) Jeśli dwie 2π-okresowe funkcje ci ag le maj a te same wspó lczynniki Fouriera, to s a one równe. Wniosek 10 Jeśli szereg Fouriera 2π-okresowej funkcji ci ag lej f jest zbieżny jednostajnie, to jego granica jest równa f. Dowód: Granica g ma te same wspó lczynniki Fouriera ze wzorów Eulera- Fouriera. 9

10 5. Zastosowania do sumowania szeregów Funkcja 2π-okresowa ci ag la: f(x) := x 2 dla x [, π]. Funkcja f jest parzysta wiȩc wspó lczynniki b n = 0. Dla n 0: c 0 := 1 2π π x 2 dx = π2 3. c n := 1 π x 2 e inx dx 2π Stosuj ac dwa razy ca lkowanie przez czȩści otrzymujemy: Szereg Fouriera wynosi: c n = ( 1) n 2 n 2 f π n=,n 0 ( 1) n 2 n 2 einx Szereg po prawej stronie jest zbieżny jednostajnie z kryterium porównawczego Weierstrassa bo ( 1) n 2 2 n 2 n 2 einx a szereg + 2 n=,n 0 jest zbieżny z kryterium o zagȩszczaniu. n 2 Zatem skoro szereg Fouriera jest jednostajnie zbieżny, to musi być zbieżny do f. Podstawiaj ac x = π mamy: π 2 = π n=,n 0 2 n = π n 2 Zatem: 1 n = π

11 Teraz zastosujemy do tego szeregu tożsamość Parsevala: 1 π x 4 dx = π4 + 2π n 4 n=,n 0 czyli Ostatecznie mamy: π 4 5 π4 + 9 = 8 n 4 1 n 4 = π4 90 W pliku: sumy szeregu w5.nb porównano na jednym wykresie szybkość zbieżności różnych szeregów zbieżnych do π 2 zgodnie z powyższymi przyk ladami a także szeregu zbieżnego do π. 11

12 Szeregi Fouriera: x 2 sin nx ( 1)n+1, dla x [, π]; x π 2 + π π sin x 2 π + n ( 4 ) cos(2n 1)x π (2n 1) 2 + n= 1 (2n + 1) 2ei(2n+1)x, dla x [, π]; ( ) 4 π cos 2nx (2n 1)(2n+1), dla x [, π]; x 2 π3 3 + ( 1) n4 cos nx n 2 = π n=,n 0 ( 1) n 2 n 2einx, dla x [, π]; sgn x 4 π sin(2n 1)x 2n 1 2 sin πa π ( 1) n+1 n n 2 a 2, dla x [, π]; sin ax sin nx, dla x [, π], a Z; e x eπ e 1 in 2π + n= ( 1)n (n 2 +1) einx, dla x [, π]; 12

13 x 2 4π2 3 + = 4π x 2 ( 4 n cos nx 4π 2 n ( 2 n + 2πi ) e inx, 2 n n=,n 0 ( 2π n ( 1)n + 4 ) sin nx dla x [0, 2π]; [ ]) ( 1) n 1 sin nx, dla x n 3 π [0, π] wzgledem sinusów (tj. funkcja przed lużona na [, π] jako nieparzysta). 13

1 Przestrzenie unitarne i przestrzenie Hilberta.

1 Przestrzenie unitarne i przestrzenie Hilberta. Przestrzenie unitarne i przestrzenie Hilberta.. Wykazać, że iloczyn skalarny w przestrzeni wektorowej X nad cia lem K ma nastepuj ace w lasności: (i) x, y + z = x, y + x, z, (ii) x, λy = λ x, y, (iii)

Bardziej szczegółowo

Wyk lad 5. Analiza dla informatyków 1 DANI LI1 Pawe l Domański szkicowe notatki do wyk ladu. 1. Granice niew laściwe

Wyk lad 5. Analiza dla informatyków 1 DANI LI1 Pawe l Domański szkicowe notatki do wyk ladu. 1. Granice niew laściwe Analiza dla informatyków 1 DANI LI1 Pawe l Domański szkicowe notatki do wyk ladu Wyk lad 5 1. Granice niew laściwe Definicja 1 Ci ag (x n ) d aży do (jest rozbieżny do) + jeśli c R N n > N x n > c a do

Bardziej szczegółowo

z n n=1 S n nazywamy sum a szeregu. Szereg, który nie jest zbieżny, nazywamy rozbieżnym. n=1

z n n=1 S n nazywamy sum a szeregu. Szereg, który nie jest zbieżny, nazywamy rozbieżnym. n=1 3 Szeregi zespolone 3. Szeregi liczbowe Mówimy, że szereg o wyrazach zespolonych jest zbieżny, jeżeli ci ag jego sum czȩściowych {S n }, gdzie S n = z + z +... + jest zbieżny do granicy w laściwej. Granicȩ

Bardziej szczegółowo

Informacja o przestrzeniach Hilberta

Informacja o przestrzeniach Hilberta Temat 10 Informacja o przestrzeniach Hilberta 10.1 Przestrzenie unitarne, iloczyn skalarny Niech dana będzie przestrzeń liniowa X. Załóżmy, że każdej parze elementów x, y X została przyporządkowana liczba

Bardziej szczegółowo

ci agi i szeregi funkcji Javier de Lucas Ćwiczenie 1. Zbadać zbieżność (punktow a i jednostajn a) ci agu funkcji nx 2 + x

ci agi i szeregi funkcji Javier de Lucas Ćwiczenie 1. Zbadać zbieżność (punktow a i jednostajn a) ci agu funkcji nx 2 + x ci agi i szeregi funkcji Javier de Lucas Ćwiczenie 1 Zbadać zbieżność (punktow a i jednostajn a) ci agu funkcji f n : [, [ x nx + x nx + 1, Rozwi azanie: Mówi siȩ, że ci ag funkcji f n zd aży punktowo

Bardziej szczegółowo

Tomasz Downarowicz Instytut Matematyki i Informatyki Politechnika Wroc lawska Wroc law Wroc law, kwiecień 2011

Tomasz Downarowicz Instytut Matematyki i Informatyki Politechnika Wroc lawska Wroc law Wroc law, kwiecień 2011 Tomasz Downarowicz Instytut Matematyki i Informatyki Politechnika Wroc lawska 50-370 Wroc law Wroc law, kwiecień 2011 Analiza Funkcjonalna WPPT IIr. Wyk lady 4 i 5: Przestrzenie unitarne i Hilberta (rzeczywiste

Bardziej szczegółowo

granicą ciągu funkcyjnego (f n ) n N W symbolicznym zapicie fakt, że f jest granicą ciągu funkcyjnego (f n ) n N możemy wyrazić następująco: ε>0 N N

granicą ciągu funkcyjnego (f n ) n N W symbolicznym zapicie fakt, że f jest granicą ciągu funkcyjnego (f n ) n N możemy wyrazić następująco: ε>0 N N 14. Określenie ciągu i szeregu funkcyjnego, zbieżność punktowa i jednostajna. Własności zbieżności jednostajnej. Kryterium zbieżności jednostajnej szeregu funkcyjnego. 1 Definicja Ciąg funkcyjny Niech

Bardziej szczegółowo

Analiza dla informatyków 1 DANI LI1 Pawe l Domański szkicowe notatki do wyk ladu

Analiza dla informatyków 1 DANI LI1 Pawe l Domański szkicowe notatki do wyk ladu Analiza dla informatyków 1 DANI LI1 Pawe l Domański szkicowe notatki do wyk ladu Wyk lad 4 1. Zbiory otwarte i domkniȩte Pojȩcia które teraz wprowadzimy można rozpatrywać w każdej przestrzeni metrycznej

Bardziej szczegółowo

Analiza I.2*, lato 2018

Analiza I.2*, lato 2018 Analiza I.2*, lato 218 Marcin Kotowski 14 czerwca 218 Zadanie 1. Niech x (, 1) ma rozwinięcie binarne.x 1 x 2.... Niech dla x, 1: oraz f() = f(1) =. Pokaż, że f: f(x) = lim sup n (a) przyjmuje wszystkie

Bardziej szczegółowo

ANALIZA II 15 marca 2014 Semestr letni. Ćwiczenie 1. Czy dan a funkcjȩ da siȩ dookreślić w punkcie (0, 0) tak, żeby otrzymana funkcja by la ci ag la?

ANALIZA II 15 marca 2014 Semestr letni. Ćwiczenie 1. Czy dan a funkcjȩ da siȩ dookreślić w punkcie (0, 0) tak, żeby otrzymana funkcja by la ci ag la? Ci ag lość i norma Ćwiczenie. Czy dan a funkcjȩ da siȩ dookreślić w punkcie (0, 0) tak, żeby otrzymana funkcja by la ci ag la? f (x, y) = x2 y 2 x 2 + y 2, f 2(x, y) = x2 y x 2 + y 2 f 3 (x, y) = x2 y

Bardziej szczegółowo

Szeregi funkcyjne. Szeregi potęgowe i trygonometryczne. Katedra Matematyki Wydział Informatyki Politechnika Białostocka

Szeregi funkcyjne. Szeregi potęgowe i trygonometryczne. Katedra Matematyki Wydział Informatyki Politechnika Białostocka Szeregi funkcyjne Szeregi potęgowe i trygonometryczne Małgorzata Wyrwas Katedra Matematyki Wydział Informatyki Politechnika Białostocka Szeregi funkcyjne str. 1/36 Szereg potęgowy Szeregiem potęgowym o

Bardziej szczegółowo

AM1.2 zadania 14. Zadania z numerami opatrzonymi gwiazdka

AM1.2 zadania 14. Zadania z numerami opatrzonymi gwiazdka AM.2 zadania 4 Tekst poprawiony 24 kwietnia 206 r. Zadania 26, 28, 29, 3, 33, 34, 35, 36, 40, 42, 62 i inne z wykrzyknikiem obok numeru sa obowiazkowe! Zadania z numerami opatrzonymi gwiazdka można napisać

Bardziej szczegółowo

Teoria miary WPPT IIr. semestr zimowy 2009 Wyk lady 6 i 7. Mierzalność w sensie Carathéodory ego Miara Lebesgue a na prostej

Teoria miary WPPT IIr. semestr zimowy 2009 Wyk lady 6 i 7. Mierzalność w sensie Carathéodory ego Miara Lebesgue a na prostej Teoria miary WPPT IIr. semestr zimowy 2009 Wyk lady 6 i 7. Mierzalność w sensie Carathéodory ego Miara Lebesgue a na prostej 27-28/10/09 ZBIORY MIERZALNE WZGLȨDEM MIARY ZEWNȨTRZNEJ Niech µ bȩdzie miar

Bardziej szczegółowo

nie zależy (z dok ladności a do jednostajnego homeomorfizmu) od wyboru ci agu uzbieżniaj acego c n. 1 min{n : x n y n }.

nie zależy (z dok ladności a do jednostajnego homeomorfizmu) od wyboru ci agu uzbieżniaj acego c n. 1 min{n : x n y n }. A N A L I Z A F U N K C J O N A L N A PPI 2r., sem. letni LISTY 5-9 LISTA 5 Wroc law, 14 marca - 25 kwietnia 2006 ZADANIE 1. Niech (X 1,d 1 ), (X 2,d 2 ), (X 3,d 3 ),... bȩdzie ci agiem przestrzeni metrycznych

Bardziej szczegółowo

c n (z z 0 ) n (2) Powiemy, że szereg Laurenta (2) jest zbieżny, jeśli każdy z szeregów zdefiniowanych w (1) jest f(z). Sume

c n (z z 0 ) n (2) Powiemy, że szereg Laurenta (2) jest zbieżny, jeśli każdy z szeregów zdefiniowanych w (1) jest f(z). Sume Szeregi Laurenta, punkty osobliwe izolowane, klasyfikacja funkcji ze wzgl edu na osobliwości Dane s dwa szeregi postaci c n (z z 0 ) n i c n (z z 0 ) n. (1) n=1 1 Pierwszy z tych szeregów jest zbieżny

Bardziej szczegółowo

Indeks odwzorowania zmiennej zespolonej wzgl. krzywej zamknietej

Indeks odwzorowania zmiennej zespolonej wzgl. krzywej zamknietej Indeks odwzorowania zmiennej zespolonej wzgl edem krzywej zamkni etej 1. Liczby zespolone - konstrukcja Hamiltona 2. Homotopia odwzorowań na okr egu 3. Indeks odwzorowania ciag lego wzgledem krzywej zamknietej

Bardziej szczegółowo

Niezb. ednik matematyczny. Niezb. ednik matematyczny

Niezb. ednik matematyczny. Niezb. ednik matematyczny Niezb ednik matematyczny Niezb ednik matematyczny Liczby zespolone I Rozważmy zbiór R R (zbiór par liczb rzeczywistych) i wprowadźmy w nim nastepuj ace dzia lania: z 1 + z 2 = (x 1, y 1 ) + (x 2, y 2 )

Bardziej szczegółowo

Ciągłość funkcji f : R R

Ciągłość funkcji f : R R Ciągłość funkcji f : R R Definicja 1. Otoczeniem o promieniu δ > 0 punktu x 0 R nazywamy zbiór O(x 0, δ) := (x 0 δ, x 0 + δ). Otoczeniem prawostronnym o promieniu δ > 0 punktu x 0 R nazywamy zbiór O +

Bardziej szczegółowo

Rozdzia l 11. Przestrzenie Euklidesowe Definicja, iloczyn skalarny i norma. iloczynem skalarnym.

Rozdzia l 11. Przestrzenie Euklidesowe Definicja, iloczyn skalarny i norma. iloczynem skalarnym. Rozdzia l 11 Przestrzenie Euklidesowe 11.1 Definicja, iloczyn skalarny i norma Definicja 11.1 Przestrzenia Euklidesowa nazywamy par e { X K,ϕ }, gdzie X K jest przestrzenia liniowa nad K, a ϕ forma dwuliniowa

Bardziej szczegółowo

Wyk lad 9 Podpierścienie, elementy odwracalne, dzielniki zera

Wyk lad 9 Podpierścienie, elementy odwracalne, dzielniki zera Wyk lad 9 Podpierścienie, elementy odwracalne, dzielniki zera Określenie podpierścienia Definicja 9.. Podpierścieniem pierścienia (P, +,, 0, ) nazywamy taki podzbiór A P, który jest pierścieniem ze wzgledu

Bardziej szczegółowo

jest ciągiem elementów z przestrzeni B(R, R)

jest ciągiem elementów z przestrzeni B(R, R) Wykład 2 1 Ciągi Definicja 1.1 (ciąg) Ciągiem w zbiorze X nazywamy odwzorowanie x: N X. Dla uproszczenia piszemy x n zamiast x(n). Przykład 1. x n = n jest ciągiem elementów z przestrzeni R 2. f n (x)

Bardziej szczegółowo

Zadania z Analizy Funkcjonalnej I Które z poniższych przestrzeni metrycznych są przestrzeniami unormowanymi?

Zadania z Analizy Funkcjonalnej I Które z poniższych przestrzeni metrycznych są przestrzeniami unormowanymi? Zadania z Analizy Funkcjonalnej I - 1 1. Które z poniższych przestrzeni metrycznych są przestrzeniami unormowanymi?. a) X = R, x = arctg x ; b) X = R n, d(x, y) = x 1 y 1 + x 2 y 2 + max i 3 x i y i ;

Bardziej szczegółowo

T O P O L O G I A WPPT I, sem. letni WYK LAD 8. Wroc law, 21 kwietnia D E F I N I C J E Niech (X, d) oznacza przestrzeń metryczn a.

T O P O L O G I A WPPT I, sem. letni WYK LAD 8. Wroc law, 21 kwietnia D E F I N I C J E Niech (X, d) oznacza przestrzeń metryczn a. T O P O L O G I A WPPT I, sem. letni WYK LAD 8 Zwartość D E F I N I C J E Niech (X, d) oznacza przestrzeń metryczn a. Wroc law, 1 kwietnia 008 Definicja 1. (X, d) jest ca lkowicie ograniczona jeśli dla

Bardziej szczegółowo

Elementy analizy funkcjonalnej PRZESTRZENIE LINIOWE

Elementy analizy funkcjonalnej PRZESTRZENIE LINIOWE Elementy analizy funkcjonalnej PRZESTRZENIE LINIOWE Niech K = R lub K = C oraz X - dowolny zbiór. Określmy dwa dzia lania: dodawanie + : X X X i mnożenie przez liczbȩ : K X X, spe lniaj ace nastȩpuj ace

Bardziej szczegółowo

Wersja testu D 14 września 2011 r. 1. Czy prawda jest, że a) x Z y Z y 2 = 2 ; b) x Z y Z x 2 = 1 ; c) x Z y Z x 2 = 2 ; d) x Z y Z y 2 = 1?

Wersja testu D 14 września 2011 r. 1. Czy prawda jest, że a) x Z y Z y 2 = 2 ; b) x Z y Z x 2 = 1 ; c) x Z y Z x 2 = 2 ; d) x Z y Z y 2 = 1? 1. Czy prawda jest, że a) x Z y Z y 2 = 2 ; b) x Z y Z x 2 = 1 ; c) x Z y Z x 2 = 2 ; d) x Z y Z y 2 = 1? 2. Czy prawda jest, że a) 5 8 1 jest podzielne przez 4 ; b) 5 7 1 jest podzielne przez 4 ; c) 3

Bardziej szczegółowo

POCHODNA KIERUNKOWA. DEFINICJA Jeśli istnieje granica lim. to granica ta nazywa siȩ pochodn a kierunkow a funkcji f(m) w kierunku osi l i oznaczamy

POCHODNA KIERUNKOWA. DEFINICJA Jeśli istnieje granica lim. to granica ta nazywa siȩ pochodn a kierunkow a funkcji f(m) w kierunku osi l i oznaczamy POCHODNA KIERUNKOWA Pochodne cz astkowe funkcji f(m) = f(x, y, z) wzglȩdem x, wzglȩdem y i wzglȩdem z wyrażaj a prȩdkość zmiany funkcji w kierunku osi wspó lrzȩdnych; np. f x jest prȩdkości a zmiany funkcji

Bardziej szczegółowo

Wyk lad 14 Formy kwadratowe I

Wyk lad 14 Formy kwadratowe I Wyk lad 14 Formy kwadratowe I Wielomian n-zmiennych x 1,, x n postaci n a ij x i x j, (1) gdzie a ij R oraz a ij = a ji dla wszystkich i, j = 1,, n nazywamy forma kwadratowa n-zmiennych Forme (1) można

Bardziej szczegółowo

Metoda Simplex bez użycia tabel simplex 29 kwietnia 2010

Metoda Simplex bez użycia tabel simplex 29 kwietnia 2010 R. Rȩbowski 1 WPROWADZENIE Metoda Simplex bez użycia tabel simplex 29 kwietnia 2010 1 Wprowadzenie Powszechnie uważa siȩ, że metoda simplex, jako uniwersalny algorytm pozwalaj acyznaleźć rozwi azanie optymalne

Bardziej szczegółowo

Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne.

Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne. Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne. pytania teoretyczne:. Co to znaczy, że wektory v, v 2 i v 3

Bardziej szczegółowo

Wyk lad 12. (ii) najstarszy wspó lczynnik wielomianu f jest elementem odwracalnym w P. Dowód. Niech st(f) = n i niech a bedzie

Wyk lad 12. (ii) najstarszy wspó lczynnik wielomianu f jest elementem odwracalnym w P. Dowód. Niech st(f) = n i niech a bedzie 1 Dzielenie wielomianów Wyk lad 12 Ważne pierścienie Definicja 12.1. Niech P bedzie pierścieniem, który może nie być dziedzina ca lkowitości. Powiemy, że w pierścieniu P [x] jest wykonalne dzielenie z

Bardziej szczegółowo

Szeregi Fouriera. Grzegorz Lysik. 1. Motywacja szeregów Fouriera, równanie ciepła.

Szeregi Fouriera. Grzegorz Lysik. 1. Motywacja szeregów Fouriera, równanie ciepła. Szeregi Fouriera Grzegorz Lysik 1. Motywacja szeregów Fouriera, równanie ciepła. Rozważmy problem rozchodzenia się ciepła w pręcie o długości l. Temperatura pręta w punkcie x i w chwili t spełnia równanie

Bardziej szczegółowo

Wersja testu A 15 lutego 2011 r. jest, że a) x R y R y 2 > Czy prawda. b) y R x R y 2 > 1 c) x R y R y 2 > 1 d) x R y R y 2 > 1.

Wersja testu A 15 lutego 2011 r. jest, że a) x R y R y 2 > Czy prawda. b) y R x R y 2 > 1 c) x R y R y 2 > 1 d) x R y R y 2 > 1. 1. Czy prawda jest, że a) x R y R y 2 > 1 1+x 2 ; b) y R x R y 2 > 1 1+x 2 ; c) x R y R y 2 > 1 1+x 2 ; d) x R y R y 2 > 1 1+x 2? 2. Czy naste puja ca relacja na zbiorze liczb rzeczywistych jest relacja

Bardziej szczegółowo

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria Technologia Chemiczna 008/09 Zajęcia wyrównawcze. Pokazać, że: ( )( ) n k k l = ( n l )( n l k l Zajęcia nr (h) Dwumian Newtona. Indukcja. ). Rozwiązać ( ) ( równanie: ) n n a) = 0 b) 3 ( ) n 3. Znaleźć

Bardziej szczegółowo

Wyk lad 11 1 Wektory i wartości w lasne

Wyk lad 11 1 Wektory i wartości w lasne Wyk lad 11 Wektory i wartości w lasne 1 Wektory i wartości w lasne Niech V bedzie przestrzenia liniowa nad cia lem K Każde przekszta lcenie liniowe f : V V nazywamy endomorfizmem liniowym przestrzeni V

Bardziej szczegółowo

2. ZASTOSOWANIA POCHODNYCH. (a) f(x) = ln 3 x ln x, (b) f(x) = e2x x 2 2.

2. ZASTOSOWANIA POCHODNYCH. (a) f(x) = ln 3 x ln x, (b) f(x) = e2x x 2 2. 2. ZASTOSOWANIA POCHODNYCH. Koniecznie trzeba znać: twierdzenia o ekstremach (z wykorzystaniem pierwszej i drugiej pochodnej), Twierdzenie Lagrange a, Twierdzenie Taylora (z resztą w postaci Peano, Lagrange

Bardziej szczegółowo

Funkcje wielu zmiennych

Funkcje wielu zmiennych Funkcje wielu zmiennych 8 Pochodna kierunkowa funkcji Definicja Niech funkcja f określona bȩdzie w otoczeniu punktu P 0 = (x 0, y 0 ) oraz niech v = [v x, v y ] bȩdzie wektorem. Pochodn a kierunkow a funkcji

Bardziej szczegółowo

Notatki z Analizy Matematycznej 2. Jacek M. Jędrzejewski

Notatki z Analizy Matematycznej 2. Jacek M. Jędrzejewski Notatki z Analizy Matematycznej 2 Jacek M. Jędrzejewski Definicja 3.1. Niech (a n ) n=1 będzie ciągiem liczbowym. Dla każdej liczby naturalnej dodatniej n utwórzmy S n nazywamy n-tą sumą częściową. ROZDZIAŁ

Bardziej szczegółowo

TO SĄ ZAGADNIENIA O CHARAKTERZE RACZEJ TEORETYCZNYM PRZYKŁADOWE ZADANIA MACIE PAŃSTWO W MATERIAŁACH ĆWICZENIOWYCH. CIĄGI

TO SĄ ZAGADNIENIA O CHARAKTERZE RACZEJ TEORETYCZNYM PRZYKŁADOWE ZADANIA MACIE PAŃSTWO W MATERIAŁACH ĆWICZENIOWYCH. CIĄGI TO SĄ ZAGADNIENIA O CHARAKTERZE RACZEJ TEORETYCZNYM PRZYKŁADOWE ZADANIA MACIE PAŃSTWO W MATERIAŁACH ĆWICZENIOWYCH. CIĄGI Definicja granicy ciągu Arytmetyczne własności granic przypomnienie Tw. o 3 ciągach

Bardziej szczegółowo

Wykład 2: Szeregi Fouriera

Wykład 2: Szeregi Fouriera Rachunek prawdopodobieństwa MAP64 Wydział Elektroniki, rok akad. 8/9, sem. letni Wykładowca: dr hab. A. Jurlewicz Wykład : Szeregi Fouriera Definicja. Niech f(t) będzie funkcją określoną na R, okresową

Bardziej szczegółowo

1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną?

1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1. Liczby zespolone 1.1. Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1.2. Doprowadzić do postaci a + ib liczby zespolone (i) (1 13i)/(1 3i),

Bardziej szczegółowo

WYKŁAD Z ANALIZY MATEMATYCZNEJ I. dr. Elżbieta Kotlicka. Centrum Nauczania Matematyki i Fizyki

WYKŁAD Z ANALIZY MATEMATYCZNEJ I. dr. Elżbieta Kotlicka. Centrum Nauczania Matematyki i Fizyki WYKŁAD Z ANALIZY MATEMATYCZNEJ I dr. Elżbieta Kotlicka Centrum Nauczania Matematyki i Fizyki http://im0.p.lodz.pl/~ekot Łódź 2006 Spis treści 1. CIĄGI LICZBOWE 2 1.1. Własności ciągów liczbowych o wyrazach

Bardziej szczegółowo

Wzór Maclaurina. Jeśli we wzorze Taylora przyjmiemy x 0 = 0 oraz h = x, to otrzymujemy tzw. wzór Maclaurina: f (x) = x k + f (n) (θx) x n.

Wzór Maclaurina. Jeśli we wzorze Taylora przyjmiemy x 0 = 0 oraz h = x, to otrzymujemy tzw. wzór Maclaurina: f (x) = x k + f (n) (θx) x n. Wzór Maclaurina Jeśli we wzorze Taylora przyjmiemy x 0 = 0 oraz h = x, to otrzymujemy tzw. wzór Maclaurina: f (x) = n 1 k=0 f (k) (0) k! x k + f (n) (θx) x n. n! Wzór Maclaurina Przykład. Niech f (x) =

Bardziej szczegółowo

Niech X bȩdzie dowolnym zbiorem. Dobry porz adek to relacja P X X (bȩdziemy pisać x y zamiast x, y P ) o w lasnościach:

Niech X bȩdzie dowolnym zbiorem. Dobry porz adek to relacja P X X (bȩdziemy pisać x y zamiast x, y P ) o w lasnościach: Teoria miary WPPT IIr semestr zimowy 2009 Wyk lad 4 Liczby kardynalne, indukcja pozaskończona DOBRY PORZA DEK 14/10/09 Niech X bȩdzie dowolnym zbiorem Dobry porz adek to relacja P X X (bȩdziemy pisać x

Bardziej szczegółowo

EGZAMIN PISEMNY Z ANALIZY I R. R n

EGZAMIN PISEMNY Z ANALIZY I R. R n EGZAMIN PISEMNY Z ANALIZY I R Instrukcja obsługi. Za każde zadanie można dostać 4 punkty. Rozwiązanie każdego zadania należy napisać na osobnej kartce starannie i czytelnie. W nagłówku rozwiązania należy

Bardziej szczegółowo

Interpolacja. Marcin Orchel. Drugi przypadek szczególny to interpolacja trygonometryczna

Interpolacja. Marcin Orchel. Drugi przypadek szczególny to interpolacja trygonometryczna Interpolacja Marcin Orchel 1 Wstęp Mamy daną funkcję φ (x; a 0,..., a n ) zależną od n + 1 parametrów a 0,..., a n. Zadanie interpolacji funkcji φ polega na określeniu parametrów a i tak aby dla n + 1

Bardziej szczegółowo

Aproksymacja. funkcji: ,a 2. ,...,a m. - są funkcjami bazowymi m+1 wymiarowej podprzestrzeni liniowej X m+1

Aproksymacja. funkcji: ,a 2. ,...,a m. - są funkcjami bazowymi m+1 wymiarowej podprzestrzeni liniowej X m+1 Założenie: f(x) funkcja którą aproksymujemy X jest przestrzenią liniową Aproksymacja liniowa funkcji f(x) polega na wyznaczeniu współczynników a 0,a 1,a 2,...,a m funkcji: Gdzie: - są funkcjami bazowymi

Bardziej szczegółowo

Blok V: Ciągi. Różniczkowanie i całkowanie. c) c n = 1 ( 1)n n. d) a n = 1 3, a n+1 = 3 n a n. e) a 1 = 1, a n+1 = a n + ( 1) n

Blok V: Ciągi. Różniczkowanie i całkowanie. c) c n = 1 ( 1)n n. d) a n = 1 3, a n+1 = 3 n a n. e) a 1 = 1, a n+1 = a n + ( 1) n V. Napisz 4 początkowe wyrazy ciągu: Blok V: Ciągi. Różniczkowanie i całkowanie a) a n = n b) a n = n + 3 n! c) a n = n! n(n + ) V. Oblicz (lub zapisz) c, c 3, c k, c n k dla: a) c n = 3 n b) c n = 3n

Bardziej szczegółowo

w teorii funkcji. Dwa s lynne problemy. Micha l Jasiczak

w teorii funkcji. Dwa s lynne problemy. Micha l Jasiczak Równania różniczkowe czastkowe w teorii funkcji. Dwa s lynne problemy. Micha l Jasiczak Horyzonty 2014 Podstawowy obiekt wyk ladu: funkcje holomorficzne wielu zmiennych Temat: dwa problemy, których znane

Bardziej szczegółowo

1 Szeregi potęgowe. 1.1 Promień zbieżności szeregu potęgowego. Wydział Informatyki, KONWERSATORIUM Z MATEMATYKI, 2008/2009.

1 Szeregi potęgowe. 1.1 Promień zbieżności szeregu potęgowego. Wydział Informatyki, KONWERSATORIUM Z MATEMATYKI, 2008/2009. Szeregi potęgowe Definicja.. Szeregiem potęgowym o środku w punkcie R nazywamy szereg postaci: gdzie x R oraz c n R dla n = 0,, 2,... c n (x ) n, Przyjmujemy, że 0 0 def =. Liczby c n nazywamy współczynnikami

Bardziej szczegółowo

INTERPOLACJA I APROKSYMACJA FUNKCJI

INTERPOLACJA I APROKSYMACJA FUNKCJI Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Wprowadzenie Na czym polega interpolacja? Interpolacja polega

Bardziej szczegółowo

Matematyka I. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 9

Matematyka I. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 9 Matematyka I Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 9 Przykład z fizyki Rozpatrzmy szeregowe połączenie dwu elementów elektronicznych: opornika i diody półprzewodnikowej.

Bardziej szczegółowo

Wyk lad 7 Metoda eliminacji Gaussa. Wzory Cramera

Wyk lad 7 Metoda eliminacji Gaussa. Wzory Cramera Wyk lad 7 Metoda eliminacji Gaussa Wzory Cramera Metoda eliminacji Gaussa Metoda eliminacji Gaussa polega na znalezieniu dla danego uk ladu a x + a 2 x 2 + + a n x n = b a 2 x + a 22 x 2 + + a 2n x n =

Bardziej szczegółowo

Wykłady... b i a i. i=1. m(d k ) inf

Wykłady... b i a i. i=1. m(d k ) inf Wykłady... CŁKOWNIE FUNKCJI WIELU ZMIENNYCH Zaczniemy od konstrukcji całki na przedziale domkniętym. Konstrukcja ta jest, w gruncie rzeczy, powtórzeniem definicji całki na odcinku domkniętym w R 1. Przedziałem

Bardziej szczegółowo

Lista 1 - Funkcje elementarne

Lista 1 - Funkcje elementarne Lista - Funkcje elementarne Naszkicuj wykresy funkcji: a) y = sgn, y = sgn ; b) y = ; c) y = 2 Przedstaw w jednym układzie współrzędnych wykresy funkcji potęgowej y = α dla: a) α =, 2, 3, 4; b) α =,, 2;

Bardziej szczegółowo

Dekompozycje prostej rzeczywistej

Dekompozycje prostej rzeczywistej Dekompozycje prostej rzeczywistej Michał Czapek michal@czapek.pl www.czapek.pl 26 X AD MMXV Streszczenie Celem pracy jest zwrócenie uwagi na ciekawą różnicę pomiędzy klasami zbiorów pierwszej kategorii

Bardziej szczegółowo

Wykład 1. Przestrzeń Hilberta

Wykład 1. Przestrzeń Hilberta Wykład 1. Przestrzeń Hilberta Sygnały. Funkcje (w języku inżynierów - sygnały) które będziemy rozważali na tym wykładzie będą kilku typów Sygnały ciągłe (analogowe). ) L (R) to funkcje na prostej spełniające

Bardziej szczegółowo

P (x, y) + Q(x, y)y = 0. g lym w obszrze G R n+1. Funkcje. zania uk ladu (1) o wykresie przebiegaja

P (x, y) + Q(x, y)y = 0. g lym w obszrze G R n+1. Funkcje. zania uk ladu (1) o wykresie przebiegaja 19. O ca lkach pierwszych W paragrafie 6 przy badaniu rozwia zań równania P (x, y) + Q(x, y)y = 0 wprowadzono poje cie ca lki równania, podano pewne kryteria na wyznaczanie ca lek równania. Znajomość ca

Bardziej szczegółowo

Metody Obliczeniowe w Nauce i Technice

Metody Obliczeniowe w Nauce i Technice 5. Aproksymacja Marian Bubak Department of Computer Science AGH University of Science and Technology Krakow, Poland bubak@agh.edu.pl dice.cyfronet.pl Contributors Paweł Urban Jakub Ptak Łukasz Janeczko

Bardziej szczegółowo

Wyk lad 5 W lasności wyznaczników. Macierz odwrotna

Wyk lad 5 W lasności wyznaczników. Macierz odwrotna Wyk lad 5 W lasności wyznaczników Macierz odwrotna 1 Operacje elementarne na macierzach Bardzo ważne znaczenie w algebrze liniowej odgrywaja tzw operacje elementarne na wierszach lub kolumnach macierzy

Bardziej szczegółowo

Wyk lad 6 Podprzestrzenie przestrzeni liniowych

Wyk lad 6 Podprzestrzenie przestrzeni liniowych Wyk lad 6 Podprzestrzenie przestrzeni liniowych 1 Określenie podprzestrzeni Definicja 6.1. Niepusty podzbiór V 1 V nazywamy podprzestrzeni przestrzeni liniowej V, jeśli ma on nastepuj ace w lasności: (I)

Bardziej szczegółowo

Ciągi liczbowe. Zbigniew Koza. Wydział Fizyki i Astronomii

Ciągi liczbowe. Zbigniew Koza. Wydział Fizyki i Astronomii Ciągi liczbowe Zbigniew Koza Wydział Fizyki i Astronomii Wrocław, 2015 Co to są ciągi? Ciąg skończony o wartościach w zbiorze A to dowolna funkcja f: 1,2,, n A Ciąg nieskończony o wartościach w zbiorze

Bardziej szczegółowo

STYSTYSTYKA dla ZOM II dr inż Krzysztof Bryś Wykad 1

STYSTYSTYKA dla ZOM II dr inż Krzysztof Bryś Wykad 1 1 STYSTYSTYKA dla ZOM II dr inż Krzysztof Bryś Wykad 1 Klasyczny Rachunek Prawdopodobieństwa. 1. Pojȩcia wstȩpne. Doświadczeniem losowym nazywamy doświadczenie, którego wynik nie jest znany. Posiadamy

Bardziej szczegółowo

1 Relacje i odwzorowania

1 Relacje i odwzorowania Relacje i odwzorowania Relacje Jacek Kłopotowski Zadania z analizy matematycznej I Wykazać, że jeśli relacja ρ X X jest przeciwzwrotna i przechodnia, to jest przeciwsymetryczna Zbadać czy relacja ρ X X

Bardziej szczegółowo

Procesy Stochastyczne - Zestaw 1

Procesy Stochastyczne - Zestaw 1 Procesy Stochastyczne - Zestaw 1 Zadanie 1 Niech ξ i η bed a niezależnymi zmiennymi losowymi o rozk ladach N (0, 1). Niech X = ξ +η i Y = ξ η. Znaleźć rozk lad (X, Y ) i rozk lad warunkowy L X ( Y ). Zadanie

Bardziej szczegółowo

Twierdzenie Stolza i metryki Javier de Lucas. a n = (2n + 1) 1 4 n 5 4

Twierdzenie Stolza i metryki Javier de Lucas. a n = (2n + 1) 1 4 n 5 4 Twierdzenie Stolza i metryki Javier de Lucas Zadanie Zbadać zbieżność ci agu i znaleźć granicȩ: a n 4 + 3 4 + + (2n + ) 4 n 5 4 Rozwi azanie: Żeby obliczyć tak a granicȩ korzystamy z twierdzenia Stolza,

Bardziej szczegółowo

Część całkowita i ułamkowa, funkcje trygonometryczne, podstawowe własności funkcji

Część całkowita i ułamkowa, funkcje trygonometryczne, podstawowe własności funkcji Sprawdzian nr 2: 25..204, godz. 8:5-8:40 (materiał zad. -48) Sprawdzian nr 3: 9.2.204, godz. 8:5-8:40 (materiał zad. -88) Część całkowita i ułamkowa, funkcje trygonometryczne, podstawowe własności funkcji

Bardziej szczegółowo

WPPT 2r., sem. letni KOLOKWIUM 1 Wroc law, 19 kwietnia 2011

WPPT 2r., sem. letni KOLOKWIUM 1 Wroc law, 19 kwietnia 2011 A N A L I Z A F U N K C J O N A L N A WPPT r, sem letni KOLOKWIUM Wroc law, 9 kwietnia 0 ZADANIE ab W pewnej przestrzeni mamy wie metryki i przy czym czyni nasz a przestrzeń zwart a a jest s labsza o (tzn

Bardziej szczegółowo

2.7 Przestrzenie unormowane skończenie wymiarowe

2.7 Przestrzenie unormowane skończenie wymiarowe 2.7 Przestrzenie unormowane skończenie wymiarowe Rozważamy teraz przestrzenie unormowane X skończenie wymiarowe. Załóżmy, że dimx = m. Niech dalej e,e 2,...,e m będzie bazą algebraiczną tej przestrzeni

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA dla ZPM I dr inż Krzysztof Bryś wyk lad 1,2 KLASYCZNY RACHUNEK PRAWDOPODOBIEŃSTWA

STATYSTYKA MATEMATYCZNA dla ZPM I dr inż Krzysztof Bryś wyk lad 1,2 KLASYCZNY RACHUNEK PRAWDOPODOBIEŃSTWA 1 STATYSTYKA MATEMATYCZNA dla ZPM I dr inż Krzysztof Bryś wyk lad 1,2 KLASYCZNY RACHUNEK PRAWDOPODOBIEŃSTWA 1. Pojȩcia wstȩpne. Doświadczeniem losowym nazywamy doświadczenie, którego wynik nie jest znany.

Bardziej szczegółowo

Analiza numeryczna kolokwium2a-15grudnia2005

Analiza numeryczna kolokwium2a-15grudnia2005 kolokwium2a-15grudnia2005 1.Niechf(x)=a n x n +a n 1 x n 1 +...+a 0.Jakąwartośćprzyjmujeilorazróżnicowy f[x 0,...,x n ]dladowolnychn+1paramiróżnychwęzłówx j?odpowiedźuzasadnić. 2. Pokazać, że zamiana zmiennych

Bardziej szczegółowo

Funkcje wielu zmiennych

Funkcje wielu zmiennych Funkcje wielu zmiennych Zbiory na p laszczyźnie Przestrzeni a dwuwymiarow a (p laszczyzn a) nazywamy zbiór wszystkich par uporz adkowanych (x, y), gdzie x, y R. Przestrzeń tȩ oznaczamy symbolem R 2 : R

Bardziej szczegółowo

Rozdział 5. Szeregi liczbowe. 5.1 Szeregi liczbowe. Definicja sumy częściowej ciągu. Niech dany będzie ciąg liczbowy (a n ) n=1.

Rozdział 5. Szeregi liczbowe. 5.1 Szeregi liczbowe. Definicja sumy częściowej ciągu. Niech dany będzie ciąg liczbowy (a n ) n=1. Rozdział 5 Szeregi liczbowe 5. Szeregi liczbowe Definicja sumy częściowej ciągu. Niech dany będzie ciąg liczbowy ( ). Ciąg (s n ) określony wzorem s n = n a j, n N, nazywamy ciągiem sum częściowych ciągu

Bardziej szczegółowo

Sterowalność liniowych uk ladów sterowania

Sterowalność liniowych uk ladów sterowania Sterowalność liniowych uk ladów sterowania W zadaniach sterowania docelowego należy przeprowadzić obiekt opisywany za pomoc a równania stanu z zadanego stanu pocz atkowego ẋ(t) = f(x(t), u(t), t), t [t,

Bardziej szczegółowo

5. Obliczanie pochodnych funkcji jednej zmiennej

5. Obliczanie pochodnych funkcji jednej zmiennej Kiedy może być potrzebne numeryczne wyznaczenie pierwszej lub wyższej pochodnej funkcji jednej zmiennej? mamy f(x), nie potrafimy znaleźć analitycznie jej pochodnej, nie znamy postaci f(x), mamy stablicowane

Bardziej szczegółowo

Zadania z Analizy Funkcjonalnej I Które z poniższych przestrzeni metrycznych są przestrzeniami unormowanymi?

Zadania z Analizy Funkcjonalnej I Które z poniższych przestrzeni metrycznych są przestrzeniami unormowanymi? Zadania z Analizy Funkcjonalnej I - 1 1. Które z poniższych przestrzeni metrycznych są przestrzeniami unormowanymi? a) X = R, d(x, y) = arctg x y ; b) X = R n, d(x, y) = x 1 y 1 + x 2 y 2 + max i 3 x i

Bardziej szczegółowo

Rozdział 8. Analiza fourierowska. 8.1 Rozwinięcie w szereg Fouriera

Rozdział 8. Analiza fourierowska. 8.1 Rozwinięcie w szereg Fouriera Rozdział 8 Analiza fourierowska 8.1 Rozwinięcie w szereg Fouriera Rozważmy funkcję rzeczywistą f określoną na okręgu o promieniu jednostkowym. Parametryzując okrąg przy pomocy kąta φ [, π] otrzymujemy

Bardziej szczegółowo

Zadania z algebry liniowej Iloczyn skalarny, przestrzenie euklidesowe

Zadania z algebry liniowej Iloczyn skalarny, przestrzenie euklidesowe Zadania z algebry liniowej Iloczyn skalarny, przestrzenie euklidesowe Definicja 1 (Iloczyn skalarny). Niech V będzie rzeczywistą przestrzenią liniową. Iloczynem skalarnym w przestrzeni V nazywamy funkcję

Bardziej szczegółowo

O geometrii semialgebraicznej

O geometrii semialgebraicznej Inauguracja roku akademickiego 2018/2019 na Wydziale Matematyki i Informatyki Uniwersytetu Łódzkiego O geometrii semialgebraicznej Stanisław Spodzieja Łódź, 28 września 2018 Wstęp Rozwiązywanie równań

Bardziej szczegółowo

Liczby zespolone, liniowa zależność i bazy Javier de Lucas. a d b c. ad bc

Liczby zespolone, liniowa zależność i bazy Javier de Lucas. a d b c. ad bc Liczby zespolone, liniowa zależność i bazy Javier de Lucas Ćwiczenie. Dowieść, że jeśli µ := c d d c, to homografia h(x) = (ax+b)/(cx+d), a, b, c, d C, ad bc, odwzorowuje oś rzeczywist a R C na okr ag

Bardziej szczegółowo

Szeregi o wyrazach dodatnich. Kryteria zbieżności d'alemberta i Cauchy'ego

Szeregi o wyrazach dodatnich. Kryteria zbieżności d'alemberta i Cauchy'ego Szeregi o wyrazach dodatnich. Kryteria zbieżności d'alemberta i Cauchy'ego Przy założeniu, że wszystkie składniki szeregu jest rosnący. Wynika stąd natychmiast stwierdzenie: są dodatnie, ciąg jego sum

Bardziej szczegółowo

Przestrzenie wektorowe, liniowa niezależność Javier de Lucas

Przestrzenie wektorowe, liniowa niezależność Javier de Lucas Przestrzenie wektorowe, liniowa niezależność Javier de Lucas Ćwiczenie 1. W literaturze można znaleźć pojȩcia przestrzeni liniowej i przestrzeni wektorowej. Obie rzeczy maj a tak a sam a znaczenie. Nastȩpuj

Bardziej szczegółowo

Lista. Przestrzenie liniowe. Zadanie 1 Sprawdź, czy (V, +, ) jest przestrzenią liniową nadr :

Lista. Przestrzenie liniowe. Zadanie 1 Sprawdź, czy (V, +, ) jest przestrzenią liniową nadr : Lista Przestrzenie liniowe Zadanie 1 Sprawdź, czy (V, +, ) jest przestrzenią liniową nadr : V = R[X], zbiór wielomianów jednej zmiennej o współczynnikach rzeczywistych, wraz ze standardowym dodawaniem

Bardziej szczegółowo

Wyk lad 3 Wielomiany i u lamki proste

Wyk lad 3 Wielomiany i u lamki proste Wyk lad 3 Wielomiany i u lamki proste 1 Konstrukcja pierścienia wielomianów Niech P bedzie dowolnym pierścieniem, w którym 0 1. Oznaczmy przez P [x] zbiór wszystkich nieskończonych ciagów o wszystkich

Bardziej szczegółowo

KURS SZEREGI. Lekcja 10 Szeregi Fouriera ZADANIE DOMOWE. Strona 1

KURS SZEREGI. Lekcja 10 Szeregi Fouriera ZADANIE DOMOWE.   Strona 1 KURS SZEREGI Lekcja 1 Szeregi Fouriera ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Zaznacz poprawną odpowiedź: a) Szereg Fouriera

Bardziej szczegółowo

13 Równanie struny drgającej. Równanie przewodnictwa ciepła.

13 Równanie struny drgającej. Równanie przewodnictwa ciepła. Równanie struny drgającej. Równanie przewodnictwa ciepła 13 1 13 Równanie struny drgającej. Równanie przewodnictwa ciepła. 13.1 Równanie struny drgającej Równanie różniczkowe liniowe drugiego rzędu typu

Bardziej szczegółowo

Zaawansowane metody numeryczne

Zaawansowane metody numeryczne Wykład 7 a szeregi Fouriera (zarówno w przypadku ciągłym, jak i dyskretnym) jest szczegónym przypadkiem aproksymacji funkcjami ortogonanymi. Anaitycznie rozwiązanie zadania aproksymacji trygonometrycznej

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, /15

Matematyka dyskretna. Andrzej Łachwa, UJ, /15 Matematyka dyskretna Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl 7/15 Rachunek różnicowy Dobrym narzędziem do obliczania skończonych sum jest rachunek różnicowy. W rachunku tym odpowiednikiem operatora

Bardziej szczegółowo

Rozdział 6. Ciągłość. 6.1 Granica funkcji

Rozdział 6. Ciągłość. 6.1 Granica funkcji Rozdział 6 Ciągłość 6.1 Granica funkcji Podamy najpierw dwie definicje granicy funkcji w punkcie i pokażemy ich równoważność. Definicja Cauchy ego granicy funkcji w punkcie. Niech f : X R, gdzie X R oraz

Bardziej szczegółowo

1 + iϕ n. = cos ϕ + i sin ϕ. e n z n n n. c M n z n, c n z Mn.

1 + iϕ n. = cos ϕ + i sin ϕ. e n z n n n. c M n z n, c n z Mn. WRAiT 2 #1 1. Dla jakich a C ciągi o wyrazach na n, a n 1 + a n, an /n, są zbieżne? 2. Wykaż zbieżność i znajdź granice ciągów n a k, a n 1 + a 2n ( a < 1), a n 1 + a 2n ( a > 1), 1 n 3. Dla danego ϕ R

Bardziej szczegółowo

g liczb rzeczywistych (a n ) spe lnia warunek

g liczb rzeczywistych (a n ) spe lnia warunek . Czy jest prawda, że a) R y R z R y + yz + = 0 ; b) R y R z R y + yz + 0 ; c) R y R z R y + yz + = 0 ; d) R y R z R y + yz + 0? 2. Czy jest prawdziwa nierówność a) ctg > ; b) tg < cos ; c) cos < sin ;

Bardziej szczegółowo

Sterowanie optymalne dla uk ladów nieliniowych. Zasada maksimum Pontriagina.

Sterowanie optymalne dla uk ladów nieliniowych. Zasada maksimum Pontriagina. Sterowanie optymalne dla uk ladów nieliniowych. Zasada maksimum Pontriagina. Podstawowy problem sterowania optymalnego dla uk ladów nieliniowych W podstawowym problemie sterowania optymalnego minimalizacji

Bardziej szczegółowo

Funkcje wielu zmiennych

Funkcje wielu zmiennych Funkcje wielu zmiennych 13 Zbiory w przestrzeni Definicja Przestrzeni a trójwymiarow a (przestrzeni a) nazywamy zbiór wszystkich trójek uporz adkowanych (x y z) gdzie x y z R. Przestrzeń tȩ oznaczamy symbolem

Bardziej szczegółowo

Wyk lad 3 Wyznaczniki

Wyk lad 3 Wyznaczniki 1 Określenie wyznacznika Wyk lad 3 Wyznaczniki Niech A bedzie macierza kwadratowa stopnia n > 1 i niech i, j bed a liczbami naturalnymi n Symbolem A ij oznaczać bedziemy macierz kwadratowa stopnia n 1

Bardziej szczegółowo

Wzory Viete a i ich zastosowanie do uk ladów równań wielomianów symetrycznych dwóch i trzech zmiennych

Wzory Viete a i ich zastosowanie do uk ladów równań wielomianów symetrycznych dwóch i trzech zmiennych Wzory Viete a i ich zastosowanie do uk ladów równań wielomianów symetrycznych dwóch i trzech zmiennych Pawe l Józiak 007-- Poje cia wste pne Wielomianem zmiennej rzeczywistej t nazywamy funkcje postaci:

Bardziej szczegółowo

Wyk lad 14 Cia la i ich w lasności

Wyk lad 14 Cia la i ich w lasności Wyk lad 4 Cia la i ich w lasności Charakterystyka cia la Określenie cia la i w lasności dzia lań w ciele y ly omówione na algerze liniowej. Stosujac terminologie z teorii pierścieni możemy powiedzieć,

Bardziej szczegółowo

Kurs wyrównawczy - teoria funkcji holomorficznych

Kurs wyrównawczy - teoria funkcji holomorficznych Kurs wyrównawczy - teoria funkcji holomorficznych wykład 1 Gniewomir Sarbicki 15 lutego 2011 Struktura ciała Zbiór par liczb rzeczywistych wyposażamy w działania: { + : (a, b) + (c, d) = (a + c, b + d)

Bardziej szczegółowo

Metoda rozdzielania zmiennych

Metoda rozdzielania zmiennych Rozdział 12 Metoda rozdzielania zmiennych W tym rozdziale zajmiemy się metodą rozdzielania zmiennych, którą można zastosować, aby wyrazić jawnymi wzorami rozwiązania pewnych konkretnych równań różniczkowych

Bardziej szczegółowo

Krzysztof Rykaczewski. Szeregi

Krzysztof Rykaczewski. Szeregi Krzysztof Rykaczewski Spis treści 1 Definicja szeregu 2 Zbieżność szeregu 3 Kryteria zbieżności szeregów 4 Iloczyn Cauchy ego szeregów 5 Bibliografia 1 / 13 Definicja szeregu Niech dany będzie ciąg (a

Bardziej szczegółowo

Normy wektorów i macierzy

Normy wektorów i macierzy Rozdzia l 3 Normy wektorów i macierzy W tym rozdziale zak ladamy, że K C. 3.1 Ogólna definicja normy Niech ψ : K m,n [0, + ) b edzie przekszta lceniem spe lniaj acym warunki: (i) A K m,n ψ(a) = 0 A = 0,

Bardziej szczegółowo

Wyk lad 9 Baza i wymiar przestrzeni liniowej

Wyk lad 9 Baza i wymiar przestrzeni liniowej Wyk lad 9 Baza i wymiar przestrzeni liniowej 1 Operacje elementarne na uk ladach wektorów Niech α 1,..., α n bed dowolnymi wektorami przestrzeni liniowej V nad cia lem K. Wyróżniamy nastepuj ace operacje

Bardziej szczegółowo