LOGIKA ALGORYTMICZNA

Wielkość: px
Rozpocząć pokaz od strony:

Download "LOGIKA ALGORYTMICZNA"

Transkrypt

1 LOGIKA ALGORYTMICZNA 0.0. Relacje. Iloczyn kartezjański: A B := (a, b) : a A i b B} (zak ladamy, że (x, y) i (u, v) s a równe wtedy i tylko wtedy gdy x = u i y = v); A n := (x 1,..., x n ) : x i A}; R A n relacja n-argumentowa (n-arna) na A; piszemy R(a 1,..., a n ) jeśli (a 1,..., a n ) R; F A n B jest funkcj a n-argumentow a ze zbioru A w zbiór B (oznaczamy przez F : A n B) jeśli warunki (a 1,..., a n, b 1 ) F i (a 1,..., a n, b 2 ) F implikuj a b 1 = b 2 ; piszemy F (a 1,..., a n ) = b; Dziedzina: Dom(F ) = (a 1,..., a n ) A n : dla pewnego b B, F (a 1,..., a n ) = b}; Obraz: Im(F ) = b B : dla pewnego (a 1,..., a n ) A n, F (a 1,..., a n ) = b}; Obraz zbioru R A n : niech F (R) = b B : dla pewnego (a 1,..., a n ) R, F (a 1,..., a n ) = b}; Przeciwobraz zbioru C B: niech F 1 (C) = (a 1,..., a n ) A n : dla pewnego b C, F (a 1,..., a n ) = b}. Niech F : A B i G : B C. Funkcja z lożona GF : A C: GF (x) = G(F (x)). Udowodnić: (A 1 A 2 ) B = A 1 B A 2 B; (A 1 \ A 2 ) B = A 1 B \ A 2 B; F (GH) = (F G)H dla H : A B, G : B C, F : C D; F (A 1 A 2 ) = F (A 1 ) F (A 2 ); F (A 1 A 2 ) F (A 1 ) F (A 2 ). 1. Struktury, formu ly, spe lnianie Struktury. Jȩzyk L : zbiór symboli relacyjnych (predykatów), funkcyjnych i sta lych : L = (P n 1 1,..., P n i i,..., F m 1 1,..., F m j j,..., c 1,..., c k,...). Struktura M jȩzyka L sk lada siȩ ze zbioru A (uniwersum struktury) i interpretacji symboli jȩzyka L na zbiorze A: każdy P n i i jest interpretowany jako relacja n i - argumentowa na A, każdy F m j j jest interpretowany jako funkcja m i -argumentowa na A, każdy c k jest interpretowany jako element ze zbioru A. Podzbiór B A tworzy podstrukturȩ M struktury M jeśli elementy interpretuj ace symbole sta lych (w M) należ a do B i funkcje interpretuj ace symbole funkcyjne (w M) odwzorowuj a B m i w B. Wtedy symbole relacyjne i funkcyjne jȩzyka L interpretujemy na B jako odpowiednie relacje i funkcje struktury M ograniczone do B (sta le na B interpretujemy tak samo jak w M). Przyk lady: L = (P 2, F 2, G 2, c 1, c 2 ) Struktura N = (N, <, +,, 0, 1) (gdzie zbiór liczb naturalnych N jest uniwersum) określa interpretacje symboli L jako: uporz adkowanie liczb naturalnych, funkcje dodawania i mnożenia, i liczby naturalne 0, 1. Niech Z bȩdzie zbiorem liczb ca lkowitych i Z = (Z, <, +,, 0, 1). N jest podstruktur a Z. 1

2 Zadanie: Niech L = (F 1, c), a Z jest uniwersum struktury M, gdzie F 1 jest interpretowany jako funkcja dodawania 1 (y = x + 1) a c jest interpretowany jako liczba 6. Czy zbiór liczb parzystych tworzy podstrukturȩ? Czy zbiór liczb naturalnych tworzy podstrukturȩ? Jakie podzbiory zbioru Z tworz a podstruktury M? 1.2. Termy. Niech L = (P n 1 1,..., P n i i,..., F m 1 1,..., F m j j,..., c 1,..., c k,...) bȩdzie jȩzykiem. Wyrażenie t nazywa siȩ termem jȩzyka L jeśli (przez indukcjȩ): 1. t jest zmienn a x i lub symbolem c k L; 2. t ma postać F j (t 1,..., t mj ), gdzie F m j j L i t 1,..., t mj s a termami. Przyk lad : (x + 1) 0 jest termem jȩzyka (<, +,, 0, 1) Formu ly. Formu l a atomow a jȩzyka L nazywa siȩ wyrażenie postaci t 1 = t 2 lub P i (t 1,..., t ni ), gdzie t 1, t 2,..., t ni s a termami i P n i i L. Wyrażenie φ nazywa siȩ formu l a jȩzyka L jeśli (przez indukcjȩ): 1. φ jest formu l a atomow a; 2. φ ma postać ψ 1 (negacja) lub ψ 1 ψ 2 (koniunkcja), ψ 1 ψ 2 (alternatywa), ψ 1 ψ 2 (implikacja), gdzie ψ 1 i ψ 2 s a formu lami; 3. φ ma postać xψ (kwantyfikator dla każdego ) lub xψ (kwantyfikator istnieje ) gdzie ψ jest formu l a (nazywamy j a dziedzin a kwantyfikatora) i x jest zmienn a. Miejsce wystȩpowania zmiennej x w φ nazywa siȩ zwi azanym jeśli miejsce to znajduje siȩ w dziedzinie kwantyfikatora wzglȩdem x. Zmienna x jest wolna w φ jeśli ma miejsce niezwi azane Spe lnianie. Niech M bȩdzie struktur a jȩzyka L. Interpretacj a zmiennych x 1,..., x n nazywamy odwzorowanie I : x 1,..., x n } M (w uniwersum). Wtedy a i = I(x i ) s a wartościami odpowiednich zmiennych. Jeśli zmienne termu t należ a do zbioru x 1,..., x n } to wartość termu wzglȩdem interpretacji I (oznaczamy przez t(a 1,..., a n )) definiuje siȩ przez indukcjȩ: 1. jeśli t = x i, to t(a 1,..., a n ) = a i ; 2. jeśli t = c k, to t(a 1,..., a n ) jest interpretacj a c k w M; 3. jeśli t = F j (t 1,..., t mj ), to t(a 1,..., a n ) jest wartości a funkcji odpowiadaj acej F j na elementach b 1,..., b mj M gdzie b l = t l (a 1,..., a n ), 1 l m j. Jeśli każda zmienna wolna w φ jest elementem zbioru x 1,..., x n }, to mówimy że φ jest spe lniona (lub prawdziwa) w M wzglȩdem interpretacji I (oznaczamy M = φ(a 1,..., a n )) jeśli zachodzi jeden z podanych niżej przypadków: 1. φ jest postaci t 1 = t 2 i wartości t 1 (a 1,..., a n ) i t 2 (a 1,..., a n ) s a równe; 2. φ jest postaci P i (t 1,..., t ni ) i ci ag (t 1 (a 1,..., a n ),..., t ni (a 1,..., a n )) należy do relacji odpowiadaj acej P i w M; 3. φ jest postaci ψ 1 i M = ψ(a 1,..., a n ); 4. φ jest postaci ψ 1 ψ 2 i zachodz a warunki M = ψ 1 (a 1,..., a n ) i M = ψ 2 (a 1,..., a n ); 5. φ jest postaci ψ 1 ψ 2 i zachodzi warunek M = ψ 1 (a 1,..., a n ) lub warunek M = ψ 2 (a 1,..., a n ); 6. φ jest postaci ψ 1 ψ 2 i zachodzi M = ψ 1 (a 1,..., a n ) lub M = ψ 2 (a 1,..., a n ); 2

3 7. φ jest postaci xψ(a 1,..., a n, x) i M = ψ(a 1,..., a n, a) dla każdego a M. 8. φ jest postaci xψ(a 1,..., a n, x) i M = ψ(a 1,..., a n, a) dla pewnego a M. Jeśli M = φ(a 1,..., a n ), to mówimy, że φ jest fa lszywa w M wzglȩdem interpetacji I. Jeśli M = φ(a 1,..., a n ) dla wszystkich M i I : x 1,..., x n } M, to mówimy, że φ jest tautologi a. Jeśli M = φ(a 1,..., a n ) dla wszystkich M i I : x 1,..., x n } M, to mówimy, że φ jest sprzeczna. Mówimy, że φ jest wnioskiem ze zbioru formu l Γ (oznaczamy Γ = φ), jeśli dla każdych M i I : x 1,..., x n } M warunek M = ψ(a 1,..., a n ) dla wszystkich ψ Γ implikuje M = φ(a 1,..., a n ). Jeśli φ} = ψ i ψ} = φ, to mówimy, że φ i ψ s a równoważne Zadania Niech L = (P 2, F 2, G 2, c 1, c 2 ). Niech struktura N = (N, <, +,, 0, 1) (gdzie zbiór liczb naturalnych N jest uniwersum) określa interpretacje symboli L jako: uporz adkowanie liczb naturalnych, funkcje dodawania i mnożenia, i liczby naturalne 0, 1. (a) Podać formu lȩ φ(x) tak a, że N = φ(n) wtedy i tylko wtedy gdy n jest liczb a pierwsz a. (b) Niech funkcja g(x 1,..., x n ) jest z lożeniem funkcji h(y 1,..., y t ), f 1 ( x),...,f t ( x) lub wynikiem zastosowania µ-operatora do funkcji h (x 1,..., x n, x n+1 ). Niech dla każdej f(x 1,..., x s ) h, f 1,..., f t, h } istnieje formu la elementarnej arytmetyki φ(x 1,..., x s, y) taka, że N = φ(n 1,..., n s, m) f(n 1,..., n s ) = m. Pokazać, że stwierdzenie to jest również prawdziwe dla g( x). 2. β-funkcja Gödla jest zdefiniowana nastȩpuj aco: β(x, y, z) = rest(x, 1 + y(z + 1)). Stosuj ac chińskie twierdzenie o resztach udowodnić, że każdy uk lad nastȩpuj acej postaci ma rozwi azanie: β(x, y, 0) = a β(x, y, n) = a n 3. Udowodnić nastȩpuj ace Twierdzenie. Dla każdej funkcji rekurencyjnej f(x 1,..., x s ) istnieje formula elementarnej arytmetyki φ(x 1,..., x s, y) taka, że N = φ(n 1,..., n s, m) f(n 1,..., n s ) = m Zadania. 1. Pokazać, że nastȩpuj ace formu ly s a równoważne (gdzie Q, }): (a) Qxφ ψ i Qx(φ ψ), gdzie x nie jest zmienn a woln a w ψ; (b) Qxφ ψ i Qx(φ ψ), gdzie x nie jest zmienn a woln a w ψ; (c) ( xφ) i x( φ); 1 definicja funkcji rekurencyjnej (i funkcji rest) jest podana w Dodatku 2 jest również prawd a, że relacja R ω s jest rekurencyjnie przeliczalna wtedy i tylko wtedy gdy istnieje formula elementarnej arytmetyki postaci φ(x 1,..., x s ) = z 1,..., z t (p(x 1,..., x s, z 1,..., z t ) = 0) gdzie p( x z) jest pewnym wielomianem, taka, że N = φ(n 1,..., n s ) (n 1,..., n s ) R. 3

4 (d) ( xφ) i x( φ); (e) xφ xψ i x(φ ψ); (f) xφ xψ i x(φ ψ); (g) Qxφ i Qz(φ) x z, gdzie (φ) x z jest formu l a otrzyman a z φ po zast apieniu x przez z we wszystkich miejscach gdzie x ma wystȩpowanie wolne w φ; (h) Q 1 xφ Q 2 xψ i Q 1 xq 2 z(φ (ψ) x z), gdzie z nie wystȩpuje w φ; (i) Q 1 xφ Q 2 xψ i Q 1 xq 2 z(φ (ψ) x z), gdzie z nie wystȩpuje w φ; 2. Mówimy że φ ma postać normaln a, jeśli φ = Q 1 x 1...Q n x n ψ, gdzie Q i, } i ψ nie zawiera kwantyfikatorów. Udowodnić Twierdzenie. Każda formu la jest równoważna formule w postaci normalnej. 3. Znaleźć postaci normalne równoważne nastȩpuj acym formu lom: (a) x yp 1 (x, y, z) x yp 2 (x, y); (b) x y( zp 1 (x, y, z, u) (P 1 (x, y, z, u)) x y) up 2 (x, z, u); 4. Pokazać, że nastȩpuj ace formu ly s a równoważne (gdzie 0 oznacza formu lȩ sprzeczn a a 1 oznacza tautologiȩ): (a) φ ψ i φ ψ; (b) φ (lub ) ψ i ψ (lub ) φ; (c) φ 1 (φ 2 φ 3 ) i (φ 1 φ 2 ) φ 3 (i odpowiednio dla ); (d) φ 1 (φ 2 φ 3 ) i (φ 1 φ 2 ) (φ 1 φ 3 ); (e) φ 1 (φ 2 φ 3 ) i (φ 1 φ 2 ) (φ 1 φ 3 ); (f) φ 0 i φ; φ 1 i φ; (g) φ 1 i 1; φ 0 i 0; (h) φ φ i 1; φ φ i 0; (i) ( φ) i φ; (j) (φ ψ) i φ ψ; (k) (φ ψ) i φ ψ; 5. Mówimy że φ ma dyzjunkcyjn a postać normaln a, jeśli φ nie zawiera kwantyfikatorów i φ = φ 1... φ k, gdzie każda φ i jest postaci ψ 1... ψ l, gdzie ψ j jest formu l a atomow a lub negacj a formu ly atomowej. Udowodnić Twierdzenie. Każda formu la nie zawieraj aca kwantyfikatorów jest równoważna formule w dyzjunkcyjnej postaci normalnej. 6. Znaleźć dyzjunkcyjne postaci normalne równoważne nastȩpuj acym formu lom: (a) P 1 P 2 P 2 ; (b) P 1 (P 2 P 3 ) P 4 ; DODATEK A.1. Funkcje rekurencyjne. Na zbiorze wszystkich funkcji czȩściowych określonych na N wprowadzamy nastȩpuj ace operatory. Operator z lożenia g = S(f m, f n 1,..., f n m) jest określony przez równość g(x 1,..., x n ) = f(f 1 (x 1,..., x n ),..., f m (x 1,..., x n )), 4

5 gdzie Dom(g) sk lada siȩ z takich ci agów l 1,..., l n, że wartości k j = f j (l 1,..., l n ) s a określone i f jest określona na k 1,..., k m. Operator rekursji perwotnej g n+1 = P R(f n+2, h n ) jest określony przez: g(x 1,..., x n, 0) = h(x 1,..., x n ),... g(x 1,..., x n, i + 1) = f(x 1,..., x n, i, g(x 1,..., x n, i)),..., gdzie Dom(g) sk lada siȩ z takich ci agów l 1,..., l n, l, że wartości k 0 = h(l 1,..., l n ) i k j = f(l 1,..., l n, j 1, k j 1 ), 1 j l, s a określone. µ-operator g n = µ(f n+1 ) jest określony przez: g(x 1,..., x n ) = miny : f(x 1,..., x n, y) = 0}, gdzie Dom(g) sk lada siȩ z takich ci agów l 1,..., l n, że wartości k j = f(l 1,..., l n, j), 0 j, s a określone do pewnego j spe lniaj acego k j = 0. Funkcja f jest rekurencyjna jeśli jest zbudowana z funkcji O(x) = 0, s(x) = x + 1, Im(x n 1,..., x n ) = x m, 1 m n ω, przez skończon a ilość stosowań operatorów S, P R i µ. A.2. Zadanie. Pokazać, że nastȩpuj ace funkcje s a rekurencyjne: x 1 + x 2, x 1 x 2, 2 x, [x/2]; sg(x) = 0 : x = 0 1 : x 0 ; sg(x) = 1 : x = 0 1 : x 0 ; x ˆ y = 0 : x < y x y : y x. A.3. Teza Churcha. Każda funkcja obliczalna intuicyjnie jest funkcj a rekurencyjn a. A.4. Σ i Π. Lemat. Niech f(x 1,..., x n+1 ) bȩdzie funkcj a rekurencyjn a. Wtedy funkcje i g 1 (x 1,..., x n+1 ) = Σ x n+1 i=0 f(x 1,..., x n, i) g 2 (x 1,..., x n+1 ) = Π x n+1 i=0 f(x 1,..., x n, i) s a rekurencyjne. Wniosek. Nastȩpuj ace funkcje s a rekurencyjne 3 : [x/y] (zak ladamy, że [x/0] = x), [x 1/n ], rest(x, y) = x [x/y] y. 3 [z] oznacza czȩść ca lkowit a liczby z 5

Rezolucja w rachunku predykatów. Przedrostkowa koniunkcyjna postać normalna. Formu ly ustalone. Joanna Józefowska. Poznań, rok akademicki 2009/2010

Rezolucja w rachunku predykatów. Przedrostkowa koniunkcyjna postać normalna. Formu ly ustalone. Joanna Józefowska. Poznań, rok akademicki 2009/2010 Instytut Informatyki Poznań, rok akademicki 2009/2010 1 Postać klauzulowa formu l 2 Regu la rezolucji Regu la rezolucji dla klauzul ustalonych Regu la rezolucji dla klauzul ustalonych a spe lnialność Ogólna

Bardziej szczegółowo

P. Urzyczyn: Materia ly do wyk ladu z semantyki. Uproszczony 1 j. ezyk PCF

P. Urzyczyn: Materia ly do wyk ladu z semantyki. Uproszczony 1 j. ezyk PCF 29 kwietnia 2013, godzina 23: 56 strona 1 P. Urzyczyn: Materia ly do wyk ladu z semantyki Uproszczony 1 j ezyk PCF Sk ladnia: Poniżej Γ oznacza otoczenie typowe, czyli zbiór deklaracji postaci (x : τ).

Bardziej szczegółowo

II Matematyka 2 stopnia( 3W). Modele i podstawy matematyki. Janusz Czelakowski. Wykład 1. Języki pierwszego rzędu i modele

II Matematyka 2 stopnia( 3W). Modele i podstawy matematyki. Janusz Czelakowski. Wykład 1. Języki pierwszego rzędu i modele II Matematyka 2 stopnia( 3W). Modele i podstawy matematyki Janusz Czelakowski Wykład 1. Języki pierwszego rzędu i modele Czy moŝna odkryć wszystkie prawa arytmetyki, tzn. wszystkie zdania prawdziwe dotyczące

Bardziej szczegółowo

Algebra i jej zastosowania konspekt wyk ladu, czȩść druga

Algebra i jej zastosowania konspekt wyk ladu, czȩść druga Algebra i jej zastosowania konspekt wyk ladu, czȩść druga Anna Romanowska January 29, 2016 4 Kraty i algebry Boole a 41 Kraty zupe lne Definicja 411 Zbiór uporza dkowany (P, ) nazywamy krata zupe lna,

Bardziej szczegółowo

Twierdzenia Gödla dowody. Czy arytmetyka jest w stanie dowieść własną niesprzeczność?

Twierdzenia Gödla dowody. Czy arytmetyka jest w stanie dowieść własną niesprzeczność? Semina Nr 3 Scientiarum 2004 Twierdzenia Gödla dowody. Czy arytmetyka jest w stanie dowieść własną niesprzeczność? W tym krótkim opracowaniu chciałbym przedstawić dowody obu twierdzeń Gödla wykorzystujące

Bardziej szczegółowo

Gry Nieskończone. Krzysztof P lotka. Praca Magisterska. Instytut Matematyki Uniwersytet Gdański

Gry Nieskończone. Krzysztof P lotka. Praca Magisterska. Instytut Matematyki Uniwersytet Gdański Gry Nieskończone Krzysztof P lotka Praca Magisterska Instytut Matematyki Uniwersytet Gdański Gdańk 1997 Spis treści Wstȩp........................................................... ii Terminologia i oznaczenia........................................

Bardziej szczegółowo

Drobinka semantyki KRP

Drobinka semantyki KRP Drobinka semantyki KRP Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Uniwersytet Opolski Jerzy Pogonowski (MEG) Drobinka semantyki KRP Uniwersytet Opolski 1 / 48 Wstęp

Bardziej szczegółowo

Adam Meissner.

Adam Meissner. Instytut Automatyki i Inżynierii Informatycznej Politechniki Poznańskiej Adam Meissner Adam.Meissner@put.poznan.pl http://www.man.poznan.pl/~ameis SZTUCZNA INTELIGENCJA Podstawy logiki pierwszego rzędu

Bardziej szczegółowo

Schemat rekursji. 1 Schemat rekursji dla funkcji jednej zmiennej

Schemat rekursji. 1 Schemat rekursji dla funkcji jednej zmiennej Schemat rekursji 1 Schemat rekursji dla funkcji jednej zmiennej Dla dowolnej liczby naturalnej a i dowolnej funkcji h: N 2 N istnieje dokładnie jedna funkcja f: N N spełniająca następujące warunki: f(0)

Bardziej szczegółowo

Lista egzaminacyjna zadań z matematycznych podstaw informatyki, wersja 3.

Lista egzaminacyjna zadań z matematycznych podstaw informatyki, wersja 3. 1 Lista egzaminacyjna zadań z matematycznych podstaw informatyki, wersja 3. Funkcje pierwotnie rekurencyjne. Problemy: Zapoznaj się z teorią funkcji pierwotnie rekurencyjnych. Ważne są definicje klasy

Bardziej szczegółowo

Uzgadnianie wyrażeń rachunku predykatów. Adam i orzeszki. Joanna Józefowska. Poznań, rok akademicki 2009/2010

Uzgadnianie wyrażeń rachunku predykatów. Adam i orzeszki. Joanna Józefowska. Poznań, rok akademicki 2009/2010 Instytut Informatyki Poznań, rok akademicki 2009/2010 Instytut Informatyki Poznań, rok akademicki 2009/2010 1 Podstawienia Motywacja Podstawienie 2 Sk ladanie podstawień Motywacja Z lożenie podstawień

Bardziej szczegółowo

Interpretacja Niech U będzie zbiorem formuł takim, że zbiór {p 1,..., p k } jest zbiorem wszystkich symboli predykatywnych, {f 1,..., f l } jest zbior

Interpretacja Niech U będzie zbiorem formuł takim, że zbiór {p 1,..., p k } jest zbiorem wszystkich symboli predykatywnych, {f 1,..., f l } jest zbior Rachunek predykatów Wykład 5 Plan wykładu Funkcje i termy Postać klauzulowa formuł Modele Herbranda Twierdzenie Herbranda Rezolucja dla klauzul ustalonych Podstawienia Uzgadnianie Rezolucja Funkcje i termy

Bardziej szczegółowo

MATEMATYKA DYSKRETNA - wyk lad 1 dr inż Krzysztof Bryś. Wprowadzenie

MATEMATYKA DYSKRETNA - wyk lad 1 dr inż Krzysztof Bryś. Wprowadzenie 1 MATEMATYKA DYSKRETNA - wyk lad 1 dr inż Krzysztof Bryś Wprowadzenie Istniej a dwa różne kryteria mówi ace, które narzȩdzia matematyczne należy zaliczyć do matematyki dyskretnej. Pierwsze definiuje matematykȩ

Bardziej szczegółowo

Wyk lad 5 Grupa ilorazowa, iloczyn prosty, homomorfizm

Wyk lad 5 Grupa ilorazowa, iloczyn prosty, homomorfizm Wyk lad 5 Grupa ilorazowa, iloczyn prosty, homomorfizm 1 Grupa ilorazowa Niech H b edzie dzielnikiem normalnym grupy G. Oznaczmy przez G/H zbiór wszystkich warstw lewostronnych grupy G wzgl edem podgrupy

Bardziej szczegółowo

Elementy logiki Klasyczny rachunek predykatów

Elementy logiki Klasyczny rachunek predykatów Elementy logiki. Klasyczny rachunek predykatów. 1 Elementy logiki Klasyczny rachunek predykatów Wojciech Buszkowski Zakład Teorii Obliczeń Wydział Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza

Bardziej szczegółowo

Programowanie funkcyjne. Wykªad 13

Programowanie funkcyjne. Wykªad 13 Programowanie funkcyjne. Wykªad 13 Siªa wyrazu rachunku lambda Zdzisªaw Spªawski Zdzisªaw Spªawski: Programowanie funkcyjne. Wykªad 13, Siªa wyrazu rachunku lambda 1 Wst p Warto±ci logiczne Liczby naturalne

Bardziej szczegółowo

I. Podstawowe pojęcia i oznaczenia logiczne i mnogościowe. Elementy teorii liczb rzeczywistych.

I. Podstawowe pojęcia i oznaczenia logiczne i mnogościowe. Elementy teorii liczb rzeczywistych. I. Podstawowe pojęcia i oznaczenia logiczne i mnogościowe. Elementy teorii liczb rzeczywistych. 1. Elementy logiki matematycznej. 1.1. Rachunek zdań. Definicja 1.1. Zdaniem logicznym nazywamy zdanie gramatyczne

Bardziej szczegółowo

SYSTEM DIAGNOSTYCZNY OPARTY NA LOGICE DOMNIEMAŃ. Ewa Madalińska. na podstawie prac:

SYSTEM DIAGNOSTYCZNY OPARTY NA LOGICE DOMNIEMAŃ. Ewa Madalińska. na podstawie prac: SYSTEM DIAGNOSTYCZNY OPARTY NA LOGICE DOMNIEMAŃ Ewa Madalińska na podstawie prac: [1] Lukaszewicz,W. (1988) Considerations on Default Logic: An Alternative Approach. Computational Intelligence, 44[1],

Bardziej szczegółowo

Elementy rachunku lambda. dr hab. inż. Joanna Józefowska, prof. PP 1

Elementy rachunku lambda. dr hab. inż. Joanna Józefowska, prof. PP 1 Elementy rachunku lambda λ 1 Notacja λ x 3x + 7 3x + 7 jest różniczkowalna 3x + 7 jest mniejsze od 2 (2,3) 5 f(2, 3) = 2 + 3 g(2) = 2 + 3 λx(3x + 7) 3x + 7 λx λy(x + y) = λxy(x + y) λx(x + 3) 2 Rachunek

Bardziej szczegółowo

4. O funkcji uwikłanej 4.1. Twierdzenie. Niech będzie dana funkcja f klasy C 1 na otwartym podzbiorze. ϕ : K(x 0, δ) (y 0 η, y 0 + η), taka że

4. O funkcji uwikłanej 4.1. Twierdzenie. Niech będzie dana funkcja f klasy C 1 na otwartym podzbiorze. ϕ : K(x 0, δ) (y 0 η, y 0 + η), taka że 4. O funkcji uwikłanej 4.1. Twierdzenie. Niech będzie dana funkcja f klasy C 1 na otwartym podzbiorze taka że K(x 0, δ) (y 0 η, y 0 + η) R n R, f(x 0, y 0 ) = 0, y f(x 0, y 0 ) 0. Wówczas dla odpowiednio

Bardziej szczegółowo

Definicja: alfabetem. słowem długością słowa

Definicja: alfabetem. słowem długością słowa Definicja: Niech X będzie zbiorem niepustym. Zbiór ten będziemy nazywać alfabetem. Skończony ciąg elementów alfabetu X będziemy nazywać słowem a liczbę elementów tego ciągu nazywamy długością słowa. Na

Bardziej szczegółowo

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 STATYSTYKA Rafał Kucharski Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 Wybrane litery alfabetu greckiego α alfa β beta Γ γ gamma δ delta ɛ, ε epsilon η eta Θ θ theta

Bardziej szczegółowo

Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykład 10. Twierdzenie o pełności systemu aksjomatycznego KRZ

Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykład 10. Twierdzenie o pełności systemu aksjomatycznego KRZ Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 10. Twierdzenie o pełności systemu aksjomatycznego KRZ 1 Tezy KRZ Pewien system aksjomatyczny KRZ został przedstawiony

Bardziej szczegółowo

Temat: Funkcje. Własności ogólne. A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 1

Temat: Funkcje. Własności ogólne. A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 1 Temat: Funkcje. Własności ogólne A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 1 Kody kolorów: pojęcie zwraca uwagę * materiał nieobowiązkowy A n n a R a

Bardziej szczegółowo

Kultura logicznego myślenia

Kultura logicznego myślenia Kultura logicznego myślenia rok akademicki 2015/2016 semestr zimowy Temat 6: Rachunek predykatów jako logika pierwszego rzędu logika elementarna = logika pierwszego rzędu KRZ logika zerowego rzędu Język

Bardziej szczegółowo

Ziemia obraca się wokół Księżyca, bo posiadając odpowiednią wiedzę można stwierdzić, czy są prawdziwe, czy fałszywe. Zdaniami nie są wypowiedzi:

Ziemia obraca się wokół Księżyca, bo posiadając odpowiednią wiedzę można stwierdzić, czy są prawdziwe, czy fałszywe. Zdaniami nie są wypowiedzi: 1 Elementy logiki W logice zdaniem nazywamy wypowiedź oznajmującą, która (w ramach danej nauki) jest albo prawdziwa, albo fałszywa. Tak więc zdanie może mieć jedną z dwóch wartości logicznych. Prawdziwość

Bardziej szczegółowo

Zestaw nr 7 Ekstremum funkcji jednej zmiennej. Punkty przegiȩcia wykresu. Asymptoty

Zestaw nr 7 Ekstremum funkcji jednej zmiennej. Punkty przegiȩcia wykresu. Asymptoty Zestaw nr 7 Ekstremum funkcji jednej zmiennej. Punkty przegiȩcia wykresu. Asymptoty November 20, 2009 Przyk ladowe zadania z rozwi azaniami Zadanie 1. Znajdź równanie asymptot funkcji f jeśli: a) f(x)

Bardziej szczegółowo

Grupy i cia la, liczby zespolone

Grupy i cia la, liczby zespolone Rozdzia l 1 Grupy i cia la, liczby zespolone Dla ustalenia uwagi, b edziemy używać nast epuj acych oznaczeń: N = { 1, 2, 3,... } - liczby naturalne, Z = { 0, ±1, ±2,... } - liczby ca lkowite, W = { m n

Bardziej szczegółowo

Metalogika (6) Jerzy Pogonowski. Uniwersytet Opolski. Zakład Logiki Stosowanej UAM

Metalogika (6) Jerzy Pogonowski. Uniwersytet Opolski. Zakład Logiki Stosowanej UAM Metalogika (6) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Uniwersytet Opolski Jerzy Pogonowski (MEG) Metalogika (6) Uniwersytet Opolski 1 / 141 Wstęp Plan wykładu

Bardziej szczegółowo

Sterowanie minimalnoczasowe dla uk ladów liniowych. Krzywe prze l aczeń.

Sterowanie minimalnoczasowe dla uk ladów liniowych. Krzywe prze l aczeń. Sterowanie minimalnoczasowe dla uk ladów liniowych. Krzywe prze l aczeń. Sprowadzanie zadań sterowania optymalnego do zadań wariacyjnych metod a funkcji kary i mnożników Lagrange a - zadania sterowania

Bardziej szczegółowo

Programowanie funkcyjne Wykład 13. Siła wyrazu rachunku lambda

Programowanie funkcyjne Wykład 13. Siła wyrazu rachunku lambda Programowanie funkcyjne Wykład 13. Siła wyrazu rachunku lambda Zdzisław Spławski Zdzisław Spławski: Programowanie funkcyjne, Wykład 13. Siła wyrazu rachunku lambda 1 Wstęp Wartości logiczne Liczby naturalne

Bardziej szczegółowo

Arytmetyka pierwszego rz du

Arytmetyka pierwszego rz du Arytmetyka pierwszego rz du B dziemy bada arytmetyk liczb naturalnych z z perspektywy logiki pierwszego rz du. Sªowo arytmetyka u»ywane jest w odniesieniu do ró»nych teorii dotycz cych liczb naturalnych.

Bardziej szczegółowo

FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y.

FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. FUNKCJE LICZBOWE Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. Innymi słowy f X Y = {(x, y) : x X oraz y Y }, o ile (x, y) f oraz (x, z) f pociąga

Bardziej szczegółowo

Co to są liczby naturalne i czemu ich nie ma?! Adam Kolany

Co to są liczby naturalne i czemu ich nie ma?! Adam Kolany Co to są liczby naturalne i czemu ich nie ma?! Adam Kolany Co to są liczby naturalne i czemu ich nie ma?! Adam Kolany Załóżmy, że wiemy co to są liczby naturalne... Język (I-go rzędu): V, { F n : n IN

Bardziej szczegółowo

Zadania z analizy matematycznej - sem. I Liczby i funkcje

Zadania z analizy matematycznej - sem. I Liczby i funkcje Zadania z analizy matematycznej - sem. I Liczby i funkcje Definicja 1. Mówimy że: liczba m Z jest dzielnikiem liczby n Z gdy istnieje l Z takie że n = l m. Zapisujemy to symbolem m n; liczba m Z jest wspólnym

Bardziej szczegółowo

po lożenie cz astki i od czasu (t). Dla cz astki, która może poruszać siȩ tylko w jednym wymiarze (tu x)

po lożenie cz astki i od czasu (t). Dla cz astki, która może poruszać siȩ tylko w jednym wymiarze (tu x) Stan czastki określa funkcja falowa Ψ zależna od wspó lrzȩdnych określaj acych po lożenie cz astki i od czasu (t). Dla cz astki, która może poruszać siȩ tylko w jednym wymiarze (tu x) Wartości funkcji

Bardziej szczegółowo

EGZAMIN MAGISTERSKI, czerwiec 2014 Matematyka w ekonomii i ubezpieczeniach

EGZAMIN MAGISTERSKI, czerwiec 2014 Matematyka w ekonomii i ubezpieczeniach Matematyka w ekonomii i ubezpieczeniach Sprawdź, czy wektor x 0 = (0,5,,0,0) jest rozwiązaniem dopuszczalnym zagadnienia programowania liniowego: Zminimalizować 3x 1 +x +x 3 +4x 4 +6x 5, przy ograniczeniach

Bardziej szczegółowo

A i A j lub A j A i. Operator γ : 2 X 2 X jest ciągły gdy

A i A j lub A j A i. Operator γ : 2 X 2 X jest ciągły gdy 3. Wyład 7: Inducja i reursja struturalna. Termy i podstawianie termów. Dla uninięcia nieporozumień notacyjnych wprowadzimy rozróżnienie między funcjami i operatorami. Operatorem γ w zbiorze X jest funcja

Bardziej szczegółowo

Wykład I. Literatura. Oznaczenia. ot(x 0 ) zbiór wszystkich otoczeń punktu x 0

Wykład I. Literatura. Oznaczenia. ot(x 0 ) zbiór wszystkich otoczeń punktu x 0 Wykład I Literatura Podręczniki 1. G. M. Fitherholz Rachunek różniczkowy i całkowy 2. W. Żakowski Matematyka tom I Zbiory zadań 1. W. Krysicki, L. Włodarski Analiza matematyczna w zadaniach tom I i II

Bardziej szczegółowo

celu przyjmijmy: min x 0 = n t Zadanie transportowe nazywamy zbilansowanym gdy podaż = popyt, czyli n

celu przyjmijmy: min x 0 = n t Zadanie transportowe nazywamy zbilansowanym gdy podaż = popyt, czyli n 123456789 wyk lad 9 Zagadnienie transportowe Mamy n punktów wysy lajacych towar i t punktów odbierajacych. Istnieje droga od każdego dostawcy do każdego odbiorcy i znany jest koszt transportu jednostki

Bardziej szczegółowo

Modele Obliczeń. Wykład 3 - Maszyny RAM i funkcje rekurencyjne. Marcin Szczuka. Instytut Matematyki, Uniwersytet Warszawski

Modele Obliczeń. Wykład 3 - Maszyny RAM i funkcje rekurencyjne. Marcin Szczuka. Instytut Matematyki, Uniwersytet Warszawski Modele Obliczeń Wykład 3 - Maszyny RAM i funkcje rekurencyjne Marcin Szczuka Instytut Matematyki, Uniwersytet Warszawski Wykład fakultatywny w semestrze zimowym 2008/2009 Marcin Szczuka (MIMUW) Modele

Bardziej szczegółowo

Wstęp do Techniki Cyfrowej... Algebra Boole a

Wstęp do Techniki Cyfrowej... Algebra Boole a Wstęp do Techniki Cyfrowej... Algebra Boole a Po co AB? Świetne narzędzie do analitycznego opisu układów logicznych. 1854r. George Boole opisuje swój system dedukcyjny. Ukoronowanie zapoczątkowanych w

Bardziej szczegółowo

Wzory Viete a i ich zastosowanie do uk ladów równań wielomianów symetrycznych dwóch i trzech zmiennych

Wzory Viete a i ich zastosowanie do uk ladów równań wielomianów symetrycznych dwóch i trzech zmiennych Wzory Viete a i ich zastosowanie do uk ladów równań wielomianów symetrycznych dwóch i trzech zmiennych Pawe l Józiak 007-- Poje cia wste pne Wielomianem zmiennej rzeczywistej t nazywamy funkcje postaci:

Bardziej szczegółowo

φ(x 1,..., x n ) = a i x 2 i +

φ(x 1,..., x n ) = a i x 2 i + Teoria na egzamin z algebry liniowej Wszystkie podane pojęcia należy umieć określić i podać pprzykłady, ewentualnie kontrprzykłady. Ponadto należy znać dowody tam gdzie to jest zaznaczone. Liczby zespolone.

Bardziej szczegółowo

Grupy. Permutacje 1. (G2) istnieje element jednostkowy (lub neutralny), tzn. taki element e G, że dla dowolnego a G zachodzi.

Grupy. Permutacje 1. (G2) istnieje element jednostkowy (lub neutralny), tzn. taki element e G, że dla dowolnego a G zachodzi. Grupy. Permutacje 1 1 Definicja grupy Niech G będzie zbiorem. Działaniem na zbiorze G nazywamy odwzorowanie (oznaczane, jak mnożenie, przez ) przyporządkowujące każdej parze uporządkowanej (a, b) G G element

Bardziej szczegółowo

Definicja i własności wartości bezwzględnej.

Definicja i własności wartości bezwzględnej. Równania i nierówności z wartością bezwzględną. Rozwiązywanie układów dwóch (trzech) równań z dwiema (trzema) niewiadomymi. Układy równań liniowych z parametrem, analiza rozwiązań. Definicja i własności

Bardziej szczegółowo

System BCD z κ. Adam Slaski na podstawie wykładów, notatek i uwag Pawła Urzyczyna. Semestr letni 2009/10

System BCD z κ. Adam Slaski na podstawie wykładów, notatek i uwag Pawła Urzyczyna. Semestr letni 2009/10 System BCD z κ Adam Slaski na podstawie wykładów, notatek i uwag Pawła Urzyczyna Semestr letni 2009/10 Rozważamy system BCD ze stałą typową κ i aksjomatami ω κ κ i κ ω κ. W pierwszej części tej notatki

Bardziej szczegółowo

... [a n,b n ] kn [M 1,M 2 ], gdzie a i M 1, b i M 2, dla i {1,..., n}. Wówczas: [a 1,b 1 ] k 1. ... [a n,b n ] kn =(a 1 b 1 a 1

... [a n,b n ] kn [M 1,M 2 ], gdzie a i M 1, b i M 2, dla i {1,..., n}. Wówczas: [a 1,b 1 ] k 1. ... [a n,b n ] kn =(a 1 b 1 a 1 4. Wykład 4: Grupy rozwiązalne i nilpotentne. Definicja 4.1. Niech (G, ) będzie grupą. Wówczas (1) ciąg podgrup grupy G zdefiniowany indukcyjnie wzorami G (0) = G, G (i) =[G (i 1),G (i 1) ], dla i N nazywamy

Bardziej szczegółowo

Lista 1 (elementy logiki)

Lista 1 (elementy logiki) Podstawy nauczania matematyki 1. Zdanie Lista 1 (elementy logiki) EE I rok W logice zdaniem logicznym nazywamy wyrażenie oznajmujące o którym można powiedzieć że jest prawdziwe lub fałszywe. Zdania z reguły

Bardziej szczegółowo

Wprowadzenie z dynamicznej optymalizacji

Wprowadzenie z dynamicznej optymalizacji Wprowadzenie z dynamicznej optymalizacji Lukasz Woźny 29 kwietnia 2007 Spis treści 1 Optymalizacja statyczna a optymalizacja dynamiczna 2 1.1 Ekstrema lokalne funkcji wielu zmiennych - statyka...... 2

Bardziej szczegółowo

Rachunek całkowy funkcji wielu zmiennych

Rachunek całkowy funkcji wielu zmiennych Rachunek całkowy funkcji wielu zmiennych Całki potrójne wykład z MATEMATYKI Budownictwo studia niestacjonarne sem. II, rok ak. 2008/2009 Katedra Matematyki Wydział Informatyki olitechnika Białostocka 1

Bardziej szczegółowo

Paradygmaty programowania

Paradygmaty programowania Paradygmaty programowania Jacek Michałowski, Piotr Latanowicz 15 kwietnia 2014 Jacek Michałowski, Piotr Latanowicz () Paradygmaty programowania 15 kwietnia 2014 1 / 12 Zadanie 1 Zadanie 1 Rachunek predykatów

Bardziej szczegółowo

TEORIA FUNKCJONA LÓW. (Density Functional Theory - DFT) Monika Musia l

TEORIA FUNKCJONA LÓW. (Density Functional Theory - DFT) Monika Musia l TEORIA FUNKCJONA LÓW GȨSTOŚCI (Density Functional Theory - DFT) Monika Musia l PRZEDMIOT BADAŃ Uk lad N elektronów + K j ader atomowych Przybliżenie Borna-Oppenheimera Zamiast funkcji falowej Ψ(r 1,σ 1,r

Bardziej szczegółowo

166 Wstȩp do statystyki matematycznej

166 Wstȩp do statystyki matematycznej 166 Wstȩp do statystyki matematycznej Etap trzeci realizacji procesu analizy danych statystycznych w zasadzie powinien rozwi azać nasz zasadniczy problem zwi azany z identyfikacj a cechy populacji generalnej

Bardziej szczegółowo

Macierze - obliczanie wyznacznika macierzy z użyciem permutacji

Macierze - obliczanie wyznacznika macierzy z użyciem permutacji Macierze - obliczanie wyznacznika macierzy z użyciem permutacji I LO im. F. Ceynowy w Świeciu Radosław Rudnicki joix@mat.uni.torun.pl 17.03.2009 r. Typeset by FoilTEX Streszczenie Celem wykładu jest wprowadzenie

Bardziej szczegółowo

Podstawy logiki i teorii mnogości w zadaniach

Podstawy logiki i teorii mnogości w zadaniach Uniwersytet Wrocławski Wydział Matematyki i Informatyki Piotr Koczenasz Podstawy logiki i teorii mnogości w zadaniach Praca magisterska napisana pod kierunkiem prof. dr. hab. Leszka Pacholskiego Wrocław,

Bardziej szczegółowo

Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych.

Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych. Wykªad jest prowadzony w oparciu o podr cznik Analiza matematyczna 2. Denicje, twierdzenia, wzory M. Gewerta i Z. Skoczylasa. Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych. Denicja Mówimy,»e funkcja

Bardziej szczegółowo

Programowanie deklaratywne

Programowanie deklaratywne Programowanie deklaratywne Artur Michalski Informatyka II rok Plan wykładu Wprowadzenie do języka Prolog Budowa składniowa i interpretacja programów prologowych Listy, operatory i operacje arytmetyczne

Bardziej szczegółowo

Logika matematyczna wersja 0.94 (1 września 2005)

Logika matematyczna wersja 0.94 (1 września 2005) Witold Bołt Taduesz Andrzej Kadłubowski Logika matematyczna wersja 0.94 (1 września 2005) Spis treści Wstęp 2 1 Systemy relacyjne 2 2 Język, termy i formuły 3 2.1 Język........................................

Bardziej szczegółowo

1 Ciągłe operatory liniowe

1 Ciągłe operatory liniowe 1 Ciągłe operatory liniowe Załóżmy, że E, F są przestrzeniami unormowanymi. Definicja 1.1. Operator liniowy T : E F nazywamy ograniczonym, jeżeli zbiór T (B) F jest ograniczony dla dowolnego zbioru ograniczonego

Bardziej szczegółowo

CHEMIA KWANTOWA MONIKA MUSIA L METODA HÜCKLA. Ćwiczenia. http://zcht.mfc.us.edu.pl/ mm

CHEMIA KWANTOWA MONIKA MUSIA L METODA HÜCKLA. Ćwiczenia. http://zcht.mfc.us.edu.pl/ mm CHEMIA KWANTOWA MONIKA MUSIA L METODA HÜCKLA Ćwiczenia Zwi azki organiczne zawieraj ace uk lady π-elektronowe Sprzȩżony uk lad wi azań podwójnych: -C=C-C=C-C=C-C=C- Skumulowany uk lad wi azań podwójnych:

Bardziej szczegółowo

176 Wstȩp do statystyki matematycznej = 0, 346. uczelni zdaje wszystkie egzaminy w pierwszym terminie.

176 Wstȩp do statystyki matematycznej = 0, 346. uczelni zdaje wszystkie egzaminy w pierwszym terminie. 176 Wtȩp do tatytyki matematycznej trści wynika że H o : p 1 przeciwko hipotezie H 3 1: p< 1. Aby zweryfikować tȩ 3 hipotezȩ zatujemy tet dla frekwencji. Wtedy z ob 45 1 150 3 1 3 2 3 150 0 346. Tymczaem

Bardziej szczegółowo

Dedukcyjne bazy danych i rekursja

Dedukcyjne bazy danych i rekursja Dedukcyjne bazy danych i rekursja Wykład z baz danych dla studentów matematyki 23 maja 2015 Bazy danych z perspektywy logiki Spojrzenie na bazy danych oczami logika pozwala jednolicie opisać szereg pojęć.

Bardziej szczegółowo

Podstawy matematyki dla informatyków

Podstawy matematyki dla informatyków Podstawy matematyki dla informatyków Materiały do wykładu dla I roku informatyki P. Urzyczyn urzy@mimuw.edu.pl 28 września 2015, godzina 12: 05 1 Język logiki matematycznej Zadaniem matematyki jest badanie

Bardziej szczegółowo

1. Elementy logiki matematycznej, rachunek zdań, funkcje zdaniowe, metody dowodzenia, rachunek predykatów

1. Elementy logiki matematycznej, rachunek zdań, funkcje zdaniowe, metody dowodzenia, rachunek predykatów 1. Elementy logiki matematycznej, rachunek zdań, funkcje zdaniowe, metody dowodzenia, rachunek predykatów Logika matematyczna, dział matematyki zajmujący się badaniem własności wnioskowania (dowodzenia)

Bardziej szczegółowo

Weryfikacja hipotez statystycznych

Weryfikacja hipotez statystycznych Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta

Bardziej szczegółowo

4. Granica i ciągłość funkcji

4. Granica i ciągłość funkcji 4. Granica i ciągłość funkcji W niniejszym rozdziale wprowadzamy pojęcie granicy funkcji, definiujemy funkcje ciągłe i omawiamy ich podstawowe własności. Niech f będzie funkcją określoną na przedziale

Bardziej szczegółowo

Współczynniki Greckie

Współczynniki Greckie Wojciech Antniak 05.0.008r. Wstęp Współczynniki greckie określają ryzyko opcji europejskiej na zmiany rynku. ażdy z nich określa w jaki sposób wpłynie zmiana jakiegoś czynnika na cenę akcji. W dalszej

Bardziej szczegółowo

Twierdzenie spektralne

Twierdzenie spektralne Twierdzenie spektralne Algebrę ograniczonych funkcji borelowskich na K R będziemy oznaczać przez B (K). Spektralnym rozkładem jedności w przestrzeni Hilberta H nazywamy odwzorowanie, które każdemu zbiorowi

Bardziej szczegółowo

Pierścienie grupowe wyk lad 2. Przypomnijmy, że K-algebra A jest pó lprosta, gdy jej lewe A-modu ly przypominaja

Pierścienie grupowe wyk lad 2. Przypomnijmy, że K-algebra A jest pó lprosta, gdy jej lewe A-modu ly przypominaja Pierścienie grupowe wyk lad 2. Przypomnijmy, że K-algebra A jest pó lprosta, gdy jej lewe A-modu ly przypominaja przestrzenie liniowe nad A: każdy z nich ma rozk lad na sume modu lów prostych. W tych rozk

Bardziej szczegółowo

Dyskretne modele populacji

Dyskretne modele populacji Dyskretne modele populacji Micha l Machtel Adam Soboczyński 17 stycznia 2007 Typeset by FoilTEX Dyskretne modele populacji [1] Wst ep Dyskretny opis modelu matematycznego jest dobry dla populacji w których

Bardziej szczegółowo

Wprowadzenie do struktur o-minimalnych

Wprowadzenie do struktur o-minimalnych Wprowadzenie do struktur o-minimalnych Piotr Pokora 22.02.2009 1 Wprowadzenie do struktur o-minimalnych i pojęcia wstępne Na początku lat 80-tych Pillay i Steinhorn wprowadzili pojęcie o-minimalności bazując

Bardziej szczegółowo

Zadania z podstaw matematyki dla 1 roku informatyki 1

Zadania z podstaw matematyki dla 1 roku informatyki 1 29 września 2008, godzina 17: 13 strona 1 Zadania z podstaw matematyki dla 1 roku informatyki 1 Zadania na rozgrzewk e 1. Zaznacz na rysunku zbiory: (a) { x, y : R 2 (x 2 + y 2 > 1) [(x 2 + y 2 2) ( (x

Bardziej szczegółowo

Kurs z matematyki - zadania

Kurs z matematyki - zadania Kurs z matematyki - zadania Miara łukowa kąta Zadanie Miary kątów wyrażone w stopniach zapisać w radianach: a) 0, b) 80, c) 90, d), e) 0, f) 0, g) 0, h), i) 0, j) 70, k), l) 80, m) 080, n), o) 0 Zadanie

Bardziej szczegółowo

Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów.

Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów. Rachunek prawdopodobieństwa MAP1181 Wydział PPT, MS, rok akad. 213/14, sem. zimowy Wykładowca: dr hab. Agnieszka Jurlewicz Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów.

Bardziej szczegółowo

2. Generatory liczb (pseudo)losowych

2. Generatory liczb (pseudo)losowych http://www.kaims.pl/~robert/miss/ Zmienne i rozkłady Znane rozkłady Wartość średnia i wariancja Niech X będzie zmienną losową, tj. funkcją odwzorowującą przestrzeń zdarzeń elementarnych Ω w zbiór liczb

Bardziej szczegółowo

Logika I. Wykład 1. Wprowadzenie do rachunku zbiorów

Logika I. Wykład 1. Wprowadzenie do rachunku zbiorów Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 1. Wprowadzenie do rachunku zbiorów 1 Podstawowe pojęcia rachunku zbiorów Uwaga 1.1. W teorii mnogości mówimy o zbiorach

Bardziej szczegółowo

Całki podwójne. Definicja całki podwójnej. Jacek Kłopotowski. 25 maja Katedra Matematyki i Ekonomii Matematycznej

Całki podwójne. Definicja całki podwójnej. Jacek Kłopotowski. 25 maja Katedra Matematyki i Ekonomii Matematycznej Definicja całki podwójnej Katedra Matematyki i Ekonomii Matematycznej 25 maja 2016 Definicja całki podwójnej Załóżmy, że f : K R, gdzie K = a, b c, d R 2, jest funkcją ograniczoną. Niech x 0, x 1,...,

Bardziej szczegółowo

Analiza matematyczna 1 - test egzaminacyjny wersja do ćwiczeń

Analiza matematyczna 1 - test egzaminacyjny wersja do ćwiczeń Analiza matematyczna 1 - test egzaminacyjny wersja do ćwiczeń Leszek Skrzypczak 1. Niech E = {x [0, 1] : x = k 2 n k = 1, 2,... 2 n, n = 1, 2, 3,...} Wówczas: (a) Dla dowolnych liczb wymiernych p, q [0,

Bardziej szczegółowo

Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski. Definicja. Definicja

Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski. Definicja. Definicja Plan Zależności funkcyjne 1. Zależności funkcyjne jako klasa ograniczeń semantycznych odwzorowywanego świata rzeczywistego. 2. Schematy relacyjne = typ relacji + zależności funkcyjne. 3. Rozkładalność

Bardziej szczegółowo

Kurs wyrównawczy dla kandydatów i studentów UTP

Kurs wyrównawczy dla kandydatów i studentów UTP Kurs wyrównawczy dla kandydatów i studentów UTP Część III Funkcja wymierna, potęgowa, logarytmiczna i wykładnicza Magdalena Alama-Bućko Ewa Fabińska Alfred Witkowski Grażyna Zachwieja Uniwersytet Technologiczno

Bardziej szczegółowo

Wstęp do Techniki Cyfrowej i Mikroelektroniki

Wstęp do Techniki Cyfrowej i Mikroelektroniki Wstęp do Techniki Cyfrowej i Mikroelektroniki dr inż. Maciej Piotrowicz Katedra Mikroelektroniki i Technik Informatycznych PŁ piotrowi@dmcs.p.lodz.pl http://fiona.dmcs.pl/~piotrowi -> Wstęp do... Układy

Bardziej szczegółowo

Uniwersytet w Białymstoku. Wykład monograficzny

Uniwersytet w Białymstoku. Wykład monograficzny Uniwersytet w Białymstoku Wydział Matematyczno-Fizyczny Instytut Matematyki dr hab. Ryszard Andruszkiewicz Wykład monograficzny Wykład monograficzny prowadzony dla studentów V roku matematyki przez dr

Bardziej szczegółowo

Metodydowodzenia twierdzeń

Metodydowodzenia twierdzeń 1 Metodydowodzenia twierdzeń Przez zdanie rozumiemy dowolne stwierdzenie, które jest albo prawdziwe, albo faªszywe (nie mo»e by ono jednocze±nie prawdziwe i faªszywe). Tradycyjnie b dziemy u»ywali maªych

Bardziej szczegółowo

Zmienna losowa i jej rozkład Dystrybuanta zmiennej losowej Wartość oczekiwana zmiennej losowej

Zmienna losowa i jej rozkład Dystrybuanta zmiennej losowej Wartość oczekiwana zmiennej losowej Zmienna losowa i jej rozkład Dystrybuanta zmiennej losowej Wartość oczekiwana zmiennej losowej c Copyright by Ireneusz Krech ikrech@ap.krakow.pl Instytut Matematyki Uniwersytet Pedagogiczny im. KEN w Krakowie

Bardziej szczegółowo

ALGEBRA Z GEOMETRIĄ LINIOWA NIEZALEŻNOŚĆ, ROZPINANIE I BAZY

ALGEBRA Z GEOMETRIĄ LINIOWA NIEZALEŻNOŚĆ, ROZPINANIE I BAZY ALGEBRA Z GEOMETRIĄ 1/10 LINIOWA NIEZALEŻNOŚĆ, ROZPINANIE I BAZY Piotr M. Hajac Uniwersytet Warszawski Wykład 10, 11.12.2013 Typeset by Jakub Szczepanik. Geometryczne intuicje Dla pierścienia R = R mamy

Bardziej szczegółowo

Teoretyczne Podstawy Języków Programowania Wykład 4. Siła wyrazu rachunku λ

Teoretyczne Podstawy Języków Programowania Wykład 4. Siła wyrazu rachunku λ Teoretyczne Podstawy Języków Programowania Wykład 4. Siła wyrazu rachunku λ Zdzisław Spławski Zdzisław Spławski: Teoretyczne Podstawy Języków Programowania, Wykład 4. Siła wyrazu rachunku λ 1 Wstęp Wartości

Bardziej szczegółowo

Dyskretne modele populacji

Dyskretne modele populacji Dyskretne modele populacji Micha l Machtel Adam Soboczyński 19 stycznia 2007 Typeset by FoilTEX Dyskretne modele populacji [1] Wst ep Dyskretny opis modelu matematycznego jest dobry dla populacji w których

Bardziej szczegółowo

Rozdział 9. Funkcja pierwotna. 9.1 Funkcja pierwotna

Rozdział 9. Funkcja pierwotna. 9.1 Funkcja pierwotna Rozdział 9 Funkcja pierwotna 9. Funkcja pierwotna Definicja funkcji pierwotnej. Niech f będzie funkcją określoną na przedziale P. Mówimy, że funkcja F : P R jest funkcją pierwotną funkcji f w przedziale

Bardziej szczegółowo

Wykłady ze Wstępu do Matematyki. Jacek Cichoń WPPT, Politechnika Wrocławska

Wykłady ze Wstępu do Matematyki. Jacek Cichoń WPPT, Politechnika Wrocławska Wykłady ze Wstępu do Matematyki Jacek Cichoń WPPT, Politechnika Wrocławska MAJ 2012 Spis treści 1 Rachunek Zdań 7 1.1 Zdania i Waluacje............................ 7 1.2 Przegląd Najważniejszych Tautologii..................

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna Wykład 9: Grupy skończone Gniewomir Sarbicki Grupy cykliczne Definicja: Jeżeli każdy element grupy G jest postaci a n dla pewnego a G, to mówimy, że grupa G jest grupą cykliczną o

Bardziej szczegółowo

Systemy baz danych. Notatki z wykładu. http://robert.brainusers.net 17.06.2009

Systemy baz danych. Notatki z wykładu. http://robert.brainusers.net 17.06.2009 Systemy baz danych Notatki z wykładu http://robert.brainusers.net 17.06.2009 Notatki własne z wykładu. Są niekompletne, bez bibliografii oraz mogą zawierać błędy i usterki. Z tego powodu niniejszy dokument

Bardziej szczegółowo

III. ZMIENNE LOSOWE JEDNOWYMIAROWE

III. ZMIENNE LOSOWE JEDNOWYMIAROWE III. ZMIENNE LOSOWE JEDNOWYMIAROWE.. Zmienna losowa i pojęcie rozkładu prawdopodobieństwa W dotychczas rozpatrywanych przykładach każdemu zdarzeniu była przyporządkowana odpowiednia wartość liczbowa. Ta

Bardziej szczegółowo

Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1

Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1 Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1 Równania różniczkowe pierwszego rzędu Równaniem różniczkowym zwyczajnym pierwszego rzędu nazywamy równanie postaci (R) y = f(x, y). Najogólniejszą

Bardziej szczegółowo

Analiza zrekonstruowanych śladów w danych pp 13 TeV

Analiza zrekonstruowanych śladów w danych pp 13 TeV Analiza zrekonstruowanych śladów w danych pp 13 TeV Odtwarzanie rozk ladów za pomoc a danych Monte Carlo Jakub Cholewiński, pod opiek a dr hab. Krzysztofa Woźniaka 31 lipca 2015 r. Jakub Cholewiński, pod

Bardziej szczegółowo

LICZBY ZESPOLONE. 1. Wiadomości ogólne. 2. Płaszczyzna zespolona. z nazywamy liczbę. z = a + bi (1) i = 1 lub i 2 = 1

LICZBY ZESPOLONE. 1. Wiadomości ogólne. 2. Płaszczyzna zespolona. z nazywamy liczbę. z = a + bi (1) i = 1 lub i 2 = 1 LICZBY ZESPOLONE 1. Wiadomości ogólne DEFINICJA 1. Liczba zespolona z nazywamy liczbę taką, że a, b R oraz i jest jednostka urojona, definiowaną następująco: z = a + bi (1 i = 1 lub i = 1 Powyższą postać

Bardziej szczegółowo

Zadanie 2. Obliczyć rangę dowolnego elementu zbioru uporządkowanego N 0 N 0, gdy porządek jest zdefiniowany następująco: (a, b) (c, d) (a c b d)

Zadanie 2. Obliczyć rangę dowolnego elementu zbioru uporządkowanego N 0 N 0, gdy porządek jest zdefiniowany następująco: (a, b) (c, d) (a c b d) Matemaryka dyskretna - zadania Zadanie 1. Opisać zbiór wszystkich elementów rangi k zbioru uporządkowanego X dla każdej liczby naturalnej k, gdy X jest rodziną podzbiorów zbioru skończonego Y. Elementem

Bardziej szczegółowo

Wiedza niepewna i wnioskowanie (c.d.)

Wiedza niepewna i wnioskowanie (c.d.) Wiedza niepewna i wnioskowanie (c.d.) Dariusz Banasiak Katedra Informatyki Technicznej Wydział Elektroniki Wnioskowanie przybliżone Wnioskowanie w logice tradycyjnej (dwuwartościowej) polega na stwierdzeniu

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Inżynieria i Gospodarka Wodna w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt

Bardziej szczegółowo

Ćwiczenia z wyliczania wartości funkcji

Ćwiczenia z wyliczania wartości funkcji Ćwiczenia z wyliczania wartości funkcji 4 października 2011 1 Wprowadzenie Wyliczanie wartości wyrażenia nie jest sprawą oczywistą, szczególnie jeżeli chodzi o aplikację funkcji. Poniższy tekst nie jest

Bardziej szczegółowo