Statystyka. Wydział Zarządzania Uniwersytetu Łódzkiego

Wielkość: px
Rozpocząć pokaz od strony:

Download "Statystyka. Wydział Zarządzania Uniwersytetu Łódzkiego"

Transkrypt

1 Statystyka Wydział Zarządzania Uniwersytetu Łódzkiego 2017

2 Podstawowe rozkłady zmiennych losowych

3 Rozkłady zmiennych skokowych

4 Rozkład zero-jedynkowy Rozpatrujemy doświadczenie, którego rezultatem może być zdarzenie A lub zdarzenie do niego przeciwne Ā. Niech: P(A) = p, P(A) = 1 p. Na zbiorze zdarzeń elementarnych tego doświadczenia definiujemy zmienną losową X w następujący sposób: X(ω ) = 1, gdy ω A, 0, gdy ω A. Rozkład prawdopodobieństwa tej zmiennej dany jest funkcją prawdopodobieństwa: P(X = 1) = p, P(X = 0) = 1 p.

5 Rozkład zero-jedynkowy Wartość oczekiwana tej zmiennej jest równa E(X) = 1 p + 0 (1 p) = p. Wariancja i odchylenie standardowe są równe: Var(X) = (1 p) 2 p + (0 p) 2 (1 p) = p(1 p), SD(X) = p(1 p).

6 Przykład. Agent ubezpieczeniowy wie (z doświadczenia), że prawdopodobieństwo sfinalizowania umowy w czasie umówionego spotkania wynosi 0,2. Agent umawia się na jedno spotkanie dziennie. Liczba zawieranych dziennie umów jest zmienną losową X o rozkładzie zero-jedynkowym z parametrem p = 0,2. Jej rozkład dany jest funkcją prawdopodobieństwa określoną za pomocą tabeli: Liczba umów zawartych w ciągu dnia 0 1 Prawdopodobieństwo 0,8 0,2 E(X) = p = 0,2, SD(X) = 0,2 (1 0,2) = 0,4. Agent zawiera dziennie średnio 0,2 ± 0,4 umowy.

7 Rozkład dwumianowy (Bernoulliego) Rozpatrujemy doświadczenie zwane schematem Bernoulliego. Polega ono, jak wiemy, na n-krotnym powtarzaniu tego samego doświadczenia, kończącego się wyłącznie dwoma wynikami: albo sukcesem, z prawdopodobieństwem p, albo porażką, z prawdopodobieństwem q = 1 - p. Na zbiorze zdarzeń elementarnych tego doświadczenia określamy zmienną losową X jako liczbę uzyskanych sukcesów w n próbach. Zgodnie z tym co powiedzieliśmy o prawdopodobieństwie takiego zdarzenia, rozkład zmiennej losowej X opisuje funkcja prawdopodobieństwa dana wzorem: P(X = k) = n k pk q n k, k = 0,1,2,,n.

8 Rozkład dwumianowy (Bernoulliego) Można łatwo pokazać, że wartość oczekiwana i odchylenie standardowe zmiennej losowej o rozkładzie dwumianowym są dane wzorami: E(X) = np, SD(X) = npq. Zauważmy również, że z formalnego punktu widzenia, zmienną losową X można traktować jako sumę n niezależnych zerojedynkowych: X 1, X 2,, X n o rozkładzie zero-jedynkowym z tym samym parametrem p: X = X 1 + X X n.

9 Przykład. Nasz Agent postanowił umawiać się na 6 spotkań dziennie. Liczba zawieranych dziennie umów jest zmienną losową X o rozkładzie dwumianowym z parametrami p = 0,2 i n = 6. Jej rozkład dany jest funkcją prawdopodobieństwa: P(X = k) = 6 k 0,2k 0,8 6 k, k = 0,1,,6. Obliczone na podstawie tego wzoru prawdopodobieństwa podajemy w poniższej tabeli: Liczba umów zawartych w ciągu dnia, k Prawdopodobieństwo P(X = k) , , , , , , ,00006

10 Zgodnie ze wzorem na wartość oczekiwaną i odchylenie standardowe zmiennej losowej o rozkładzie dwumianowym mamy E(X) = np = 6 0,2 = 1,2, SD(X) = 6 0,2 0,8 = 0,98. Agent zawiera dziennie średnio 1,2 ± 0,98 umowy. 0,4 Wykres funkcji prawdopodobieństwa 0,3 0,2 0,

11 Rozkłady Bernoulliego w n = 20 próbach z różnymi parametrami p 0,3 p = 0,2 p = 0,4 p = 0.5 p = 0,9 0,225 0,15 0,

12 Rozkłady Bernoulliego z parametrem p = 0,5 i w różnych parametrach n n = 5 n = 15 n = 50 n = 75 0,4 0,3 0,2 0,

13 Rozkład Poissona Jeśli zmienna losowa jest liczbą zajść pewnego zdarzenia losowego w określonym przedziale czasu, np. liczbą awarii urządzenia w ciągu tygodnia, liczbą wypadków samochodowych w ciągu miesiąca, to jej rozkład opisuje funkcja prawdopodobieństwa postaci: P(X = k) = µ k e µ, k = 0,1,2,3, k! gdzie μ jest wartością oczekiwaną rozkładu i jednocześnie jego wariancją: E(X) = µ, Var(X) = µ.

14 Przykład. W pewnym przedsiębiorstwie zaobserwowano, że w ciągu miesiąca zdarzają się średnio 2 wypadki. Oznaczmy przez X zmienną losową, która jest liczbą wypadków w losowo wybranym miesiącu. Zmienna ta (teoretycznie) może przyjmować każdą wartość k = 0, 1, 2,. Prawdopodobieństwa odpowiadające poszczególnym wartościom k obliczamy, korzystając z funkcji prawdopodobieństwa rozkładu Poissona, przyjmując parametr μ = 2. Prawdopodobieństwo, że w losowo wybranym miesiącu nie będzie wypadków wynosi: P(X = 0) = 20 e 2 0! = 1 e 2 = 0,135. Prawdopodobieństwo, że w losowo wybranym miesiącu będą 4 wypadki jest równe: P(X = 4) = 24 e 2 4! = 2 3e 2 = 0,09.

15 Rozkład Poissona Rozkład Poissona jest też dobrym przybliżeniem rozkładu dwumianowego, gdy liczba doświadczeń n jest duża (n > 20), a prawdopodobieństwo sukcesu p jest niewielkie (p < 0,05) oraz przy rosnącej liczbie prób iloczyn np jest stały (lub zmierza do stałej). Wówczas przyjmuje się μ = np. Poniżej oba rozkłady dla parametrów: n = 100, p = 0,01 0,4 R. dwumianowy R. Poissona 0,3 0,2 0,

16 Rozkład hipergeometryczny Rozważmy eksperyment polegający na losowaniu ze zwracaniem n elementów z populacji liczącej N elementów. Wiemy, że w populacji frakcja interesujących nas elementów wynosi p = R/N. Jeśli zmienna losowa X zlicza interesujące nas elementy w pobranej próbie, to podlega ona rozkładowi dwumianowemu z parametrami n i p. Odmienną sytuację mamy wtedy, gdy losujemy próbę bez zwracania (p zmienia się, bo nie zwracamy). Opisana zmienna losowa X podlega wówczas rozkładowi hipergeometrycznemu. R k N R n k P(X = k) =, k = 0,1,2,...,min{R,n}. N n

17 Przykład. W tym roku na rynek kapitałowy w Polsce weszło 10 nowych spółek, ale tylko 3 z nich (jak wiemy z doświadczenia) będą miały zadowalające wyniki. Takie spółki będziemy traktować jako wyróżnione przez inwestorów, a zakup ich akcji jako sukces. Pewna osoba zakupiła cztery akcje różnych spółek. Niech zmienną losową X będzie liczba akcji spółek dobrze prosperujących wśród wszystkich zakupionych akcji. Zmienna X może przyjmować wartości k = 0, 1, 2, 3 (tylko 3 spółki mają dodatni wynik finansowy) z prawdopodobieństwami opisanymi rozkładem hipergeometrycznym (osoba nie kupowała dwa razy akcji tej samej spółki) P(X = 0) = P(X = 2) = = 0,17, P(X = 1) = = 0,3, P(X = 3) = = 0,5, = 0,

18 Poniżej podana jest tabela rozkładu prawdopodobieństwa zmiennej losowej X: x i p i 0,17 0,5 0,3 0,03 Jakie jest prawdopodobieństwo, że wśród zakupionych akcji czterech spółek znajdą się przynajmniej dwie akcje społek dobrze prosperujących? Prawdopodobieństwo to policzymy następująco P(X 2) = P(X = 2) + P(X = 3) = 0,3+ 0,03 = 0,33. 0,5 0,4 0,3 0,2 0,

19 Rozkład hipergeometryczny Wartość oczekiwana i wariancja zmiennej o rozkładzie hipergeometrycznym dane są wzorami: E(X) = np = nr N, Var(X) = np(1 p) 1 n N 1 1 N. Jeżeli liczebność populacji N rośnie, to rozkład hipergeometryczny jest zbieżny do rozkładu dwumianowego: P(X = k) = lim N R k N R n k N n = n k pk (1 p) n k.

20 Rozkład geometryczny Jeśli w doświadczeniu losowym schematu Bernoulliego zamiast liczbą sukcesów będziemy się interesowali zmienną losową X, będącą liczbą doświadczeń aż do pojawienia się pierwszego sukcesu, to określimy rozkład geometryczny. Funkcja prawdopodobieństwa tego rozkładu to: P(X = k) = pq k 1, k = 0,1,2, gdzie p - prawdopodobieństwo sukcesu w pojedynczej próbie, q = 1 - p - prawdopodobieństwo porażki.

21 Rozkład geometryczny Wartość oczekiwana i wariancja zmiennej losowej o rozkładzie geometrycznym wyrażają się wzorami: E(X) = 1 p, Var(X) = q p 2. 0,5 0,4 0,3 0,2 0,

22 Przykład. Najnowsze badania wskazują na 14% procentowy udział Pepsi-Coli w rynku napojów bezalkoholowych i 36% udział Coca-Coli. Firma badająca rynek chce przeprowadzić test smakowy na konsumentach Pepsi. Potencjalnych uczestników badania wybiera się przez losowe odsiewanie konsumentów napojów bezalkoholowych dotąd, aż trafi się na konsumenta Pepsi-Coli. Jakie jest prawdopodobieństwo, że pierwszy losowo wybrany konsument będzie konsumentem Pepsi? Jakie jest prawdopodobieństwo, że trzeba będzie zbadać dwóch, trzech, czterech konsumentów, by trafić na pierwszego konsumenta Pepsi? To, że pierwsza zbadana osoba okaże się konsumentem Pepsi jest sukcesem w naszym doświadczeniu. Jego prawdopodobieństwo wynosi p = 0,14. Korzystając z funkcji prawdopodobieństwa mamy: P(X = 1) = pq 1 1 = p = 0,14, P(X = 2) = pq 2 1 = 0,14 0,86 = 0,12, P(X = 3) = pq 3 1 = 0,14 0,86 2 = 0,1 P(X = 4) = pq 4 1 = 0,14 0,86 3 = 0,09.

23 Rozkłady zmiennych ciągłych

24 Rozkład jednostajny w przedziale Zmienna losowa X ma rozkład jednostajny w przedziale [a, b], jeśli jej funkcja gęstości określona jest wzorem: f (x) = 0 dla x < a 1 b a dla a x b 0 dla x > b 1/(b-a) a b

25 Rozkład jednostajny w przedziale Wartość oczekiwana i wariancja tej zmiennej losowej wynoszą: E(X) = Var(X) = xf (x)dx = a + b 2, (x E(X)) 2 f (x)dx = (b a)2 12 Dystrybuanta rozkładu tej zmiennej losowej jest dana wzorem:. F(x) = P(X x) = 0 dla x < a x a b a dla a x b 1 dla x > b 0 1 a b

26 Przykład. Czas oczekiwania na to, aby prowadzący ćwiczenia podał ocenę z kolokwium jest zmienną losową o rozkładzie jednostajnym w przedziale [3 dni, 8 dni]. Jaki jest przeciętny czas oczekiwania na ocenę? Zgodnie ze wcześniej podanym wzorem: E(X) = a + b 2 = = 5,5, Var(X) = (b a)2 12 = = 2,08. Zatem SD(X) = Var(X) = 1,44, więc przeciętny czas oczekiwania na ocenę szacujemy na 5 dni 12 godzin z odchyleniem plus minus 1 dzień 10,5 godziny.

27 Rozkład wykładniczy Zmienna losowa X ma rozkład wykładniczy, jeśli jej funkcja gęstości określona jest wzorem: f (x) = y λ 0 dla x < 0 λe λx dla x 0 0 x

28 Rozkład wykładniczy Rozkład wykładniczy ma zmienna losowa X będąca odstępem czasu między zajściem dwóch zdarzeń, które charakteryzuje rozkład Poissona. Na przykład, jeśli liczba samochodów, które przybywają do stacji obsługi w ciągu minuty ma rozkład Poissona, to odcinek czasu między przybyciem dwóch kolejnych samochodów (mierzony na skali ciągłej) ma rozkład wykładniczy. Dystrybuanta rozkładu wykładniczego jest postaci: F(x) = 0 dla x < 0 1 e λx dla x 0 Wartość oczekiwana i wariancja wynoszą: E(X) = 1/λ, Var(X) = 1/λ.

29 Przykład.Czas jaki maszyna działa zanim ulegnie awarii (czyli odstęp między kolejnymi awariami) ma rozkład wykładniczy z parametrem λ = 2 godziny. Jakie jest prawdopodobieństwo bezawaryjnej pracy maszyny przez co najmniej jedną godzinę? jaki jest średni odstęp między awariami? Interesuje nas pole pod wykresem funkcji gęstości na prawo od punktu x = 1. Korzystając z dystrybuanty mamy P(X > 1) = 1 P(X 1) = 1 F(1) = 1 (1 e 2 ) = 0,1353. Średnim odstępem między awariami jest E(X) = 1/2 godziny. y 2 P(X>1) 0 1 x

30 Rozkład normalny (Gaussa) Zmienna losowa X ma rozkład normalny z parametrami μ i σ, jeśli jej funkcja gęstości określona jest wzorem: f (x) = 1 (x µ)2 exp σ 2π 2σ 2, < x < +. f(x) μ

31 f(x) σ 1 2π μ-σ μ μ+σ

32 Rozkład normalny (Gaussa) f (x) = 1 (x µ)2 exp σ 2π 2σ 2, < x < +. Wartość oczekiwana i odchylenie standardowe zmiennej X mającej rozkład normalny wynoszą: E(X) = µ, SD(X) = σ. Fakt, że zmienna losowa X ma rozkład normalny z wartością oczekiwaną μ i odchyleniem standardowym σ zapisujemy jako: X ~ N(µ,σ ).

33 Rozkład normalny (Gaussa) Dystrybuanta zmiennej losowej o rozkładzie normalnym N(μ, σ) jest określona wzorem F(x) = σ 1 2π x (t µ)2 exp 2σ 2 dt, < x < +. f(x) F(x) = P(X x) μ x

34 N(5,1) N(5,2) N(10,2) 0,4 0,3 0,2 0,

35 Standaryzowany rozkład normalny Zmienna losowa Z ma rozkład normalny standaryzowany, gdy ma parametry μ = 0 i σ = 1, tzn. Z ~ N(0, 1). Wtedy funkcja gęstości jest postaci f (x) = 1 x2 exp 2π 2, < x < +. f(x) 0

36 0,4 f(x) ,3% 95,4% 99,7%

37 0,4 f(x) 0-2,58-1,96-1,64 0 1,64 1,96 2,58 90% 95% 99%

38 Krzywa y = f(x) jest symetryczna względem osi y, Pole pod całą krzywą jest równe 1, Pola zaciemnione na rysunku są równe, Pole pod lewym ogonem jest równe F(-z), a pod prawym ogonem jest równe 1 - F(z). 0,4 f(x) P(Z < -z) P(Z > z) = 1 - P(Z z) 0 -z 0 z

39 Niech F będzie dystrybuantą zmiennej losowej Z o standardowym rozkładzie normalnym. Wtedy zachodzą wzory: F(-z) = 1 - F(z), P( -z < Z < z ) = F(z) - F(-z) = 2F(z) ,4 f(x) P(Z < -z) P(Z > z) = 1 - P(Z z) 0 -z 0 z

40 Standaryzowany rozkład normalny Wartości dystrybuanty rozkładu normalnego zostały ułożone w tablice postaci: x 0,00 0,01 0,02 0,03 0,04 0,05 0,06 0,0 0, , , , , , , ,1 0, , , , , , , ,2 0, , , , , , , ,3 0, , , , , , , ,4 0, , , , , , , ,5 0, , , , , , , ,6 0, , , , , , ,74537

41 Standaryzowany rozkład normalny Przykład. F(-0,32) = 1 - F(0,32)=1-0,62552 = 0,37448; P(-0,5 < Z < 0,5) = 2F(0,5) - 1 =2 0, =0, x 0,00 0,01 0,02 0,03 0,04 0,05 0,06 0,0 0, , , , , , , ,1 0, , , , , , , ,2 0, , , , , , , ,3 0, , , , , , , ,4 0, , , , , , , ,5 0, , , , , , , ,6 0, , , , , , ,74537

42 Znajdowanie prawdopodobieństw w tablicach standaryzowanego rozkładu normalnego 1. Znajdziemy prawdopodobieństwo, że wartość standaryzowanej normalnej zmiennej losowej znajdzie się między 0 a 1,56. P(0 < Z < 1,56) = F(1,56) F(0) = 0, ,5 = 0,44062 x 0,00 0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08 0,09 0,0 0, , , , , , , , , , , , , , , , , , , , ,5 0, , , , , , , , , , ,6 0, , , , , , , , , , ,7 0, , , , , , , , , , ,8 0, , , , , , , , , , ,9 0, , , , , , , , , ,97670

43 1,0 0, , , , , , , , , , ,1 0, , , , , , , , , ,88298 Znajdowanie prawdopodobieństw w tablicach 1,2 0, , , , , , , , , ,90147 standaryzowanego rozkładu normalnego 1,3 0, , , , , , , , , , ,4 0, , , , , , , , , , ,5 0, , , , , , , , , , ,6 0, , , , , , , , , , Znajdziemy prawdopodobieństwo, że wartość standaryzowanej normalnej zmiennej losowej będzie mniejsza od -2,47. 1,7 0, , , , , , , , , , ,8 0, , , , , , , , , ,97062 P(Z < 2,47) = P(Z > 2,47) = 1 P(Z 2,47) = 1 F(2,47) = 1,9 0, , , , , , , , , , ,99324 = 0, ,0 0, , , , , , , , , , ,1 0, , , , , , , , , , ,2 0, , , , , , , , , ,98899 x 2,3 0,00 0, ,01 0, ,02 0, ,03 0, ,04 0, ,05 0, ,06 0, ,07 0, ,08 0, ,09 0, ,4 0, , , , , , , , , , ,5 0, , , , , , , , , , ,6 0, , , , , , , , , , ,7 0, , , , , , , , , , ,8 0, , , , , , , , , ,99807

44 Znajdowanie wartości z przy danym prawdopodobieństwie 1. Znajdziemy taką wartość standaryzowanej zmiennej losowej normalnej Z, by prawdopodobieństwo, że zmienna Z przyjmie wartość mniejszą od z było równe 0,40. P(Z < z) = 0,40 Z własności dystrybuanty zmiennej losowej Z wynika, że poszukiwane z < 0. P(Z < z) = P(Z > z) = 1 P(Z z) = 1 F( z). Stąd należy rozwiązać równanie lub równoważnie 1 F( z) = 0,4 F( z) = 0,6

45 Znajdowanie wartości z przy danym prawdopodobieństwie F( z) = 0,6 x 0,00 0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08 0,09 0,2 0, , , , , , , , , ,61409 Stąd -z = 0,26, a więc poszukiwana wartość z, to z = -0,26.

46 Znajdowanie wartości z przy danym prawdopodobieństwie 2. Znajdziemy przedział położony symetrycznie wokół 0, któremu odpowiada prawdopodobieństwo 0,80 znalezienia wartości standaryzowanej normalnej zmiennej losowej w tym przedziale. Szukamy zatem z takiego, że P( z < Z < z) = 0,8 Z własności dystrybuanty zmiennej losowej Z wynika, że poszukiwane z < 0. Szukamy więc takiego z, że P( z < Z < z) = 2F(z) 1 2F(z) 1 = 0,8

47 Znajdowanie wartości z przy danym prawdopodobieństwie Równanie jest równoważne równaniu 2F(z) 1 = 0,8 F(z) = 0,9 x 0,00 0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08 0,09 1,2 0, , , , , , , , , , , , , ,91774 Stąd poszukiwana wartość z, to z = 1,29 czyli 1,4 0, , , , , , , , , , ,5 0, , , , , , , , , ,94408 P( 1,29 < Z < 1,29) = 0,8 1,6 0, , , , , , , , , , ,7 0, , , , , , , , , , ,8 0, , , , , , , , , ,97062

48 Przekształcenia normalnej zmiennej losowej Niech X będzie zmienną losową o rozkładzie normalnym z parametrami μ i σ, czyli X ~ N(μ, σ). Wówczas zmienna losowa Z określona wzorem Z = X µ σ ma standaryzowany rozkład normalny, czyli Z ~ N(0, 1). Przekształceniem odwrotnym jest X = µ + Zσ. Przy powyższych przekształceniach prawdopodobieństwa się nie zmieniają. To tłumaczy fakt, że tablice skonstruowano tylko dla standaryzowanego rozkładu normalnego.

49 P(X < b) = P X µ < b µ σ σ = P Z < b µ σ P(X > a) = P X µ > a µ σ σ = P Z < a µ σ P(a < X < b) = P a µ < X µ < b µ σ σ σ = P a µ < Z < b µ σ σ

50 Korzystanie z przekształcenia rozkładu normalnego 1. Niech X ~ N(50, 10). Znajdziemy prawdopodobieństwo, że wartości zmiennej X są większe od 60, czyli P(X > 60). P(X > 60) = P X > = P(Z > 1) = 10 = 1 P(Z 1) = 1 F(1) = 1 0,84 = 0,16. x 0,00 0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08 0,09 1,0 0, , , , , , , , , ,86214

51 Korzystanie z przekształcenia rozkładu normalnego 2. Przypuśćmy, że wiemy iż pewna zmienna X ~ N(120, σ), czyni nie znamy σ. Wiemy natomiast, że P(X > 125) = 0,05. Ile wynosi σ? P(X > 125) = P Z > σ = P Z > 5 σ = 1 P Z 5 σ Otrzymujemy więc równanie równoważne z równaniem 0,05 = 1 F 5 σ F 5 σ = 0,95.

52 Korzystanie z przekształcenia rozkładu normalnego F 5 σ = 0,95. 0, ,4 0, , , , , , , , , ,93189 x 1,5 0,00 0, ,01 0, ,02 0, ,03 0, ,04 0, ,05 0, ,06 0, ,07 0, ,08 0, ,09 0, ,6 0, , , , , , , , , , ,7 0, , , , , , , , , ,96327 Stąd odszukujemy, że skąd 1,8 0, , , , , , , , , , ,9 0, , , , , , , , , ,97670 σ = 1,64, 2,0 0, , , , , , , , , , ,1 0, , , , , , , , , , ,2 0, , , , , , , , , ,98899 σ = 5 1,64 = 3,05. 2,3 0, , , , , , , , , , ,4 0, , , , , , , , , ,99361

53 Rozkład chi-kwadrat (χ 2 ) Rozkład chi-kwadrat z k stopniami swobody ma zmienna losowa χ 2 postaci χ 2 = X X X k 2, gdzie X i są niezależnymi standaryzowanymi zmiennymi losowymi normalnymi. f(x) E(χ 2 ) = k, 0,3 SD(χ 2 ) = 2k

54 Wykresy funkcji gęstości rozkładu chi-kwadrat dla różnych stopni swobody 0, stopnie swobody 5 stopni swobody 10 stopni swobody

55 Rozkład t Studenta postaci Rozkład t Studenta z k stopniami swobody ma zmienna losowa t t = Z χ 2 k, gdzie Z i χ 2 są niezależnymi zmiennymi losowymi: Z ma standaryzowany rozkład normalny, χ 2 ma rozkład chi-kwadrat z k stopniami swobody. 0

56 Rozkład t Studenta Wartość oczekiwana i odchylenie standardowe zmiennej t: E(t) = 0, SD(t) = k/(k - 2). Dla dużych k rozkład t Studenta jest zbliżony do standaryzowanego rozkładu normalnego. 0

57 Krytyczne wartości t α/2 w rozkładzie t Studenta Stopnie swobody t 0,1 t 0,05 t 0,025 t 0,01 t 0, ,078 6,314 12,706 31,821 63, ,886 2,920 4,303 6,965 9, ,638 2,353 3,182 4,541 5, ,533 2,132 2,776 3,747 4, ,476 2,015 2,571 3,365 4, ,440 1,943 2,447 3,143 3, ,415 1,895 2,365 2,998 3, ,397 1,860 2,306 2,896 3, ,383 1,833 2,262 2,821 3, ,372 1,812 2,228 2,764 3,169 P(t > t α /2 ) = α / 2 0 t α/2

Przestrzeń probabilistyczna

Przestrzeń probabilistyczna Przestrzeń probabilistyczna (Ω, Σ, P) Ω pewien niepusty zbiór Σ rodzina podzbiorów tego zbioru P funkcja określona na Σ, zwana prawdopodobieństwem. Przestrzeń probabilistyczna (Ω, Σ, P) Ω pewien niepusty

Bardziej szczegółowo

Zmienne losowe ciągłe i ich rozkłady

Zmienne losowe ciągłe i ich rozkłady Statystyka i opracowanie danych W3 Zmienne losowe ciągłe i ich rozkłady Dr Anna ADRIAN Paw B5, pok47 adan@agh.edu.pl Plan wykładu Rozkład Poissona. Zmienna losowa ciągła Dystrybuanta i funkcja gęstości

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład II: Zmienne losowe i charakterystyki ich rozkładów 13 października 2014 Zmienne losowe Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Definicja zmiennej losowej i jej

Bardziej szczegółowo

Wykład z analizy danych: powtórzenie zagadnień z rachunku prawdopodobieństwa

Wykład z analizy danych: powtórzenie zagadnień z rachunku prawdopodobieństwa Wykład z analizy danych: powtórzenie zagadnień z rachunku prawdopodobieństwa Marek Kubiak Instytut Informatyki Politechnika Poznańska Plan wykładu Podstawowe pojęcia rachunku prawdopodobieństwa Rozkład

Bardziej szczegółowo

III. ZMIENNE LOSOWE JEDNOWYMIAROWE

III. ZMIENNE LOSOWE JEDNOWYMIAROWE III. ZMIENNE LOSOWE JEDNOWYMIAROWE.. Zmienna losowa i pojęcie rozkładu prawdopodobieństwa W dotychczas rozpatrywanych przykładach każdemu zdarzeniu była przyporządkowana odpowiednia wartość liczbowa. Ta

Bardziej szczegółowo

Zmienne losowe ciągłe i ich rozkłady

Zmienne losowe ciągłe i ich rozkłady Rachunek Prawdopodobieństwa i Statystyka - W3 Zmienne losowe ciągłe i ich rozkłady Dr Anna ADRIAN Paw B5, pok47 adan@agh.edu.pl Plan wykładu Zmienna losowa ciągła Dystrybuanta i unkcja gęstości rozkładu

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład VII: Rozkład i jego charakterystyki 22 listopada 2016 Uprzednio wprowadzone pojęcia i ich własności Definicja zmiennej losowej Zmienna losowa na przestrzeni probabilistycznej (Ω, F, P) to funkcja

Bardziej szczegółowo

Rachunek Prawdopodobieństwa i Statystyka

Rachunek Prawdopodobieństwa i Statystyka Rachunek Prawdopodobieństwa i Statystyka W 2. Probabilistyczne modele danych Zmienne losowe. Rozkład prawdopodobieństwa i dystrybuanta. Wartość oczekiwana i wariancja zmiennej losowej Dr Anna ADRIAN Zmienne

Bardziej szczegółowo

Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład

Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład Rozdział 1 Wektory losowe 1.1 Wektor losowy i jego rozkład Definicja 1 Wektor X = (X 1,..., X n ), którego każda współrzędna jest zmienną losową, nazywamy n-wymiarowym wektorem losowym (krótko wektorem

Bardziej szczegółowo

Rozkłady zmiennych losowych

Rozkłady zmiennych losowych Rozkłady zmiennych losowych Wprowadzenie Badamy pewną zbiorowość czyli populację pod względem występowania jakiejś cechy. Pobieramy próbę i na podstawie tej próby wyznaczamy pewne charakterystyki. Jeśli

Bardziej szczegółowo

b) Niech: - wśród trzech wylosowanych opakowań jest co najwyżej jedno o dawce 15 mg. Wówczas:

b) Niech: - wśród trzech wylosowanych opakowań jest co najwyżej jedno o dawce 15 mg. Wówczas: ROZWIĄZANIA I ODPOWIEDZI Zadanie A1. Można założyć, że przy losowaniu trzech kul jednocześnie kolejność ich wylosowania nie jest istotna. A więc: Ω = 20 3. a) Niech: - wśród trzech wylosowanych opakowań

Bardziej szczegółowo

MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ

MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ Opracowała: Milena Suliga Wszystkie pliki pomocnicze wymienione w treści

Bardziej szczegółowo

II WYKŁAD STATYSTYKA. 12/03/2014 B8 sala 0.10B Godz. 15:15

II WYKŁAD STATYSTYKA. 12/03/2014 B8 sala 0.10B Godz. 15:15 II WYKŁAD STATYSTYKA 12/03/2014 B8 sala 0.10B Godz. 15:15 WYKŁAD 2 Rachunek prawdopodobieństwa zdarzenia elementarne zdarzenia losowe zmienna losowa skokowa i ciągła prawdopodobieństwo i gęstość prawdopodobieństwa

Bardziej szczegółowo

AKADEMIA GÓRNICZO-HUTNICZA Wydział Matematyki Stosowanej ROZKŁAD NORMALNY ROZKŁAD GAUSSA

AKADEMIA GÓRNICZO-HUTNICZA Wydział Matematyki Stosowanej ROZKŁAD NORMALNY ROZKŁAD GAUSSA AKADEMIA GÓRNICZO-HUTNICZA Wydział Matematyki Stosowanej KATEDRA MATEMATYKI TEMAT PRACY: ROZKŁAD NORMALNY ROZKŁAD GAUSSA AUTOR: BARBARA MARDOSZ Kraków, styczeń 2008 Spis treści 1 Wprowadzenie 2 2 Definicja

Bardziej szczegółowo

Rozkłady statystyk z próby

Rozkłady statystyk z próby Rozkłady statystyk z próby Rozkłady statystyk z próby Przypuśćmy, że wykonujemy serię doświadczeń polegających na 4 krotnym rzucie symetryczną kostką do gry, obserwując liczbę wyrzuconych oczek Nr kolejny

Bardziej szczegółowo

Ćwiczenia 3 ROZKŁAD ZMIENNEJ LOSOWEJ JEDNOWYMIAROWEJ

Ćwiczenia 3 ROZKŁAD ZMIENNEJ LOSOWEJ JEDNOWYMIAROWEJ Ćwiczenia 3 ROZKŁAD ZMIENNEJ LOSOWEJ JEDNOWYMIAROWEJ Zadanie 1. Zmienna losowa przyjmuje wartości -1, 0, 1 z prawdopodobieństwami równymi odpowiednio: ¼, ½, ¼. Należy: a. Wyznaczyć rozkład prawdopodobieństwa

Bardziej szczegółowo

WYKŁAD 2. Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady

WYKŁAD 2. Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady WYKŁAD 2 Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady Metody statystyczne metody opisu metody wnioskowania statystycznego syntetyczny liczbowy opis właściwości zbioru danych ocena

Bardziej szczegółowo

Ważne rozkłady i twierdzenia c.d.

Ważne rozkłady i twierdzenia c.d. Ważne rozkłady i twierdzenia c.d. Funkcja charakterystyczna rozkładu Wielowymiarowy rozkład normalny Elipsa kowariacji Sploty rozkładów Rozkłady jednostajne Sploty z rozkładem normalnym Pobieranie próby

Bardziej szczegółowo

Weryfikacja hipotez statystycznych

Weryfikacja hipotez statystycznych Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta

Bardziej szczegółowo

Statystyczna analiza danych w programie STATISTICA 7.1 PL (wykład 1) Dariusz Gozdowski

Statystyczna analiza danych w programie STATISTICA 7.1 PL (wykład 1) Dariusz Gozdowski Statystyczna analiza danych w programie STATISTICA 7.1 PL (wykład 1) Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW STATYSTYKA to nauka, której przedmiotem

Bardziej szczegółowo

Zmienne losowe dyskretne i Zmienne losowe ciągłe Rozkład Normalny

Zmienne losowe dyskretne i Zmienne losowe ciągłe Rozkład Normalny Zmienne losowe dyskretne i Zmienne losowe ciągłe Rozkład Normalny 1. Wyprodukowanie określonej liczby wyrobów przez jednego pracownika w ciągu godziny jest zmienną losową o następującym rozkładzie prawdopodobieństwa:

Bardziej szczegółowo

Statystyka i eksploracja danych

Statystyka i eksploracja danych Wykład II: i charakterystyki ich rozkładów 24 lutego 2014 Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa,

Bardziej szczegółowo

= = a na podstawie zadania 6 po p. 3.6 wiemy, że. b 1. a 2 ab b 2

= = a na podstawie zadania 6 po p. 3.6 wiemy, że. b 1. a 2 ab b 2 64 III. Zienne losowe jednowyiarowe D Ponieważ D (A) < D (B), więc należy wybrać partię A. Przykład 3.4. Obliczyć wariancję rozkładu jednostajnego. Ponieważ a na podstawie zadania 6 po p. 3.6 wiey, że

Bardziej szczegółowo

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl

Bardziej szczegółowo

zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych

zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych 1. [E.A 5.10.1996/zad.4] Funkcja gęstości dana jest wzorem { 3 x + 2xy + 1 y dla (x y) (0 1) (0 1) 4 4 P (X > 1 2 Y > 1 2 ) wynosi:

Bardziej szczegółowo

4,5. Dyskretne zmienne losowe (17.03; 31.03)

4,5. Dyskretne zmienne losowe (17.03; 31.03) 4,5. Dyskretne zmienne losowe (17.03; 31.03) Definicja 1 Zmienna losowa nazywamy dyskretna (skokowa), jeśli zbiór jej wartości x 1, x 2,..., można ustawić w ciag. Zmienna losowa X, która przyjmuje wszystkie

Bardziej szczegółowo

R ozkład norm alny Bardzo często używany do modelowania symetrycznych rozkładów zmiennych losowych ciągłych

R ozkład norm alny Bardzo często używany do modelowania symetrycznych rozkładów zmiennych losowych ciągłych R ozkład norm alny Bardzo często używany do modelowania symetrycznych rozkładów zmiennych losowych ciągłych Przykłady: Błąd pomiarowy Wzrost, wydajność Temperatura ciała Zawartość różnych składników we

Bardziej szczegółowo

Statystyka Opisowa z Demografią oraz Biostatystyka. Zmienne losowe. Aleksander Denisiuk. denisjuk@euh-e.edu.pl

Statystyka Opisowa z Demografią oraz Biostatystyka. Zmienne losowe. Aleksander Denisiuk. denisjuk@euh-e.edu.pl Statystyka Opisowa z Demografią oraz Biostatystyka Zmienne losowe Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2 82-300 Elblag oraz Biostatystyka p.

Bardziej szczegółowo

Z Wikipedii, wolnej encyklopedii.

Z Wikipedii, wolnej encyklopedii. Rozkład normalny Rozkład normalny jest niezwykle ważnym rozkładem prawdopodobieństwa w wielu dziedzinach. Nazywa się go także rozkładem Gaussa, w szczególności w fizyce i inżynierii. W zasadzie jest to

Bardziej szczegółowo

ZMIENNE LOSOWE. Zmienna losowa (ZL) X( ) jest funkcją przekształcającą przestrzeń zdarzeń elementarnych w zbiór liczb rzeczywistych R 1 tzn. X: R 1.

ZMIENNE LOSOWE. Zmienna losowa (ZL) X( ) jest funkcją przekształcającą przestrzeń zdarzeń elementarnych w zbiór liczb rzeczywistych R 1 tzn. X: R 1. Opracowała: Joanna Kisielińska ZMIENNE LOSOWE Zmienna losowa (ZL) X( ) jest funkcją przekształcającą przestrzeń zdarzeń elementarnych w zbiór liczb rzeczywistych R tzn. X: R. Realizacją zmiennej losowej

Bardziej szczegółowo

Zmienne losowe, statystyki próbkowe. Wrocław, 2 marca 2015

Zmienne losowe, statystyki próbkowe. Wrocław, 2 marca 2015 Zmienne losowe, statystyki próbkowe Wrocław, 2 marca 2015 Zasady zaliczenia 2 kolokwia (każde po 20 punktów) projekt (20 punktów) aktywność Zasady zaliczenia 2 kolokwia (każde po 20 punktów) projekt (20

Bardziej szczegółowo

Statystyczna analiza danych

Statystyczna analiza danych Statystyczna analiza danych Marek Ptak 21 października 2013 Marek Ptak Statystyka 21 października 2013 1 / 70 Część I Wstęp Marek Ptak Statystyka 21 października 2013 2 / 70 LITERATURA A. Łomnicki, Wprowadzenie

Bardziej szczegółowo

KURS PRAWDOPODOBIEŃSTWO

KURS PRAWDOPODOBIEŃSTWO KURS PRAWDOPODOBIEŃSTWO Lekcja 6 Ciągłe zmienne losowe ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Zmienna losowa ciągła jest

Bardziej szczegółowo

Estymacja przedziałowa - przedziały ufności dla średnich. Wrocław, 5 grudnia 2014

Estymacja przedziałowa - przedziały ufności dla średnich. Wrocław, 5 grudnia 2014 Estymacja przedziałowa - przedziały ufności dla średnich Wrocław, 5 grudnia 2014 Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja Przedziałem ufności dla paramertu

Bardziej szczegółowo

Rozkład normalny. Marcin Zajenkowski. Marcin Zajenkowski () Rozkład normalny 1 / 26

Rozkład normalny. Marcin Zajenkowski. Marcin Zajenkowski () Rozkład normalny 1 / 26 Rozkład normalny Marcin Zajenkowski Marcin Zajenkowski () Rozkład normalny 1 / 26 Rozkład normalny Krzywa normalna, krzywa Gaussa, rozkład normalny Rozkłady liczebności wielu pomiarów fizycznych, biologicznych

Bardziej szczegółowo

Estymacja parametrów rozkładu cechy

Estymacja parametrów rozkładu cechy Estymacja parametrów rozkładu cechy Estymujemy parametr θ rozkładu cechy X Próba: X 1, X 2,..., X n Estymator punktowy jest funkcją próby ˆθ = ˆθX 1, X 2,..., X n przybliżającą wartość parametru θ Przedział

Bardziej szczegółowo

PODSTAWOWE ROZKŁADY ZMIENNYCH LOSOWYCH CIĄGŁYCH

PODSTAWOWE ROZKŁADY ZMIENNYCH LOSOWYCH CIĄGŁYCH Opracowała: Joanna Kisielińska 1 PODSTAWOWE ROZKŁADY ZMIENNYCH LOSOWYCH CIĄGŁYCH Rozkład normalny Zmienna losowa X ma rozkład normalny z parametrami µ i σ (średnia i odchylenie standardowe), jeśli jej

Bardziej szczegółowo

ANALIZA STATYSTYCZNA WYNIKÓW BADAŃ

ANALIZA STATYSTYCZNA WYNIKÓW BADAŃ ANALIZA STATYSTYCZNA WYNIKÓW BADAŃ Dopasowanie rozkładów Dopasowanie rozkładów- ogólny cel Porównanie średnich dwóch zmiennych 2 zmienne posiadają rozkład normalny -> test parametryczny (t- studenta) 2

Bardziej szczegółowo

Wstęp do Rachunku Prawdopodobieństwa, IIr. WMS

Wstęp do Rachunku Prawdopodobieństwa, IIr. WMS Wstęp do Rachunku Prawdopodobieństwa, IIr. WMS przykładowe zadania na. kolokwium czerwca 6r. Poniżej podany jest przykładowy zestaw zadań. Podczas kolokwium na ich rozwiązanie przeznaczone będzie ok. 85

Bardziej szczegółowo

Oznacza to, że chcemy znaleźć minimum, a właściwie wartość najmniejszą funkcji

Oznacza to, że chcemy znaleźć minimum, a właściwie wartość najmniejszą funkcji Wykład 11. Metoda najmniejszych kwadratów Szukamy zależności Dane są wyniki pomiarów dwóch wielkości x i y: (x 1, y 1 ), (x 2, y 2 ),..., (x n, y n ). Przypuśćmy, że nanieśliśmy je na wykres w układzie

Bardziej szczegółowo

Wykład 10 Estymacja przedziałowa - przedziały ufności dla średn

Wykład 10 Estymacja przedziałowa - przedziały ufności dla średn Wykład 10 Estymacja przedziałowa - przedziały ufności dla średniej Wrocław, 21 grudnia 2016r Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja 10.1 Przedziałem

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO

STATYSTYKA I DOŚWIADCZALNICTWO STATYSTYKA I DOŚWIADCZALNICTWO dla studiów magisterskich kierunku ogrodnictwo Wykład 1 Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Słowo statystyka pochodzi

Bardziej szczegółowo

Generatory takie mają niestety okres, po którym sekwencja liczb powtarza się.

Generatory takie mają niestety okres, po którym sekwencja liczb powtarza się. 1 Wstęp Będziemyrozważaćgeneratorytypux n+1 =f(x n,x n 1,...,x n k )(modm). Zakładamy,żeargumentamifunkcjifsąliczbycałkowitezezbioru0,1,...,M 1. Dla ustalenia uwagi mogą to być generatory liniowe typu:

Bardziej szczegółowo

Statystyka. #5 Testowanie hipotez statystycznych. Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik. rok akademicki 2016/ / 28

Statystyka. #5 Testowanie hipotez statystycznych. Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik. rok akademicki 2016/ / 28 Statystyka #5 Testowanie hipotez statystycznych Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik rok akademicki 2016/2017 1 / 28 Testowanie hipotez statystycznych 2 / 28 Testowanie hipotez statystycznych

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA Zadanie 0.1 Zmienna losowa X ma rozkład określony funkcją prawdopodobieństwa: x k 0 4 p k 1/3 1/6 1/ obliczyć EX, D X. (odp. 4/3;

Bardziej szczegółowo

Spis treści 3 SPIS TREŚCI

Spis treści 3 SPIS TREŚCI Spis treści 3 SPIS TREŚCI PRZEDMOWA... 1. WNIOSKOWANIE STATYSTYCZNE JAKO DYSCYPLINA MATEMATYCZNA... Metody statystyczne w analizie i prognozowaniu zjawisk ekonomicznych... Badania statystyczne podstawowe

Bardziej szczegółowo

Błędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa

Błędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa Weryfikacja hipotez statystycznych Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy populacji, o prawdziwości lub fałszywości którego wnioskuje się na podstawie

Bardziej szczegółowo

STATYSTYKA wykład 5-6

STATYSTYKA wykład 5-6 TATYTYKA wykład 5-6 Twierdzenia graniczne Rozkłady statystyk z próby Wanda Olech Twierdzenia graniczne Jeżeli rozpatrujemy ciąg zmiennych losowych {X ; X ;...; X n }, to zdarza się, że ich rozkłady przy

Bardziej szczegółowo

Z poprzedniego wykładu

Z poprzedniego wykładu PODSTAWY STATYSTYKI 1. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5. Testy parametryczne

Bardziej szczegółowo

Elektrotechnika II [ Laboratorium Grupa 1 ] 2016/2017 Zimowy. [ Laboratorium Grupa 2 ] 2016/2017 Zimowy

Elektrotechnika II [ Laboratorium Grupa 1 ] 2016/2017 Zimowy. [ Laboratorium Grupa 2 ] 2016/2017 Zimowy Elektrotechnika II [ Laboratorium Grupa ] 206/207 Zimowy Lp Numer indeksu Pkt Kol Suma Popr Ocena Data Uwagi 97574 6 7 Db + 2 9758 ++0,9 5 7,9 Db + 3 99555 0,9+0,9 2,8 Dst + 4 97595 0,8++ 0 2,8 Dst + 5

Bardziej szczegółowo

WYKŁAD 5 TEORIA ESTYMACJI II

WYKŁAD 5 TEORIA ESTYMACJI II WYKŁAD 5 TEORIA ESTYMACJI II Teoria estymacji (wyznaczanie przedziałów ufności, błąd badania statystycznego, poziom ufności, minimalna liczba pomiarów). PRÓBA Próba powinna być reprezentacyjna tj. jak

Bardziej szczegółowo

Dokładne i graniczne rozkłady statystyk z próby

Dokładne i graniczne rozkłady statystyk z próby Dokładne i graniczne rozkłady statystyk z próby Przypomnijmy Populacja Próba Wielkość N n Średnia Wariancja Odchylenie standardowe 4.2 Rozkład statystyki Mówimy, że rozkład statystyki (1) jest dokładny,

Bardziej szczegółowo

Mariusz Kaszubowski Katedra Statystyki Wydział Zarządzania i Ekonomii Politechnika Gdańska. Statystyka Mariusz Kaszubowski

Mariusz Kaszubowski Katedra Statystyki Wydział Zarządzania i Ekonomii Politechnika Gdańska. Statystyka Mariusz Kaszubowski Mariusz Kaszubowski Katedra Statystyki Wydział Zarządzania i Ekonomii Politechnika Gdańska Zmienna losowa i jej rozkład Statystyka matematyczna Podstawowe pojęcia Zmienna losowa (skokowa, ciągła) Rozkład

Bardziej szczegółowo

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej 7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej Definicja 1 n-elementowa losowa próba prosta nazywamy ciag n niezależnych zmiennych losowych o jednakowych rozkładach

Bardziej szczegółowo

Zadania zestaw 1: Zadania zestaw 2

Zadania zestaw 1: Zadania zestaw 2 Zadania zestaw 1: Zadania zestaw 2 Zadania zestaw 3. 1 Rozkład zmiennej losowej skokowej X przedstawia tabela. x i m 0 n p i 0,4 0,3 0,3 a) Wyznacz m i n jeśli: są całkowite, m

Bardziej szczegółowo

), którą będziemy uważać za prawdziwą jeżeli okaże się, że hipoteza H 0

), którą będziemy uważać za prawdziwą jeżeli okaże się, że hipoteza H 0 Testowanie hipotez Każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy nazywamy hipotezą statystyczną. Hipoteza określająca jedynie wartości nieznanych parametrów liczbowych badanej cechy

Bardziej szczegółowo

Wydział Matematyki. Testy zgodności. Wykład 03

Wydział Matematyki. Testy zgodności. Wykład 03 Wydział Matematyki Testy zgodności Wykład 03 Testy zgodności W testach zgodności badamy postać rozkładu teoretycznego zmiennej losowej skokowej lub ciągłej. Weryfikują one stawiane przez badaczy hipotezy

Bardziej szczegółowo

Elementy rachunku prawdopodobieństwa (M. Skośkiewicz, A. Siejka, K. Walczak, A. Szpakowska)

Elementy rachunku prawdopodobieństwa (M. Skośkiewicz, A. Siejka, K. Walczak, A. Szpakowska) Elementy rachunku prawdopodobieństwa (M. Skośkiewicz, A. Siejka, K. Walczak, A. Szpakowska) Twierdzenie (o mnożeniu) Podstawowe pojęcia i wzory kombinatoryczne. Niech,, będą zbiorami mającymi odpowiednio,,

Bardziej szczegółowo

166 Wstęp do statystyki matematycznej

166 Wstęp do statystyki matematycznej 166 Wstęp do statystyki matematycznej Etap trzeci realizacji procesu analizy danych statystycznych w zasadzie powinien rozwiązać nasz zasadniczy problem związany z identyfikacją cechy populacji generalnej

Bardziej szczegółowo

Zmienne losowe skokowe

Zmienne losowe skokowe Zmienne losowe skokowe 1.1 Rozkład prawdopodobieństwa i dystrybuanta Zad.1 Niech zmienna losowa X przyjmuje wartości równe liczbie wyrzuconych oczek przy pojedynczym rzucie kostką do gry, czyli =1,2,3,,6.

Bardziej szczegółowo

Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe.

Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Rachunek prawdopodobieństwa MAP3040 WPPT FT, rok akad. 2010/11, sem. zimowy Wykładowca: dr hab. Agnieszka Jurlewicz Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Warunkowa wartość oczekiwana.

Bardziej szczegółowo

W ykład 4: Z m ienna losow a. Ciągła zmienna losowa. Zmienna losowa dyskretna. Dystrybuanta zmiennej X:

W ykład 4: Z m ienna losow a. Ciągła zmienna losowa. Zmienna losowa dyskretna. Dystrybuanta zmiennej X: W ykład 4: Z m ienna losow a Wartość zależna od wyniku eksperymentu. Przykład: Liczba orłów uzyskanych w jednym rzucie monetą. Zmienna losowa dyskretna Zbiór wartości, które może przyjąć zmienna losowa

Bardziej szczegółowo

Wykład 4, 5 i 6. Elementy rachunku prawdopodobieństwa i kombinatoryki w fizyce statystycznej

Wykład 4, 5 i 6. Elementy rachunku prawdopodobieństwa i kombinatoryki w fizyce statystycznej Wykład 4, 5 i 6 Elementy rachunku prawdopodobieństwa i kombinatoryki w fizyce statystycznej dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 1 stycznia 2017 dr hab. A. Fronczak

Bardziej szczegółowo

Matematyka 2. dr inż. Rajmund Stasiewicz

Matematyka 2. dr inż. Rajmund Stasiewicz Matematyka 2 dr inż. Rajmund Stasiewicz Skala ocen Punkty Ocena 0 50 2,0 51 60 3,0 61 70 3,5 71 80 4,0 81 90 4,5 91-5,0 Zwolnienie z egzaminu Ocena z egzaminu liczba punktów z ćwiczeń - 5 Warunki zaliczenia

Bardziej szczegółowo

TABLICE PODSTAWOWYCH ROZKŁADÓW PRAWDOPODOBIEŃSTWA. T4. Tablica kwantyli rozkładu chi-kwadrat (I część - poziomy kwantyli 0,5)

TABLICE PODSTAWOWYCH ROZKŁADÓW PRAWDOPODOBIEŃSTWA. T4. Tablica kwantyli rozkładu chi-kwadrat (I część - poziomy kwantyli 0,5) TABLICE PODSTAWOWYCH ROZKŁADÓW PRAWDOPODOBIEŃSTWA T1. Tablica dystrybuanty standardowego normalnego rozkładu N(0,1) T2. Tablica kwantyli standardowego normalnego rozkładu N(0,1) T3. Tablica kwantyli rozkładu

Bardziej szczegółowo

ĆWICZENIA nr Dane ilościowe (próba n-elementowa) 2. Parametry opisowe a) Średnia arytmetyczna : EXCEL Formuły Wstaw funkcję Statystyczne ŚREDNIA

ĆWICZENIA nr Dane ilościowe (próba n-elementowa) 2. Parametry opisowe a) Średnia arytmetyczna : EXCEL Formuły Wstaw funkcję Statystyczne ŚREDNIA ĆWICZENIA nr 3 Parametry opisowe danych ilościowych Funkcje statystyczne Gęstośd prawdopodobieostwa, dystrybuanta Prawdopodobieostwo rozkładu ciągłego Rozkłady zmiennych losowych ĆWICZENIA nr 2 1. Dane

Bardziej szczegółowo

Zmienne losowe typu ciągłego. Parametry zmiennych losowych. Izolda Gorgol wyciąg z prezentacji (wykład III)

Zmienne losowe typu ciągłego. Parametry zmiennych losowych. Izolda Gorgol wyciąg z prezentacji (wykład III) Zmienne losowe tpu ciągłego. Parametr zmiennch losowch. Izolda Gorgol wciąg z prezentacji (wkład III) Zmienna losowa tpu ciągłego Zmienna losowa X o ciągłej dstrbuancie F nazwa się zmienną losową tpu ciągłego,

Bardziej szczegółowo

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI ROZKŁAD STATYSTYK Z PRÓBY

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI ROZKŁAD STATYSTYK Z PRÓBY WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI ROZKŁAD STATYSTYK Z PRÓBY Próba losowa prosta To taki dobór elementów z populacji, że każdy element miał takie samo prawdopodobieństwo znalezienia się w próbie Niezależne

Bardziej szczegółowo

Rozkład normalny Parametry rozkładu zmiennej losowej Zmienne losowe wielowymiarowe

Rozkład normalny Parametry rozkładu zmiennej losowej Zmienne losowe wielowymiarowe Statystyka i opracowanie danych W4 Rozkład normalny Parametry rozkładu zmiennej losowej Zmienne losowe wielowymiarowe Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Rozkład normalny wykres funkcji gęstości

Bardziej szczegółowo

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI. Zmienna losowa i jej rozkład

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI. Zmienna losowa i jej rozkład WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI Zmienna losowa i jej rozkład ZMIENNA LOSOWA Funkcja X przyporządkowująca każdemu zdarzeniu elementarnemu jedną i tylko jedną liczbę x. zmienna losowa skokowa skończona

Bardziej szczegółowo

Statystyka matematyczna dla leśników

Statystyka matematyczna dla leśników Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 03/04 Wykład 5 Testy statystyczne Ogólne zasady testowania hipotez statystycznych, rodzaje

Bardziej szczegółowo

Recenzenci: prof. dr hab. Henryk Domański dr hab. Jarosław Górniak

Recenzenci: prof. dr hab. Henryk Domański dr hab. Jarosław Górniak Recenzenci: prof. dr hab. Henryk Domański dr hab. Jarosław Górniak Redakcja i korekta Bogdan Baran Projekt graficzny okładki Katarzyna Juras Copyright by Wydawnictwo Naukowe Scholar, Warszawa 2011 ISBN

Bardziej szczegółowo

IV WYKŁAD STATYSTYKA. 26/03/2014 B8 sala 0.10B Godz. 15:15

IV WYKŁAD STATYSTYKA. 26/03/2014 B8 sala 0.10B Godz. 15:15 IV WYKŁAD STATYSTYKA 26/03/2014 B8 sala 0.10B Godz. 15:15 WYKŁAD 4 Populacja generalna, próba, losowanie próby, estymatory Statystyka (populacja generalna, populacja próbna, próbka mała, próbka duża, reprezentatywność,

Bardziej szczegółowo

Estymacja przedziałowa

Estymacja przedziałowa Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski Metody analizy danych ćwiczenia Estymacja przedziałowa Program ćwiczeń obejmuje następująca zadania: 1. Dom handlowy prowadzący

Bardziej szczegółowo

5.Dzienne zużycie energii (1=100kWh) pewnej firmy jest zmienną losową. 0, gdy x 0 lub x 3

5.Dzienne zużycie energii (1=100kWh) pewnej firmy jest zmienną losową. 0, gdy x 0 lub x 3 LISTA 4 1.Liczba komputerów, które mogą być zarażone wirusem poprzez pewną sieć ma rozkład Poissona z parametrem λ = 7. Prawdopodobieństwo,że wirus uaktywni się w zarażonym komputerze wynosi p. Jakie jest

Bardziej szczegółowo

Elementy rachunku prawdopodobieństwa. Statystyka matematyczna. w zastosowaniach

Elementy rachunku prawdopodobieństwa. Statystyka matematyczna. w zastosowaniach Statystyka matematyczna w zastosowaniach Elementy rachunku prawdopodobieństwa Robert Pietrzykowski STATYSTYKA: nauka poświęcona metodom badania(analizowania) zjawisk masowych; polega na systematyzowaniu

Bardziej szczegółowo

Aleksander Adamowski (s1869) zmienn ą losow ą T o rozkładzie wykładniczym o średniej 5 minut.

Aleksander Adamowski (s1869) zmienn ą losow ą T o rozkładzie wykładniczym o średniej 5 minut. Zadanie Statystyczna Analiza Danych - Zadania 6 Aleksander Adamowski (s869) W pewnym biurze czas losowo wybranej rozmowy telefonicznej jest zmienn ą losow ą T o rozkładzie wykładniczym o średniej 5 minut.

Bardziej szczegółowo

ODRZUCANIE WYNIKÓW POJEDYNCZYCH POMIARÓW

ODRZUCANIE WYNIKÓW POJEDYNCZYCH POMIARÓW ODRZUCANIE WYNIKÓW OJEDYNCZYCH OMIARÓW W praktyce pomiarowej zdarzają się sytuacje gdy jeden z pomiarów odstaje od pozostałych. Jeżeli wykorzystamy fakt, że wyniki pomiarów są zmienną losową opisywaną

Bardziej szczegółowo

σ-ciało zdarzeń Niech Ω będzie niepustym zbiorem zdarzeń elementarnych, a zbiór F rodziną podzbiorów zbioru Ω spełniającą warunki: jeśli A F, to A F;

σ-ciało zdarzeń Niech Ω będzie niepustym zbiorem zdarzeń elementarnych, a zbiór F rodziną podzbiorów zbioru Ω spełniającą warunki: jeśli A F, to A F; Zdarzenie losowe i zdarzenie elementarne Zdarzenie (zdarzenie losowe) - wyni pewnej obserwacji lub doświadczenia; może być ilościowy lub jaościowy. Zdarzenie elementarne - najprostszy wyni doświadczenia

Bardziej szczegółowo

Funkcje charakteryzujące proces. Dr inż. Robert Jakubowski

Funkcje charakteryzujące proces. Dr inż. Robert Jakubowski Funkcje charakteryzujące proces eksploatacji Dr inż. Robert Jakubowski Niezawodność Niezawodność Rprawdopodobieństwo, że w przedziale czasu od do t cechy funkcjonalne statku powietrznego Ubędą się mieścić

Bardziej szczegółowo

a)dane są wartości zmiennej losowej: 2, 4, 2, 1, 1, 3, 2, 1. Obliczyć wartość średnią i wariancję.

a)dane są wartości zmiennej losowej: 2, 4, 2, 1, 1, 3, 2, 1. Obliczyć wartość średnią i wariancję. Zad Rozkład zmiennej losowej dyskretnej : a)dane są wartości zmiennej losowej: 2, 4, 2,,, 3, 2,. Obliczyć wartość średnią i wariancję. b)oceny z pracy klasowej w tabeli: Ocena 2 3 4 5 6 Liczba uczniów

Bardziej szczegółowo

Testowanie hipotez statystycznych cd.

Testowanie hipotez statystycznych cd. Temat Testowanie hipotez statystycznych cd. Kody znaków: żółte wyróżnienie nowe pojęcie pomarańczowy uwaga kursywa komentarz 1 Zagadnienia omawiane na zajęciach 1. Przykłady testowania hipotez dotyczących:

Bardziej szczegółowo

Metoda największej wiarygodności

Metoda największej wiarygodności Metoda największej wiarygodności Próbki w obecności tła Funkcja wiarygodności Iloraz wiarygodności Pomiary o różnej dokładności Obciążenie Informacja z próby i nierówność informacyjna Wariancja minimalna

Bardziej szczegółowo

Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów.

Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów. Rachunek prawdopodobieństwa MAP1181 Wydział PPT, MS, rok akad. 213/14, sem. zimowy Wykładowca: dr hab. Agnieszka Jurlewicz Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów.

Bardziej szczegółowo

1 Rozklady dyskretne. Rachunek p-stwa Przeksztalcenia zmiennych losowych. 2. Rozklad dwumianowy. 3. Rozklad Poissona

1 Rozklady dyskretne. Rachunek p-stwa Przeksztalcenia zmiennych losowych. 2. Rozklad dwumianowy. 3. Rozklad Poissona Rachunek p-stwa 2010-2011 1 Rozklady dyskretne 1. Przeksztalcenia zmiennych losowych 2. Rozklad dwumianowy 3. Rozklad Poissona 4. Inne rozklady dyskretne 1 Przeksztalcenia zmiennych losowych Zmienna losowa

Bardziej szczegółowo

Diagramy Venna. Uwagi:

Diagramy Venna. Uwagi: Wykład 3: Prawdopodobieństwopodstawowe pojęcia i modele Często modelujemy zmienność używając rachunku prawdopodobieństwa. Prawdopodobieństwo opadów deszczu wynosi 80%. (zinterpretuj) Prawdopodobieństwo

Bardziej szczegółowo

Matematyka i statystyka matematyczna dla rolników w SGGW WYKŁAD 9. TESTOWANIE HIPOTEZ STATYSTYCZNYCH cd.

Matematyka i statystyka matematyczna dla rolników w SGGW WYKŁAD 9. TESTOWANIE HIPOTEZ STATYSTYCZNYCH cd. WYKŁAD 9 TESTOWANIE HIPOTEZ STATYSTYCZNYCH cd. Było: Przykład 1. Badano krąŝek o wymiarach zbliŝonych do monety jednozłotowej ze stronami oznaczonymi: A, B. NaleŜy ustalić, czy krąŝek jest symetryczny?

Bardziej szczegółowo

Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe

Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe 4.0. Rozkłady zmiennych losowych, dystrybuanta. Katarzyna Rybarczyk-Krzywdzińska semestr zimowy 2016/2017 Wprowadzenie Przykład 1 Bolek, Lolek i Tola

Bardziej szczegółowo

Proces Poissona. Proces {N(t), t 0} nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t.

Proces Poissona. Proces {N(t), t 0} nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t. Procesy stochastyczne WYKŁAD 5 Proces Poissona. Proces {N(t), t } nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t. Proces zliczający musi

Bardziej szczegółowo

Statystyka w analizie i planowaniu eksperymentu

Statystyka w analizie i planowaniu eksperymentu 21 marca 2011 Zmienna losowa wst ep Przeprowadzane w praktyce badania i eksperymenty maja bardzo różnorodny charakter, niemniej jednak wiaż a sie z rejestracja jakiś sygna lów (danych). Moga to być na

Bardziej szczegółowo

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

Definicja 7.4 (Dystrybuanta zmiennej losowej). Dystrybuantą F zmiennej losowej X nazywamy funkcję: Własności dystrybuanty zmiennej losowej:

Definicja 7.4 (Dystrybuanta zmiennej losowej). Dystrybuantą F zmiennej losowej X nazywamy funkcję: Własności dystrybuanty zmiennej losowej: Definicja 7.4 (Dystrybuanta zmiennej losowej). Dystrybuantą F zmiennej losowej X nazywamy funkcję: F (t) P (X t) < t < Własności dystrybuanty zmiennej losowej: jest niemalejąca: 0 F (t) jest prawostronnie

Bardziej szczegółowo

ELEKTROTECHNIKA Semestr 2 Rok akad / ZADANIA Z MATEMATYKI Zestaw Oblicz pochodne cząstkowe rzędu drugiego funkcji:

ELEKTROTECHNIKA Semestr 2 Rok akad / ZADANIA Z MATEMATYKI Zestaw Oblicz pochodne cząstkowe rzędu drugiego funkcji: ZADANIA Z MATEMATYKI Zestaw. Oblicz pochodne cząstkowe funkcji: a) f(x, y) = x sin y x b) f(x, y) = e y +x 2 c) f(x, y, z) = z cos x+y z 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji: 3. Wyznacz

Bardziej szczegółowo

ROZKŁADY ZMIENNYCH LOSOWYCH

ROZKŁADY ZMIENNYCH LOSOWYCH ROZKŁADY ZMIENNYCH LOSOWYCH ZMIENNA LOSOWA Defcja. Zmeą losową jest fukcja: X: E -> R która każdemu zdarzeu elemetaremu E przypsuje lczbę rzeczywstą e X ( e) R DYSTRYBUANTA Dystrybuatą zmeej losowej X

Bardziej szczegółowo

Testowanie hipotez statystycznych.

Testowanie hipotez statystycznych. Bioinformatyka Wykład 9 Wrocław, 5 grudnia 2011 Temat. Test zgodności χ 2 Pearsona. Statystyka χ 2 Pearsona Rozpatrzmy ciąg niezależnych zmiennych losowych X 1,..., X n o jednakowym dyskretnym rozkładzie

Bardziej szczegółowo

Pytanie: Kiedy do testowania hipotezy stosujemy rozkład normalny?

Pytanie: Kiedy do testowania hipotezy stosujemy rozkład normalny? Pytanie: Kiedy do testowania hipotezy stosujemy rozkład normalny? Gdy: badana cecha jest mierzalna (tzn. posiada rozkład ciągły); badana cecha posiada rozkład normalny; dysponujemy pojedynczym wynikiem;

Bardziej szczegółowo

x a 1, podając założenia, przy jakich jest ono wykonywalne. x a 1 = x a 2 ( a 1) = x 1 = 1 x.

x a 1, podając założenia, przy jakich jest ono wykonywalne. x a 1 = x a 2 ( a 1) = x 1 = 1 x. Zestaw. Funkcja potęgowa, wykładnicza i logarytmiczna. Elementarne równania i nierówności. Przykład 1. Wykonać działanie x a x a 1, podając założenia, przy jakich jest ono wykonywalne. Rozwiązanie. Niech

Bardziej szczegółowo

WYKŁAD 8 ANALIZA REGRESJI

WYKŁAD 8 ANALIZA REGRESJI WYKŁAD 8 ANALIZA REGRESJI Regresja 1. Metoda najmniejszych kwadratów-regresja prostoliniowa 2. Regresja krzywoliniowa 3. Estymacja liniowej funkcji regresji 4. Testy istotności współczynnika regresji liniowej

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 1 i 2

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 1 i 2 STATYSTYKA I DOŚWIADCZALNICTWO Wykład 1 i 2 Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Słowo statystyka pochodzi od łacińskiego słowa status, które oznacza

Bardziej szczegółowo

Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe

Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe Nierówność Czebyszewa Niech X będzie zmienną losową o skończonej wariancji V ar(x). Wtedy wartość oczekiwana E(X) też jest skończona i

Bardziej szczegółowo