Statystyczna analiza danych w programie STATISTICA 7.1 PL (wykład 1) Dariusz Gozdowski

Wielkość: px
Rozpocząć pokaz od strony:

Download "Statystyczna analiza danych w programie STATISTICA 7.1 PL (wykład 1) Dariusz Gozdowski"

Transkrypt

1 Statystyczna analiza danych w programie STATISTICA 7.1 PL (wykład 1) Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW

2 STATYSTYKA to nauka, której przedmiotem zainteresowania są metody pozyskiwania i prezentacji, a przede wszystkim analizy danych opisujących zjawiska masowe. Metody statystyczne oparte są na rachunku prawdopodobieństwa. Różnica między rachunkiem prawdopodobieństwa a statystyką

3 There are three kinds of lies: lies, damned lies, and statistics Benjamin Disraeli

4 ZDARZENIE ELEMENTARNE to możliwy wynik doświadczenia losowego. Wszystkie takie możliwe wyniki tworzą zbiór zdarzeń elementarnych. Na przykład zbiór zdarzeń elementarnych przy pojedynczym rzucie monetą składa się z dwóch elementów tj. może wypaść orzeł, bądź reszka.

5 POPULACJA STATYSTYCZNA (inaczej populacja generalna) to zbiór elementów, podlegających badaniu statystycznemu. Elementy populacji są do siebie podobne pod względem badanej cechy, ale nie są identyczne. Np. osoby zamieszkujące w pewnym regionie, rośliny pewnej odmiany pszenicy, kolonie grzybów pleśni, produkty jednego rodzaju produkowane przez pewien zakład itp. Nie wszystkie populacje muszą istnieć w rzeczywistości, niektóre z nich mają charakter wyłącznie hipotetyczny. (np. zakładamy to przy przeprowadzaniu doświadczenia planowanego)

6 Elementy populacji statystycznej nazywamy jednostkami statystycznymi, zaś badana cecha to cecha statystyczna. Ze względu na liczebność zbioru, populacje można podzielić na: -populacje skończone - np. powiaty w woj. mazowieckim (określona liczba w danym czasie nie ulegająca zmianie) - populacje nieskończone w rzeczywistości raczej nie istnieją, ale często zakłada się, przy bardzo dużej liczebności np. rośliny pewnego gatunku, że reprezentują one populację nieskończoną, gdyż teoretycznie można zwiększać ciągle ich liczebność

7 ZMIENNA LOSOWA, to funkcja, która zdarzeniom losowym przypisuje liczby. Na przykład, losując z pewnej populacji jednego osobnika przypisujemy mu jego wagę, lub też rzucając monetą przyjmujemy, że wyrzucenie reszki będzie oznaczało wartość 0 a wyrzucenie orła wartość 1. Zmienne losowe dzielimy na: - Skokowe (dyskretne) -Ciągłe 1 0

8 ZMIENNE LOSOWE -skokowe (dyskretne), które przyjmują skończoną liczbę wartości, zazwyczaj wartości są liczbami całkowitymi z pewnego przedziału (np. liczba oczek na kostce sześciennej do gry, liczba osób w rodzinie, liczba kwiatów na roślinie itp.) - ciągłe, czyli takie które przyjmują niekończenie wiele wartości, np. wszystkie liczby rzeczywiste z pewnego przedziału (przykłady: wzrost człowieka, zawartość cukru w jabłkach, temperatura powietrza). Często takie zmienne podajemy z pewną dokładnością, wynikającą z ograniczeń przyrządów pomiarowych (np. termometru, wagi itp.) ale należy miećświadomość, że dysponując dokładniejszym przyrządem pomiarowym możemy ustalić wartość z coraz większą dokładnością.

9 PRAWDOPODOBIEŃSTWEM (wg Laplace) zajścia zdarzenia A nazywamy iloraz liczby zdarzeń sprzyjających zdarzeniu A do liczby wszystkich możliwych przypadków Ώ, zakładając, że wszystkie przypadki wzajemnie się wykluczają i są jednakowo prawdopodobne. Na przykład przy pojedynczym rzucie kostką sześcienną prawdopodobieństwo wyrzucenia dokładnie 3 oczek wynosi 1/6 gdyż wszystkich możliwych zdarzeń jest 6 a tylko jedno spełnia ten warunek. Prawdopodobieństwo przyjmuje wartości z przedziału [0;1]. Wartość prawdopodobieństwa bliższa 1 oznacza zdarzenie bardziej prawdopodobne, czyli zachodzące częściej, natomiast wartość prawdopodobieństwa bliższa 0 oznacza zdarzenie, które jest mało prawdopodobne, czyli zachodzi rzadziej.

10 ROZKŁAD PRAWDOPODOBIEŃSTWA ZMIENNEJ LOSOWEJ zbiór wartości zmiennej losowej oraz prawdopodobieństwa, z jakimi są te wartości przyjmowane. np. dla pojedynczego rzutu kostką rozkład prawdopodobieństwa można przedstawić następująco: x i p i 1/6 1/6 1/6 1/6 1/6 1/6 Jedynie dla rozkładów zmiennych skokowych możliwe jest przedstawienie rozkładu prawdopodobieństwa w takiej postaci jak powyżej. Niemożliwe jest to w przypadku rozkładów ciągłych, gdyż nie możemy określić prawdopodobieństwa, że zmienna przyjmie określoną wartość. Możemy natomiast określić prawdopodobieństwo, że zmienna przyjmie wartość z określonego przedziału.

11 Typowe rozkłady zmiennych losowych skokowych 1) Rozkład dwupunktowy 2) Rozkład dwumianowy (Bernoulliego) 3) Rozkład Poissona

12 1) Rozkład dwupunktowy Z rozkładem dwupunktowym mamy do czynienia wówczas, gdy w wyniku doświadczenia możemy uzyskać tylko jedną z dwóch wartości zmiennej losowej: x 1 lub x 2 z prawdopodobieństwami odpowiednio p oraz 1-p. W szczególnym przypadku, gdy x 1 =0 oraz x 2 =1 rozkład ten nazywany jest rozkładem zero-jedynkowym. Rozkład dwupunktowy mają wszystkie zjawiska losowe, w których są tylko dwie możliwości np. wystąpienie opadów w pewnym dniu, odpowiedź ankietowanej osoby na pytanie czy pali papierosy, wykiełkowanie nasionka (we wszystkich tych zjawiskach są tylko dwie wykluczające się możliwości) lub

13 2) Rozkład dwumianowy (Bernoulliego) Rozkład dwumianowy występuje wówczas, gdy przeprowadza się n jednakowych doświadczeń, z których każde może zakończyć się jednym z dwóch wyników: sukcesem z prawdopodobieństwem p lub porażką z prawdopodobieństwem 1-p. Zmienną losową X w tym eksperymencie jest liczba sukcesów w n próbach. Przykłady rozkładu dwumianowego mogą być podobne jak powyżej, tylko w przypadku większej liczby powtarzanych zdarzeń np. jeśli pytamy 10 osób czy pala papierosy, to liczba osób które odpowiedzą twierdząco jest zmienną mająca rozkład dwumianowy. Rozkład prawdopodobieństwa w rozkładzie dwumianowym jest określony wzorem: n k n k P(X = k) = p ( p) k 1 gdzie n = k n! k!( n k)! k-liczba sukcesów; n liczba prób; p- prawdopodobieństwo sukcesu

14 3) Rozkład Poissona Jest rozkładem zmiennej losowej skokowej, z którym mamy do czynienia w przypadku określania prawdopodobieństwa zajścia zdarzeń stosunkowo rzadkich i niezależnych od siebie, takich jak np. liczba usterek w produkowanej partii materiału, liczba osób nieobecnych na zajęciach w pewnym dniu. Rozkład Poissona jest przybliżeniem rozkładu Bernoulliego dla dużychpróbi przymałym prawdopodobieństwie zajścia zdarzenia ( sukcesu ). P(X k λ = k) = e k! λ e - podstawa logarytmów naturalnych (e=2,718 ) λ - stała, która jest wartością oczekiwaną i równocześnie wariancją rozkładu,

15 Typowe rozkłady zmiennych losowych ciągłych 1) Rozkład jednostajny 2) Rozkład normalny

16 1) Rozkład jednostajny Jest to najprostszy z rozkładów zmiennej losowej ciągłej. Mamy z nim do czynienia wtedy, gdy prawdopodobieństwo zajścia zdarzenia jest stałe w pewnym przedziale [a, b]. Przykładem zmiennej mającej rozkład jednostajny jest np. czas oczekiwania na przystanku na autobus przy założeniu, że autobus jeździ dokładnie co np. 20 min. a my wychodzimy nie znając rozkładu jazdy tego autobusu (oczywiście sytuacja jest zupełnie teoretyczna, gdyż zakładamy, że autobus nigdy nie przyjeżdża wcześniej ani się nie spóźnia). Czas oczekiwania na autobus jest w takim wypadku między 0 a 20 min.

17 2) Rozkład normalny Zwany także rozkładem Gaussa-Laplace'a jest najczęściej spotykanym w naturze rozkładem zmiennej losowej ciągłej. Ciągła zmienna losowa X ma rozkład normalny o wartości oczekiwanej µ (często zamiast µ używamy oznaczenia literą m) i odchyleniu standardowym σ co oznaczamy X~N(µ,σ 2 ) lub X~N(µ,σ). Funkcja gęstości prawdopodobieństwa rozkładu normalnego standardowego (o średniej równej 0 i odchyleniu standardowym równym 1) oraz wartości prawdopodobieństwa dla wartości zmiennej.

18 Standaryzacja zmiennych jest to przekształcenie (transformacja) wartości zmiennej wg następującego wzoru: Z = X σ m gdzie, m- średnia, σ- odchylenie standardowe, X wartość zmiennej przed standaryzacją, Z wartość zmiennej po standaryzacji zmienna po standaryzacji ma rozkład normalny Z ~ N(0, 1), czyli o średniej równej 0 i odchyleniu standardowym równym 1. Standaryzację stosuje się w celu wyrażenia zmiennych w tej samej skali np. w analizie skupień.

19 Grupowanie danych szereg rozdzielczy i histogram. Wartości zmiennej można uporządkować w ten sposób, że ustalamy liczebność obserwacji w poszczególnych przedziałach wartości. Przedstawienie liczebności w poszczególnych przedziałach nazywany szeregiem rozdzielczym jeśli przedstawiamy to w formie tabeli, natomiast jeśli przedstawimy to w formie wykresu nazywamy to histogramem. Wartości cechy (np. wiek) Liczebność Częstość , , , ,05 0,

20 Estymacja punktowa i przedziałowa w rozkładzie normalnym Oszacowania parametrów punktowych rozkładów ciągłych określane na podstawie próby (estymatory punktowe) Parametry rozkładów określane na podstawie próby, czyli na wybranych jednostkach z populacji nazywamy estymatorami. Najpowszechniej wykorzystywanymi estymatorami są: Średnia arytmetyczna n 1 X = Xi n i= 1 = x 1 + x x n n s Wariancja 2 1 = n 1 n i= 1 (xi x ) Wariancja mówi o zmienności wartości w próbie, czyli ich odchyleniach od średniej. Ze względu, że przy obliczaniu wartości wariancji odchylenia od średniej podnoszone są do kwadratu, to często zamiast wariancji posługujemy się jej pierwiastkiem, czyli odchyleniem standardowym. 2 Współczynnik zmienności s CV = 100% x s = Odchylenie standardowe s 2 1 = n 1 n i= 1 (xi x ) 2

21 Parametry przedziałowe rozkładów ciągłych określane na podstawie próby (przedziały ufności) Przedział ufności dla średniej s X t( α ;n 1),X + t( α ;n 1) n s n t (α; n 1): wartość krytyczna rozkładu t - Studenta n-1lub v - stopnie swobody α - poziom istotności (zazwyczaj przyjmujemy α=0,05) Poziom ufności: 1 α ustalone z góry prawdopodobieństwo z jakim ten przedział pokrywa nieznaną wartość parametru np. w tym przypadku średnią

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 1 i 2

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 1 i 2 STATYSTYKA I DOŚWIADCZALNICTWO Wykład 1 i 2 Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Słowo statystyka pochodzi od łacińskiego słowa status, które oznacza

Bardziej szczegółowo

Rozkłady zmiennych losowych

Rozkłady zmiennych losowych Rozkłady zmiennych losowych Wprowadzenie Badamy pewną zbiorowość czyli populację pod względem występowania jakiejś cechy. Pobieramy próbę i na podstawie tej próby wyznaczamy pewne charakterystyki. Jeśli

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO. Wykład 2

STATYSTYKA I DOŚWIADCZALNICTWO. Wykład 2 STATYSTYKA I DOŚWIADCZALNICTWO Wykład Parametry przedziałowe rozkładów ciągłych określane na podstawie próby (przedziały ufności) Przedział ufności dla średniej s X t( α;n 1),X + t( α;n 1) n s n t (α;

Bardziej szczegółowo

Statystyczna analiza danych w programie STATISTICA (wykład 2) Dariusz Gozdowski

Statystyczna analiza danych w programie STATISTICA (wykład 2) Dariusz Gozdowski Statystyczna analiza danych w programie STATISTICA (wykład ) Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Weryfikacja (testowanie) hipotez statystycznych

Bardziej szczegółowo

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA Zadanie 0.1 Zmienna losowa X ma rozkład określony funkcją prawdopodobieństwa: x k 0 4 p k 1/3 1/6 1/ obliczyć EX, D X. (odp. 4/3;

Bardziej szczegółowo

STATYSTYKA wykład 5-6

STATYSTYKA wykład 5-6 TATYTYKA wykład 5-6 Twierdzenia graniczne Rozkłady statystyk z próby Wanda Olech Twierdzenia graniczne Jeżeli rozpatrujemy ciąg zmiennych losowych {X ; X ;...; X n }, to zdarza się, że ich rozkłady przy

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela

Statystyka w pracy badawczej nauczyciela Statystyka w pracy badawczej nauczyciela Wykład 1: Terminologia badań statystycznych dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka (1) Statystyka to nauka zajmująca się zbieraniem, badaniem

Bardziej szczegółowo

Wprowadzenie do analizy korelacji i regresji

Wprowadzenie do analizy korelacji i regresji Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących

Bardziej szczegółowo

Oszacowanie i rozkład t

Oszacowanie i rozkład t Oszacowanie i rozkład t Marcin Zajenkowski Marcin Zajenkowski () Oszacowanie i rozkład t 1 / 31 Oszacowanie 1 Na podstawie danych z próby szacuje się wiele wartości w populacji, np.: jakie jest poparcie

Bardziej szczegółowo

Statystyka Opisowa z Demografią oraz Biostatystyka. Zmienne losowe. Aleksander Denisiuk. denisjuk@euh-e.edu.pl

Statystyka Opisowa z Demografią oraz Biostatystyka. Zmienne losowe. Aleksander Denisiuk. denisjuk@euh-e.edu.pl Statystyka Opisowa z Demografią oraz Biostatystyka Zmienne losowe Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2 82-300 Elblag oraz Biostatystyka p.

Bardziej szczegółowo

Statystyka w analizie i planowaniu eksperymentu

Statystyka w analizie i planowaniu eksperymentu Statystyka w analizie i planowaniu eksperymentu Wprowadzenie Prowadzący zajęcia: dr Janusz Piechota Zakład Biofizyki Kierownik zajęć: dr Paweł Błażej Zakład Genomiki Na zajęciach przydają się: dobre chęci,

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący

Bardziej szczegółowo

1. Opis tabelaryczny. 2. Graficzna prezentacja wyników. Do technik statystyki opisowej można zaliczyć:

1. Opis tabelaryczny. 2. Graficzna prezentacja wyników. Do technik statystyki opisowej można zaliczyć: Wprowadzenie Statystyka opisowa to dział statystyki zajmujący się metodami opisu danych statystycznych (np. środowiskowych) uzyskanych podczas badania statystycznego (np. badań terenowych, laboratoryjnych).

Bardziej szczegółowo

Diagramy Venna. Uwagi:

Diagramy Venna. Uwagi: Wykład 3: Prawdopodobieństwopodstawowe pojęcia i modele Często modelujemy zmienność używając rachunku prawdopodobieństwa. Prawdopodobieństwo opadów deszczu wynosi 80%. (zinterpretuj) Prawdopodobieństwo

Bardziej szczegółowo

Generatory takie mają niestety okres, po którym sekwencja liczb powtarza się.

Generatory takie mają niestety okres, po którym sekwencja liczb powtarza się. 1 Wstęp Będziemyrozważaćgeneratorytypux n+1 =f(x n,x n 1,...,x n k )(modm). Zakładamy,żeargumentamifunkcjifsąliczbycałkowitezezbioru0,1,...,M 1. Dla ustalenia uwagi mogą to być generatory liniowe typu:

Bardziej szczegółowo

III. ZMIENNE LOSOWE JEDNOWYMIAROWE

III. ZMIENNE LOSOWE JEDNOWYMIAROWE III. ZMIENNE LOSOWE JEDNOWYMIAROWE.. Zmienna losowa i pojęcie rozkładu prawdopodobieństwa W dotychczas rozpatrywanych przykładach każdemu zdarzeniu była przyporządkowana odpowiednia wartość liczbowa. Ta

Bardziej szczegółowo

Statystyczne metody analizy danych

Statystyczne metody analizy danych Statystyczne metody analizy danych Statystyka opisowa Wykład I-III Agnieszka Nowak - Brzezińska Definicje Statystyka (ang.statistics) - to nauka zajmująca się zbieraniem, prezentowaniem i analizowaniem

Bardziej szczegółowo

Statystyczna analiza danych

Statystyczna analiza danych Statystyczna analiza danych Marek Ptak 21 października 2013 Marek Ptak Statystyka 21 października 2013 1 / 70 Część I Wstęp Marek Ptak Statystyka 21 października 2013 2 / 70 LITERATURA A. Łomnicki, Wprowadzenie

Bardziej szczegółowo

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com Analiza korelacji i regresji KORELACJA zależność liniowa Obserwujemy parę cech ilościowych (X,Y). Doświadczenie jest tak pomyślane, aby obserwowane pary cech X i Y (tzn i ta para x i i y i dla różnych

Bardziej szczegółowo

Instytut Matematyczny Uniwersytet Wrocławski. Zakres egzaminu magisterskiego. Wybrane rozdziały anazlizy i topologii 1 i 2

Instytut Matematyczny Uniwersytet Wrocławski. Zakres egzaminu magisterskiego. Wybrane rozdziały anazlizy i topologii 1 i 2 Instytut Matematyczny Uniwersytet Wrocławski Zakres egzaminu magisterskiego Wybrane rozdziały anazlizy i topologii 1 i 2 Pojęcia, fakty: Definicje i pojęcia: metryka, iloczyn skalarny, norma supremum,

Bardziej szczegółowo

Wykład 2. Wpływ stałej (odejmujemy 20) Liniowa transformacja zmiennych, cd. Liniowa transformacja zmiennych, cd. Liniowa transformacja zmiennych, cd.

Wykład 2. Wpływ stałej (odejmujemy 20) Liniowa transformacja zmiennych, cd. Liniowa transformacja zmiennych, cd. Liniowa transformacja zmiennych, cd. Wykład 2 Wpływ przekształceń Co się stanie ze średnią i odchyleniem standardowym gdy zmienimy jednostki? stopnie Celsiusza stopnie Fahrenheita dolary 1,000 dolarów wartość faktyczna odległość od minimum

Bardziej szczegółowo

ANALIZA STATYSTYCZNA WYNIKÓW BADAŃ

ANALIZA STATYSTYCZNA WYNIKÓW BADAŃ ANALIZA STATYSTYCZNA WYNIKÓW BADAŃ Dopasowanie rozkładów Dopasowanie rozkładów- ogólny cel Porównanie średnich dwóch zmiennych 2 zmienne posiadają rozkład normalny -> test parametryczny (t- studenta) 2

Bardziej szczegółowo

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16 Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego

Bardziej szczegółowo

Spis treści. Laboratorium III: Testy statystyczne. Inżynieria biomedyczna, I rok, semestr letni 2013/2014 Analiza danych pomiarowych

Spis treści. Laboratorium III: Testy statystyczne. Inżynieria biomedyczna, I rok, semestr letni 2013/2014 Analiza danych pomiarowych 1 Laboratorium III: Testy statystyczne Spis treści Laboratorium III: Testy statystyczne... 1 Wiadomości ogólne... 2 1. Krótkie przypomnienie wiadomości na temat testów statystycznych... 2 1.1. Weryfikacja

Bardziej szczegółowo

Często spotykany jest również asymetryczny rozkład gamma (Г), opisany za pomocą parametru skali θ i parametru kształtu k:

Często spotykany jest również asymetryczny rozkład gamma (Г), opisany za pomocą parametru skali θ i parametru kształtu k: Statystyczne opracowanie danych pomiarowych W praktyce pomiarowej często spotykamy się z pomiarami wielokrotnymi, gdy podczas pomiaru błędy pomiarowe (szumy miernika, czynniki zewnętrzne) są na tyle duże,

Bardziej szczegółowo

Statystyka. Tematyka wykładów. Przykładowe pytania. dr Tomasz Giętkowski www.krajobraz.ukw.edu.pl. wersja 20.01.2013/13:40

Statystyka. Tematyka wykładów. Przykładowe pytania. dr Tomasz Giętkowski www.krajobraz.ukw.edu.pl. wersja 20.01.2013/13:40 Statystyka dr Tomasz Giętkowski www.krajobraz.ukw.edu.pl wersja 20.01.2013/13:40 Tematyka wykładów 1. Definicja statystyki 2. Populacja, próba 3. Skale pomiarowe 4. Miary położenia (klasyczne i pozycyjne)

Bardziej szczegółowo

Zadania o numerze 4 z zestawów licencjat 2014.

Zadania o numerze 4 z zestawów licencjat 2014. Zadania o numerze 4 z zestawów licencjat 2014. W nawiasie przy zadaniu jego występowanie w numerze zestawu Spis treści (Z1, Z22, Z43) Definicja granicy ciągu. Obliczyć granicę:... 3 Definicja granicy ciągu...

Bardziej szczegółowo

Narzędzia statystyczne i ekonometryczne. Wykład 1. dr Paweł Baranowski

Narzędzia statystyczne i ekonometryczne. Wykład 1. dr Paweł Baranowski Narzędzia statystyczne i ekonometryczne Wykład 1 dr Paweł Baranowski Informacje organizacyjne Wydział Ek-Soc, pok. B-109 pawel@baranowski.edu.pl Strona: baranowski.edu.pl (w tym materiały) Konsultacje:

Bardziej szczegółowo

KURS PRAWDOPODOBIEŃSTWO

KURS PRAWDOPODOBIEŃSTWO KURS PRAWDOPODOBIEŃSTWO Lekcja 4 Prawdopodobieństwo całkowite i twierdzenie Bayesa. Drzewko stochastyczne. Schemat Bernoulliego. ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź

Bardziej szczegółowo

Plan wynikowy. Klasa III Technik pojazdów samochodowych/ Technik urządzeń i systemów energetyki odnawialnej. Kształcenie ogólne w zakresie podstawowym

Plan wynikowy. Klasa III Technik pojazdów samochodowych/ Technik urządzeń i systemów energetyki odnawialnej. Kształcenie ogólne w zakresie podstawowym Oznaczenia: wymagania konieczne, P wymagania podstawowe, R wymagania rozszerzające, D wymagania dopełniające, W wymagania wykraczające. Plan wynikowy lasa III Technik pojazdów samochodowych/ Technik urządzeń

Bardziej szczegółowo

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie:

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie: ma postać y = ax + b Równanie regresji liniowej By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : xy b = a = b lub x Gdzie: xy = też a = x = ( b ) i to dane empiryczne, a ilość

Bardziej szczegółowo

Statystyka matematyczna

Statystyka matematyczna Statystyka matematyczna dla kierunku Zarządzanie na studiach drugiego stopnia Wojciech Kordecki Wyższa Szkoła Handlowa we Wrocławiu Wrocław 2012 Materiał wyłącznie do użytku edukacyjnego. Reprodukcja do

Bardziej szczegółowo

ODRZUCANIE WYNIKÓW POJEDYNCZYCH POMIARÓW

ODRZUCANIE WYNIKÓW POJEDYNCZYCH POMIARÓW ODRZUCANIE WYNIKÓW OJEDYNCZYCH OMIARÓW W praktyce pomiarowej zdarzają się sytuacje gdy jeden z pomiarów odstaje od pozostałych. Jeżeli wykorzystamy fakt, że wyniki pomiarów są zmienną losową opisywaną

Bardziej szczegółowo

Statystyka i opracowanie danych W5: Wprowadzenie do statystycznej analizy danych. Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl

Statystyka i opracowanie danych W5: Wprowadzenie do statystycznej analizy danych. Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Statystyka i opracowanie danych W5: Wprowadzenie do statystycznej analizy danych Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Wprowadzenie Podstawowe cele analizy zbiorów danych Uogólniony opis poszczególnych

Bardziej szczegółowo

Analiza danych. http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU

Analiza danych. http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Analiza danych Wstęp Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Różne aspekty analizy danych Reprezentacja graficzna danych Metody statystyczne: estymacja parametrów

Bardziej szczegółowo

STATYSTYKA STOSOWANA MAP1079

STATYSTYKA STOSOWANA MAP1079 STATYSTYKA STOSOWANA MAP1079 LISTY ZADAŃ opracowanie W. Wawrzyniak-Kosz Literatura podstawowa 1.J.Koronacki, J.Mielniczuk, Statystyka dla studentów kierunków technicznych i przyrodniczych, WNT, Warszawa

Bardziej szczegółowo

Statystyka matematyczna w Excelu dla szkó³. Æwiczenia praktyczne

Statystyka matematyczna w Excelu dla szkó³. Æwiczenia praktyczne IDZ DO PRZYK ADOWY ROZDZIA SPIS TRE CI KATALOG KSI EK KATALOG ONLINE ZAMÓW DRUKOWANY KATALOG Statystyka matematyczna w Excelu dla szkó³. Æwiczenia praktyczne Autor: Andrzej Obecny ISBN: 83-7197-711-5 Format:

Bardziej szczegółowo

Weryfikacja hipotez. Etap I. Formułowanie hipotezy zerowej H 0 oraz związanej z nią hipotezy alternatywnej H 1.

Weryfikacja hipotez. Etap I. Formułowanie hipotezy zerowej H 0 oraz związanej z nią hipotezy alternatywnej H 1. Weryfikacja hipotez Każde badanie naukowe rozpoczyna się od sformułowania problemu badawczego oraz najbardziej prawdopodobnego (na gruncie wiedzy badającego) ogólnego rozwiązania, czyli hipotezy badawczej.

Bardziej szczegółowo

Zadanie 1. a) Przeprowadzono test RESET. Czy model ma poprawną formę funkcyjną? 1

Zadanie 1. a) Przeprowadzono test RESET. Czy model ma poprawną formę funkcyjną? 1 Zadanie 1 a) Przeprowadzono test RESET. Czy model ma poprawną formę funkcyjną? 1 b) W naszym przypadku populacja są inżynierowie w Tajlandii. Czy można jednak przypuszczać, że na zarobki kobiet-inżynierów

Bardziej szczegółowo

KARTA INFORMACYJNA PRZEDMIOTU

KARTA INFORMACYJNA PRZEDMIOTU Uniwersytet Rzeszowski WYDZIAŁ KIERUNEK Matematyczno-Przyrodniczy Fizyka techniczna SPECJALNOŚĆ RODZAJ STUDIÓW stacjonarne, studia pierwszego stopnia KARTA INFORMACYJNA PRZEDMIOTU NAZWA PRZEDMIOTU WG PLANU

Bardziej szczegółowo

Sterowanie wielkością zamówienia w Excelu - cz. 3

Sterowanie wielkością zamówienia w Excelu - cz. 3 Sterowanie wielkością zamówienia w Excelu - cz. 3 21.06.2005 r. 4. Planowanie eksperymentów symulacyjnych Podczas tego etapu ważne jest określenie typu rozkładu badanej charakterystyki. Dzięki tej informacji

Bardziej szczegółowo

ZALICZENIA. W celu uzyskania zaliczenia należy wybrać jeden z trzech poniższych wariantów I, II lub III

ZALICZENIA. W celu uzyskania zaliczenia należy wybrać jeden z trzech poniższych wariantów I, II lub III ZALICZENIA W celu uzyskania zaliczenia należy wybrać jeden z trzech poniższych wariantów I, II lub III 1 Wariant I. PROBLEM WŁASNY Sformułować własne zadanie statystyczne związane z własną pracą badawczą

Bardziej szczegółowo

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej 7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej Definicja 1 n-elementowa losowa próba prosta nazywamy ciag n niezależnych zmiennych losowych o jednakowych rozkładach

Bardziej szczegółowo

Analiza wariancji. dr Janusz Górczyński

Analiza wariancji. dr Janusz Górczyński Analiza wariancji dr Janusz Górczyński Wprowadzenie Powiedzmy, że badamy pewną populację π, w której cecha Y ma rozkład N o średniej m i odchyleniu standardowym σ. Powiedzmy dalej, że istnieje pewien czynnik

Bardziej szczegółowo

Zbiór zadań z rachunku prawdopodobieństwa i statystyki matematycznej

Zbiór zadań z rachunku prawdopodobieństwa i statystyki matematycznej Zbiór zadań z rachunku prawdopodobieństwa i statystyki matematycznej Wojciech Młocek wojciech.mlocek@ur.krakow.pl Kamila Piwowarczyk kamila.piwowarczyk@ur.krakow.pl Agnieszka Rutkowska rmrutkow@cyf-kr.edu.pl

Bardziej szczegółowo

Zmienna losowa (wygrana w pojedynczej grze): (1, 0.5), ( 1, 0.5)

Zmienna losowa (wygrana w pojedynczej grze): (1, 0.5), ( 1, 0.5) Przykład 0. Gra polega na jednokrotnym rzucie symetryczną monetą, przy czym wygrywamy 1 jeżeli wypadnie orzeł oraz przegrywamy 1 jeżeli wypadnie reszka. Nasz początkowy kapitał wynosi 5. Jakie jest prawdopodobieństwo,

Bardziej szczegółowo

ANALIZA KORELACJI Korelacja między zmiennymi X i Y jest miarą siły liniowego związku między tymi zmiennymi.

ANALIZA KORELACJI Korelacja między zmiennymi X i Y jest miarą siły liniowego związku między tymi zmiennymi. ANALIZA KORELACJI Większość zjawisk w otaczającym nas świecie występuje nie samotnie a w różnorodnych związkach. Odnosi się to również do zjawisk biologiczno-medycznych. O powiązaniach między nimi mówią

Bardziej szczegółowo

SCENARIUSZ LEKCJI MATEMATYKI, FIZYKI LUB BIOLOGII Z WYKORZYSTANIEM FILMU ROZKŁAD NORMALNY.

SCENARIUSZ LEKCJI MATEMATYKI, FIZYKI LUB BIOLOGII Z WYKORZYSTANIEM FILMU ROZKŁAD NORMALNY. SCENARIUSZ LEKCJI MATEMATYKI, FIZYKI LUB BIOLOGII Z WYKORZYSTANIEM FILMU ROZKŁAD NORMALNY. SPIS TREŚCI: I. Wprowadzenie. II. Części lekcji. 1. Część wstępna. 2. Część realizacji. 3. Część podsumowująca.

Bardziej szczegółowo

Statystyczna analiza danych

Statystyczna analiza danych Statytyka. v.0.9 egz mgr inf nietacj Statytyczna analiza danych Statytyka opiowa Szereg zczegółowy proty monotoniczny ciąg danych i ) n uzykanych np. w trakcie pomiaru lub za pomocą ankiety. Przykłady

Bardziej szczegółowo

Przedmiot statystyki. Graficzne przedstawienie danych. Wykład-26.02.07. Przedmiot statystyki

Przedmiot statystyki. Graficzne przedstawienie danych. Wykład-26.02.07. Przedmiot statystyki Przedmiot statystyki. Graficzne przedstawienie danych. Wykład-26.02.07 Statystyka dzieli się na trzy części: Przedmiot statystyki -zbieranie danych; -opracowanie i kondensacja danych (analiza danych);

Bardziej szczegółowo

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1.

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1. tel. 44 683 1 55 tel. kom. 64 566 811 e-mail: biuro@wszechwiedza.pl Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: gdzie: y t X t y t = 1 X 1

Bardziej szczegółowo

Badania Statystyczne

Badania Statystyczne Statystyka Opisowa z Demografią oraz Biostatystyka Badania Statystyczne Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2 82-300 Elblag oraz Biostatystyka

Bardziej szczegółowo

Przegląd ważniejszych rozkładów

Przegląd ważniejszych rozkładów Przegląd ważniejszych rozkładów Rozkład dwupunktowy P (X = x) = { p dla x = a, 1 p dla x = b, to zmienna losowa X ma rozkład dwupunktowy z parametrem p (0 < p < 1). Rozkład ten pojawia się przy opisie

Bardziej szczegółowo

Statystyka i Analiza Danych

Statystyka i Analiza Danych Warsztaty Statystyka i Analiza Danych Gdańsk, 20-22 lutego 2014 Zastosowania analizy wariancji w opracowywaniu wyników badań empirycznych Janusz Wątroba StatSoft Polska Centrum Zastosowań Matematyki -

Bardziej szczegółowo

Środowisko R wprowadzenie c.d. Wykład R2; 21.05.07 Struktury danych w R c.d.

Środowisko R wprowadzenie c.d. Wykład R2; 21.05.07 Struktury danych w R c.d. Środowisko R wprowadzenie c.d. Wykład R2; 21.05.07 Struktury danych w R c.d. Oprócz zmiennych i wektorów strukturami danych w R są: macierze; ramki (ang. data frames); listy; klasy S3 1 Macierze Macierze

Bardziej szczegółowo

S t a t y s t y k a, część 3. Michał Żmihorski

S t a t y s t y k a, część 3. Michał Żmihorski S t a t y s t y k a, część 3 Michał Żmihorski Porównanie średnich -test T Założenia: Zmienne ciągłe (masa, temperatura) Dwie grupy (populacje) Rozkład normalny* Równe wariancje (homoscedasticity) w grupach

Bardziej szczegółowo

Państwowa Wyższa Szkoła Zawodowa w Nowym Sączu. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2011/2012

Państwowa Wyższa Szkoła Zawodowa w Nowym Sączu. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2011/2012 Państwowa Wyższa Szkoła Zawodowa w Nowym Sączu Karta Instytut Pedagogiczny obowiązuje studentów rozpoczynających studia w roku akademickim 011/01 Kierunek studiów: Matematyka Profil: Ogólnoakademicki Forma

Bardziej szczegółowo

50 zadań ze statystyki matematycznej dla studentów ZARZĄDZANIA z rozwiązaniami

50 zadań ze statystyki matematycznej dla studentów ZARZĄDZANIA z rozwiązaniami Jan Rusinek 50 zadań ze statystyki matematycznej dla studentów ZARZĄDZANIA z rozwiązaniami UWAGA! Ten tekst jest w trakcie przygotowania i sprawdzania. Może zawierać błędy. Jest sukcesywnie poprawiany

Bardziej szczegółowo

Statystyka i analiza danych Wstępne opracowanie danych Statystyka opisowa. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.pl

Statystyka i analiza danych Wstępne opracowanie danych Statystyka opisowa. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.pl Statystyka i analiza danych Wstępne opracowanie danych Statystyka opisowa Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.pl Wprowadzenie Podstawowe cele analizy zbiorów danych Uogólniony opis poszczególnych

Bardziej szczegółowo

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH 1 ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH WFAiS UJ, Informatyka Stosowana II stopień studiów 2 Wnioskowanie statystyczne dla zmiennych numerycznych Porównywanie dwóch średnich Boot-strapping Analiza

Bardziej szczegółowo

SCENARIUSZ LEKCJI. TEMAT LEKCJI: Zastosowanie średnich w statystyce i matematyce. Podstawowe pojęcia statystyczne. Streszczenie.

SCENARIUSZ LEKCJI. TEMAT LEKCJI: Zastosowanie średnich w statystyce i matematyce. Podstawowe pojęcia statystyczne. Streszczenie. SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH Autorzy scenariusza:

Bardziej szczegółowo

Plan wynikowy i przedmiotowy system oceniania

Plan wynikowy i przedmiotowy system oceniania Plan wynikowy i przedmiotowy system oceniania Przedmiot: Pracownia ekonomiczna Klasa II Technikum Ekonomiczne Nr programu nauczania: 341[02]/MEN/2008.05.20 (technik ekonomista) Podręcznik: R. Seidel, S.

Bardziej szczegółowo

Statystyka stosowana MAP 1079

Statystyka stosowana MAP 1079 MAP 1079 Lista 1a 1 Statystyka stosowana MAP 1079 Lista 1a (powtórka z rachunku prawdopodobieństwa) 1. Zmienna losowa X przyjmuje wartości 2, 3, 5, 8 z prawdopodobieństwami odpowiednio równymi 2/10, 4/10,

Bardziej szczegółowo

Metoda Monte Carlo i jej zastosowania

Metoda Monte Carlo i jej zastosowania i jej zastosowania Tomasz Mostowski Zajęcia 31.03.2008 Plan 1 PWL 2 3 Plan PWL 1 PWL 2 3 Przypomnienie PWL Istnieje wiele wariantów praw wielkich liczb. Wspólna ich cecha jest asymptotyczne zachowanie

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka matematyczna. Leszek Adamczyk Wykłady dla kierunku Fizyka Medyczna w semestrze letnim 2014/2015

Rachunek prawdopodobieństwa i statystyka matematyczna. Leszek Adamczyk Wykłady dla kierunku Fizyka Medyczna w semestrze letnim 2014/2015 Rachunek prawdopodobieństwa i statystyka matematyczna Leszek Adamczyk Wykłady dla kierunku Fizyka Medyczna w semestrze letnim 2014/2015 1 1 Wstęp Rachunek prawdopodobieństwa i statystyka to: działy matematyki

Bardziej szczegółowo

Wykład z dnia 8 lub 15 października 2014 roku

Wykład z dnia 8 lub 15 października 2014 roku Wykład z dnia 8 lub 15 października 2014 roku Istota i przedmiot statystyki oraz demografii. Prezentacja danych statystycznych Znaczenia słowa statystyka Znaczenie I - nazwa zbioru danych liczbowych prezentujących

Bardziej szczegółowo

LEKCJA 3 ostatnia lekcja statystyki :) (część 2/3)

LEKCJA 3 ostatnia lekcja statystyki :) (część 2/3) LEKCJA 3 ostatnia lekcja statystyki :) (część 2/3) Dzisiejsza lekcja będzie nieco bardziej zwarta, aby usprawnić pracę :). Aby jednak móc się ich dobrze nauczyć zacznijmy od małej powtórki skal :) SKALE

Bardziej szczegółowo

Rozkład łatwości zadań

Rozkład łatwości zadań Klasa 3a średnia klasy: 22.52 pkt średnia szkoły: 21.93 pkt średnia ogólnopolska: 14.11 pkt Rozkład łatwości zadań 1 0.9 0.8 0.7 0.6 łatwość 0.5 0.4 0.3 0.2 0.1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Bardziej szczegółowo

Opisowa analiza struktury zjawisk statystycznych

Opisowa analiza struktury zjawisk statystycznych Statystyka Opisowa z Demografią oraz Biostatystyka Opisowa analiza struktury zjawisk statystycznych Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2

Bardziej szczegółowo

Rachunek prawdopodobieństwa - Teoria - Przypomnienie.. A i B są niezależne, gdy P(A B) = P(A)P(B). P(A B i )P(B i )

Rachunek prawdopodobieństwa - Teoria - Przypomnienie.. A i B są niezależne, gdy P(A B) = P(A)P(B). P(A B i )P(B i ) Rachunek prawdopodobieństwa - Teoria - Przypomnienie Podstawy Definicja 1. Schemat klasyczny - wszystkie zdarzenia elementarne są równo prawdopodobne, licząc prawdopodobieństwo liczymy stosunek liczby

Bardziej szczegółowo

Test lewostronny dla hipotezy zerowej:

Test lewostronny dla hipotezy zerowej: Poznajemy testowanie hipotez statystycznych w środowisku R Zajęcia z dnia 11 maja 2011 roku Najpierw teoria TESTY ISTOTNOŚCI WARTOŚCI ŚREDNIEJ W POPULACJI GENERALNEJ gdy znana jest wariancja!!! Test prawostronny

Bardziej szczegółowo

dr Dominik M. Marciniak Analizy statystyczne w pracach naukowych czego unikać, na co zwracać uwagę.

dr Dominik M. Marciniak Analizy statystyczne w pracach naukowych czego unikać, na co zwracać uwagę. dr Dominik M. Marciniak Analizy statystyczne w pracach naukowych czego unikać, na co zwracać uwagę. Statistics in academic papers, what to avoid and what to focus on. Uniwersytet Medyczny im. Piastów Śląskich

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki 3. Zmienne losowe 4. Populacje i próby danych 5. Testowanie hipotez i estymacja parametrów 6. Test t 7. Test

Bardziej szczegółowo

Testy t-studenta są testami różnic pomiędzy średnimi czyli służą do porównania ze sobą dwóch średnich

Testy t-studenta są testami różnic pomiędzy średnimi czyli służą do porównania ze sobą dwóch średnich Testy t-studenta są testami różnic pomiędzy średnimi czyli służą do porównania ze sobą dwóch średnich Zmienne muszą być zmiennymi ilościowym (liczymy i porównujemy średnie!) Są to testy parametryczne Nazwa

Bardziej szczegółowo

Probabilistyczne podstawy statystyki matematycznej. Dr inż. Małgorzata Michalcewicz-Kaniowska

Probabilistyczne podstawy statystyki matematycznej. Dr inż. Małgorzata Michalcewicz-Kaniowska Probabilistyczne podstawy statystyki matematycznej Dr inż. Małgorzata Michalcewicz-Kaniowska 1 Zdarzenia losowe, algebra zdarzeń Do podstawowych pojęć w rachunku prawdopodobieństwa zaliczamy: doświadczenie

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie podstawowym. Klasa 3 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego

Bardziej szczegółowo

Przykład: budowa placu zabaw (metoda ścieżki krytycznej)

Przykład: budowa placu zabaw (metoda ścieżki krytycznej) Przykład: budowa placu zabaw (metoda ścieżki krytycznej) Firma budowlana Z&Z podjęła się zadania wystawienia placu zabaw dla dzieci w terminie nie przekraczającym 20 dni. Listę czynności do wykonania zawiera

Bardziej szczegółowo

Analiza Statystyczna

Analiza Statystyczna Lekcja 5. Strona 1 z 12 Analiza Statystyczna Do analizy statystycznej wykorzystać można wbudowany w MS Excel pakiet Analysis Toolpak. Jest on instalowany w programie Excel jako pakiet dodatkowy. Oznacza

Bardziej szczegółowo

PODSTAWOWE ROZKŁADY ZMIENNYCH LOSOWYCH CIĄGŁYCH

PODSTAWOWE ROZKŁADY ZMIENNYCH LOSOWYCH CIĄGŁYCH Opracowała: Joanna Kisielińska 1 PODSTAWOWE ROZKŁADY ZMIENNYCH LOSOWYCH CIĄGŁYCH Rozkład normalny Zmienna losowa X ma rozkład normalny z parametrami µ i σ (średnia i odchylenie standardowe), jeśli jej

Bardziej szczegółowo

Praktyczne aspekty doboru próby. Dariusz Przybysz Warszawa, 2 czerwca 2015

Praktyczne aspekty doboru próby. Dariusz Przybysz Warszawa, 2 czerwca 2015 Praktyczne aspekty doboru próby Dariusz Przybysz Warszawa, 2 czerwca 2015 Określenie populacji Przed przystąpieniem do badania, wybraniem sposobu doboru próby konieczne jest precyzyjne określenie populacji,

Bardziej szczegółowo

PRZYKŁAD AUTOMATYZACJI STATYSTYCZNEJ OBRÓBKI WYNIKÓW

PRZYKŁAD AUTOMATYZACJI STATYSTYCZNEJ OBRÓBKI WYNIKÓW PRZYKŁAD AUTOMATYZACJI STATYSTYCZNEJ OBRÓBKI WYNIKÓW Grzegorz Migut, StatSoft Polska Sp. z o.o. Teresa Topolnicka, Instytut Chemicznej Przeróbki Węgla Wstęp Zasady przeprowadzania eksperymentów zmierzających

Bardziej szczegółowo

Zadania z Rachunku Prawdopodobieństwa I - 1. a) Jacek i Agatka stoją koło siebie; b) Jacek, Placek i Agatka stoją koło siebie.

Zadania z Rachunku Prawdopodobieństwa I - 1. a) Jacek i Agatka stoją koło siebie; b) Jacek, Placek i Agatka stoją koło siebie. Zadania z Rachunku Prawdopodobieństwa I - 1 1. Grupę n dzieci ustawiono w sposón losowy w szereg. Oblicz prawdopodobieństwo tego, że a) Jacek i Agatka stoją koło siebie; b) Jacek, Placek i Agatka stoją

Bardziej szczegółowo

Ćwiczenie z fizyki Doświadczalne wyznaczanie ogniskowej soczewki oraz współczynnika załamania światła

Ćwiczenie z fizyki Doświadczalne wyznaczanie ogniskowej soczewki oraz współczynnika załamania światła Ćwiczenie z fizyki Doświadczalne wyznaczanie ogniskowej soczewki oraz współczynnika załamania światła Michał Łasica klasa IIId nr 13 22 grudnia 2006 1 1 Doświadczalne wyznaczanie ogniskowej soczewki 1.1

Bardziej szczegółowo

Technikum Ekonomiczne Klasa II Wymiar godzin: 2 godziny tygodniowo Nr programu nauczania: 2302/T-5/SP/MEN/1998.02.24 (technik ekonomista)

Technikum Ekonomiczne Klasa II Wymiar godzin: 2 godziny tygodniowo Nr programu nauczania: 2302/T-5/SP/MEN/1998.02.24 (technik ekonomista) Plan pracy dydaktycznej (jest to wstępna wersja planu, który będzie doskonalony) STATYSTYKA Technikum Ekonomiczne Klasa II Wymiar godzin: 2 godziny tygodniowo Nr programu nauczania: 2302/T-5/SP/MEN/1998.02.24

Bardziej szczegółowo

SIGMA KWADRAT CZWARTY LUBELSKI KONKURS STATYSTYCZNO-DEMOGRAFICZNY

SIGMA KWADRAT CZWARTY LUBELSKI KONKURS STATYSTYCZNO-DEMOGRAFICZNY SIGMA KWADRAT CZWARTY LUBELSKI KONKURS STATYSTYCZNO-DEMOGRAFICZNY Pojęcie i metody badań statystycznych PROJEKT DOFINANSOWANY ZE ŚRODKÓW NARODOWEGO BANKU POLSKIEGO URZĄD STATYSTYCZNY W LUBLINIE WYŻSZA

Bardziej szczegółowo

Podstawowe definicje statystyczne

Podstawowe definicje statystyczne Podstawowe definicje statystyczne 1. Definicje podstawowych wskaźników statystycznych Do opisu wyników surowych (w punktach, w skali procentowej) stosuje się następujące wskaźniki statystyczne: wynik minimalny

Bardziej szczegółowo

Metody statystyki medycznej stosowane w badaniach klinicznych

Metody statystyki medycznej stosowane w badaniach klinicznych Metody statystyki medycznej stosowane w badaniach klinicznych Statistics for clinical research & post-marketing surveillance część I Program szkolenia część I Wprowadzenie Podstawowe pojęcia statystyczne

Bardziej szczegółowo

O ŚREDNIEJ STATYSTYCZNEJ

O ŚREDNIEJ STATYSTYCZNEJ O ŚREDNIEJ STATYSTYCZNEJ Ryszard Zieliński XII Międzynarodowe Warsztaty dla Młodych Matematyków Rachunek Prawdopodobieństwa i Statystyka Kraków, 20 26 IX 2009 r. WYNIKI OBSERWACJI X 1, X 2,..., X n WYNIKI

Bardziej szczegółowo

Sylabus modułu: Matematyka stosowana z elementami chemometrii (0310-CH-S1-018)

Sylabus modułu: Matematyka stosowana z elementami chemometrii (0310-CH-S1-018) Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: chemia, poziom pierwszy Sylabus modułu: Matematyka stosowana z elementami chemometrii (018) 1. Informacje ogólne koordynator modułu dr

Bardziej szczegółowo

Zadanie 1. Zmienne losowe X 1, X 2 są niezależne i mają taki sam rozkład z atomami:

Zadanie 1. Zmienne losowe X 1, X 2 są niezależne i mają taki sam rozkład z atomami: Zadanie 1. Zmienne losowe X 1, X 2 są niezależne i mają taki sam rozkład z atomami: Pr(X 1 = 0) = 6/10, Pr(X 1 = 1) = 1/10, i gęstością: f(x) = 3/10 na przedziale (0, 1). Wobec tego Pr(X 1 + X 2 5/3) wynosi:

Bardziej szczegółowo

Katedra Technik Wytwarzania i Automatyzacji STATYSTYCZNA KONTROLA PROCESU

Katedra Technik Wytwarzania i Automatyzacji STATYSTYCZNA KONTROLA PROCESU Katedra Technik Wytwarzania i Automatyzacji METROLOGIA I KONTKOLA JAKOŚCI - LABORATORIUM TEMAT: STATYSTYCZNA KONTROLA PROCESU 1. Cel ćwiczenia Zapoznanie studentów z podstawami wdrażania i stosowania metod

Bardziej szczegółowo

PROGRAM NAUCZANIA PRZEDMIOTU OBOWIĄZKOWEGO NA WYDZIALE LEKARSKIM I ROK AKADEMICKI 2015/2016 PRZEWODNIK DYDAKTYCZNY dla STUDENTÓW I ROKU STUDIÓW

PROGRAM NAUCZANIA PRZEDMIOTU OBOWIĄZKOWEGO NA WYDZIALE LEKARSKIM I ROK AKADEMICKI 2015/2016 PRZEWODNIK DYDAKTYCZNY dla STUDENTÓW I ROKU STUDIÓW PROGRAM NAUCZANIA PRZEDMIOTU OBOWIĄZKOWEGO NA WYDZIALE LEKARSKIM I ROK AKADEMICKI 2015/2016 PRZEWODNIK DYDAKTYCZNY dla STUDENTÓW I ROKU STUDIÓW 1. NAZWA PRZEDMIOTU : BIOSTATYSTYKA Z ELEMENTAMI INFORMATYKI

Bardziej szczegółowo

Analiza korespondencji

Analiza korespondencji Analiza korespondencji Kiedy stosujemy? 2 W wielu badaniach mamy do czynienia ze zmiennymi jakościowymi (nominalne i porządkowe) typu np.: płeć, wykształcenie, status palenia. Punktem wyjścia do analizy

Bardziej szczegółowo

Janusz Woch Instytut Transportu Politechniki Śląskiej w Katowicach. Statystyka procesów transportowych

Janusz Woch Instytut Transportu Politechniki Śląskiej w Katowicach. Statystyka procesów transportowych Janusz Woch Instytut Transportu Politechniki Śląskiej w Katowicach Statystyka procesów transportowych Katowice maj 2000 Wstęp 2 SPIS TREŚCI 2 WSTĘP 4 1. Zakres Statystyki Procesów Transportowych 13 1.1

Bardziej szczegółowo

2015-01-15. Edycja pierwsza 2014/1015. dla kierunku fizyka medyczna, I rok, studia magisterskie

2015-01-15. Edycja pierwsza 2014/1015. dla kierunku fizyka medyczna, I rok, studia magisterskie 05-0-5. Opis różnicę pomiędy błędem pierwsego rodaju a błędem drugiego rodaju Wyniki eksperymentu składamy w dwie hipotey statystycne: H0 versus H, tak, by H0 odrucić i pryjąć H. Jeśli decydujemy, że pryjmujemy

Bardziej szczegółowo

Zarządzanie ryzykiem. Opracował: Dr inŝ. Tomasz Zieliński

Zarządzanie ryzykiem. Opracował: Dr inŝ. Tomasz Zieliński Zarządzanie ryzykiem Opracował: Dr inŝ. Tomasz Zieliński I. OGÓLNE INFORMACJE O PRZEDMIOCIE Cel przedmiotu: Celem przedmiotu jest zaprezentowanie studentom podstawowych pojęć z zakresu ryzyka w działalności

Bardziej szczegółowo

ANALITYK DANYCH Kto to jest analityk danych? Na czym polega praca analityka danych?

ANALITYK DANYCH Kto to jest analityk danych? Na czym polega praca analityka danych? ANALITYK DANYCH Kto to jest analityk danych? Współczesny świat oraz nowoczesna gospodarka bazują w znacznej mierze na umiejętności analizy i opracowywania napływających danych. Działania te są niezbędne

Bardziej szczegółowo

PLAN WYNIKOWY Z ROZKŁADEM MATERIAŁU klasa 3

PLAN WYNIKOWY Z ROZKŁADEM MATERIAŁU klasa 3 PLAN WYNIKOWY Z ROZKŁADEM MATERIAŁU klasa 3 W planie wynikowym wraz z rozkładem materiału dla klasy trzeciej uwzględniono zarówno nowy materiał, zawarty w programie nauczania Matematyka wokół nas Gimnazjum

Bardziej szczegółowo

TREŚCI NAUCZANIA z przedmiotu pracowania ekonomiczno - informatyczna na podstawie programu nr 341[02]/MEN/2008.05.20. klasa 3 TE

TREŚCI NAUCZANIA z przedmiotu pracowania ekonomiczno - informatyczna na podstawie programu nr 341[02]/MEN/2008.05.20. klasa 3 TE TREŚCI NAUCZANIA z przedmiotu pracowania ekonomiczno - informatyczna na podstawie programu nr [0]/MEN/008.05.0 klasa TE LP TREŚCI NAUCZANIA NAZWA JEDNOSTKI DYDAKTYCZNEJ Lekcja organizacyjna Zapoznanie

Bardziej szczegółowo