Korzystanie z podstawowych rozkładów prawdopodobieństwa (tablice i arkusze kalkulacyjne)

Wielkość: px
Rozpocząć pokaz od strony:

Download "Korzystanie z podstawowych rozkładów prawdopodobieństwa (tablice i arkusze kalkulacyjne)"

Transkrypt

1 Korzystanie z podstawowych rozkładów prawdopodobieństwa (tablice i arkusze kalkulacyjne) Przygotował: Dr inż. Wojciech Artichowicz Katedra Hydrotechniki PG Zima 2014/15 1

2 TABLICE ROZKŁADÓW... 3 ROZKŁAD NORMALNY... 4 ROZKŁAD T-STUDENTA

3 Tablice gęstości lub dystrybuanty: TABLICE ROZKŁADÓW W obliczeniach statystycznych konieczne jest posługiwanie się teoretycznymi rozkładami prawdopodobieństwa w celu obliczenia np. prawdopodobieństw osiągnięcia przez zmienną losową wartości z pewnego przedziału. W tym celu korzysta się z podstawowych własności: P( X a) F( a), P( b X ) 1 F( b), P( a X b) F( b) F( a). Większość rozkładów używanych w rachunku prawdopodobieństwa i statystyce dana jest w postaci wzorów opisujących ich gęstość prawdopodobieństwa. Dystrybuantę i gęstość prawdopodobieństwa łączy zależność: x F ( x) f ( t) dt. Zatem aby móc obliczyć dystrybuantę dowolnego ciągłego rozkładu prawdopodobieństwa konieczne jest obliczenie całki z jego gęstości. Zwykle gęstości rozkładów prawdopodobieństwa opisane są bardzo skomplikowanymi wzorami i nie są znane sposoby ich analitycznego całkowania. W związku z tym, aby obliczyć wartość dystrybuanty danego rozkładu konieczne jest wykorzystanie metod numerycznego całkowania. Dawniej kiedy komputery nie istniały, lub nie były powszechne tworzono tablice dystrybuant różnych rozkładów na podstawie wartości całek obliczonych numerycznie, dla z góry ustalonych wartości x i parametrów rozkładów. Tablice kwantyli: W testowaniu hipotez statystycznych wygodniej jest korzystać z tablic kwantyli rozkładów. W rzeczywistości zarówno tablice dystrybuanty jak i kwantyli zawierają te same informacje, lecz podane w różny sposób ułatwiający ich wykorzystanie w danym zagadnieniu. Kwantyle oblicza się na podstawie wzoru: F( q) p, gdzie q oznacza szukaną wartość kwantyla, a p jest znanym prawdopodobieństwem. Innymi słowy poszukiwana jest taka wartość q, dla której dystrybuanta osiąga wartość p. 3

4 Inne sposoby obliczania prawdopodobieństw lub kwantyli: Obecnie komputery są tak powszechne, że w praktycznych obliczeniach nie korzysta się z tablic i są one przydatne jedynie ze względów dydaktycznych. Nawet podstawowe narzędzia biurowe (np. LibreOffice Calc, czy Microsoft Office Excel) oferują funkcje do obliczania gęstości, dystrybuanty czy kwantyli popularnych rozkładów prawdopodobieństwa. ROZKŁAD NORMALNY W literaturze zwykle spotyka się tablice rozkładu normalnego w postaci jego gęstości lub dystrybuanty. W praktycznych zastosowaniach najwygodniej jest używać tablic dystrybuanty. Zadanie 1. Wykorzystując arkusz kalkulacyjny utwórz tablicę dystrybuanty standaryzowanego rozkładu normalnego. Rozwiązanie: Gęstość rozkładu normalnego opisana jest wzorem: 1 x 2 1 f ( x) e, 2 gdzie oznacza średnią, a odchylenie standardowe. W przypadku rozkładu normalnego standaryzowanego = 0 i =1. Zatem f ( u) 1 e 2 Tablice rozkładu normalnego zwykle skonstruowane są w taki sposób, że w pierwszej kolumnie są wartości odciętych x (dla rozkładu standaryzowanego oznaczane umownie u lub z). W nagłówku tabeli znajdują się także wartości u (czyli x), ale podane z większą dokładnością. 2 u 2. 2 Tab. 1. Układ treści w tabeli dystrybuanty rozkładu normalnego. u z dokładnością do 0,01 u z dokładnością wartości F(u) do 0,1 4

5 Należy zwrócić uwagę na to, że w tabeli znajdują się tylko dodatnie wartości u. Wynika to z tego, że rozkład normalny jest rozkładem symetrycznym względem wartości średniej (dla rozkładu standaryzowanego = 0). Zatem wystarczy utworzyć tablicę dla jednej połowy rozkładu, gdyż druga jest identyczna. Zwykle tablice są utworzone dla prawej połowy rozkładu. Sytuacja ta jest odwzorowana na Rys. 1. W celu utworzenia tablicy dystrybuanty rozkładu normalnego należy utworzyć nagłówek tablicy (liczby od 0,00 do 0,09 z krokiem 0,01) oraz pierwszą kolumnę (liczby od 0,0 do 3,0 z krokiem 0,1), a następnie odpowiednio blokując odwołania do pierwszej kolumny i nagłówka tabeli wykorzystać funkcję arkusza obliczającą skumulowane wartości rozkładu normalnego standaryzowanego. Przykładowe rozwiązanie znajduje się w pliku TabeleRozkładów.xlsx. Aby odczytać wartość dystrybuanty dla podanej wartości u należy znaleźć w lewej kolumnie tę wartość z dokładnością do 0,1, a następnie w nagłówku tabeli z dokładnością do 0,01. W miejscu przecięcia się wiersza (dokładność 0,1) i kolumny (dokładność 0,01) znajduje się szukana wartość F(u). Przykładowo w celu znalezienia dystrybuanty dla wartości u=1,25 w pierwszej kolumnie należy odszukać wartość 1,2, a następnie w nagłówku tabeli wartość 0,05 (w sumie 1,2+0,05=1,25). Szukana wartość wynosi F(u) = 0, Możliwe jest również odczytanie kwantyla rozkładu normalnego przy wykorzystaniu tablicy dystrybuanty. Należy znaleźć wartość F(u) najbliższą danej wartości p, a następnie odczytać wartość u. 5

6 Rys. 1. Wykres a) rozkładu gęstości i b) dystrybuanty standaryzowanego rozkładu normalnego z zaznaczonym obszarem ujętym w tablicy dystrybuanty. Tab. 2. Dystrybuanta rozkładu normalnego standaryzowanego dla 0 u 3. 6

7 Zadanie 2. Korzystając z tabeli dystrybuanty rozkładu normalnego znaleźć: a) F(1,25); F(-1,25); F(0); F(-0,1); F(0,1); b) P(U<1,25); P(U>1,25); P(U<-1,25); P(U>-1,25); P(U>-0,1); c) P(1<U<1,25); P(-1<U<1,25); P(-1<U<-0,1); d) P( U <1); P( U >1); Dla każdego przypadku wykonaj rysunek i zaznacz rozwiązanie na wykresie gęstości i dystrybuanty. Rozwiązanie: a) W pierwszej kolumnie należy odszukać wartość 1,2, a następnie w nagłówku tabeli wartość 0,05 (w sumie 1,2+0,05=1,25). Szukana wartość wynosi F(1,25) = 0, Obliczenie F(-1,25) wymaga wykorzystania symetrii funkcji gęstości rozkładu prawdopodobieństwa. Skoro funkcja f(u) jest symetryczna względem wartości 0, to pola pod nią w przedziałach (-,-1,25) i (1,25, ) są takie same. Zatem wystarczy skorzystać z własności F( u) 1 F( u). Zatem F ( 1,25) 1 F(1,25) 10, ,

8 Wartość F(0) odczytuje się dla u=0,00 (czyli u=0,0+0,00) i wynosi ona F(0)=0,5. Wartość F(-0,1) odczytuje się dla u=0,10 (czyli u=0,1+0,00) i odejmuje od 1. Wynosi ona F ( 0,1) 1 F(0,1) 10, ,

9 Wartość F(0,1) odczytuje się dla u=0,10 (czyli u=0,1+0,00). F ( 0,1) 0, b) W celu obliczenia prawdopodobieństw osiągnięcia przez zmienną losową wartości mniejszej lub większej od zadanej, należy wyrazić zagadnienie przy pomocy dystrybuanty. Następnie postępuje się identycznie jak w przykładzie a). P ( U 1,25) F(1,25) 0, P ( U 1,25) 1 F(1,25) 0,10565 P ( U 1,25) 1 F(1,25) 0,10565 P ( U 1,25) 1 F( 1,25) 1 (1 F(1,25)) 0, P ( U 0,1) 1 F( 0,1) 1(1 F(0,1)) 0,

10 c) W celu rozwiązania zadań z tego podpunktu należy wykorzystać fakt, że dla każdej zmiennej losowej ciągłej P( a X b) F( b) F( a). P ( 1U 1,25) F(1,25) F(1) 0, , P( 1 U 1,25) F(1,25) F( 1) F(1,25) (1 F(1)) 0, (1-0,841345) P( 1 U 0,1) F( 0,1) F( 1) (1 F( 0,1)) (1 F(1)) ( )- ( )=

11 d) Wyrażenie U a można zapisać inaczej jako U a U a czyli a U a. Oznacza ono zbiór pomiędzy wartościami a i a. Zatem rozwiązanie będzie następujące: P( U 1) P( 1 U 1) F(1) F( 1) F(1) (1 F(1)) ( ) Wyrażenie U a można zapisać inaczej jako U a U a. Oznacza ono zbiór wartości mniejszych od a lub większych od a. Zatem rozwiązanie będzie następujące: P( U 1) P( U (, 1) (1, )) F( 1) (1 F(1)) (1 F(1)) (1 F(1)) 2(1 F(1)) 2( ) Zadanie 3. Korzystając z tabeli dystrybuanty rozkładu normalnego znaleźć kwantyle: a) q 0,1 ; b) q 0,5 ; c) q 0,9 ; Dla każdego przypadku wykonaj rysunek i zaznacz rozwiązanie na wykresie gęstości o dystrybuanty. 11

12 Rozwiązanie: Aby znaleźć kwantyle korzystając z tabeli dystrybuanty należy odnaleźć najbliższą wartość dystrybuanty do podanej wartości p. Jeśli wartość p<0,5 to należy odszukać F(-q)=1-p, a po odczytaniu wartości u p konieczna jest zmiana jej znaku na przeciwny. a) F ( q 0, 1) 0,1 F ( q0, 1) 1 0,1 0,9 Wartością najbliższą 0,9 zawartą w tabeli jest 0, Odczytując wartość u p dla wiersza i kolumny otrzymuje się kolejno 1,2 i 0,08, czyli q q 0,1 0,1 1,28 1,28 b) Kwantyl q 0,5 dzieli rozkład na dwie równe części. Wiadomo, że standaryzowany rozkład normalny jest symetryczny względem wartości 0, czyli P(U<0)=P(U>0)=0,5. Zatem q 0,5 =0 (Rys. 1). c) F ( q 0, 9) 0,9 Wartością najbliższą 0,9 zawartą w tabeli jest 0, Odczytując wartość u dla wiersza i kolumny otrzymuje się kolejno 1,2 i 0,08, czyli q 0,9 1,28 12

13 Zadanie 4. Zmienna losowa X ma rozkład normalny o średniej = 5 i odchyleniu standardowym =15. Korzystając z tablicy dystrybuanty rozkładu normalnego oblicz prawdopodobieństwa: a) P(X<3); b) P(3<X<6); c) P(X >18). Rozwiązanie: W przypadku, gdy zachodzi potrzeba odczytania wartości dystrybuanty dla dowolnego rozkładu normalnego, konieczne jest dokonanie standaryzacji. Standaryzację przeprowadza się według wzoru: u x. Oznacza to, że dowolny rozkład normalny można sprowadzić do rozkładu standaryzowanego (w tym przypadku w celu skorzystania z tablicy dystrybuanty standaryzowanego rozkładu normalnego). Aby obliczyć prawdopodobieństwo P(a<X<b) wartości a i b należy odnieść do rozkładu standardowego zgodnie z wyżej przytoczonym wzorem: u a a ; u b b Następnie należy obliczyć P(u a <U<u b ) identycznie jak w zadaniu 2. a) Dla P(X<3) obliczenia należy wykonać następujące kroki: u 3 0, ; P X 3) P( U u ) F( ), ( 3 u3 13

14 następnie korzystając z tablicy dystrybuanty standaryzowanego rozkładu normalnego odczytać wartość dystrybuanty dla u=-0,133-0,13: F ( 0,13) 1 F(0,13) 10, , b) Przebieg obliczeń dla P( 3 X 6) będzie identyczny: u 3 0, ; u 6 0, P( 3 X 6) P( u3 U u6) F( u6) F( u3) F(0,07) F( 0,13) 0, , ,07962 c) u 18 0,86667; P( X 18) P( U u18) 1 F( u18) 1 F(0,87) 10, , Zadanie 5. Zmienna losowa X ma rozkład normalny o średniej =-1 i odchyleniu standardowym =0,15. Korzystając z tablicy dystrybuanty rozkładu normalnego oblicz kwantyle q 0,25 i q 0,75. Rozwiązanie: Tak samo jak w zadaniu 3, należy odczytać kwantyle rozkładu standaryzowanego korzystając z tablicy. Otrzymuje się następujące wyniki: u q 0,68; 0,25 u q 0,68. 0,75 Kolejnym krokiem jest odniesienie ich do danego rozkładu nie będącego rozkładem standaryzowanym przy użyciu wzoru wykorzystanego do standaryzacji Zatem: q q x p u p q x p u q x u q q 0,15( 0,68) ( 1) 1,102; 0,25 0,25 q x q u 0,150,68 ( 1) 0,898. 0,75 0,75 p 14

15 Zadanie 6. ROZKŁAD T-STUDENTA Wykorzystując arkusz kalkulacyjny utwórz tablicę kwantyli rozkładu T-Studenta. Rozwiązanie: Gęstość rozkładu T-Studenta opisana jest wzorem: df f ( t) df 1, 1 df 2 df t df gdzie df oznacza liczbę stopni swobody (parametr rozkładu). W przypadku tego rozkładu zwyczajowo zamiast symbolu x używa się symbolu t, oznaczającego wartości zmiennej losowej. Rozkład T-Studenta przy dużych wartościach df (~30) zbiega do rozkładu normalnego standaryzowanego. Podobnie jak rozkład normalny standaryzowany jest to rozkład symetryczny względem wartości t=0. W praktycznych zastosowaniach najczęściej korzysta się z kwantyli rozkładu T-Studenta. Z tego powodu konstrukcja tablic rozkładu T-Studenta jest inna niż konstrukcja tablic rozkładu normalnego. W pierwszej kolumnie znajduje się liczba stopni swobody, która jest powiązana np. z liczebnością próby. W nagłówku tablicy znajdują się wartości poziomu istotności, jak dla testu jednostronnego i dwustronnego (Tab. 2). Wewnątrz tabeli są wartości kwantyli t prawego skrzydła rozkładu T-Studenta. Tab. 2. Układ treści w tabeli kwantyli rozkładu T-Studenta. dla testu jednostronnego dla testu dwustronnego df liczba stopni swobody wartości t dla prawego skrzydła rozkładu W przypadku odczytywania wartości dla testu jednostronnego oznacza to, że całe prawdopodobieństwo jest pod jednym z ogonów rozkładu 15

16 Rys. 2. Wykres gęstości rozkładu T-Studenta z zaznaczonym kwantylem t odczytywanym jak dla testu jednostronnego (prawostronnego). Rys. 3. Wykres gęstości rozkładu T-Studenta z zaznaczonym kwantylem t odczytywanym jak dla testu dwustronnego. Gdy konieczne jest odczytanie kwantyla dla testu lewostronnego, wykorzystuje się symetrię rozkładu T-Studenta: odczytuje się kwantyl jak dla testu jednostronnego (prawostronnego), a następnie zmienia się jego znak na przeciwny. W celu utworzenia tablicy w arkuszu kalkulacyjnym należy określić nagłówek i kolumnę określającą liczbę stopni swobody. Następnie konieczne jest użycie funkcji zwracającej kwantyle rozkładu T-Studenta dla wartości 1- (np. w arkuszu Excel: =ROZKŁ.T.ODWR(1-B$2;$A5)). Przykładowe rozwiązanie znajduje się w pliku TabeleRozkładów.xlsx. 16

17 Zadanie 7. Korzystając z tablic rozkładu T-Studenta odczytać kwantyle: a) q 0,9 b) q 0,1 dla df=5. 17

18 Rozwiązanie: a) Wartość q 0,9 odczytuje się jak dla testu jednostronnego dla =0,1: q 1, ,9 b) Wartość q 0,1 odczytuje się jak dla testu jednostronnego dla =0,1 i zmienia się znak na przeciwny: q 1, ,1 Zadanie 8. Korzystając z tablic rozkładu T-Studenta dla df=15 odczytać wartości krytyczne t spełniające warunki: a) P(t>T)=0,01 b) P(t<T)=0,99 c) P(t<T)=0,01 d) P( T >t)=0,05 e) P( T <t)=0,95 Rozwiązanie: a) Poszukiwana jest taka wartość t, począwszy od której w kierunku malejących wartości t zawierać się będzie pole pod wykresem gęstości równe 0,01. Czyli poszukiwany jest kwantyl rozkładu dla wartości p=0,01, czyli q 0,01. Korzystając z tablic, należy odczytać wartość t dla =0,01, df=15 jak dla testu jednostronnego i zmienić jego znak: t 2,

19 b) Poszukiwana jest taka wartość t, począwszy od której w kierunku rosnących wartości t zawierać się będzie pole pod wykresem gęstości równe 0,99. Czyli, jak poprzednio poszukiwany jest kwantyl rozkładu dla wartości p=0,01, q 0,01 : t 2, c) Poszukiwana jest taka wartość t, począwszy od której w kierunku rosnących wartości t zawierać się będzie pole pod wykresem gęstości równe 0,01. Czyli, poszukiwany jest kwantyl dla p=1-0,01=0,99, q 0,99. Korzystając z tablic, należy odczytać wartość t dla =0,01, df=15 jak dla testu jednostronnego: t 2, d) Poszukiwana jest taka wartość t, dla której zajdzie P (( T t) ( T t)) 0, 05, przy czym P( T t) P( T t). Innymi słowy poszukiwana jest taka wartość t, która na obu ogonach rozkładu oddzieli takie samo pole równe co do wartości połowie 0,05. Czyli poszukiwane są kwantyle q 0,025 i q 0,975. Z tablic należy odczytać wartość jak dla testu dwustronnego przy =0,05: t 2, Zatem rozwiązaniem zadania są wartości 19

20 t 2, e) Poszukiwana jest taka wartość t, dla której zajdzie P ( t T t) 0, 95, przy czym. Innymi słowy poszukiwana jest taka wartość t, dla której pomiędzy t, a t będzie pole równe 0,95. W praktyce jest to przypadek identyczny jak w zadaniu d) bowiem na obu ogonach rozkładu oddzielone zostanie takie samo pole równe co do wartości połowie 1-0,95=0,05. Czyli jak poprzednio poszukiwane są kwantyle q 0,025 i q 0,975. Z tablic należy odczytać wartość jak dla testu dwustronnego przy =0,05: t 2, Zatem rozwiązaniem zadania są wartości t 2,

Z Wikipedii, wolnej encyklopedii.

Z Wikipedii, wolnej encyklopedii. Rozkład normalny Rozkład normalny jest niezwykle ważnym rozkładem prawdopodobieństwa w wielu dziedzinach. Nazywa się go także rozkładem Gaussa, w szczególności w fizyce i inżynierii. W zasadzie jest to

Bardziej szczegółowo

ZMIENNE LOSOWE. Zmienna losowa (ZL) X( ) jest funkcją przekształcającą przestrzeń zdarzeń elementarnych w zbiór liczb rzeczywistych R 1 tzn. X: R 1.

ZMIENNE LOSOWE. Zmienna losowa (ZL) X( ) jest funkcją przekształcającą przestrzeń zdarzeń elementarnych w zbiór liczb rzeczywistych R 1 tzn. X: R 1. Opracowała: Joanna Kisielińska ZMIENNE LOSOWE Zmienna losowa (ZL) X( ) jest funkcją przekształcającą przestrzeń zdarzeń elementarnych w zbiór liczb rzeczywistych R tzn. X: R. Realizacją zmiennej losowej

Bardziej szczegółowo

Wykład 10 (12.05.08). Testowanie hipotez w rodzinie rozkładów normalnych przypadek nieznanego odchylenia standardowego

Wykład 10 (12.05.08). Testowanie hipotez w rodzinie rozkładów normalnych przypadek nieznanego odchylenia standardowego Wykład 10 (12.05.08). Testowanie hipotez w rodzinie rozkładów normalnych przypadek nieznanego odchylenia standardowego Przykład Cena metra kwadratowego (w tys. zł) z dla 14 losowo wybranych mieszkań w

Bardziej szczegółowo

PODSTAWOWE ROZKŁADY ZMIENNYCH LOSOWYCH CIĄGŁYCH

PODSTAWOWE ROZKŁADY ZMIENNYCH LOSOWYCH CIĄGŁYCH Opracowała: Joanna Kisielińska 1 PODSTAWOWE ROZKŁADY ZMIENNYCH LOSOWYCH CIĄGŁYCH Rozkład normalny Zmienna losowa X ma rozkład normalny z parametrami µ i σ (średnia i odchylenie standardowe), jeśli jej

Bardziej szczegółowo

Najprostsze z zadań z prawdopodobieństwa robi się korzystając z dystrybuanty. Zacznijmy od tego - tu mamy rozkład (wyniki pomiarów):

Najprostsze z zadań z prawdopodobieństwa robi się korzystając z dystrybuanty. Zacznijmy od tego - tu mamy rozkład (wyniki pomiarów): Najprostsze z zadań z prawdopodobieństwa robi się korzystając z dystrybuanty. Zacznijmy od tego - tu mamy rozkład (wyniki pomiarów): Ok. Średnia to środek zbioru. Zazwyczaj mamy podane także odchylenie

Bardziej szczegółowo

Weryfikacja hipotez statystycznych

Weryfikacja hipotez statystycznych Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta

Bardziej szczegółowo

POLITECHNIKA WARSZAWSKA

POLITECHNIKA WARSZAWSKA POLITECHNIKA WARSZAWSKA WYDZIAŁ BUDOWNICTWA, MECHANIKI I PETROCHEMII INSTYTUT INŻYNIERII MECHANICZNEJ STATYSTYCZNA KONTROLA PROCESU (SPC) Ocena i weryfikacja statystyczna założeń przyjętych przy sporządzaniu

Bardziej szczegółowo

Rozkłady statystyk z próby

Rozkłady statystyk z próby Rozkłady statystyk z próby Rozkłady statystyk z próby Przypuśćmy, że wykonujemy serię doświadczeń polegających na 4 krotnym rzucie symetryczną kostką do gry, obserwując liczbę wyrzuconych oczek Nr kolejny

Bardziej szczegółowo

Zastosowanie Excela w matematyce

Zastosowanie Excela w matematyce Zastosowanie Excela w matematyce Komputer w dzisiejszych czasach zajmuje bardzo znamienne miejsce. Trudno sobie wyobrazić jakąkolwiek firmę czy instytucję działającą bez tego urządzenia. W szkołach pierwsze

Bardziej szczegółowo

Testowanie hipotez statystycznych. Wnioskowanie statystyczne

Testowanie hipotez statystycznych. Wnioskowanie statystyczne Testowanie hipotez statystycznych Wnioskowanie statystyczne Hipoteza statystyczna to dowolne przypuszczenie co do rozkładu populacji generalnej (jego postaci funkcyjnej lub wartości parametrów). Hipotezy

Bardziej szczegółowo

KURS PRAWDOPODOBIEŃSTWO

KURS PRAWDOPODOBIEŃSTWO KURS PRAWDOPODOBIEŃSTWO Lekcja 6 Ciągłe zmienne losowe ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Zmienna losowa ciągła jest

Bardziej szczegółowo

Wykład 3 Hipotezy statystyczne

Wykład 3 Hipotezy statystyczne Wykład 3 Hipotezy statystyczne Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu obserwowanej zmiennej losowej (cechy populacji generalnej) Hipoteza zerowa (H 0 ) jest hipoteza

Bardziej szczegółowo

TABLICE PODSTAWOWYCH ROZKŁADÓW PRAWDOPODOBIEŃSTWA. T4. Tablica kwantyli rozkładu chi-kwadrat (I część - poziomy kwantyli 0,5)

TABLICE PODSTAWOWYCH ROZKŁADÓW PRAWDOPODOBIEŃSTWA. T4. Tablica kwantyli rozkładu chi-kwadrat (I część - poziomy kwantyli 0,5) TABLICE PODSTAWOWYCH ROZKŁADÓW PRAWDOPODOBIEŃSTWA T1. Tablica dystrybuanty standardowego normalnego rozkładu N(0,1) T2. Tablica kwantyli standardowego normalnego rozkładu N(0,1) T3. Tablica kwantyli rozkładu

Bardziej szczegółowo

Statystyka. #5 Testowanie hipotez statystycznych. Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik. rok akademicki 2016/ / 28

Statystyka. #5 Testowanie hipotez statystycznych. Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik. rok akademicki 2016/ / 28 Statystyka #5 Testowanie hipotez statystycznych Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik rok akademicki 2016/2017 1 / 28 Testowanie hipotez statystycznych 2 / 28 Testowanie hipotez statystycznych

Bardziej szczegółowo

III. ZMIENNE LOSOWE JEDNOWYMIAROWE

III. ZMIENNE LOSOWE JEDNOWYMIAROWE III. ZMIENNE LOSOWE JEDNOWYMIAROWE.. Zmienna losowa i pojęcie rozkładu prawdopodobieństwa W dotychczas rozpatrywanych przykładach każdemu zdarzeniu była przyporządkowana odpowiednia wartość liczbowa. Ta

Bardziej szczegółowo

LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI

LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI WERYFIKACJA HIPOTEZ Hipoteza statystyczna jakiekolwiek przypuszczenie dotyczące populacji generalnej- jej poszczególnych

Bardziej szczegółowo

SIGMA KWADRAT. Weryfikacja hipotez statystycznych. Statystyka i demografia CZWARTY LUBELSKI KONKURS STATYSTYCZNO-DEMOGRAFICZNY

SIGMA KWADRAT. Weryfikacja hipotez statystycznych. Statystyka i demografia CZWARTY LUBELSKI KONKURS STATYSTYCZNO-DEMOGRAFICZNY SIGMA KWADRAT CZWARTY LUBELSKI KONKURS STATYSTYCZNO-DEMOGRAFICZNY Weryfikacja hipotez statystycznych Statystyka i demografia PROJEKT DOFINANSOWANY ZE ŚRODKÓW NARODOWEGO BANKU POLSKIEGO URZĄD STATYSTYCZNY

Bardziej szczegółowo

Porównanie generatorów liczb losowych wykorzystywanych w arkuszach kalkulacyjnych

Porównanie generatorów liczb losowych wykorzystywanych w arkuszach kalkulacyjnych dr Piotr Sulewski POMORSKA AKADEMIA PEDAGOGICZNA W SŁUPSKU KATEDRA INFORMATYKI I STATYSTYKI Porównanie generatorów liczb losowych wykorzystywanych w arkuszach kalkulacyjnych Wprowadzenie Obecnie bardzo

Bardziej szczegółowo

Błędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa

Błędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa Weryfikacja hipotez statystycznych Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy populacji, o prawdziwości lub fałszywości którego wnioskuje się na podstawie

Bardziej szczegółowo

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

Statystyka i opracowanie danych- W 8 Wnioskowanie statystyczne. Testy statystyczne. Weryfikacja hipotez statystycznych.

Statystyka i opracowanie danych- W 8 Wnioskowanie statystyczne. Testy statystyczne. Weryfikacja hipotez statystycznych. Statystyka i opracowanie danych- W 8 Wnioskowanie statystyczne. Testy statystyczne. Weryfikacja hipotez statystycznych. Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Hipotezy i Testy statystyczne Każde

Bardziej szczegółowo

Rozkład normalny. Marcin Zajenkowski. Marcin Zajenkowski () Rozkład normalny 1 / 26

Rozkład normalny. Marcin Zajenkowski. Marcin Zajenkowski () Rozkład normalny 1 / 26 Rozkład normalny Marcin Zajenkowski Marcin Zajenkowski () Rozkład normalny 1 / 26 Rozkład normalny Krzywa normalna, krzywa Gaussa, rozkład normalny Rozkłady liczebności wielu pomiarów fizycznych, biologicznych

Bardziej szczegółowo

Zmienne losowe ciągłe i ich rozkłady

Zmienne losowe ciągłe i ich rozkłady Rachunek Prawdopodobieństwa i Statystyka - W3 Zmienne losowe ciągłe i ich rozkłady Dr Anna ADRIAN Paw B5, pok47 adan@agh.edu.pl Plan wykładu Zmienna losowa ciągła Dystrybuanta i unkcja gęstości rozkładu

Bardziej szczegółowo

Ćwiczenie: Badanie normalności rozkładu. Wyznaczanie przedziałów ufności

Ćwiczenie: Badanie normalności rozkładu. Wyznaczanie przedziałów ufności Ćwiczenie: Badanie normalności rozkładu. Wyznaczanie przedziałów ufności Badanie normalności rozkładu Shapiro-Wilka: jest on najbardziej zalecanym testem normalności rozkładu. Jednak wskazane jest, aby

Bardziej szczegółowo

Wykład z analizy danych: powtórzenie zagadnień z rachunku prawdopodobieństwa

Wykład z analizy danych: powtórzenie zagadnień z rachunku prawdopodobieństwa Wykład z analizy danych: powtórzenie zagadnień z rachunku prawdopodobieństwa Marek Kubiak Instytut Informatyki Politechnika Poznańska Plan wykładu Podstawowe pojęcia rachunku prawdopodobieństwa Rozkład

Bardziej szczegółowo

Rozkłady zmiennych losowych

Rozkłady zmiennych losowych Rozkłady zmiennych losowych Wprowadzenie Badamy pewną zbiorowość czyli populację pod względem występowania jakiejś cechy. Pobieramy próbę i na podstawie tej próby wyznaczamy pewne charakterystyki. Jeśli

Bardziej szczegółowo

Ćwiczenia 3 ROZKŁAD ZMIENNEJ LOSOWEJ JEDNOWYMIAROWEJ

Ćwiczenia 3 ROZKŁAD ZMIENNEJ LOSOWEJ JEDNOWYMIAROWEJ Ćwiczenia 3 ROZKŁAD ZMIENNEJ LOSOWEJ JEDNOWYMIAROWEJ Zadanie 1. Zmienna losowa przyjmuje wartości -1, 0, 1 z prawdopodobieństwami równymi odpowiednio: ¼, ½, ¼. Należy: a. Wyznaczyć rozkład prawdopodobieństwa

Bardziej szczegółowo

Statystyka. Wydział Zarządzania Uniwersytetu Łódzkiego

Statystyka. Wydział Zarządzania Uniwersytetu Łódzkiego Statystyka Wydział Zarządzania Uniwersytetu Łódzkiego 2017 Podstawowe rozkłady zmiennych losowych Rozkłady zmiennych skokowych Rozkład zero-jedynkowy Rozpatrujemy doświadczenie, którego rezultatem może

Bardziej szczegółowo

1. Eliminuje się ze zbioru potencjalnych zmiennych te zmienne dla których korelacja ze zmienną objaśnianą jest mniejsza od krytycznej:

1. Eliminuje się ze zbioru potencjalnych zmiennych te zmienne dla których korelacja ze zmienną objaśnianą jest mniejsza od krytycznej: Metoda analizy macierzy współczynników korelacji Idea metody sprowadza się do wyboru takich zmiennych objaśniających, które są silnie skorelowane ze zmienną objaśnianą i równocześnie słabo skorelowane

Bardziej szczegółowo

MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ

MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ Opracowała: Milena Suliga Wszystkie pliki pomocnicze wymienione w treści

Bardziej szczegółowo

Statystyka matematyczna dla leśników

Statystyka matematyczna dla leśników Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 03/04 Wykład 5 Testy statystyczne Ogólne zasady testowania hipotez statystycznych, rodzaje

Bardziej szczegółowo

Wydział Matematyki. Testy zgodności. Wykład 03

Wydział Matematyki. Testy zgodności. Wykład 03 Wydział Matematyki Testy zgodności Wykład 03 Testy zgodności W testach zgodności badamy postać rozkładu teoretycznego zmiennej losowej skokowej lub ciągłej. Weryfikują one stawiane przez badaczy hipotezy

Bardziej szczegółowo

Środowisko R wprowadzenie c.d. Wykład R2; 21.05.07 Struktury danych w R c.d.

Środowisko R wprowadzenie c.d. Wykład R2; 21.05.07 Struktury danych w R c.d. Środowisko R wprowadzenie c.d. Wykład R2; 21.05.07 Struktury danych w R c.d. Oprócz zmiennych i wektorów strukturami danych w R są: macierze; ramki (ang. data frames); listy; klasy S3 1 Macierze Macierze

Bardziej szczegółowo

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie:

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie: ma postać y = ax + b Równanie regresji liniowej By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : xy b = a = b lub x Gdzie: xy = też a = x = ( b ) i to dane empiryczne, a ilość

Bardziej szczegółowo

Spis treści. Laboratorium III: Testy statystyczne. Inżynieria biomedyczna, I rok, semestr letni 2013/2014 Analiza danych pomiarowych

Spis treści. Laboratorium III: Testy statystyczne. Inżynieria biomedyczna, I rok, semestr letni 2013/2014 Analiza danych pomiarowych 1 Laboratorium III: Testy statystyczne Spis treści Laboratorium III: Testy statystyczne... 1 Wiadomości ogólne... 2 1. Krótkie przypomnienie wiadomości na temat testów statystycznych... 2 1.1. Weryfikacja

Bardziej szczegółowo

AKADEMIA GÓRNICZO-HUTNICZA Wydział Matematyki Stosowanej ROZKŁAD NORMALNY ROZKŁAD GAUSSA

AKADEMIA GÓRNICZO-HUTNICZA Wydział Matematyki Stosowanej ROZKŁAD NORMALNY ROZKŁAD GAUSSA AKADEMIA GÓRNICZO-HUTNICZA Wydział Matematyki Stosowanej KATEDRA MATEMATYKI TEMAT PRACY: ROZKŁAD NORMALNY ROZKŁAD GAUSSA AUTOR: BARBARA MARDOSZ Kraków, styczeń 2008 Spis treści 1 Wprowadzenie 2 2 Definicja

Bardziej szczegółowo

Często spotykany jest również asymetryczny rozkład gamma (Г), opisany za pomocą parametru skali θ i parametru kształtu k:

Często spotykany jest również asymetryczny rozkład gamma (Г), opisany za pomocą parametru skali θ i parametru kształtu k: Statystyczne opracowanie danych pomiarowych W praktyce pomiarowej często spotykamy się z pomiarami wielokrotnymi, gdy podczas pomiaru błędy pomiarowe (szumy miernika, czynniki zewnętrzne) są na tyle duże,

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO. Wykład 2

STATYSTYKA I DOŚWIADCZALNICTWO. Wykład 2 STATYSTYKA I DOŚWIADCZALNICTWO Wykład Parametry przedziałowe rozkładów ciągłych określane na podstawie próby (przedziały ufności) Przedział ufności dla średniej s X t( α;n 1),X + t( α;n 1) n s n t (α;

Bardziej szczegółowo

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej 7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej Definicja 1 n-elementowa losowa próba prosta nazywamy ciag n niezależnych zmiennych losowych o jednakowych rozkładach

Bardziej szczegółowo

POLITECHNIKA OPOLSKA

POLITECHNIKA OPOLSKA POLITECHNIKA OPOLSKA WYDZIAŁ MECHANICZNY Katedra Technologii Maszyn i Automatyzacji Produkcji Laboratorium Podstaw Inżynierii Jakości Ćwiczenie nr 4 Temat: Analiza korelacji i regresji dwóch zmiennych

Bardziej szczegółowo

STATYSTYKA Statistics. Inżynieria Środowiska. II stopień ogólnoakademicki

STATYSTYKA Statistics. Inżynieria Środowiska. II stopień ogólnoakademicki Załącznik nr 7 do Zarządzenia Rektora nr../12 z dnia.... 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/13 STATYSTYKA

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład II: Zmienne losowe i charakterystyki ich rozkładów 13 października 2014 Zmienne losowe Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Definicja zmiennej losowej i jej

Bardziej szczegółowo

Sposoby prezentacji problemów w statystyce

Sposoby prezentacji problemów w statystyce S t r o n a 1 Dr Anna Rybak Instytut Informatyki Uniwersytet w Białymstoku Sposoby prezentacji problemów w statystyce Wprowadzenie W artykule zostaną zaprezentowane podstawowe zagadnienia z zakresu statystyki

Bardziej szczegółowo

Zmienne losowe ciągłe i ich rozkłady

Zmienne losowe ciągłe i ich rozkłady Statystyka i opracowanie danych W3 Zmienne losowe ciągłe i ich rozkłady Dr Anna ADRIAN Paw B5, pok47 adan@agh.edu.pl Plan wykładu Rozkład Poissona. Zmienna losowa ciągła Dystrybuanta i funkcja gęstości

Bardziej szczegółowo

R ozkład norm alny Bardzo często używany do modelowania symetrycznych rozkładów zmiennych losowych ciągłych

R ozkład norm alny Bardzo często używany do modelowania symetrycznych rozkładów zmiennych losowych ciągłych R ozkład norm alny Bardzo często używany do modelowania symetrycznych rozkładów zmiennych losowych ciągłych Przykłady: Błąd pomiarowy Wzrost, wydajność Temperatura ciała Zawartość różnych składników we

Bardziej szczegółowo

II WYKŁAD STATYSTYKA. 12/03/2014 B8 sala 0.10B Godz. 15:15

II WYKŁAD STATYSTYKA. 12/03/2014 B8 sala 0.10B Godz. 15:15 II WYKŁAD STATYSTYKA 12/03/2014 B8 sala 0.10B Godz. 15:15 WYKŁAD 2 Rachunek prawdopodobieństwa zdarzenia elementarne zdarzenia losowe zmienna losowa skokowa i ciągła prawdopodobieństwo i gęstość prawdopodobieństwa

Bardziej szczegółowo

ANALIZA STATYSTYCZNA WYNIKÓW BADAŃ

ANALIZA STATYSTYCZNA WYNIKÓW BADAŃ ANALIZA STATYSTYCZNA WYNIKÓW BADAŃ Dopasowanie rozkładów Dopasowanie rozkładów- ogólny cel Porównanie średnich dwóch zmiennych 2 zmienne posiadają rozkład normalny -> test parametryczny (t- studenta) 2

Bardziej szczegółowo

b) Niech: - wśród trzech wylosowanych opakowań jest co najwyżej jedno o dawce 15 mg. Wówczas:

b) Niech: - wśród trzech wylosowanych opakowań jest co najwyżej jedno o dawce 15 mg. Wówczas: ROZWIĄZANIA I ODPOWIEDZI Zadanie A1. Można założyć, że przy losowaniu trzech kul jednocześnie kolejność ich wylosowania nie jest istotna. A więc: Ω = 20 3. a) Niech: - wśród trzech wylosowanych opakowań

Bardziej szczegółowo

Testowanie hipotez statystycznych.

Testowanie hipotez statystycznych. Bioinformatyka Wykład 9 Wrocław, 5 grudnia 2011 Temat. Test zgodności χ 2 Pearsona. Statystyka χ 2 Pearsona Rozpatrzmy ciąg niezależnych zmiennych losowych X 1,..., X n o jednakowym dyskretnym rozkładzie

Bardziej szczegółowo

FUNKCJA LINIOWA - WYKRES. y = ax + b. a i b to współczynniki funkcji, które mają wartości liczbowe

FUNKCJA LINIOWA - WYKRES. y = ax + b. a i b to współczynniki funkcji, które mają wartości liczbowe FUNKCJA LINIOWA - WYKRES Wzór funkcji liniowej (postać kierunkowa) Funkcja liniowa to funkcja o wzorze: y = ax + b a i b to współczynniki funkcji, które mają wartości liczbowe Szczególnie ważny w postaci

Bardziej szczegółowo

Elektrotechnika II [ Laboratorium Grupa 1 ] 2016/2017 Zimowy. [ Laboratorium Grupa 2 ] 2016/2017 Zimowy

Elektrotechnika II [ Laboratorium Grupa 1 ] 2016/2017 Zimowy. [ Laboratorium Grupa 2 ] 2016/2017 Zimowy Elektrotechnika II [ Laboratorium Grupa ] 206/207 Zimowy Lp Numer indeksu Pkt Kol Suma Popr Ocena Data Uwagi 97574 6 7 Db + 2 9758 ++0,9 5 7,9 Db + 3 99555 0,9+0,9 2,8 Dst + 4 97595 0,8++ 0 2,8 Dst + 5

Bardziej szczegółowo

Ważne rozkłady i twierdzenia c.d.

Ważne rozkłady i twierdzenia c.d. Ważne rozkłady i twierdzenia c.d. Funkcja charakterystyczna rozkładu Wielowymiarowy rozkład normalny Elipsa kowariacji Sploty rozkładów Rozkłady jednostajne Sploty z rozkładem normalnym Pobieranie próby

Bardziej szczegółowo

Ekonometria. Weryfikacja modelu. Paweł Cibis pcibis@o2.pl. 6 kwietnia 2006

Ekonometria. Weryfikacja modelu. Paweł Cibis pcibis@o2.pl. 6 kwietnia 2006 Weryfikacja modelu Paweł Cibis pcibis@o2.pl 6 kwietnia 2006 1 Badanie istotności parametrów strukturalnych modelu Testy Pakiet Analiza Danych Uwagi 2 Test dla małej próby Test dla dużej próby 3 Test Durbina-Watsona

Bardziej szczegółowo

Rozkład normalny Parametry rozkładu zmiennej losowej Zmienne losowe wielowymiarowe

Rozkład normalny Parametry rozkładu zmiennej losowej Zmienne losowe wielowymiarowe Statystyka i opracowanie danych W4 Rozkład normalny Parametry rozkładu zmiennej losowej Zmienne losowe wielowymiarowe Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Rozkład normalny wykres funkcji gęstości

Bardziej szczegółowo

Może faktycznie ceny na Opolszczyźnie są wyższe niż w Polsce. Ceny na Opolszczyźnie są podobne, a akurat trafiliśmy na próbę droższych piekarni.

Może faktycznie ceny na Opolszczyźnie są wyższe niż w Polsce. Ceny na Opolszczyźnie są podobne, a akurat trafiliśmy na próbę droższych piekarni. Statystyczne testowanie hipotez: procedura, która pozwala ocenić hipotezę na temat parametru populacji w oparciu o statystykę próby. Zauważyliśmy, że ceny pieczywa w Opolu są wyższe niż gdzie indziej w

Bardziej szczegółowo

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI TESTOWANIE HIPOTEZ PARAMETRYCZNYCH

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI TESTOWANIE HIPOTEZ PARAMETRYCZNYCH WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI TESTOWANIE HIPOTEZ PARAMETRYCZNYCH Co to są hipotezy statystyczne? Hipoteza statystyczna to dowolne przypuszczenie co do rozkładu populacji generalnej. Dzielimy je

Bardziej szczegółowo

Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne.

Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne. Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne. Definicja. Niech a i b będą dodatnimi liczbami rzeczywistymi i niech a. Logarytmem liczby b przy podstawie

Bardziej szczegółowo

Przestrzeń probabilistyczna

Przestrzeń probabilistyczna Przestrzeń probabilistyczna (Ω, Σ, P) Ω pewien niepusty zbiór Σ rodzina podzbiorów tego zbioru P funkcja określona na Σ, zwana prawdopodobieństwem. Przestrzeń probabilistyczna (Ω, Σ, P) Ω pewien niepusty

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący

Bardziej szczegółowo

Wprowadzenie do analizy korelacji i regresji

Wprowadzenie do analizy korelacji i regresji Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących

Bardziej szczegółowo

Szukanie rozwiązań funkcji uwikłanych (równań nieliniowych)

Szukanie rozwiązań funkcji uwikłanych (równań nieliniowych) Szukanie rozwiązań funkcji uwikłanych (równań nieliniowych) Funkcja uwikłana (równanie nieliniowe) jest to funkcja, która nie jest przedstawiona jawnym przepisem, wzorem wyrażającym zależność wartości

Bardziej szczegółowo

Statystyka i eksploracja danych

Statystyka i eksploracja danych Wykład II: i charakterystyki ich rozkładów 24 lutego 2014 Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa,

Bardziej szczegółowo

Sterowanie wielkością zamówienia w Excelu - cz. 3

Sterowanie wielkością zamówienia w Excelu - cz. 3 Sterowanie wielkością zamówienia w Excelu - cz. 3 21.06.2005 r. 4. Planowanie eksperymentów symulacyjnych Podczas tego etapu ważne jest określenie typu rozkładu badanej charakterystyki. Dzięki tej informacji

Bardziej szczegółowo

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl

Bardziej szczegółowo

Zmienne losowe skokowe

Zmienne losowe skokowe Zmienne losowe skokowe 1.1 Rozkład prawdopodobieństwa i dystrybuanta Zad.1 Niech zmienna losowa X przyjmuje wartości równe liczbie wyrzuconych oczek przy pojedynczym rzucie kostką do gry, czyli =1,2,3,,6.

Bardziej szczegółowo

Analizy wariancji ANOVA (analysis of variance)

Analizy wariancji ANOVA (analysis of variance) ANOVA Analizy wariancji ANOVA (analysis of variance) jest to metoda równoczesnego badania istotności różnic między wieloma średnimi z prób pochodzących z wielu populacji (grup). Model jednoczynnikowy analiza

Bardziej szczegółowo

STATYSTYKA wykład 5-6

STATYSTYKA wykład 5-6 TATYTYKA wykład 5-6 Twierdzenia graniczne Rozkłady statystyk z próby Wanda Olech Twierdzenia graniczne Jeżeli rozpatrujemy ciąg zmiennych losowych {X ; X ;...; X n }, to zdarza się, że ich rozkłady przy

Bardziej szczegółowo

166 Wstęp do statystyki matematycznej

166 Wstęp do statystyki matematycznej 166 Wstęp do statystyki matematycznej Etap trzeci realizacji procesu analizy danych statystycznych w zasadzie powinien rozwiązać nasz zasadniczy problem związany z identyfikacją cechy populacji generalnej

Bardziej szczegółowo

Matematyka 2. dr inż. Rajmund Stasiewicz

Matematyka 2. dr inż. Rajmund Stasiewicz Matematyka 2 dr inż. Rajmund Stasiewicz Skala ocen Punkty Ocena 0 50 2,0 51 60 3,0 61 70 3,5 71 80 4,0 81 90 4,5 91-5,0 Zwolnienie z egzaminu Ocena z egzaminu liczba punktów z ćwiczeń - 5 Warunki zaliczenia

Bardziej szczegółowo

Statystyczna analiza danych w programie STATISTICA (wykład 2) Dariusz Gozdowski

Statystyczna analiza danych w programie STATISTICA (wykład 2) Dariusz Gozdowski Statystyczna analiza danych w programie STATISTICA (wykład ) Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Weryfikacja (testowanie) hipotez statystycznych

Bardziej szczegółowo

Z poprzedniego wykładu

Z poprzedniego wykładu PODSTAWY STATYSTYKI 1. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5. Testy parametryczne

Bardziej szczegółowo

Pytanie: Kiedy do testowania hipotezy stosujemy rozkład normalny?

Pytanie: Kiedy do testowania hipotezy stosujemy rozkład normalny? Pytanie: Kiedy do testowania hipotezy stosujemy rozkład normalny? Gdy: badana cecha jest mierzalna (tzn. posiada rozkład ciągły); badana cecha posiada rozkład normalny; dysponujemy pojedynczym wynikiem;

Bardziej szczegółowo

STATYSTYCZNE OPRACOWANIE WYNIKÓW KONTROLI JAKOŚCI ROBÓT ZIEMNYCH

STATYSTYCZNE OPRACOWANIE WYNIKÓW KONTROLI JAKOŚCI ROBÓT ZIEMNYCH Dane bibliograiczne o artykule: http://mieczyslaw_polonski.users.sggw.pl/mppublikacje STATYSTYCZNE OPRACOWANIE WYNIKÓW KONTROLI JAKOŚCI ROBÓT ZIEMNYCH Mieczysław Połoński 1 1. Metodyka statystycznego opracowania

Bardziej szczegółowo

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI ROZKŁAD EMPIRYCZNY

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI ROZKŁAD EMPIRYCZNY WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI ROZKŁAD EMPIRYCZNY Liczebności i częstości Liczebność liczba osób/respondentów/badanych, którzy udzielili tej konkretnej odpowiedzi. Podawana w osobach. Częstość odsetek,

Bardziej szczegółowo

Outlier to dana (punkt, obiekt, wartośd w zbiorze) znacznie odstająca od reszty. prezentacji punktów odstających jest rysunek poniżej.

Outlier to dana (punkt, obiekt, wartośd w zbiorze) znacznie odstająca od reszty. prezentacji punktów odstających jest rysunek poniżej. Temat: WYKRYWANIE ODCHYLEO W DANYCH Outlier to dana (punkt, obiekt, wartośd w zbiorze) znacznie odstająca od reszty. prezentacji punktów odstających jest rysunek poniżej. Przykładem Box Plot wygodną metodą

Bardziej szczegółowo

Wykład 1. Podstawowe pojęcia Metody opisowe w analizie rozkładu cechy

Wykład 1. Podstawowe pojęcia Metody opisowe w analizie rozkładu cechy Wykład Podstawowe pojęcia Metody opisowe w analizie rozkładu cechy Zbiorowość statystyczna - zbiór elementów lub wyników jakiegoś procesu powiązanych ze sobą logicznie (tzn. posiadających wspólne cechy

Bardziej szczegółowo

Statystyczna analiza danych w programie STATISTICA 7.1 PL (wykład 1) Dariusz Gozdowski

Statystyczna analiza danych w programie STATISTICA 7.1 PL (wykład 1) Dariusz Gozdowski Statystyczna analiza danych w programie STATISTICA 7.1 PL (wykład 1) Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW STATYSTYKA to nauka, której przedmiotem

Bardziej szczegółowo

Zmienne losowe, statystyki próbkowe. Wrocław, 2 marca 2015

Zmienne losowe, statystyki próbkowe. Wrocław, 2 marca 2015 Zmienne losowe, statystyki próbkowe Wrocław, 2 marca 2015 Zasady zaliczenia 2 kolokwia (każde po 20 punktów) projekt (20 punktów) aktywność Zasady zaliczenia 2 kolokwia (każde po 20 punktów) projekt (20

Bardziej szczegółowo

Ćwiczenie: Wybrane zagadnienia z korelacji i regresji.

Ćwiczenie: Wybrane zagadnienia z korelacji i regresji. Ćwiczenie: Wybrane zagadnienia z korelacji i regresji. W statystyce stopień zależności między cechami można wyrazić wg następującej skali: Skala Guillforda Przedział Zależność Współczynnik [0,00±0,20)

Bardziej szczegółowo

TESTOWANIE HIPOTEZ STATYSTYCZNYCH Przez hipotezę statystyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas

TESTOWANIE HIPOTEZ STATYSTYCZNYCH Przez hipotezę statystyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas TESTOWANIE HIPOTEZ STATYSTYCZNYCH Przez hipotezę statystyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas cechy. Hipotezy dzielimy na parametryczne i nieparametryczne.

Bardziej szczegółowo

Obliczenia iteracyjne

Obliczenia iteracyjne Lekcja Strona z Obliczenia iteracyjne Zmienne iteracyjne (wyliczeniowe) Obliczenia iteracyjne wymagają zdefiniowania specjalnej zmiennej nazywanej iteracyjną lub wyliczeniową. Zmienną iteracyjną od zwykłej

Bardziej szczegółowo

STATYSTYCZNA ANALIZA WYNIKÓW POMIARÓW

STATYSTYCZNA ANALIZA WYNIKÓW POMIARÓW Zakład Metrologii i Systemów Pomiarowych P o l i t e c h n i k a P o z n ańska ul. Jana Pawła II 24 60-965 POZNAŃ (budynek Centrum Mechatroniki, Biomechaniki i Nanoinżynierii) www.zmisp.mt.put.poznan.pl

Bardziej szczegółowo

ODRZUCANIE WYNIKÓW POJEDYNCZYCH POMIARÓW

ODRZUCANIE WYNIKÓW POJEDYNCZYCH POMIARÓW ODRZUCANIE WYNIKÓW OJEDYNCZYCH OMIARÓW W praktyce pomiarowej zdarzają się sytuacje gdy jeden z pomiarów odstaje od pozostałych. Jeżeli wykorzystamy fakt, że wyniki pomiarów są zmienną losową opisywaną

Bardziej szczegółowo

ĆWICZENIA nr Dane ilościowe (próba n-elementowa) 2. Parametry opisowe a) Średnia arytmetyczna : EXCEL Formuły Wstaw funkcję Statystyczne ŚREDNIA

ĆWICZENIA nr Dane ilościowe (próba n-elementowa) 2. Parametry opisowe a) Średnia arytmetyczna : EXCEL Formuły Wstaw funkcję Statystyczne ŚREDNIA ĆWICZENIA nr 3 Parametry opisowe danych ilościowych Funkcje statystyczne Gęstośd prawdopodobieostwa, dystrybuanta Prawdopodobieostwo rozkładu ciągłego Rozkłady zmiennych losowych ĆWICZENIA nr 2 1. Dane

Bardziej szczegółowo

Testowanie hipotez statystycznych związanych ą z szacowaniem i oceną ą modelu ekonometrycznego

Testowanie hipotez statystycznych związanych ą z szacowaniem i oceną ą modelu ekonometrycznego Testowanie hipotez statystycznych związanych ą z szacowaniem i oceną ą modelu ekonometrycznego Ze względu na jakość uzyskiwanych ocen parametrów strukturalnych modelu oraz weryfikację modelu, metoda najmniejszych

Bardziej szczegółowo

laboratoria 24 zaliczenie z oceną

laboratoria 24 zaliczenie z oceną Wydział: Psychologia Nazwa kierunku kształcenia: Psychologia Rodzaj przedmiotu: podstawowy Opiekun: dr Andrzej Tarłowski Poziom studiów (I lub II stopnia): Jednolite magisterskie Tryb studiów: Niestacjonarne

Bardziej szczegółowo

Statystyka Opisowa z Demografią oraz Biostatystyka. Zmienne losowe. Aleksander Denisiuk. denisjuk@euh-e.edu.pl

Statystyka Opisowa z Demografią oraz Biostatystyka. Zmienne losowe. Aleksander Denisiuk. denisjuk@euh-e.edu.pl Statystyka Opisowa z Demografią oraz Biostatystyka Zmienne losowe Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2 82-300 Elblag oraz Biostatystyka p.

Bardziej szczegółowo

Zmienne losowe dyskretne i Zmienne losowe ciągłe Rozkład Normalny

Zmienne losowe dyskretne i Zmienne losowe ciągłe Rozkład Normalny Zmienne losowe dyskretne i Zmienne losowe ciągłe Rozkład Normalny 1. Wyprodukowanie określonej liczby wyrobów przez jednego pracownika w ciągu godziny jest zmienną losową o następującym rozkładzie prawdopodobieństwa:

Bardziej szczegółowo

Estymacja przedziałowa - przedziały ufności dla średnich. Wrocław, 5 grudnia 2014

Estymacja przedziałowa - przedziały ufności dla średnich. Wrocław, 5 grudnia 2014 Estymacja przedziałowa - przedziały ufności dla średnich Wrocław, 5 grudnia 2014 Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja Przedziałem ufności dla paramertu

Bardziej szczegółowo

Test dwustronny: H 0 : p= 1 2

Test dwustronny: H 0 : p= 1 2 Test dwustronny: H 0 : p= 1 2 H A : p 1 2 0,300 0,250 0,200 P(r) 0,150 0,100 0,050 0,000 0 1 2 3 4 5 6 7 8 9 10 r α/2 Przedział ufności α/2 Obszar krytyczny dla α = 0,05 Prawo Murphy'ego: kanapka zazwyczaj

Bardziej szczegółowo

Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r

Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r Statystyka matematyczna Testowanie hipotez i estymacja parametrów Wrocław, 18.03.2016r Plan wykładu: 1. Testowanie hipotez 2. Etapy testowania hipotez 3. Błędy 4. Testowanie wielokrotne 5. Estymacja parametrów

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez statystycznych

Bardziej szczegółowo

Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład

Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład Rozdział 1 Wektory losowe 1.1 Wektor losowy i jego rozkład Definicja 1 Wektor X = (X 1,..., X n ), którego każda współrzędna jest zmienną losową, nazywamy n-wymiarowym wektorem losowym (krótko wektorem

Bardziej szczegółowo

Analiza statystyczna. Microsoft Excel 2010 PL.

Analiza statystyczna. Microsoft Excel 2010 PL. Analiza statystyczna. Microsoft Excel 2010 PL. Autor: Conrad Carlberg Zaufaj posiadanym danym! Microsoft Excel 2010 to ukochane narzędzie studentów, analityków, księgowych, menedżerów i prezesów. Uniwersalność

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA Zadanie 0.1 Zmienna losowa X ma rozkład określony funkcją prawdopodobieństwa: x k 0 4 p k 1/3 1/6 1/ obliczyć EX, D X. (odp. 4/3;

Bardziej szczegółowo

Arkusz kalkulacyjny EXCEL

Arkusz kalkulacyjny EXCEL ARKUSZ KALKULACYJNY EXCEL 1 Arkusz kalkulacyjny EXCEL Aby obrysować tabelę krawędziami należy: 1. Zaznaczyć komórki, które chcemy obrysować. 2. Kursor myszy ustawić na menu FORMAT i raz kliknąć lewym klawiszem

Bardziej szczegółowo

Dokładne i graniczne rozkłady statystyk z próby

Dokładne i graniczne rozkłady statystyk z próby Dokładne i graniczne rozkłady statystyk z próby Przypomnijmy Populacja Próba Wielkość N n Średnia Wariancja Odchylenie standardowe 4.2 Rozkład statystyki Mówimy, że rozkład statystyki (1) jest dokładny,

Bardziej szczegółowo

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI. Zmienna losowa i jej rozkład

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI. Zmienna losowa i jej rozkład WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI Zmienna losowa i jej rozkład ZMIENNA LOSOWA Funkcja X przyporządkowująca każdemu zdarzeniu elementarnemu jedną i tylko jedną liczbę x. zmienna losowa skokowa skończona

Bardziej szczegółowo

Elementy statystyki opisowej, podstawowe pojęcia statystyki matematycznej

Elementy statystyki opisowej, podstawowe pojęcia statystyki matematycznej Elementy statystyki opisowej, podstawowe pojęcia statystyki matematycznej Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

Wykorzystanie testu t dla pojedynczej próby we wnioskowaniu statystycznym

Wykorzystanie testu t dla pojedynczej próby we wnioskowaniu statystycznym Wiesława MALSKA Politechnika Rzeszowska, Polska Anna KOZIOROWSKA Uniwersytet Rzeszowski, Polska Wykorzystanie testu t dla pojedynczej próby we wnioskowaniu statystycznym Wstęp Wnioskowanie statystyczne

Bardziej szczegółowo