Statystyka i eksploracja danych

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Statystyka i eksploracja danych"

Transkrypt

1 Wykład II: i charakterystyki ich rozkładów 24 lutego 2014

2 Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II

3 Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Definicja zmiennej losowej i jej rozkładu

4 Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Definicja zmiennej losowej i jej rozkładu Zmienną losową na przestrzeni probabilistycznej (Ω, F, P) nazywamy funkcję X : Ω R 1 dla której określone są prawdopodobieństwa P(X > u) = P ({ω ; X (ω) > u}), u R 1.

5 Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Definicja zmiennej losowej i jej rozkładu Zmienną losową na przestrzeni probabilistycznej (Ω, F, P) nazywamy funkcję X : Ω R 1 dla której określone są prawdopodobieństwa P(X > u) = P ({ω ; X (ω) > u}), u R 1. Rozkładem zmiennej losowej X nazywamy prawdopodobieństwo P X na R 1 zadane na odcinkach wzorem P X ((a, b]) := P(a < X b) = P ({ω ; X (ω) (a, b]}).

6 Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Definicja zmiennej losowej i jej rozkładu Zmienną losową na przestrzeni probabilistycznej (Ω, F, P) nazywamy funkcję X : Ω R 1 dla której określone są prawdopodobieństwa P(X > u) = P ({ω ; X (ω) > u}), u R 1. Rozkładem zmiennej losowej X nazywamy prawdopodobieństwo P X na R 1 zadane na odcinkach wzorem P X ((a, b]) := P(a < X b) = P ({ω ; X (ω) (a, b]}). Uwaga: P X ((a, + )) = P(X (a, + )), P X ((, a]) = P(X (, a]).

7 Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II, cd.

8 Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II, cd. Definicja wartości oczekiwanej zmiennej losowej

9 Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II, cd. Definicja wartości oczekiwanej zmiennej losowej Wartością oczekiwaną nieujemnej zmiennej losowej X nazywamy całkę EX := + 0 P(X > u) du [0, + ].

10 Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II, cd. Definicja wartości oczekiwanej zmiennej losowej Wartością oczekiwaną nieujemnej zmiennej losowej X nazywamy całkę EX := + 0 P(X > u) du [0, + ]. Niech f będzie funkcją o wartościach rzeczywistych. Częścią dodatnią f + (ujemną f ) funkcji f nazywamy złożenie tej funkcji z funkcją h + (x) = 0 x (z funkcją h (x) = 0 ( x)).

11 Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II, cd. Definicja wartości oczekiwanej zmiennej losowej Wartością oczekiwaną nieujemnej zmiennej losowej X nazywamy całkę EX := + 0 P(X > u) du [0, + ]. Niech f będzie funkcją o wartościach rzeczywistych. Częścią dodatnią f + (ujemną f ) funkcji f nazywamy złożenie tej funkcji z funkcją h + (x) = 0 x (z funkcją h (x) = 0 ( x)). Niech X będzie zmienna losową i niech EX + < + i EX < +. Wartością oczekiwaną zmiennej losowej X nazywamy całkę EX := EX + EX (, + ).

12 Interpretacja formalizmu Wartość oczekiwana Dystrybuanty

13 Interpretacja formalizmu Wartość oczekiwana Dystrybuanty Wartość zmiennej losowej X (ω) to liczbowa (na ogół niepełna) charakterystyka wyniku eksperymentu losowego ω Ω.

14 Interpretacja formalizmu Wartość oczekiwana Dystrybuanty Wartość zmiennej losowej X (ω) to liczbowa (na ogół niepełna) charakterystyka wyniku eksperymentu losowego ω Ω. Rozkład zmiennej losowej określa wartości oczekiwane Ef (X ) (w szczególności prawdopodobieństwa zdarzeń P(X A)).

15 Interpretacja formalizmu Wartość oczekiwana Dystrybuanty Wartość zmiennej losowej X (ω) to liczbowa (na ogół niepełna) charakterystyka wyniku eksperymentu losowego ω Ω. Rozkład zmiennej losowej określa wartości oczekiwane Ef (X ) (w szczególności prawdopodobieństwa zdarzeń P(X A)). Dzięki prawom wielkich liczb i innym rezultatom teoretycznym możemy przyjąć, że potrafimy obliczać Ef (X ).

16 Interpretacja formalizmu Wartość oczekiwana Dystrybuanty Wartość zmiennej losowej X (ω) to liczbowa (na ogół niepełna) charakterystyka wyniku eksperymentu losowego ω Ω. Rozkład zmiennej losowej określa wartości oczekiwane Ef (X ) (w szczególności prawdopodobieństwa zdarzeń P(X A)). Dzięki prawom wielkich liczb i innym rezultatom teoretycznym możemy przyjąć, że potrafimy obliczać Ef (X ). Wynika stąd, że w ramach eksperymentów losowych potrafimy badać własności rozkładów zmiennych losowych.

17 Własności wartości oczekiwanej Wartość oczekiwana Dystrybuanty Uwaga: zmienna losowa X ma skończoną wartość oczekiwaną dokładnie wtedy, gdy E X < +. Mówimy również, że zmienna X jest całkowalna i piszemy X L 1 (P).

18 Własności wartości oczekiwanej Wartość oczekiwana Dystrybuanty Uwaga: zmienna losowa X ma skończoną wartość oczekiwaną dokładnie wtedy, gdy E X < +. Mówimy również, że zmienna X jest całkowalna i piszemy X L 1 (P). Twierdzenie (Własności wartości oczekiwanej)

19 Własności wartości oczekiwanej Wartość oczekiwana Dystrybuanty Uwaga: zmienna losowa X ma skończoną wartość oczekiwaną dokładnie wtedy, gdy E X < +. Mówimy również, że zmienna X jest całkowalna i piszemy X L 1 (P). Twierdzenie (Własności wartości oczekiwanej) 1 Jeżeli X 0, to EX 0. Jeżeli X 0 i EX = 0, to P(X = 0) = 1.

20 Własności wartości oczekiwanej Wartość oczekiwana Dystrybuanty Uwaga: zmienna losowa X ma skończoną wartość oczekiwaną dokładnie wtedy, gdy E X < +. Mówimy również, że zmienna X jest całkowalna i piszemy X L 1 (P). Twierdzenie (Własności wartości oczekiwanej) 1 Jeżeli X 0, to EX 0. Jeżeli X 0 i EX = 0, to P(X = 0) = 1. 2 EX E X.

21 Własności wartości oczekiwanej Wartość oczekiwana Dystrybuanty Uwaga: zmienna losowa X ma skończoną wartość oczekiwaną dokładnie wtedy, gdy E X < +. Mówimy również, że zmienna X jest całkowalna i piszemy X L 1 (P). Twierdzenie (Własności wartości oczekiwanej) 1 Jeżeli X 0, to EX 0. Jeżeli X 0 i EX = 0, to P(X = 0) = 1. 2 EX E X. 3 Jeżeli E X < + i E Y < +, to dla dowolnych liczb α, β R 1 funkcja αx + βy jest zmienna losową i ma miejsce równość: E (αx + βy ) = αex + βey.

22 Własności wartości oczekiwanej Wartość oczekiwana Dystrybuanty Uwaga: zmienna losowa X ma skończoną wartość oczekiwaną dokładnie wtedy, gdy E X < +. Mówimy również, że zmienna X jest całkowalna i piszemy X L 1 (P). Twierdzenie (Własności wartości oczekiwanej) 1 Jeżeli X 0, to EX 0. Jeżeli X 0 i EX = 0, to P(X = 0) = 1. 2 EX E X. 3 Jeżeli E X < + i E Y < +, to dla dowolnych liczb α, β R 1 funkcja αx + βy jest zmienna losową i ma miejsce równość: E (αx + βy ) = αex + βey. 4 Jeżeli Y X, to EY EX pod warunkiem, że wartości oczekiwane istnieją.

23 Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II, cd.

24 Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II, cd. Definicja dystrybuanty zmiennej losowej

25 Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II, cd. Definicja dystrybuanty zmiennej losowej Dystrybuantą zmiennej losowej X nazywamy funkcję F X : R 1 [0, 1] określoną wzorem F X (u) = P(X u) ( = P X ((, u]) ).

26 Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II, cd. Definicja dystrybuanty zmiennej losowej Dystrybuantą zmiennej losowej X nazywamy funkcję F X : R 1 [0, 1] określoną wzorem F X (u) = P(X u) ( = P X ((, u]) ). Wniosek: rozkład P X zmiennej losowej jest znany dokładnie wtedy gdy znana jest dystrybuanta F X tej zmiennej.

27 Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II, cd. Definicja dystrybuanty zmiennej losowej Dystrybuantą zmiennej losowej X nazywamy funkcję F X : R 1 [0, 1] określoną wzorem F X (u) = P(X u) ( = P X ((, u]) ). Wniosek: rozkład P X zmiennej losowej jest znany dokładnie wtedy gdy znana jest dystrybuanta F X tej zmiennej. Wniosek: jeśli X 0, to EX = + 0 (1 F X (u)) du.

28 Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II, cd. Definicja dystrybuanty zmiennej losowej Dystrybuantą zmiennej losowej X nazywamy funkcję F X : R 1 [0, 1] określoną wzorem F X (u) = P(X u) ( = P X ((, u]) ). Wniosek: rozkład P X zmiennej losowej jest znany dokładnie wtedy gdy znana jest dystrybuanta F X tej zmiennej. Wniosek: jeśli X 0, to EX = + 0 (1 F X (u)) du. Wniosek: Wartość oczekiwana jest funkcją rozkładu (dystrybuanty) zmiennej losowej, a nie samej zmiennej. W ten sposób prawdopodobieństwa na (R 1, B 1 ) pełnią szczególną rolę. Nazywamy je rozkładami prawdopodobieństwa.

29 Własności dystrybuanty Wartość oczekiwana Dystrybuanty

30 Własności dystrybuanty Wartość oczekiwana Dystrybuanty Twierdzenie (Własności dystrybuanty zmiennej losowej)

31 Własności dystrybuanty Wartość oczekiwana Dystrybuanty Twierdzenie (Własności dystrybuanty zmiennej losowej) 1 Jeżeli u v, to F X (u) F X (v) (monotoniczność).

32 Własności dystrybuanty Wartość oczekiwana Dystrybuanty Twierdzenie (Własności dystrybuanty zmiennej losowej) 1 Jeżeli u v, to F X (u) F X (v) (monotoniczność). 2 F X jest funkcją prawostronnie ciągłą.

33 Własności dystrybuanty Wartość oczekiwana Dystrybuanty Twierdzenie (Własności dystrybuanty zmiennej losowej) 1 Jeżeli u v, to F X (u) F X (v) (monotoniczność). 2 F X jest funkcją prawostronnie ciągłą. 3 lim F X (u) = 0, u lim F X (u) = 1. u +

34 Własności dystrybuanty Wartość oczekiwana Dystrybuanty Twierdzenie (Własności dystrybuanty zmiennej losowej) 1 Jeżeli u v, to F X (u) F X (v) (monotoniczność). 2 F X jest funkcją prawostronnie ciągłą. 3 lim F X (u) = 0, u lim F X (u) = 1. u + Twierdzenie (O dystrybuantach) Jeżeli funkcja F : R 1 [0, 1] spełnia warunki 1-3 z powyższego twierdzenia, to istnieje zmienna losowa X taka, że F = F X.

35 Definicje Obliczenia Charakterystyki liczbowe

36 Definicje Obliczenia Charakterystyki liczbowe Rozkłady dyskretne Zmienna losowa X ma rozkład dyskretny, jeśli istnieją liczby x 1, x 2,... R 1 i prawdopodobieństwa p 1, p 2,... 0, j=1 p j = 1, takie, że P(X = x j ) = p j, j = 1, 2,....

37 Definicje Obliczenia Charakterystyki liczbowe Rozkłady dyskretne Zmienna losowa X ma rozkład dyskretny, jeśli istnieją liczby x 1, x 2,... R 1 i prawdopodobieństwa p 1, p 2,... 0, j=1 p j = 1, takie, że P(X = x j ) = p j, j = 1, 2,.... Rozkłady absolutnie ciągłe Zmienna losowa X ma rozkład absolutnie ciągły o gęstości p(x), jeśli dla każdych a < b P(a < X b) = b a p(x) dx. (Wtedy p(x) 0 i p(x) dx = 1). Gęstość rozkładu absolutnie ciągłego jest wyznaczona jednoznacznie z dokładnością do równości l-prawie wszędzie (gdzie l jest miarą Lebesgue a).

38 Definicje Obliczenia Charakterystyki liczbowe cd. P X {x} = P(X = x) > 0 wtedy i tylko wtedy, gdy dystrybuanta F X ma skok w punkcie x i F X (x) F X (x ) = P(X = x).

39 Definicje Obliczenia Charakterystyki liczbowe cd. P X {x} = P(X = x) > 0 wtedy i tylko wtedy, gdy dystrybuanta F X ma skok w punkcie x i F X (x) F X (x ) = P(X = x). Gęstość a pochodna dystrybuanty

40 Definicje Obliczenia Charakterystyki liczbowe cd. P X {x} = P(X = x) > 0 wtedy i tylko wtedy, gdy dystrybuanta F X ma skok w punkcie x i F X (x) F X (x ) = P(X = x). Gęstość a pochodna dystrybuanty Można pokazać, że każda dystrybuanta F jest l-prawie wszędzie różniczkowalna i pochodna F (określona l-prawie wszędzie) spełnia warunek F (x) F (x) dx. (,x] Może się więc zdarzyć, że R 1 F (x) dx < 1.

41 Definicje Obliczenia Charakterystyki liczbowe cd. P X {x} = P(X = x) > 0 wtedy i tylko wtedy, gdy dystrybuanta F X ma skok w punkcie x i F X (x) F X (x ) = P(X = x). Gęstość a pochodna dystrybuanty Można pokazać, że każda dystrybuanta F jest l-prawie wszędzie różniczkowalna i pochodna F (określona l-prawie wszędzie) spełnia warunek F (x) F (x) dx. (,x] Może się więc zdarzyć, że R 1 F (x) dx < 1. Jeżeli R 1 F (x) dx = 1, to rozkład odpowiadający dystrybuancie F jest absolutnie ciągły z gęstością p(x) = F (x).

42 Jak liczyć EX? Definicje Obliczenia Charakterystyki liczbowe Jeżeli X ma rozkład dyskretny,

43 Jak liczyć EX? Definicje Obliczenia Charakterystyki liczbowe Jeżeli X ma rozkład dyskretny, to dla dowolnej funkcji f : R 1 R 1 Ef (X ) = f (x i )P(X = x i ) = f (x i )p i, i=1 i=1

44 Jak liczyć EX? Definicje Obliczenia Charakterystyki liczbowe Jeżeli X ma rozkład dyskretny, to dla dowolnej funkcji f : R 1 R 1 Ef (X ) = f (x i )P(X = x i ) = f (x i )p i, i=1 i=1 przy czym Ef (X ) istnieje dokładnie wtedy, gdy f (x i ) p i < +. i=1

45 Jak liczyć EX? cd. Definicje Obliczenia Charakterystyki liczbowe Jeżeli X ma rozkład absolutnie ciągły o gęstości p(x),

46 Jak liczyć EX? cd. Definicje Obliczenia Charakterystyki liczbowe Jeżeli X ma rozkład absolutnie ciągły o gęstości p(x), to dla dowolnej funkcji (borelowskiej) f : R 1 R 1 Ef (X ) = + f (x)p(x) dx,

47 Jak liczyć EX? cd. Definicje Obliczenia Charakterystyki liczbowe Jeżeli X ma rozkład absolutnie ciągły o gęstości p(x), to dla dowolnej funkcji (borelowskiej) f : R 1 R 1 Ef (X ) = + f (x)p(x) dx, przy czym Ef (X ) istnieje dokładnie wtedy, gdy f (x) p(x) dx < +. +

48 Definicje Obliczenia Charakterystyki liczbowe Słowniczek teorii prawdopodobieństwa, cz. III

49 Definicje Obliczenia Charakterystyki liczbowe Słowniczek teorii prawdopodobieństwa, cz. III Definicje Momentem absolutnym rzędu q > 0 zmiennej losowej nazywamy liczbę m p = m p (X ) = E X p.

50 Definicje Obliczenia Charakterystyki liczbowe Słowniczek teorii prawdopodobieństwa, cz. III Definicje Momentem absolutnym rzędu q > 0 zmiennej losowej nazywamy liczbę m p = m p (X ) = E X p. Wariancją całkowalnej z kwadratem zmiennej losowej X nazywamy liczbę D 2 (X ) = VarX := E(X EX ) 2 = EX 2 (EX ) 2.

51 Definicje Obliczenia Charakterystyki liczbowe Słowniczek teorii prawdopodobieństwa, cz. III Definicje Momentem absolutnym rzędu q > 0 zmiennej losowej nazywamy liczbę m p = m p (X ) = E X p. Wariancją całkowalnej z kwadratem zmiennej losowej X nazywamy liczbę D 2 (X ) = VarX := E(X EX ) 2 = EX 2 (EX ) 2. Odchyleniem standardowym całkowalnej z kwadratem zmiennej losowej X nazywamy liczbę D(X ) := VarX = E(X EX ) 2.

52 Definicje Obliczenia Charakterystyki liczbowe Słowniczek teorii prawdopodobieństwa, cz. III, cd.

53 Definicje Obliczenia Charakterystyki liczbowe Słowniczek teorii prawdopodobieństwa, cz. III, cd. Definicje Medianą zmiennej losowej X (właściwie: rozkładu zmiennej losowej) nazywamy taką liczbę x 1/2, że P(X x 1/2 ) 1/2, P(X x 1/2 ) 1/2.

54 Definicje Obliczenia Charakterystyki liczbowe Słowniczek teorii prawdopodobieństwa, cz. III, cd. Definicje Medianą zmiennej losowej X (właściwie: rozkładu zmiennej losowej) nazywamy taką liczbę x 1/2, że P(X x 1/2 ) 1/2, P(X x 1/2 ) 1/2. Kwantylem rzędu p, p (0, 1), rozkładu zmiennej losowej X nazywamy taką liczbę x p, że P(X x p ) p, P(X x p ) 1 p.

55 Definicje Obliczenia Charakterystyki liczbowe Słowniczek teorii prawdopodobieństwa, cz. III, cd. Definicje Medianą zmiennej losowej X (właściwie: rozkładu zmiennej losowej) nazywamy taką liczbę x 1/2, że P(X x 1/2 ) 1/2, P(X x 1/2 ) 1/2. Kwantylem rzędu p, p (0, 1), rozkładu zmiennej losowej X nazywamy taką liczbę x p, że P(X x p ) p, P(X x p ) 1 p. Zadanie: Przypuśćmy, że znamy dystrybuantę F X zmiennej losowej X. Jak znaleźć medianę i kwantyle tej zmiennej?

56 Przestrzeń statystyczna Dwa ważne przykłady Słowniczek statystyki matematycznej, cz. I

57 Przestrzeń statystyczna Dwa ważne przykłady Słowniczek statystyki matematycznej, cz. I Definicja przestrzeni statystycznej Przestrzenią statystyczną (lub modelem statystycznym ) nazywamy trójkę (X, B, {P θ } θ Θ ), gdzie dla każdego θ Θ trójka (X, B, P θ ) jest przestrzenią probabilistyczną.

58 Przestrzeń statystyczna Dwa ważne przykłady Słowniczek statystyki matematycznej, cz. I Definicja przestrzeni statystycznej Przestrzenią statystyczną (lub modelem statystycznym ) nazywamy trójkę (X, B, {P θ } θ Θ ), gdzie dla każdego θ Θ trójka (X, B, P θ ) jest przestrzenią probabilistyczną. Zbiór X nazywamy przestrzenią próbek lub zbiorem prób losowych.

59 Przestrzeń statystyczna Dwa ważne przykłady Słowniczek statystyki matematycznej, cz. I Definicja przestrzeni statystycznej Przestrzenią statystyczną (lub modelem statystycznym ) nazywamy trójkę (X, B, {P θ } θ Θ ), gdzie dla każdego θ Θ trójka (X, B, P θ ) jest przestrzenią probabilistyczną. Zbiór X nazywamy przestrzenią próbek lub zbiorem prób losowych. Definicja statystyki Statystyką nazywamy funkcję Y : (X, B) R 1 (lub R d ), która dla każdego θ Θ jest zmienną losową na (X, B, P θ ).

60 Przestrzeń statystyczna Dwa ważne przykłady Przykład. n-krotny pomiar jednym przyrządem

61 Przestrzeń statystyczna Dwa ważne przykłady Przykład. n-krotny pomiar jednym przyrządem Rozważmy ciąg pomiarów postaci X k = m + ε k, gdzie m - rzeczywista wartość pomiaru, a ε k - błąd k-tego pomiaru.

62 Przestrzeń statystyczna Dwa ważne przykłady Przykład. n-krotny pomiar jednym przyrządem Rozważmy ciąg pomiarów postaci X k = m + ε k, gdzie m - rzeczywista wartość pomiaru, a ε k - błąd k-tego pomiaru. Co przyjąć za wynik pomiaru? X n = X 1 + X X n. n Dlaczego? Bo prawo wielkich liczb stwierdza, że ε 1 + ε ε n n Eε 1, gdzie Eε 1 = 0 dla przyrządu poprawnie skalibrowanego ( brak błędu systematycznego ).

63 Przestrzeń statystyczna Dwa ważne przykłady Przykład. n-krotny pomiar jednym przyrządem Rozważmy ciąg pomiarów postaci X k = m + ε k, gdzie m - rzeczywista wartość pomiaru, a ε k - błąd k-tego pomiaru. Co przyjąć za wynik pomiaru? X n = X 1 + X X n. n Dlaczego? Bo prawo wielkich liczb stwierdza, że ε 1 + ε ε n n Eε 1, gdzie Eε 1 = 0 dla przyrządu poprawnie skalibrowanego ( brak błędu systematycznego ). Powyżej korzystamy z modelu błędu pomiaru w postaci ciągu niezależnych zmiennych losowych o jednakowym rozkładzie, z wartością oczekiwaną zero.

64 Przestrzeń statystyczna Dwa ważne przykłady Przykład. Losowanie ze zwracaniem

65 Przestrzeń statystyczna Dwa ważne przykłady Przykład. Losowanie ze zwracaniem Badamy rozkład danej cechy U w populacji Ω.

66 Przestrzeń statystyczna Dwa ważne przykłady Przykład. Losowanie ze zwracaniem Badamy rozkład danej cechy U w populacji Ω. Losujemy (ze zwracaniem) N osobników ω 1, ω 2,..., ω N i badamy wartości cechy U(ω 1 ), U(ω 2 ),..., U(ω N ).

67 Przestrzeń statystyczna Dwa ważne przykłady Przykład. Losowanie ze zwracaniem Badamy rozkład danej cechy U w populacji Ω. Losujemy (ze zwracaniem) N osobników ω 1, ω 2,..., ω N i badamy wartości cechy U(ω 1 ), U(ω 2 ),..., U(ω N ). Jak określić odpowiednią przestrzeń statystyczną (X, B, {P θ } θ Θ )?

68 Przestrzeń statystyczna Dwa ważne przykłady Przykład. Losowanie ze zwracaniem Badamy rozkład danej cechy U w populacji Ω. Losujemy (ze zwracaniem) N osobników ω 1, ω 2,..., ω N i badamy wartości cechy U(ω 1 ), U(ω 2 ),..., U(ω N ). Jak określić odpowiednią przestrzeń statystyczną (X, B, {P θ } θ Θ )? Niech X 0 = {U(ω) : ω Ω} R d. Kładziemy: X = (X 0 ) N ; B =? (jak wynika z kontekstu); Θ = P(X 0 ) (zbiór wszystkich rozkładów prawdopodobieństwa na X 0 ); P θ = θ θ... θ. }{{} N razy

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład II: Zmienne losowe i charakterystyki ich rozkładów 13 października 2014 Zmienne losowe Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Definicja zmiennej losowej i jej

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład VII: Rozkład i jego charakterystyki 22 listopada 2016 Uprzednio wprowadzone pojęcia i ich własności Definicja zmiennej losowej Zmienna losowa na przestrzeni probabilistycznej (Ω, F, P) to funkcja

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład IV: 27 października 2014 Współczynnik korelacji Brak korelacji a niezależność Definicja współczynnika korelacji Współczynnikiem korelacji całkowalnych z kwadratem zmiennych losowych X i Y nazywamy

Bardziej szczegółowo

Rozdział 1. Zmienne losowe, ich rozkłady i charakterystyki. 1.1 Definicja zmiennej losowej

Rozdział 1. Zmienne losowe, ich rozkłady i charakterystyki. 1.1 Definicja zmiennej losowej Rozdział 1 Zmienne losowe, ich rozkłady i charakterystyki 1.1 Definicja zmiennej losowej Zbiór możliwych wyników eksperymentu będziemy nazywać przestrzenią zdarzeń elementarnych i oznaczać Ω, natomiast

Bardziej szczegółowo

Prawa wielkich liczb, centralne twierdzenia graniczne

Prawa wielkich liczb, centralne twierdzenia graniczne , centralne twierdzenia graniczne Katedra matematyki i ekonomii matematycznej 17 maja 2012, centralne twierdzenia graniczne Rodzaje zbieżności ciągów zmiennych losowych, centralne twierdzenia graniczne

Bardziej szczegółowo

Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna.

Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna. Wykład 4 Rozkłady i ich dystrybuanty Dwa typy zmiennych losowych Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x, x 2,...}, to mówimy, że jest to zmienna dyskretna.

Bardziej szczegółowo

Statystyka i eksploracja danych

Statystyka i eksploracja danych Projekt pn. Wzmocnienie potencjału dydaktycznego UMK w Toruniu w dziedzinach matematyczno-przyrodniczych realizowany w ramach Poddziałania 4.1.1 Programu Operacyjnego Kapitał Ludzki Statystyka i eksploracja

Bardziej szczegółowo

Zmienne losowe ciągłe i ich rozkłady

Zmienne losowe ciągłe i ich rozkłady Rachunek Prawdopodobieństwa i Statystyka - W3 Zmienne losowe ciągłe i ich rozkłady Dr Anna ADRIAN Paw B5, pok47 adan@agh.edu.pl Plan wykładu Zmienna losowa ciągła Dystrybuanta i unkcja gęstości rozkładu

Bardziej szczegółowo

Zmienne losowe ciągłe i ich rozkłady

Zmienne losowe ciągłe i ich rozkłady Statystyka i opracowanie danych W3 Zmienne losowe ciągłe i ich rozkłady Dr Anna ADRIAN Paw B5, pok47 adan@agh.edu.pl Plan wykładu Rozkład Poissona. Zmienna losowa ciągła Dystrybuanta i funkcja gęstości

Bardziej szczegółowo

Literatura. Leitner R., Zacharski J., Zarys matematyki wyŝszej dla studentów, cz. III.

Literatura. Leitner R., Zacharski J., Zarys matematyki wyŝszej dla studentów, cz. III. Literatura Krysicki W., Bartos J., Dyczka W., Królikowska K, Wasilewski M., Rachunek Prawdopodobieństwa i Statystyka Matematyczna w Zadaniach, cz. I. Leitner R., Zacharski J., Zarys matematyki wyŝszej

Bardziej szczegółowo

Przykład 1 W przypadku jednokrotnego rzutu kostką przestrzeń zdarzeń elementarnych

Przykład 1 W przypadku jednokrotnego rzutu kostką przestrzeń zdarzeń elementarnych Rozdział 1 Zmienne losowe, ich rozkłady i charakterystyki 1.1 Definicja zmiennej losowej Niech Ω będzie przestrzenią zdarzeń elementarnych. Definicja 1 Rodzinę S zdarzeń losowych (zbiór S podzbiorów zbioru

Bardziej szczegółowo

PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA. Piotr Wiącek

PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA. Piotr Wiącek PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA Piotr Wiącek ROZKŁAD PRAWDOPODOBIEŃSTWA Jest to miara probabilistyczna określona na σ-ciele podzbiorów borelowskich pewnej przestrzeni metrycznej. σ-ciało podzbiorów

Bardziej szczegółowo

Rachunek Prawdopodobieństwa i Statystyka

Rachunek Prawdopodobieństwa i Statystyka Rachunek Prawdopodobieństwa i Statystyka W 2. Probabilistyczne modele danych Zmienne losowe. Rozkład prawdopodobieństwa i dystrybuanta. Wartość oczekiwana i wariancja zmiennej losowej Dr Anna ADRIAN Zmienne

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład XIV: Metody Monte Carlo 19 stycznia 2016 Przybliżone obliczanie całki oznaczonej Rozważmy całkowalną funkcję f : [0, 1] R. Chcemy znaleźć przybliżoną wartość liczbową całki 1 f (x) dx. 0 Jeden ze

Bardziej szczegółowo

KURS PRAWDOPODOBIEŃSTWO

KURS PRAWDOPODOBIEŃSTWO KURS PRAWDOPODOBIEŃSTWO Lekcja 6 Ciągłe zmienne losowe ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Zmienna losowa ciągła jest

Bardziej szczegółowo

Rozkłady statystyk z próby

Rozkłady statystyk z próby Rozkłady statystyk z próby Rozkłady statystyk z próby Przypuśćmy, że wykonujemy serię doświadczeń polegających na 4 krotnym rzucie symetryczną kostką do gry, obserwując liczbę wyrzuconych oczek Nr kolejny

Bardziej szczegółowo

STATYSTYKA

STATYSTYKA Wykład 1 20.02.2008r. 1. ROZKŁADY PRAWDOPODOBIEŃSTWA 1.1 Rozkład dwumianowy Rozkład dwumianowy, 0 1 Uwaga: 1, rozkład zero jedynkowy. 1 ; 1,2,, Fakt: Niech,, będą niezależnymi zmiennymi losowymi o jednakowym

Bardziej szczegółowo

Zmienne losowe, statystyki próbkowe. Wrocław, 2 marca 2015

Zmienne losowe, statystyki próbkowe. Wrocław, 2 marca 2015 Zmienne losowe, statystyki próbkowe Wrocław, 2 marca 2015 Zasady zaliczenia 2 kolokwia (każde po 20 punktów) projekt (20 punktów) aktywność Zasady zaliczenia 2 kolokwia (każde po 20 punktów) projekt (20

Bardziej szczegółowo

Statystyka matematyczna. Wykład III. Estymacja przedziałowa

Statystyka matematyczna. Wykład III. Estymacja przedziałowa Statystyka matematyczna. Wykład III. e-mail:e.kozlovski@pollub.pl Spis treści Rozkłady zmiennych losowych 1 Rozkłady zmiennych losowych Rozkład χ 2 Rozkład t-studenta Rozkład Fischera 2 Przedziały ufności

Bardziej szczegółowo

Wykład 10 Estymacja przedziałowa - przedziały ufności dla średn

Wykład 10 Estymacja przedziałowa - przedziały ufności dla średn Wykład 10 Estymacja przedziałowa - przedziały ufności dla średniej Wrocław, 21 grudnia 2016r Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja 10.1 Przedziałem

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA. rachunek prawdopodobieństwa

STATYSTYKA MATEMATYCZNA. rachunek prawdopodobieństwa STATYSTYKA MATEMATYCZNA rachunek prawdopodobieństwa treść Zdarzenia losowe pojęcie prawdopodobieństwa prawo wielkich liczb zmienne losowe rozkłady teoretyczne zmiennych losowych Zanim zajmiemy się wnioskowaniem

Bardziej szczegółowo

Na A (n) rozważamy rozkład P (n) , który na zbiorach postaci A 1... A n określa się jako P (n) (X n, A (n), P (n)

Na A (n) rozważamy rozkład P (n) , który na zbiorach postaci A 1... A n określa się jako P (n) (X n, A (n), P (n) MODELE STATYSTYCZNE Punktem wyjścia w rozumowaniu statystycznym jest zmienna losowa (cecha) X i jej obserwacje opisujące wyniki doświadczeń bądź pomiarów. Zbiór wartości zmiennej losowej X (zbiór wartości

Bardziej szczegółowo

Zmienna losowa i jej rozkład Dystrybuanta zmiennej losowej Wartość oczekiwana zmiennej losowej

Zmienna losowa i jej rozkład Dystrybuanta zmiennej losowej Wartość oczekiwana zmiennej losowej Zmienna losowa i jej rozkład Dystrybuanta zmiennej losowej Wartość oczekiwana zmiennej losowej c Copyright by Ireneusz Krech ikrech@ap.krakow.pl Instytut Matematyki Uniwersytet Pedagogiczny im. KEN w Krakowie

Bardziej szczegółowo

Modelowanie zależności. Matematyczne podstawy teorii ryzyka i ich zastosowanie R. Łochowski

Modelowanie zależności. Matematyczne podstawy teorii ryzyka i ich zastosowanie R. Łochowski Modelowanie zależności pomiędzy zmiennymi losowymi Matematyczne podstawy teorii ryzyka i ich zastosowanie R. Łochowski P Zmienne losowe niezależne - przypomnienie Dwie rzeczywiste zmienne losowe X i Y

Bardziej szczegółowo

Statystyka matematyczna dla leśników

Statystyka matematyczna dla leśników Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 2013/2014 Wykład 3 Zmienna losowa i jej rozkłady Zdarzenia losowe Pojęcie prawdopodobieństwa

Bardziej szczegółowo

Wykład z analizy danych: powtórzenie zagadnień z rachunku prawdopodobieństwa

Wykład z analizy danych: powtórzenie zagadnień z rachunku prawdopodobieństwa Wykład z analizy danych: powtórzenie zagadnień z rachunku prawdopodobieństwa Marek Kubiak Instytut Informatyki Politechnika Poznańska Plan wykładu Podstawowe pojęcia rachunku prawdopodobieństwa Rozkład

Bardziej szczegółowo

4,5. Dyskretne zmienne losowe (17.03; 31.03)

4,5. Dyskretne zmienne losowe (17.03; 31.03) 4,5. Dyskretne zmienne losowe (17.03; 31.03) Definicja 1 Zmienna losowa nazywamy dyskretna (skokowa), jeśli zbiór jej wartości x 1, x 2,..., można ustawić w ciag. Zmienna losowa X, która przyjmuje wszystkie

Bardziej szczegółowo

Statystyka i eksploracja danych

Statystyka i eksploracja danych Wykład I: Formalizm statystyki matematycznej 17 lutego 2014 Forma zaliczenia przedmiotu Forma zaliczenia Literatura Zagadnienia omawiane na wykładach Forma zaliczenia przedmiotu Forma zaliczenia Literatura

Bardziej szczegółowo

WYKŁAD 2. Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady

WYKŁAD 2. Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady WYKŁAD 2 Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady Metody statystyczne metody opisu metody wnioskowania statystycznego syntetyczny liczbowy opis właściwości zbioru danych ocena

Bardziej szczegółowo

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład I: Formalizm teorii prawdopodonieństwa 6 października 2014 Forma zaliczenia przedmiotu Forma zaliczenia Literatura Dostępność treści wykładów 1 Zaliczenie ćwiczeń rachunkowych. 2 Egzamin dwuczęściowy:

Bardziej szczegółowo

ZMIENNE LOSOWE. Zmienna losowa (ZL) X( ) jest funkcją przekształcającą przestrzeń zdarzeń elementarnych w zbiór liczb rzeczywistych R 1 tzn. X: R 1.

ZMIENNE LOSOWE. Zmienna losowa (ZL) X( ) jest funkcją przekształcającą przestrzeń zdarzeń elementarnych w zbiór liczb rzeczywistych R 1 tzn. X: R 1. Opracowała: Joanna Kisielińska ZMIENNE LOSOWE Zmienna losowa (ZL) X( ) jest funkcją przekształcającą przestrzeń zdarzeń elementarnych w zbiór liczb rzeczywistych R tzn. X: R. Realizacją zmiennej losowej

Bardziej szczegółowo

W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych:

W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych: W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych: Zmienne losowe skokowe (dyskretne) przyjmujące co najwyżej przeliczalnie wiele wartości Zmienne losowe ciągłe

Bardziej szczegółowo

Przestrzeń probabilistyczna

Przestrzeń probabilistyczna Przestrzeń probabilistyczna (Ω, Σ, P) Ω pewien niepusty zbiór Σ rodzina podzbiorów tego zbioru P funkcja określona na Σ, zwana prawdopodobieństwem. Przestrzeń probabilistyczna (Ω, Σ, P) Ω pewien niepusty

Bardziej szczegółowo

Ważne rozkłady i twierdzenia

Ważne rozkłady i twierdzenia Ważne rozkłady i twierdzenia Rozkład dwumianowy i wielomianowy Częstość. Prawo wielkich liczb Rozkład hipergeometryczny Rozkład Poissona Rozkład normalny i rozkład Gaussa Centralne twierdzenie graniczne

Bardziej szczegółowo

Estymacja przedziałowa - przedziały ufności dla średnich. Wrocław, 5 grudnia 2014

Estymacja przedziałowa - przedziały ufności dla średnich. Wrocław, 5 grudnia 2014 Estymacja przedziałowa - przedziały ufności dla średnich Wrocław, 5 grudnia 2014 Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja Przedziałem ufności dla paramertu

Bardziej szczegółowo

Rozkład normalny Parametry rozkładu zmiennej losowej Zmienne losowe wielowymiarowe

Rozkład normalny Parametry rozkładu zmiennej losowej Zmienne losowe wielowymiarowe Statystyka i opracowanie danych W4 Rozkład normalny Parametry rozkładu zmiennej losowej Zmienne losowe wielowymiarowe Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Rozkład normalny wykres funkcji gęstości

Bardziej szczegółowo

Statystyka. Magdalena Jakubek. kwiecień 2017

Statystyka. Magdalena Jakubek. kwiecień 2017 Statystyka Magdalena Jakubek kwiecień 2017 1 Nauka nie stara się wyjaśniać, a nawet niemal nie stara się interpretować, zajmuje się ona głównie budową modeli. Model rozumiany jest jako matematyczny twór,

Bardziej szczegółowo

Wstęp do rachunku prawdopodobieństwa

Wstęp do rachunku prawdopodobieństwa Wstęp do rachunku prawdopodobieństwa Rozdział 06: Zmienne losowe. Katarzyna Rybarczyk-Krzywdzińska semestr zimowy 2015/2016 Wprowadzenie Przykład 6.1 Adam, Bolek i Czesiu wstąpili do kasyna. Postanowili

Bardziej szczegółowo

Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe

Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe 4.0. Rozkłady zmiennych losowych, dystrybuanta. Katarzyna Rybarczyk-Krzywdzińska semestr zimowy 2016/2017 Wprowadzenie Przykład 1 Bolek, Lolek i Tola

Bardziej szczegółowo

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl

Bardziej szczegółowo

Statystyka w analizie i planowaniu eksperymentu

Statystyka w analizie i planowaniu eksperymentu 29 marca 2011 Przestrzeń statystyczna - podstawowe zadania statystyki Zdarzeniom losowym określonym na pewnej przestrzeni zdarzeń elementarnych Ω można zazwyczaj na wiele różnych sposobów przypisać jakieś

Bardziej szczegółowo

Statystyka w analizie i planowaniu eksperymentu

Statystyka w analizie i planowaniu eksperymentu 31 marca 2014 Przestrzeń statystyczna - podstawowe zadania statystyki Zdarzeniom losowym określonym na pewnej przestrzeni zdarzeń elementarnych Ω można zazwyczaj na wiele różnych sposobów przypisać jakieś

Bardziej szczegółowo

Statystyka w analizie i planowaniu eksperymentu

Statystyka w analizie i planowaniu eksperymentu 22 marca 2011 Przestrzeń statystyczna - podstawowe zadania statystyki Zdarzeniom losowym określonym na pewnej przestrzeni zdarzeń elementarnych Ω można zazwyczaj na wiele różnych sposobów przypisać jakieś

Bardziej szczegółowo

Ważne rozkłady i twierdzenia c.d.

Ważne rozkłady i twierdzenia c.d. Ważne rozkłady i twierdzenia c.d. Funkcja charakterystyczna rozkładu Wielowymiarowy rozkład normalny Elipsa kowariacji Sploty rozkładów Rozkłady jednostajne Sploty z rozkładem normalnym Pobieranie próby

Bardziej szczegółowo

Definicja 7.4 (Dystrybuanta zmiennej losowej). Dystrybuantą F zmiennej losowej X nazywamy funkcję: Własności dystrybuanty zmiennej losowej:

Definicja 7.4 (Dystrybuanta zmiennej losowej). Dystrybuantą F zmiennej losowej X nazywamy funkcję: Własności dystrybuanty zmiennej losowej: Definicja 7.4 (Dystrybuanta zmiennej losowej). Dystrybuantą F zmiennej losowej X nazywamy funkcję: F (t) P (X t) < t < Własności dystrybuanty zmiennej losowej: jest niemalejąca: 0 F (t) jest prawostronnie

Bardziej szczegółowo

Statystyka Opisowa z Demografią oraz Biostatystyka. Zmienne losowe. Aleksander Denisiuk. denisjuk@euh-e.edu.pl

Statystyka Opisowa z Demografią oraz Biostatystyka. Zmienne losowe. Aleksander Denisiuk. denisjuk@euh-e.edu.pl Statystyka Opisowa z Demografią oraz Biostatystyka Zmienne losowe Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2 82-300 Elblag oraz Biostatystyka p.

Bardziej szczegółowo

Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład

Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład Rozdział 1 Wektory losowe 1.1 Wektor losowy i jego rozkład Definicja 1 Wektor X = (X 1,..., X n ), którego każda współrzędna jest zmienną losową, nazywamy n-wymiarowym wektorem losowym (krótko wektorem

Bardziej szczegółowo

Statystyka i eksploracja danych

Statystyka i eksploracja danych Projekt pn. Wzmocnienie potencjału dydaktycznego UMK w Toruniu w dziedzinach matematyczno-przyrodniczych realizowany w ramach Poddziałania 4.1.1 Programu Operacyjnego Kapitał Ludzki Statystyka i eksploracja

Bardziej szczegółowo

Kwantyle. Kwantyl rzędu p rozkładu prawdopodobieństwa to taka liczba x p. , że. Możemy go obliczyć z dystrybuanty: P(X x p.

Kwantyle. Kwantyl rzędu p rozkładu prawdopodobieństwa to taka liczba x p. , że. Możemy go obliczyć z dystrybuanty: P(X x p. Kwantyle Kwantyl rzędu p rozkładu prawdopodobieństwa to taka liczba x p, że P(X x p ) p P(X x p ) 1 p Możemy go obliczyć z dystrybuanty: Jeżeli F(x p ) = p, to x p jest kwantylem rzędu p Jeżeli F(x p )

Bardziej szczegółowo

Weryfikacja hipotez statystycznych

Weryfikacja hipotez statystycznych Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta

Bardziej szczegółowo

Spis treści 3 SPIS TREŚCI

Spis treści 3 SPIS TREŚCI Spis treści 3 SPIS TREŚCI PRZEDMOWA... 1. WNIOSKOWANIE STATYSTYCZNE JAKO DYSCYPLINA MATEMATYCZNA... Metody statystyczne w analizie i prognozowaniu zjawisk ekonomicznych... Badania statystyczne podstawowe

Bardziej szczegółowo

zdarzenie losowe - zdarzenie którego przebiegu czy wyniku nie da się przewidzieć na pewno.

zdarzenie losowe - zdarzenie którego przebiegu czy wyniku nie da się przewidzieć na pewno. Rachunek prawdopodobieństwa Podstawowym celem rachunku prawdopodobieństwa jest określanie szans zajścia pewnych zdarzeń. Pojęcie podstawowe rachunku prawdopodobieństwa to: zdarzenie losowe - zdarzenie

Bardziej szczegółowo

O ŚREDNIEJ ARYTMETYCZNEJ I MEDIANIE

O ŚREDNIEJ ARYTMETYCZNEJ I MEDIANIE Ryszard Zieliński, IMPAN Warszawa O ŚREDNIEJ ARYTMETYCZNEJ I MEDIANIE XXXIX Ogólnopolska Konferencja Zastosowań Matematyki Zakopane-Kościelisko 7-14 września 2010 r Model statystyczny pomiaru: wynik pomiaru

Bardziej szczegółowo

Rachunek prawdopodobieństwa Rozdział 5. Rozkłady łączne

Rachunek prawdopodobieństwa Rozdział 5. Rozkłady łączne Rachunek prawdopodobieństwa Rozdział 5. Rozkłady łączne 5.3 Rozkłady warunkowe i warunkowa wartość oczekiwana Katarzyna Rybarczyk-Krzywdzińska semestr zimowy 2015/2016 Prawdopodobieństwo wyraża postawę

Bardziej szczegółowo

Rachunek Prawdopodobieństwa Rozdział 5. Rozkłady łączne

Rachunek Prawdopodobieństwa Rozdział 5. Rozkłady łączne Rachunek Prawdopodobieństwa Rozdział 5. Rozkłady łączne 5.0 Definicje Katarzyna Rybarczyk-Krzywdzińska Wprowadzenie Przykład 1 Bolek, Lolek i Tola wstąpili do kasyna. (A) Bolek postawił na czerwone, (B)

Bardziej szczegółowo

Zmienne losowe skokowe

Zmienne losowe skokowe Zmienne losowe skokowe 1.1 Rozkład prawdopodobieństwa i dystrybuanta Zad.1 Niech zmienna losowa X przyjmuje wartości równe liczbie wyrzuconych oczek przy pojedynczym rzucie kostką do gry, czyli =1,2,3,,6.

Bardziej szczegółowo

Zadania o numerze 4 z zestawów licencjat 2014.

Zadania o numerze 4 z zestawów licencjat 2014. Zadania o numerze 4 z zestawów licencjat 2014. W nawiasie przy zadaniu jego występowanie w numerze zestawu Spis treści (Z1, Z22, Z43) Definicja granicy ciągu. Obliczyć granicę:... 3 Definicja granicy ciągu...

Bardziej szczegółowo

Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki

Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Przetwarzanie Sygnałów Studia Podyplomowe, Automatyka i Robotyka. Wstęp teoretyczny Zmienne losowe Zmienne losowe

Bardziej szczegółowo

Wartość oczekiwana Mediana i dominanta Wariancja Nierówności związane z momentami. Momenty zmiennych losowych Momenty wektorów losowych

Wartość oczekiwana Mediana i dominanta Wariancja Nierówności związane z momentami. Momenty zmiennych losowych Momenty wektorów losowych Przykład(Wartość średnia) Otrzymaliśmy propozycję udziału w grze polegającej na jednokrotnym rzucie symetryczną kostką. Jeśli wypadnie 1 wygrywamy2zł,;jeśliwypadnie2,płacimy1zł;za3wygrywamy 4zł;za4płacimy5zł;za5wygrywamy3złiwreszcieza6

Bardziej szczegółowo

Statystyka. Wykład 2. Krzysztof Topolski. Wrocław, 11 października 2012

Statystyka. Wykład 2. Krzysztof Topolski. Wrocław, 11 października 2012 Wykład 2 Wrocław, 11 października 2012 Próba losowa Definicja. Zmienne losowe X 1, X 2,..., X n nazywamy próba losową rozmiaru n z rozkładu o gęstości f (x) (o dystrybuancie F (x)) jeśli X 1, X 2,...,

Bardziej szczegółowo

Temat: Zmienna losowa. Rozkład skokowy. Rozkład ciągły. Kody kolorów: Ŝółty nowe pojęcie pomarańczowy uwaga. Anna Rajfura, Matematyka

Temat: Zmienna losowa. Rozkład skokowy. Rozkład ciągły. Kody kolorów: Ŝółty nowe pojęcie pomarańczowy uwaga. Anna Rajfura, Matematyka Temat: Zmienna losowa. Rozkład skokowy. Rozkład ciągły Kody kolorów: Ŝółty nowe pojęcie pomarańczowy uwaga 1 Zagadnienia 1. Przypomnienie wybranych pojęć rachunku prawdopodobieństwa. Zmienna losowa. Rozkład

Bardziej szczegółowo

II WYKŁAD STATYSTYKA. 12/03/2014 B8 sala 0.10B Godz. 15:15

II WYKŁAD STATYSTYKA. 12/03/2014 B8 sala 0.10B Godz. 15:15 II WYKŁAD STATYSTYKA 12/03/2014 B8 sala 0.10B Godz. 15:15 WYKŁAD 2 Rachunek prawdopodobieństwa zdarzenia elementarne zdarzenia losowe zmienna losowa skokowa i ciągła prawdopodobieństwo i gęstość prawdopodobieństwa

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA Zadanie 0.1 Zmienna losowa X ma rozkład określony funkcją prawdopodobieństwa: x k 0 4 p k 1/3 1/6 1/ obliczyć EX, D X. (odp. 4/3;

Bardziej szczegółowo

Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów.

Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów. Rachunek prawdopodobieństwa MAP1181 Wydział PPT, MS, rok akad. 213/14, sem. zimowy Wykładowca: dr hab. Agnieszka Jurlewicz Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów.

Bardziej szczegółowo

METODY BADAŃ NA ZWIERZĘTACH ze STATYSTYKĄ wykład 3-4. Parametry i wybrane rozkłady zmiennych losowych

METODY BADAŃ NA ZWIERZĘTACH ze STATYSTYKĄ wykład 3-4. Parametry i wybrane rozkłady zmiennych losowych METODY BADAŃ NA ZWIERZĘTACH ze STATYSTYKĄ wykład - Parametry i wybrane rozkłady zmiennych losowych Parametry zmiennej losowej EX wartość oczekiwana D X wariancja DX odchylenie standardowe inne, np. kwantyle,

Bardziej szczegółowo

STATYSTYKA wykład 5-6

STATYSTYKA wykład 5-6 TATYTYKA wykład 5-6 Twierdzenia graniczne Rozkłady statystyk z próby Wanda Olech Twierdzenia graniczne Jeżeli rozpatrujemy ciąg zmiennych losowych {X ; X ;...; X n }, to zdarza się, że ich rozkłady przy

Bardziej szczegółowo

Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe

Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe 4.1. Zmienne losowe dyskretne. Katarzyna Rybarczyk-Krzywdzińska Definicja/Rozkład Zmienne losowe dyskretne Definicja Zmienną losową, która skupiona

Bardziej szczegółowo

Wstęp do Rachunku Prawdopodobieństwa, IIr. WMS

Wstęp do Rachunku Prawdopodobieństwa, IIr. WMS Wstęp do Rachunku Prawdopodobieństwa, IIr. WMS przykładowe zadania na. kolokwium czerwca 6r. Poniżej podany jest przykładowy zestaw zadań. Podczas kolokwium na ich rozwiązanie przeznaczone będzie ok. 85

Bardziej szczegółowo

5 Przegląd najważniejszych rozkładów

5 Przegląd najważniejszych rozkładów 5 Przegląd najważniejszych rozkładów 5. Rozkład Bernoulliego W niezmieniających się warunkach wykonujemy n razy pewne doświadczenie. W wyniku każdego doświadczenia może nastąpić zdarzenie A lub A. Zakładamy,

Bardziej szczegółowo

Próbkowanie. Wykład 4 Próbkowanie i rozkłady próbkowe. Populacja a próba. Błędy w póbkowaniu, cd, Przykład 1 (Ochotnicy)

Próbkowanie. Wykład 4 Próbkowanie i rozkłady próbkowe. Populacja a próba. Błędy w póbkowaniu, cd, Przykład 1 (Ochotnicy) Wykład 4 Próbkowanie i rozkłady próbkowe µ = średnia w populacji, µ=ey, wartość oczekiwana zmiennej Y σ= odchylenie standardowe w populacji, σ =(Var Y) 1/2, pierwiastek kwadratowy wariancji zmiennej Y,

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5.

Bardziej szczegółowo

Wykład Centralne twierdzenie graniczne. Statystyka matematyczna: Estymacja parametrów rozkładu

Wykład Centralne twierdzenie graniczne. Statystyka matematyczna: Estymacja parametrów rozkładu Wykład 11-12 Centralne twierdzenie graniczne Statystyka matematyczna: Estymacja parametrów rozkładu Centralne twierdzenie graniczne (CTG) (Central Limit Theorem - CLT) Centralne twierdzenie graniczne (Lindenberga-Levy'ego)

Bardziej szczegółowo

Testowanie hipotez statystycznych.

Testowanie hipotez statystycznych. Bioinformatyka Wykład 9 Wrocław, 5 grudnia 2011 Temat. Test zgodności χ 2 Pearsona. Statystyka χ 2 Pearsona Rozpatrzmy ciąg niezależnych zmiennych losowych X 1,..., X n o jednakowym dyskretnym rozkładzie

Bardziej szczegółowo

Modelowanie komputerowe

Modelowanie komputerowe Modelowanie komputerowe wykład 1- Generatory liczb losowych i ich wykorzystanie dr Marcin Ziółkowski Instytut Matematyki i Informatyki Akademia im. Jana Długosza w Częstochowie 5,12 października 2016 r.

Bardziej szczegółowo

Elementy Rachunek prawdopodobieństwa

Elementy Rachunek prawdopodobieństwa Elementy rachunku prawdopodobieństwa Rachunek prawdopodobieństwa zajmuje się analizą praw rządzących zdarzeniami losowymi Pojęciami pierwotnymi są: zdarzenie elementarne ω oraz zbiór zdarzeń elementarnych

Bardziej szczegółowo

Pojęcie przestrzeni probabilistycznej

Pojęcie przestrzeni probabilistycznej Pojęcie przestrzeni probabilistycznej Definicja (przestrzeni probabilistycznej) Uporządkowany układ < Ω, S, P> nazywamy przestrzenią probabilistyczną jeśli (Ω) Ω jest niepustym zbiorem zwanym przestrzenia

Bardziej szczegółowo

Zestaw 2: Zmienne losowe. 0, x < 1, 2, 2 x, 1 1 x, 1 x, F 9 (x) =

Zestaw 2: Zmienne losowe. 0, x < 1, 2, 2 x, 1 1 x, 1 x, F 9 (x) = Zestaw : Zmienne losowe. Które z poniższych funkcji są dystrybuantami? Odpowiedź uzasadnij. Wskazówka: naszkicuj wykres. 0, x 0,, x 0, F (x) = x, F (x) = x, 0 x

Bardziej szczegółowo

Rozkłady zmiennych losowych

Rozkłady zmiennych losowych Rozkłady zmiennych losowych Wprowadzenie Badamy pewną zbiorowość czyli populację pod względem występowania jakiejś cechy. Pobieramy próbę i na podstawie tej próby wyznaczamy pewne charakterystyki. Jeśli

Bardziej szczegółowo

Wykład 13. Podstawowe pojęcia rachunku prawdopodobieństwa

Wykład 13. Podstawowe pojęcia rachunku prawdopodobieństwa Wykład 13. Podstawowe pojęcia rachunku prawdopodobieństwa dr Mariusz Grzadziel Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu semestr zimowy, rok akademicki 2015 2016 Doświadczenie losowe Doświadczenie

Bardziej szczegółowo

III. ZMIENNE LOSOWE JEDNOWYMIAROWE

III. ZMIENNE LOSOWE JEDNOWYMIAROWE III. ZMIENNE LOSOWE JEDNOWYMIAROWE.. Zmienna losowa i pojęcie rozkładu prawdopodobieństwa W dotychczas rozpatrywanych przykładach każdemu zdarzeniu była przyporządkowana odpowiednia wartość liczbowa. Ta

Bardziej szczegółowo

Statystyka opisowa. Robert Pietrzykowski.

Statystyka opisowa. Robert Pietrzykowski. Statystyka opisowa Robert Pietrzykowski email: robert_pietrzykowski@sggw.pl www.ekonometria.info 2 Na dziś Sprawy bieżące Przypominam, że 14.11.2015 pierwszy sprawdzian Konsultacje Sobota 9:00 10:00 pok.

Bardziej szczegółowo

Matematyka 2. dr inż. Rajmund Stasiewicz

Matematyka 2. dr inż. Rajmund Stasiewicz Matematyka 2 dr inż. Rajmund Stasiewicz Skala ocen Punkty Ocena 0 50 2,0 51 60 3,0 61 70 3,5 71 80 4,0 81 90 4,5 91-5,0 Zwolnienie z egzaminu Ocena z egzaminu liczba punktów z ćwiczeń - 5 Warunki zaliczenia

Bardziej szczegółowo

Diagramy Venna. Uwagi:

Diagramy Venna. Uwagi: Wykład 3: Prawdopodobieństwopodstawowe pojęcia i modele Często modelujemy zmienność używając rachunku prawdopodobieństwa. Prawdopodobieństwo opadów deszczu wynosi 80%. (zinterpretuj) Prawdopodobieństwo

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka - W 9 Testy statystyczne testy zgodności. Dr Anna ADRIAN Paw B5, pok407

Rachunek prawdopodobieństwa i statystyka - W 9 Testy statystyczne testy zgodności. Dr Anna ADRIAN Paw B5, pok407 Rachunek prawdopodobieństwa i statystyka - W 9 Testy statystyczne testy zgodności Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Weryfikacja hipotez dotyczących postaci nieznanego rozkładu -Testy zgodności.

Bardziej szczegółowo

Definicja 1 Statystyką nazywamy (mierzalną) funkcję obserwowalnego wektora losowego

Definicja 1 Statystyką nazywamy (mierzalną) funkcję obserwowalnego wektora losowego Rozdział 1 Statystyki Definicja 1 Statystyką nazywamy (mierzalną) funkcję obserwowalnego wektora losowego X = (X 1,..., X n ). Uwaga 1 Statystyka jako funkcja wektora zmiennych losowych jest zmienną losową

Bardziej szczegółowo

Testowanie hipotez statystycznych.

Testowanie hipotez statystycznych. Statystyka Wykład 10 Wrocław, 22 grudnia 2011 Testowanie hipotez statystycznych Definicja. Hipotezą statystyczną nazywamy stwierdzenie dotyczące parametrów populacji. Definicja. Dwie komplementarne w problemie

Bardziej szczegółowo

Statystyczna analiza danych

Statystyczna analiza danych Statystyczna analiza danych Marek Ptak 21 października 2013 Marek Ptak Statystyka 21 października 2013 1 / 70 Część I Wstęp Marek Ptak Statystyka 21 października 2013 2 / 70 LITERATURA A. Łomnicki, Wprowadzenie

Bardziej szczegółowo

Wykład 2 Hipoteza statystyczna, test statystyczny, poziom istotn. istotności, p-wartość i moc testu

Wykład 2 Hipoteza statystyczna, test statystyczny, poziom istotn. istotności, p-wartość i moc testu Wykład 2 Hipoteza statystyczna, test statystyczny, poziom istotności, p-wartość i moc testu Wrocław, 01.03.2017r Przykład 2.1 Właściciel firmy produkującej telefony komórkowe twierdzi, że wśród jego produktów

Bardziej szczegółowo

x x 0.5. x Przykłady do zadania 4.1 :

x x 0.5. x Przykłady do zadania 4.1 : Rachunek prawdopodobieństwa MAP5 Wydział Elektroniki, rok akad. /, sem. letni Wykładowca: dr hab. A. Jurlewicz Przykłady do listy 4: Wartość oczekiwana, wariancja, mediana, kwartyle rozkładu prawdopodobieństwa.

Bardziej szczegółowo

Wybrane rozkłady zmiennych losowych. Statystyka

Wybrane rozkłady zmiennych losowych. Statystyka Wybrane rozkłady zmiennych losowych Statystyka Rozkład dwupunktowy Zmienna losowa przyjmuje tylko dwie wartości: wartość 1 z prawdopodobieństwem p i wartość 0 z prawdopodobieństwem 1- p x i p i 0 1-p 1

Bardziej szczegółowo

Wykład 3: Prawdopodobieństwopodstawowe

Wykład 3: Prawdopodobieństwopodstawowe Wykład 3: Prawdopodobieństwopodstawowe pojęcia i modele Często modelujemy zmienność używając rachunku prawdopodobieństwa. Prawdopodobieństwo opadów deszczu wynosi 80%. (zinterpretuj) Prawdopodobieństwo

Bardziej szczegółowo

PODSTAWOWE ROZKŁADY ZMIENNYCH LOSOWYCH

PODSTAWOWE ROZKŁADY ZMIENNYCH LOSOWYCH PODSTAWOWE ROZKŁADY ZMIENNYCH LOSOWYCH Szkic wykładu 1 Podstawowe rozkłady zmiennej losowej skokowej Rozkład dwupunktowy Rozkład dwumianowy Rozkład Poissona 2 Rozkład dwupunktowy Rozkład dwumianowy Rozkład

Bardziej szczegółowo

Z Wikipedii, wolnej encyklopedii.

Z Wikipedii, wolnej encyklopedii. Rozkład normalny Rozkład normalny jest niezwykle ważnym rozkładem prawdopodobieństwa w wielu dziedzinach. Nazywa się go także rozkładem Gaussa, w szczególności w fizyce i inżynierii. W zasadzie jest to

Bardziej szczegółowo

Ćwiczenia 3 ROZKŁAD ZMIENNEJ LOSOWEJ JEDNOWYMIAROWEJ

Ćwiczenia 3 ROZKŁAD ZMIENNEJ LOSOWEJ JEDNOWYMIAROWEJ Ćwiczenia 3 ROZKŁAD ZMIENNEJ LOSOWEJ JEDNOWYMIAROWEJ Zadanie 1. Zmienna losowa przyjmuje wartości -1, 0, 1 z prawdopodobieństwami równymi odpowiednio: ¼, ½, ¼. Należy: a. Wyznaczyć rozkład prawdopodobieństwa

Bardziej szczegółowo

6.4 Podstawowe metody statystyczne

6.4 Podstawowe metody statystyczne 156 Wstęp do statystyki matematycznej 6.4 Podstawowe metody statystyczne Spóbujemy teraz w dopuszczalnym uproszczeniu przedstawić istotę analizy statystycznej. W szczególności udzielimy odpowiedzi na postawione

Bardziej szczegółowo

Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe.

Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Rachunek prawdopodobieństwa MAP3040 WPPT FT, rok akad. 2010/11, sem. zimowy Wykładowca: dr hab. Agnieszka Jurlewicz Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Warunkowa wartość oczekiwana.

Bardziej szczegółowo

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI. Zmienna losowa i jej rozkład

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI. Zmienna losowa i jej rozkład WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI Zmienna losowa i jej rozkład ZMIENNA LOSOWA Funkcja X przyporządkowująca każdemu zdarzeniu elementarnemu jedną i tylko jedną liczbę x. zmienna losowa skokowa skończona

Bardziej szczegółowo

Gdy n jest duże, statystyka ta (zwana statystyką chikwadrat), przy założeniu prawdziwości hipotezy H 0, ma w przybliżeniu rozkład χ 2 (k 1).

Gdy n jest duże, statystyka ta (zwana statystyką chikwadrat), przy założeniu prawdziwości hipotezy H 0, ma w przybliżeniu rozkład χ 2 (k 1). PRZYKŁADY TESTÓW NIEPARAMETRYCZNYCH. Test zgodności χ 2. Ten test służy testowaniu hipotezy, czy rozważana zmienna ma pewien ustalony rozkład, czy też jej rozkład różni się od tego ustalonego. Tym testem

Bardziej szczegółowo