Zasada zachowania pędu i krętu 5

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Zasada zachowania pędu i krętu 5"

Transkrypt

1 Zasada zachowania pęd i krę 5 Wprowadzenie Zasada zachowania pęd pnk aerialnego Jeżeli w przedziale, sa sił działających na pnk aerialny kład pnków aerialnych jes równa zer, o pęd pnk aerialnego kład pnków aerialnych a warość sałą. H cons 5. H H 5. Pochodna pęd pnk aerialnego kład pnków aerialnych jes równa sie sił zewnęrznych działających na en pnk kład pnków. d H ΣP i 5. d Zasada zachowania krę pnk aerialnego Jeżeli w przedziale, sa sił działających na pnk aerialny kład pnków aerialnych jes równa zer, o krę pnk aerialnego kład pnków aerialnych względe nierchoego pnk O a warość sałą. cons 5.4 O 5.5 O O Pochodna krę pnk aerialnego kład pnków aerialnych względe nierchoego biegna O jes równa sie oenów sił zewnęrznych względe ego biegna. d d O Σ 5.6 M i O Zadanie 5.. Z lfy o asie wylaje pocisk o asie rys. 5.. Wyznaczyć prędkość odrz lfy w chwili wysrzał, przyjjąc, że lfa spoczywa lźno na podłoż. Z zasady zachowania pęd ay: H H gdzie H jes pęde kład przed wysrzałe pocisk, naoias H jes pęde kład po wysrzale.

2 Dynaika Rys. 5.. Pęd kład przed wysrzałe pocisk jes równy: H Ponieważ przed wysrzałe kład pozosawał w spoczynk, dlaego jego pęd był równy zer: H Pęd kład po wysrzale pocisk jes równy: Możey zae zapisać: H H H Zadanie 5.. Dwa połączone ze sobą wagony o asach i porszają się po orze z prędkością. W przeciwny kiernk porsza się jeden wagon o asie. Jaka si być jego prędkość, aby po zderzeni z wagonai i wszyskie rzy złączone wagony zaczęły się porszać z prędkością zgodnie z kiernkie rch wagon. Pęd kład przed zderzenie wagonów rys. 5. jes równy: H Rys. 5.. Pęd kład po zderzeni wagonów rys. 5. jes równy: H Rys. 5..

3 Zasada zachowania pęd i krę Zgodnie z zasadą zachowania pęd ay: H H 8 Zadanie 5.. Pnk aerialny o asie porsza się ze sałą prędkością po gładkiej pozioej powierzchni. Po pewny czasie nasępje zderzenie z pnke o asie, a nasępnie z pnke o asie rys Zakładając zderzenie plasyczne pnków wyznaczyć prędkość z jaką porszają się one po pierwszy i drgi zderzeni. Przyjąć dane: kg, kg, kg, 5 /s. Rys Przed zderzenie pnków i w chwili pęd kład rys. 5.4 jes równy: H Po zderzeni pnków i w chwili pęd kład rys. 5.5 jes równy: H Rys Zgodnie z zasadą zachowania pęd ożey zapisać: H H,75 /s 5 Po zderzeni pnków i z pnke w chwili pęd kład rys. 5.6 jes równy: H Rys Zgodnie z zasadą zachowania pęd ożey zapisać: H H,5 /s,75

4 4 Dynaika Prędkość z jaką porszają się wszyskie rzy złączone pnky aerialne ożna wyznaczyć z poinięcie drgiego krok: H H 5,5 /s Zadanie 5.4. Człowiek o asie rzyje się na jedny końc nieważkiej liny przerzconej przez krążek o proieni r. Na drgi końc liny zawieszono beczkę o asie równej asie człowieka rys Obliczyć z jaką prędkością będzie się porszała beczka, jeżeli człowiek zacznie się wspinać po linie z prędkością względną względe liny równą. Rozparzyć wariany z krążkie nieważki warian I i krążkie o asie warian II. Rys Warian I: W chwili począkowej kiedy człowiek jeszcze się nie porsza krę kład względe pnk O, będącego środkie krążka, jes równy zer. Zgodnie z zasadą zachowania krę sa sił jes równa, krę kład pnków aerialnych jes sały. Zae w oencie wspinania się człowieka również będzie iał warość równą zer. Możey zapisać: O r r Z czego orzyjey prędkość z jaką porsza się beczka równą: Warian II W y przypadk względniay asę krążka obracającego się z prędkością kąową ω. May zae: gdzie: Osaecznie orzyjey: O r I ω r I z r z r r r ω r r

5 Zasada zachowania pęd i krę 5 Prędkość z jaką porsza się beczka jes y raze równa: 5 Zadanie 5.5. Wagon-plafora porsza się po pozioy orze ze sałą prędkością. Na plaforie sawiono beczkę o wyiarach d h i asie rys Przed przeieszczenie beczki chroni wysęp D. W pewnej chwili wagon zarzyano. Jaką prędkość kąową będzie iała beczka. Beczkę porakować jak walec o wyiarach d h. Rys W zadani rozparjey jedynie beczkę. rę względe pnk D rys. 5.9 przed zarzyanie wagon chwila jes równy: D h Rys W chwili, po zarzyani wagon, beczka na skek siły bezwładności zacznie się przewracać rys. 5.. rę względe pnk D jes zae równy: D I gdzie I z jes asowy oene bezwładności beczki względe osi z przechodzącej przez pnk D. z ω Rys. 5.. Moen bezwładności beczki względe osi cenralnej równoległej do osi z jes równy: I z c R h d 4h 48 orzysając z w. Seinera znajdjey oen bezwładności beczki względe osi z: I z I z c d h 4 5d 6h 48

6 6 Dynaika Osaecznie orzyjey, zgodnie z zasadą zachowania krę: D D h 5d 6h 48 Prędkość kąowa ω z jaką obraca się beczka jes równa: 4h ω 5d 6h ω Zadanie 5.6. Człowiek o asie 7 kg znajdje się na pozioej jednorodnej arczy ogącej się obracać bez arcia rys. 5.. W pewnej chwili człowiek zaczął się porszać wzdłż cięciwy arczy z prędkością względną /s w chwili począkowej znajdował się na środk cięciwy. Wyznaczyć prędkość kąową arczy jeżeli jej asa wynosi 8 kg, a proień R 5. Odległość cięciwy od środka arczy b 4. Rys. 5.. W chwili począkowej człowiek soi nierchoo krę kład jes równy zer. Tak więc, w dowolnej chwili czas, krę również będzie iał warość zero. Droga jaką przebywa człowiek rys. 5. jes równa: s A A Rys. 5..

7 Zasada zachowania pęd i krę 7 Oznaczy prędkość kąową z jaką zaczyna się obracać arcza jako ω oraz akalną odległość człowieka od środka arczy jako x. Możey zapisać: x b s b Prędkość pnk na arczy, w kóry znajdje się człowiek, jes zae równa: ω x ω b Rzjąc wekor prędkości względnej człowieka na kiernek wekora prędkości, orzyay prędkość bezwzględną * równą: * cosφ gdzie b cos φ x Rys. 5.. rę człowieka indeks względe pnk O ożey zapisać jako: O * x cosφ x b x b ω x [ b ω b ] Ponieważ krę cały czas pozosaje sały, równy zer, ak więc: ω b O O [ b ω b ] I O ω krę człowieka O krę arczy [ R b ω b ] ω b R R ω b b

8 8 Dynaika Lierara [] laszorny M., Niezgoda T., Mechanika ogólna Podsawy eoreyczne, zadania z rozwiązaniai, Oficyna Wydawnicza Poliechniki Warszawskiej, Warszawa 6. [] Leyko J., Mechanika ogólna, o Dynaika, Wydawnicwo Nakowe PWN, Warszawa 4. [] Misiak J., Zadania z echaniki ogólnej, część III dynaika, Wydawnicwo Nakowo-Techniczne, Warszawa 994. [4] Niezgodziński M. E., Niezgodziński T., Zbiór zadań z echaniki ogólnej, Wydawnicwo Nakowe PWN, Warszawa.

Wyznaczanie reakcji dynamicznych oraz wyważanie ciała w ruchu obrotowym wokół stałej osi 8

Wyznaczanie reakcji dynamicznych oraz wyważanie ciała w ruchu obrotowym wokół stałej osi 8 Wnacanie reakcji dnaicnch ora wważanie ciała w ruchu oroow wokół sałej osi 8 Wprowadenie Jeśli dowolne ciało swne o asie jes w ruchu oroow wokół osi, o na podporach powsają reakcje A i B. Składowe ch reakcji

Bardziej szczegółowo

Zasada pędu i popędu, krętu i pokrętu, energii i pracy oraz d Alemberta bryły w ruchu postępowym, obrotowym i płaskim

Zasada pędu i popędu, krętu i pokrętu, energii i pracy oraz d Alemberta bryły w ruchu postępowym, obrotowym i płaskim Zasada pędu i popędu, kręu i pokręu, energii i pracy oraz d Alembera bryły w ruchu posępowym, obroowym i płaskim Ruch posępowy bryły Pęd ciała w ruchu posępowym obliczamy, jak dla punku maerialnego, skupiając

Bardziej szczegółowo

FIZYKA R.Resnick & D. Halliday

FIZYKA R.Resnick & D. Halliday FIZYKA R.Resnick & D. Halliday rozwiązania zadań (część IV) Jacek Izdebski 5 stycznia 2002 roku Zadanie 1 We wnętrzu zakniętego wagonu kolejowego znajduje się aratka wraz z zapase pocisków. Aratka strzela

Bardziej szczegółowo

ψ przedstawia zależność

ψ przedstawia zależność Ruch falowy 4-4 Ruch falowy Ruch falowy polega na rozchodzeniu się zaburzenia (odkszałcenia) w ośrodku sprężysym Wielkość zaburzenia jes, podobnie jak w przypadku drgań, funkcją czasu () Zaburzenie rozchodzi

Bardziej szczegółowo

Zjawiska transportu 22-1

Zjawiska transportu 22-1 Zjawiska transport - Zjawiska transport Zjawiska transport są zjawiskai, które występją jeżeli kład terodynaiczny nie jest w stanie równowagi: i v! const - w kładzie występje akroskopowy przepływ gaz lb

Bardziej szczegółowo

Ruch płaski. Bryła w ruchu płaskim. (płaszczyzna kierująca) Punkty bryły o jednakowych prędkościach i przyspieszeniach. Prof.

Ruch płaski. Bryła w ruchu płaskim. (płaszczyzna kierująca) Punkty bryły o jednakowych prędkościach i przyspieszeniach. Prof. Ruch płaski Ruchem płaskim nazywamy ruch, podczas kórego wszyskie punky ciała poruszają się w płaszczyznach równoległych do pewnej nieruchomej płaszczyzny, zwanej płaszczyzną kierującą. Punky bryły o jednakowych

Bardziej szczegółowo

Wyznaczenie gęstości cieczy za pomocą wagi hydrostatycznej. Spis przyrządów: waga techniczna (szalkowa), komplet odważników, obciążnik, ławeczka.

Wyznaczenie gęstości cieczy za pomocą wagi hydrostatycznej. Spis przyrządów: waga techniczna (szalkowa), komplet odważników, obciążnik, ławeczka. Cel ćwiczenia: WYZNACZANIE GĘSTOŚCI CIECZY ZA POMOCĄ WAGI HYDROSTATYCZNEJ Wyznaczenie gęstości cieczy za poocą wagi hydrostatycznej. Spis przyrządów: waga techniczna (szalkowa), koplet odważników, obciążnik,

Bardziej szczegółowo

1. Z pręta o stałym przekroju poprzecznym i długości 1 m odcięto 25 cm kawałek. O ile przesunęło się połoŝenie środka masy pręta. Odp. o 8.

1. Z pręta o stałym przekroju poprzecznym i długości 1 m odcięto 25 cm kawałek. O ile przesunęło się połoŝenie środka masy pręta. Odp. o 8. DYNAMIKA BRYŁY SZTYWNEJ Środek asy. Z pręta o stały przekroju poprzeczny i długości odcięto 5 c kawałek. O ile przesunęło się połoŝenie środka asy pręta. o 8 początkowej długości pręta. Trzy kule o asach:,

Bardziej szczegółowo

9. PRZYPADEK OGÓLNY - RUCH W UKŁADZIE NIEINERCJALNYM

9. PRZYPADEK OGÓLNY - RUCH W UKŁADZIE NIEINERCJALNYM 9. PRZYPADEK OGÓLNY - RUCH W UKŁADZIE NIEINERCJALNYM Co to są kłady inercjalne i nieinercjalne? Układ inercjalny wyróŝnia się tym, Ŝe jeśli ciało w nim spoczywa lb porsza się rchem jednostajnym prostoliniowym,

Bardziej szczegółowo

Zasada ruchu środka masy i zasada d Alemberta 6

Zasada ruchu środka masy i zasada d Alemberta 6 Zaada ruchu środka ay i zaada d Aleerta 6 Wprowadzenie Zaada ruchu środka ay Środek ay układu punktów aterialnych poruza ię tak, jaky w ty punkcie yła kupiona cała aa układu i jaky do teo punktu przyłożone

Bardziej szczegółowo

Praca domowa nr 1. Metodologia Fizyki. Grupa 1. Szacowanie wartości wielkości fizycznych Zad Stoisz na brzegu oceanu, pogoda jest idealna,

Praca domowa nr 1. Metodologia Fizyki. Grupa 1. Szacowanie wartości wielkości fizycznych Zad Stoisz na brzegu oceanu, pogoda jest idealna, Praca domowa nr. Meodologia Fizyki. Grupa. Szacowanie warości wielkości fizycznych Zad... Soisz na brzegu oceanu, pogoda jes idealna, powierze przeźroczyse; proszę oszacować jak daleko od Ciebie znajduje

Bardziej szczegółowo

MGR 2. 2. Ruch drgający.

MGR 2. 2. Ruch drgający. MGR. Ruch drgający. Ruch uładów drgających (sprężyny, guy, brzeszczou, ip.). Badanie ruchu ciała zawieszonego na sprężynie. Wahadło aeayczne. Wahadło fizyczne. Rezonans echaniczny. Ćw. 1. Wyznaczanie oresu

Bardziej szczegółowo

6. Zasady zachowania energii, pędu i momentu pędu, praca. Wybór i opracowanie zadań Bogumiła Strzelecka.

6. Zasady zachowania energii, pędu i momentu pędu, praca. Wybór i opracowanie zadań Bogumiła Strzelecka. 6 Zasady zachowania energii, pędu i oenu pędu, praca Wybór i opracowanie zadań 6-69Boguiła Srzeecka 6 Sanki zsuwają się ze szczyu oru o długości pochyonego pod kąe α do poziou, a nasępnie wjeŝdŝają na

Bardziej szczegółowo

I. KINEMATYKA I DYNAMIKA

I. KINEMATYKA I DYNAMIKA piagoras.d.pl I. KINEMATYKA I DYNAMIKA KINEMATYKA: Położenie ciała w przesrzeni można określić jedynie względem jakiegoś innego ciała lub układu ciał zwanego układem odniesienia. Ruch i spoczynek są względne

Bardziej szczegółowo

DYNAMIKA KONSTRUKCJI

DYNAMIKA KONSTRUKCJI 10. DYNAMIKA KONSTRUKCJI 1 10. 10. DYNAMIKA KONSTRUKCJI 10.1. Wprowadzenie Ogólne równanie dynamiki zapisujemy w posaci: M d C d Kd =P (10.1) Zapis powyższy oznacza, że równanie musi być spełnione w każdej

Bardziej szczegółowo

Mechanika ogólna II Kinematyka i dynamika

Mechanika ogólna II Kinematyka i dynamika Mechanika ogólna II Kineatyka i dynaika kierunek Budownictwo, se. III ateriały poocnicze do ćwiczeń opracowanie: dr inŝ. Piotr Dębski, dr inŝ. Irena Wagner TREŚĆ WYKŁADU Kineatyka: Zakres przediotu. Przestrzeń,

Bardziej szczegółowo

Podstawy fizyki sezon 1 V. Ruch obrotowy 1 (!)

Podstawy fizyki sezon 1 V. Ruch obrotowy 1 (!) Podstawy fizyki sezon 1 V. Ruch obrotowy 1 (!) Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Kinematyka ruchu

Bardziej szczegółowo

Kołowrót -11pkt. 1. Zadanie 22. Wahadło balistyczne (10 pkt)

Kołowrót -11pkt. 1. Zadanie 22. Wahadło balistyczne (10 pkt) Kołowrót -11pkt. Kołowrót w kształcie walca, którego masa wynosi 10 kg, zamocowany jest nad studnią (rys.). Na kołowrocie nawinięta jest nieważka i nierozciągliwa linka, której górny koniec przymocowany

Bardziej szczegółowo

II.1. Zagadnienia wstępne.

II.1. Zagadnienia wstępne. II.1. Zagadnienia wsępne. Arysoeles ze Sagiry wyraźnie łączy ruch z czasem: A jes niemożliwe, żeby zaczął się albo usał ruch, gdyż jak powiedzieliśmy ruch jes wieczny, a ak samo i czas, bo czas jes albo

Bardziej szczegółowo

O ciężarkach na bloczku z uwzględnieniem masy nici

O ciężarkach na bloczku z uwzględnieniem masy nici 46 FOTON 3, ato O ciężarkach na bloczku z uwzględnienie asy nici Mariusz Tarnopolski Student fizyki IF UJ Rozważy klasyczne zadanie szkolne z dwoa ciężarkai zawieszonyi na nici przerzuconej przez bloczek,

Bardziej szczegółowo

R o z w i ą z a n i e Przy zastosowaniu sposobu analitycznego należy wyznaczyć składowe wypadkowej P x i P y

R o z w i ą z a n i e Przy zastosowaniu sposobu analitycznego należy wyznaczyć składowe wypadkowej P x i P y Przykład 1 Dane są trzy siły: P 1 = 3i + 4j, P 2 = 2i 5j, P 3 = 7i + 3j (składowe sił wyrażone są w niutonach), przecinające się w punkcie A (1, 2). Wyznaczyć wektor wypadkowej i jej wartość oraz kąt α

Bardziej szczegółowo

I. DYNAMIKA PUNKTU MATERIALNEGO

I. DYNAMIKA PUNKTU MATERIALNEGO I. DYNAMIKA PUNKTU MATERIALNEGO A. RÓŻNICZKOWE RÓWNANIA RUCHU A1. Bryła o masie m przesuwa się po chropowatej równi z prędkością v M. Podać dynamiczne równania ruchu bryły i rozwiązać je tak, aby wyznaczyć

Bardziej szczegółowo

Zadania do rozdziału 2.

Zadania do rozdziału 2. Zadania do rozdziału. Zad..1. Saochód na auoradzie poruza ię ruche jednoajny prooliniowy z prędkością υ100 k/odz. W jaki czaie przebędzie on droę 50 k? Rozwiązanie: Zad... υ 50 k / odz 0.5 odz. υ 100 k

Bardziej szczegółowo

Grupa A. Sprawdzian 2. Fizyka Z fizyką w przyszłość 1 Sprawdziany. Siła jako przyczyna zmian ruchu

Grupa A. Sprawdzian 2. Fizyka Z fizyką w przyszłość 1 Sprawdziany. Siła jako przyczyna zmian ruchu Szkoły ponadginazjalne Iię i nazwisko Data Klasa Grupa A Sprawdzian 2 Siła jako przyczyna zian ruchu 1. Przyspieszenie układu przedstawionego na rysunku a wartość (opory poijay) a. 1 7 g b. 2 7 g c. 1

Bardziej szczegółowo

Równania różniczkowe. Lista nr 2. Literatura: N.M. Matwiejew, Metody całkowania równań różniczkowych zwyczajnych.

Równania różniczkowe. Lista nr 2. Literatura: N.M. Matwiejew, Metody całkowania równań różniczkowych zwyczajnych. Równania różniczkowe. Lisa nr 2. Lieraura: N.M. Mawiejew, Meody całkowania równań różniczkowych zwyczajnych. W. Krysicki, L. Włodarski, Analiza Maemayczna w Zadaniach, część II 1. Znaleźć ogólną posać

Bardziej szczegółowo

Nara -Japonia. Yokohama, Japan, September 2014

Nara -Japonia. Yokohama, Japan, September 2014 Nara -Japonia Yokohaa, Japan, Septeber 4 -7 (Jaroszewicz slajdów Zasady zachowania, zderzenia ciał Praca, oc i energia echaniczna Zasada zachowania energii Zasada zachowania pędu Zasada zachowania oentu

Bardziej szczegółowo

26. RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE DRUGIEGO RZĘDU

26. RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE DRUGIEGO RZĘDU 6. RÓWNANIA RÓŻNIZKOWE ZWYZAJNE DRUGIEGO RZĘDU 6.. Własności ogólne Równaniem różniczkowym zwyczajnym rzęd drgiego nazywamy równanie, w którym niewiadomą jest fnkcja y jednej zmiennej i w którym występją

Bardziej szczegółowo

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ Wykład 7 2012/2013, zima 1 MOMENT PĘDU I ENERGIA KINETYCZNA W RUCHU PUNKTU MATERIALNEGO PO OKRĘGU Definicja momentu pędu L=mrv=mr 2 ω L=Iω I= mr 2 p L r ω Moment

Bardziej szczegółowo

TMM-1 Wyznaczanie współrzędnych tensorów bezwładności członów manipulatorów

TMM-1 Wyznaczanie współrzędnych tensorów bezwładności członów manipulatorów aboratoriu Teorii Mechanizów TMM-1 Wyznaczanie współrzędnych tensorów bezwładności członów anipulatorów Cele ćwiczenia jest doświadczalne wyznaczanie współrzędnych tensorów bezwładności członów anipulatora

Bardziej szczegółowo

Dynamika ruchu obrotowego

Dynamika ruchu obrotowego Dynamika ruchu obrotowego 1. Mając dane r = îx + ĵy + ˆkz i = î x + ĵ y + ˆk z znaleźć moment siły τ = r. Pokazać, że jeżeli r i leżą w danej płaszczyźnie, to τ nie ma składowych w tej płaszczyźnie. 2.

Bardziej szczegółowo

Politechnika Poznańska 2006 Ćwiczenie nr2

Politechnika Poznańska 2006 Ćwiczenie nr2 Obliczanie przeieszczeń układów sayczne wyznaczalnych z zasosowanie równań pracy wirualnej. Poliechnika Poznańska 006 Ćwiczenie nr. Dla układu przedsawionego na rysunku naleŝy przyjąć przekroje pręów ak,

Bardziej szczegółowo

W siła działająca na bryłę zredukowana do środka masy ( = 0

W siła działająca na bryłę zredukowana do środka masy ( = 0 Popęd i popęd bryły Bryła w ruchu posępowym. Zasada pędu i popędu ma posać: p p S gdie: p m v pęd bryły w ruchu posępowym S c W d popęd siły diałającej na bryłę w ruchu posępowym aś: v c prędkość środka

Bardziej szczegółowo

DYNAMIKA ZADANIA. Zadanie DYN1

DYNAMIKA ZADANIA. Zadanie DYN1 DYNAMIKA ZADANIA Zadanie DYN1 Na ciało działa siła (przy czym i to stałe). W chwili początkowej ciało miało prędkość i znajdowało się w punkcie. Wyznacz położenie i prędkość ciała w funkcji czasu., Zadanie

Bardziej szczegółowo

KONKURS MATEMATYCZNO FIZYCZNY II etap Klasa II

KONKURS MATEMATYCZNO FIZYCZNY II etap Klasa II ...... iię i nazwisko ucznia... klasa KONKURS MATEMATYCZNO FIZYCZNY II etap Klasa II... ilość punktów Drogi uczniu! Przed Tobą zestaw 1 zadań. Pierwsze 8 to zadania zaknięte. Rozwiązanie tych zadań polega

Bardziej szczegółowo

Dynamika punktu materialnego nieswobodnego

Dynamika punktu materialnego nieswobodnego Dynaika punktu aterianego nieswobodnego dr inż. Sebastian Pakuła Wydział Inżynierii Mechanicznej i Robotyki Katedra Mechaniki i Wibroakustyki ai: spakua@agh.edu.p www: hoe.agh.edu.p/~spakua/ dr inż. Sebastian

Bardziej szczegółowo

drgania h armoniczne harmoniczne

drgania h armoniczne harmoniczne ver-8..7 drgania harmoniczne drgania Fourier: częsość podsawowa + składowe harmoniczne () An cos( nω + ϕ n ) N n Fig (...) analiza Fouriera małe drgania E p E E k E p ( ) jeden sopień swobody: -A A E p

Bardziej szczegółowo

Lista zadań nr 6 Środek masy, Moment bezwładności, Moment siły (2h)

Lista zadań nr 6 Środek masy, Moment bezwładności, Moment siły (2h) Lista zadań nr 6 Środek masy, Moment bezwładności, Moment siły (2h) Środek ciężkości Zaad.6.1 Wyznacz środek masy układu pięciu mas o odpowiednich współrzędnych: m 1 (2,2), m 2 (2,5), m 3 (-4,2), m 4 (-3,-2),

Bardziej szczegółowo

Wyznaczenie współczynnika restytucji

Wyznaczenie współczynnika restytucji 1 Ćwiczenie 19 Wyznaczenie współczynnika restytucji 19.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie współczynnika restytucji dla różnych materiałów oraz sprawdzenie słuszności praw obowiązujących

Bardziej szczegółowo

Ćwiczenie: "Symulacja zderzeń sprężystych i niesprężystych"

Ćwiczenie: Symulacja zderzeń sprężystych i niesprężystych Ćwiczenie: "Symulacja zderzeń sprężystych i niesprężystych" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki.

Bardziej szczegółowo

Pęd. Pędem ciała nazywamy iloczyn jego masy i jego prędkości. Pęd, podobnie jak prędkość, jest wielkością wektorową.

Pęd. Pędem ciała nazywamy iloczyn jego masy i jego prędkości. Pęd, podobnie jak prędkość, jest wielkością wektorową. Pęd Pęde ciała nazyway iloczyn jego asy i jego prędkości. Pęd, podobnie jak prędkość, jest wielkością wektorową. p v v Zgodnie z powyższą definicją jednostką pędu jest kilogra razy etr na sekundę: [kg*/s]

Bardziej szczegółowo

Metody Lagrange a i Hamiltona w Mechanice

Metody Lagrange a i Hamiltona w Mechanice Meody Lagrange a i Hamilona w Mechanice Mariusz Przybycień Wydział Fizyki i Informayki Sosowanej Akademia Górniczo-Hunicza Wykład 7 M. Przybycień (WFiIS AGH) Meody Lagrange a i Hamilona... Wykład 7 1 /

Bardziej szczegółowo

R o z d z i a ł 4 MECHANIKA CIAŁA SZTYWNEGO

R o z d z i a ł 4 MECHANIKA CIAŁA SZTYWNEGO R o z d z i a ł 4 MECHANIKA CIAŁA SZTYWNEGO 4.1. Bryła sztywna W dotychczasowych rozważaniach traktowaliśmy wszystkie otaczające nas ciała jako punkty materialne lub zbiory punktów materialnych. Jest to

Bardziej szczegółowo

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego Nazwisko i imię: Zespół: Data: Cel ćwiczenia: Ćwiczenie nr 1: Wahadło fizyczne opis ruchu drgającego a w szczególności drgań wahadła fizycznego wyznaczenie momentów bezwładności brył sztywnych Literatura

Bardziej szczegółowo

KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury

KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury Funkcje wektorowe Jeśli wektor a jest określony dla parametru t (t należy do przedziału t (, t k )

Bardziej szczegółowo

DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu

DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu Ćwiczenie 7 DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Cel ćwiczenia Doświadczalne wyznaczenie częstości drgań własnych układu o dwóch stopniach swobody, pokazanie postaci drgań odpowiadających

Bardziej szczegółowo

Zadania do rozdziału 3. Zad.3.1. Rozważmy klocek o masie m=2 kg ciągnięty wzdłuż gładkiej poziomej płaszczyzny

Zadania do rozdziału 3. Zad.3.1. Rozważmy klocek o masie m=2 kg ciągnięty wzdłuż gładkiej poziomej płaszczyzny Zadania do rozdziału 3. Zad.3.1. Rozważy klocek o aie kg ciągnięty wzdłuż gładkiej pozioej płazczyzny przez iłę P. Ile wynoi iła reakcji F N wywierana na klocek przez gładką powierzchnię? Oblicz iłę P,

Bardziej szczegółowo

(t) w przedziale (0 s 16 s). b) Uzupełnij tabelę, wpisując w drugiej kolumnie rodzaj ruchu, jakim poruszała się mrówka w kolejnych przedziałach czasu.

(t) w przedziale (0 s 16 s). b) Uzupełnij tabelę, wpisując w drugiej kolumnie rodzaj ruchu, jakim poruszała się mrówka w kolejnych przedziałach czasu. 1 1 x (m/s) 4 0 4 1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 t (s) a) Narysuj wykres a x (t) w przedziale (0 s 16 s). b) Uzupełnij tabelę, wpisując w drugiej kolumnie rodzaj ruchu, jakim poruszała się mrówka

Bardziej szczegółowo

Nr zadania Σ Punkty:

Nr zadania Σ Punkty: Kolokwim z krs Modele saysyczne niezawodności sysemów ROZWIĄZANIA Do wykonania jes 5 zadań. W smie, można zyskać 5 pnków. Na napisanie kolokwim mają Pańswo 7 min. Proszę wykonywać każde zadanie na osobnej

Bardziej szczegółowo

ĆWICZENIE 4 Badanie stanów nieustalonych w obwodach RL, RC i RLC przy wymuszeniu stałym

ĆWICZENIE 4 Badanie stanów nieustalonych w obwodach RL, RC i RLC przy wymuszeniu stałym ĆWIZENIE 4 Badanie sanów nieusalonych w obwodach, i przy wymuszeniu sałym. el ćwiczenia Zapoznanie się z rozpływem prądów, rozkładem w sanach nieusalonych w obwodach szeregowych, i Zapoznanie się ze sposobami

Bardziej szczegółowo

Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej

Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej Dynamika ruchu postępowego 1. Balon opada ze stałą prędkością. Jaką masę balastu należy wyrzucić, aby balon

Bardziej szczegółowo

KONTROLNY ZESTAW ZADAŃ Z DYNAMIKI

KONTROLNY ZESTAW ZADAŃ Z DYNAMIKI KONTROLNY ZESTAW ZADAŃ Z DYNAMK MECHANKA mgr inż. Sebastian Pakuła Wydział nżynierii Mechanicznej i Robotyki Katedra Mechaniki i Wibroakustyki mail: spakula@agh.edu.pl mgr inż. Sebastian Pakuła - Kontrolny

Bardziej szczegółowo

Wykład 10. Ruch w układach nieinercjalnych

Wykład 10. Ruch w układach nieinercjalnych Wykład 10 Ruch w układach nieinercjalnych Prawa Newtona są słuszne jedynie w układach inercjalnych. Ściśle mówiąc układami inercjalnymi nazywamy takie układy odniesienia, które albo spoczywają, albo poruszają

Bardziej szczegółowo

Rozwiązywanie zadań z dynamicznego ruchu płaskiego część I 9

Rozwiązywanie zadań z dynamicznego ruchu płaskiego część I 9 ozwiązywnie zdń z dyniczneo ruchu płskieo część I 9 Wprowdzenie ozwiązywnie zdń w oprciu o dyniczne równni ruchu (D pole n uwolnieniu z więzów kżdeo z cił w sposób znny ze sttyki. Wrunki równowi są zbliżone

Bardziej szczegółowo

FIZYKA Kolokwium nr 2 (e-test)

FIZYKA Kolokwium nr 2 (e-test) FIZYKA Kolokwium nr 2 (e-test) Rozwiązał i opracował: Maciej Kujawa, SKP 2008/09 (więcej informacji na końcu dokumentu) Zad. 1 Cegłę o masie 2kg położono na chropowatej desce. Następnie jeden z końców

Bardziej szczegółowo

120 mm MOŹDZIERZOWY POCISK ODŁAMKOWO-BURZĄCY

120 mm MOŹDZIERZOWY POCISK ODŁAMKOWO-BURZĄCY gr inż. Zbigniew KUPIDURA Wojskowy Instytut Techniczny Uzbrojenia 120 MOŹDZIERZOWY POCISK ODŁAMKOWO-BURZĄCY W artykule przeanalizowano charakterystyki taktycznotechniczne 120 oździerzowych pocisków odłakowoburzących

Bardziej szczegółowo

Szeregi Fouriera (6 rozwiązanych zadań +dodatek)

Szeregi Fouriera (6 rozwiązanych zadań +dodatek) PWR I Załad eorii Obwodów Szeregi ouriera (6 rozwiązanych zadań +dodae) Opracował Dr Czesław Michali Zad Znaleźć ores nasępujących sygnałów: a) y 3cos(ω ) + 5cos(7ω ) + cos(5ω ), b) y cos(ω ) + 5cos(ω

Bardziej szczegółowo

Przykład 1 Dany jest płaski układ czterech sił leżących w płaszczyźnie Oxy. Obliczyć wektor główny i moment główny tego układu sił.

Przykład 1 Dany jest płaski układ czterech sił leżących w płaszczyźnie Oxy. Obliczyć wektor główny i moment główny tego układu sił. Przykład 1 Dany jest płaski układ czterech sił leżących w płaszczyźnie Oxy Obliczyć wektor główny i moment główny tego układu sił. Wektor główny układu sił jest równy Moment główny układu wynosi Przykład

Bardziej szczegółowo

Drgania - zadanka. (b) wyznacz maksymalne położenie, prędkość i przyspieszenie ciała,

Drgania - zadanka. (b) wyznacz maksymalne położenie, prędkość i przyspieszenie ciała, Zadania do przeliczenia na lekcji. Drgania - zadanka 1. Ciało o masie m = 0.5kg zawieszono na nieważkiej nitce o długości l = 1m a następne wychylono o 2cm z położenia równowagi (g = 10 m s 2), (a) oblicz

Bardziej szczegółowo

gdzie ω jest częstością kołową. Rozwiązaniem powyższego równania różniczkowego II-go stopnia jest wyrażenie (2) lub ( )

gdzie ω jest częstością kołową. Rozwiązaniem powyższego równania różniczkowego II-go stopnia jest wyrażenie (2) lub ( ) RUCH HARMONICZNY I. Ce ćwiczenia: wyznaczenie wartości przyspieszenia zieskiego poiar współczynnika sprężystości sprężyny k, zaznajoienie się z podstawowyi wiekościai w ruchu haroniczny. II. Przyrządy:

Bardziej szczegółowo

Wprowadzenie: Dynamika

Wprowadzenie: Dynamika Wprowadzenie: Dynaika dr inż. ebastian Pakuła Wydział Inżynierii Mechanicznej i Robotyki Katedra Mechaniki i Wibroakustyki ail: spakula@agh.edu.pl www: hoe.agh.edu.pl/~spakula/ dr inż. ebastian Pakuła

Bardziej szczegółowo

PF11- Dynamika bryły sztywnej.

PF11- Dynamika bryły sztywnej. Instytut Fizyki im. Mariana Smoluchowskiego Wydział Fizyki, Astronomii i Informatyki Stosowanej Uniwersytetu Jagiellońskiego Zajęcia laboratoryjne w I Pracowni Fizycznej dla uczniów szkół ponadgimnazjalych

Bardziej szczegółowo

Politechnika Częstochowska Wydział Inżynierii Mechanicznej i Informatyki. Sprawozdanie #2 z przedmiotu: Prognozowanie w systemach multimedialnych

Politechnika Częstochowska Wydział Inżynierii Mechanicznej i Informatyki. Sprawozdanie #2 z przedmiotu: Prognozowanie w systemach multimedialnych Poliechnika Częsochowska Wydział Inżynierii Mechanicznej i Informayki Sprawozdanie #2 z przedmiou: Prognozowanie w sysemach mulimedialnych Andrzej Siwczyński Andrzej Rezler Informayka Rok V, Grupa IO II

Bardziej szczegółowo

12 RUCH OBROTOWY BRYŁY SZTYWNEJ I. a=εr. 2 t. Włodzimierz Wolczyński. Przyspieszenie kątowe. ε przyspieszenie kątowe [ ω prędkość kątowa

12 RUCH OBROTOWY BRYŁY SZTYWNEJ I. a=εr. 2 t. Włodzimierz Wolczyński. Przyspieszenie kątowe. ε przyspieszenie kątowe [ ω prędkość kątowa Włodzimierz Wolczyński Przyspieszenie kątowe 1 RUCH OROTOWY RYŁY SZTYWNEJ I = = ε przyspieszenie kątowe [ ] ω prędkość kątowa = = T okres, = - częstotliwość s=αr v=ωr a=εr droga = kąt x promień prędkość

Bardziej szczegółowo

Fizyka I. Kolokwium

Fizyka I. Kolokwium Fizyka I. Kolokwium 13.01.2014 Wersja A UWAGA: rozwiązania zadań powinny być czytelne, uporządkowane i opatrzone takimi komentarzami, by tok rozumowania był jasny dla sprawdzającego. Wynik należy przedstawić

Bardziej szczegółowo

Lista nr Znaleźć rozwiązania ogólne następujących równań różniczkowych: a) y = y t,

Lista nr Znaleźć rozwiązania ogólne następujących równań różniczkowych: a) y = y t, RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE B Lisa nr 1 1. Napisać równanie różniczkowe, jakie spełnia napięcie u = u() na okładkach kondensaora w obwodzie zawierającym połączone szeregowo oporność R i pojemność C,

Bardziej szczegółowo

WYZNACZANIE MOMENTU BEZWŁADNOŚCI BRYŁY METODĄ DRGAŃ SKRĘTNYCH

WYZNACZANIE MOMENTU BEZWŁADNOŚCI BRYŁY METODĄ DRGAŃ SKRĘTNYCH WYZNACZANIE MOMENTU BEZWŁADNOŚCI BRYŁY METODĄ DRGAŃ SKRĘTNYCH I. Cel ćwiczenia: wyznaczenie momentu bezwładności bryły przez pomiar okresu drgań skrętnych, zastosowanie twierdzenia Steinera. II. Przyrządy:

Bardziej szczegółowo

Zakład Dydaktyki Fizyki UMK

Zakład Dydaktyki Fizyki UMK Toruński poręcznik do fizyki I. Mechanika Materiały dydaktyczne Krysztof Rochowicz Zadania przykładowe Dr Krzysztof Rochowicz Zakład Dydaktyki Fizyki UMK Toruń, czerwiec 2012 1. Samochód jadący z prędkością

Bardziej szczegółowo

Przykłady: zderzenia ciał

Przykłady: zderzenia ciał Strona 1 z 5 Przykłady: zderzenia ciał Zderzenie, to proces w którym na uczestniczące w nim ciała działają wielkie siły, ale w stosunkowo krótkim czasie. Wynikają z tego ważne dla praktycznej analizy wnioski

Bardziej szczegółowo

III Zasada Dynamiki Newtona. Wykład 5: Układy cząstek i bryła sztywna. Przykład. Jak odpowiesz na pytania?

III Zasada Dynamiki Newtona. Wykład 5: Układy cząstek i bryła sztywna. Przykład. Jak odpowiesz na pytania? III Zasada Dynamiki Newtona 1:39 Wykład 5: Układy cząstek i bryła sztywna Matematyka Stosowana Ciało A na B: Ciało B na A: 0 0 Jak odpowiesz na pytania? Honda CRV uderza w Hondę Civic jak będzie wyglądał

Bardziej szczegółowo

ODPOWIEDZI I SCHEMAT PUNKTOWANIA POZIOM ROZSZERZONY

ODPOWIEDZI I SCHEMAT PUNKTOWANIA POZIOM ROZSZERZONY 1 ODPOWIEDZI I SCHEMAT PUNKTOWANIA POZIOM OZSZEZONY 1. ozwiązania poszczególnych zadań i poleceń oceniane są na podsawie punkowych kryeriów oceny.. Podczas oceniania rozwiązań zdających, prosiy o zwrócenie

Bardziej szczegółowo

Siła. Zasady dynamiki

Siła. Zasady dynamiki Siła. Zasady dynaiki Siła jest wielkością wektoową. Posiada okeśloną watość, kieunek i zwot. Jednostką siły jest niuton (N). 1N=1 k s 2 Pzedstawienie aficzne A Siła pzyłożona jest do ciała w punkcie A,

Bardziej szczegółowo

Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej

Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej 1. Wielkości dynamiczne w ruchu postępowym. a. Masa ciała jest: - wielkością skalarną, której wielkość jest niezmienna

Bardziej szczegółowo

Podstawy elektrotechniki

Podstawy elektrotechniki Wydzał Mechanczno-Energeyczny Podsawy elekroechnk Prof. dr hab. nż. Jlsz B. Gajewsk, prof. zw. PWr Wybrzeże S. Wyspańskego 7, 50-370 Wrocław Bd. A4 Sara kołowna, pokój 359 Tel.: 7 30 30 Fax: 7 38 38 E-al:

Bardziej szczegółowo

Dynamika ruchu obrotowego 1

Dynamika ruchu obrotowego 1 Dynamika ruchu obrotowego 1 1. Obliczyć moment bezwładności jednorodnego pręta o masie M i długości L względem osi prostopadłej do niego i przechodzącej przez: (a) koniec pręta, (b) środek pręta. 2. Obliczyć

Bardziej szczegółowo

Pędu Momentu pędu Ładunku Liczby barionowej. Przedmiot: Fizyka. Przedmiot: Fizyka. Wydział EAIiE Kierunek: Elektrotechnika.

Pędu Momentu pędu Ładunku Liczby barionowej. Przedmiot: Fizyka. Przedmiot: Fizyka. Wydział EAIiE Kierunek: Elektrotechnika. ZASADY ZACHOWANIA W FIZYCE ZASADY ZACHOWANIA: Enegii Pęd Moent pęd Ładnk Liczby baionowej ZASADA ZACHOWANIA ENERGII W = E calk Paca siły zewnętznej Jeżeli W=0 to E calk =0 Ziana enegii całkowitej Ziana

Bardziej szczegółowo

MECHANIKA OGÓLNA (II)

MECHANIKA OGÓLNA (II) MECHNIK GÓLN (II) Semestr: II (Mechanika I), III (Mechanika II), rok akad. 2013/2014 Liczba godzin: sem. II *) - wykład 30 godz., ćwiczenia 30 godz. sem. III *) - wykład 30 godz., ćwiczenia 30 godz., ale

Bardziej szczegółowo

Amortyzatory uderzeń kompaktowe. Parametry techniczne. wyk. standardowe Model RBQ1604. Maks. energia absorbowana [J] Skok [mm] 1.

Amortyzatory uderzeń kompaktowe. Parametry techniczne. wyk. standardowe Model RBQ1604. Maks. energia absorbowana [J] Skok [mm] 1. Aoryzaory uderzeń kopakowe eria BQ Paraery echniczne Dopuszczalna nieosiowość Idealny do absorbowania energii napędów obroowych. wyk. sandardowe BQ0 BQ00 BQ0 BQ09 BQ33 ze zderzakie BQC0 BQC00 BQC0 BQC09

Bardziej szczegółowo

Drgania harmoniczne. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Drgania harmoniczne. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Drgania haroniczne Projet współfinansowany przez Unię Europejsą w raach Europejsiego Funduszu Społecznego Drgania haroniczne O oscylatorze haroniczny ożey ówić wtedy, iedy siła haująca działa proporcjonalnie

Bardziej szczegółowo

Ćw. 5. Badanie ruchu wahadła sprężynowego sprawdzenie wzoru na okres drgań

Ćw. 5. Badanie ruchu wahadła sprężynowego sprawdzenie wzoru na okres drgań KAEDRA FIZYKI SOSOWANEJ PRACOWNIA 5 FIZYKI Ćw. 5. Badanie ruchu wahadła sprężynowego sprawdzenie wzoru na ores drgań Wprowadzenie Ruch drgający naeży do najbardziej rozpowszechnionych ruchów w przyrodzie.

Bardziej szczegółowo

1. Samochód jadący z szybkością 10 m/s na prostoliniowym odcinku trasy zwolnił i osiągnął szybkość 5 m/s.

1. Samochód jadący z szybkością 10 m/s na prostoliniowym odcinku trasy zwolnił i osiągnął szybkość 5 m/s. Iię i nazwiko Daa Klaa Werja A Sprawdzian 1 opi ruchu poępowego 1. Saochód jadący z zybkością 1 / na prooliniowy odcinku ray zwolnił i oiągnął zybkość 5 /. 1 a. Przyro prędkości a warość 5 / i zwro zgodny

Bardziej szczegółowo

MECHANIKA. Podstawy kinematyki Zasady dynamiki. Zasada zachowania pędu Zasada zachowania energii Ruch harmoniczny i falowy

MECHANIKA. Podstawy kinematyki Zasady dynamiki. Zasada zachowania pędu Zasada zachowania energii Ruch harmoniczny i falowy MECHANIKA Podswy kineyki Zsdy dyniki Siły Równnie ruchu Ukłdy inercjlne i nieinercjlne Zsd zchowni pędu Zsd zchowni energii Ruch hroniczny i flowy ruch rejesrowne w czsie w sposób ciągły ziny położeni

Bardziej szczegółowo

Fizyka I (mechanika), rok akad. 2011/2012 Zadania na ćwiczenia, seria 2

Fizyka I (mechanika), rok akad. 2011/2012 Zadania na ćwiczenia, seria 2 Fizyka I (mechanika), rok akad. 2011/2012 Zadania na ćwiczenia, seria 2 1 Zadania wstępne (dla wszystkich) Zadanie 1. Pewne ciało znajduje się na równi, której kąt nachylenia względem poziomu można regulować.

Bardziej szczegółowo

DRGANIA MECHANICZNE. materiały uzupełniające do ćwiczeń. Wydział Samochodów i Maszyn Roboczych studia inżynierskie

DRGANIA MECHANICZNE. materiały uzupełniające do ćwiczeń. Wydział Samochodów i Maszyn Roboczych studia inżynierskie DRGANIA MECHANICZNE ateriały uzupełniające do ćwiczeń Wydział Saochodów i Maszyn Roboczych studia inżyniersie prowadzący: gr inż. Sebastian Korcza część 5 płaszczyzna fazowa Poniższe ateriały tylo dla

Bardziej szczegółowo

Fizyka 1- Mechanika. Wykład 3 19.X Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów

Fizyka 1- Mechanika. Wykład 3 19.X Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów Fizyka - Mechanika Wykład 3 9.X.07 Zygunt Szefliński Środowiskowe Laboratoriu Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Stałe przyspieszenie Przyspieszenie charakteryzuje się ziana prędkości

Bardziej szczegółowo

Przykładowe zadania/problemy egzaminacyjne. Wszystkie bezwymiarowe wartości liczbowe występujące w treści zadań podane są w jednostkach SI.

Przykładowe zadania/problemy egzaminacyjne. Wszystkie bezwymiarowe wartości liczbowe występujące w treści zadań podane są w jednostkach SI. Przykładowe zadania/problemy egzaminacyjne. Wszystkie bezwymiarowe wartości liczbowe występujące w treści zadań podane są w jednostkach SI. 1. Ładunki q 1 =3,2 10 17 i q 2 =1,6 10 18 znajdują się w próżni

Bardziej szczegółowo

Podstawy fizyki. [T.] 1 / David Halliday, Robert Resnick, Jearl Walker. wyd. 2. Warszawa, Spis treści

Podstawy fizyki. [T.] 1 / David Halliday, Robert Resnick, Jearl Walker. wyd. 2. Warszawa, Spis treści Podstawy fizyki. [T.] 1 / David Halliday, Robert Resnick, Jearl Walker. wyd. 2. Warszawa, 2015 Spis treści Od Wydawcy do drugiego wydania polskiego Przedmowa Podziękowania xi xiii xxi 1. Pomiar 1 1.1.

Bardziej szczegółowo

1 Oscylator tłumiony *

1 Oscylator tłumiony * Projekt Fizyka Plus nr POKL.04.01.02-00-034/11 współfinansowany przez Unię Europejską ze środków Europejskieo Funduszu Społeczneo w raach Prorau Operacyjneo Kapitał Ludzki. Kurs Plus - Fizyka ateriały

Bardziej szczegółowo

ZASADY DYNAMIKI. Przedmiotem dynamiki jest badanie przyczyn i sposobów zmiany ruchu ciał.

ZASADY DYNAMIKI. Przedmiotem dynamiki jest badanie przyczyn i sposobów zmiany ruchu ciał. ZASADY DYNAMIKI Przedmiotem dynamiki jest badanie przyczyn i sposobów zmiany ruchu ciał Dynamika klasyczna zbudowana jest na trzech zasadach podanych przez Newtona w 1687 roku I zasada dynamiki Istnieją

Bardziej szczegółowo

Fizyka. Kurs przygotowawczy. na studia inżynierskie. mgr Kamila Haule

Fizyka. Kurs przygotowawczy. na studia inżynierskie. mgr Kamila Haule Fizyka Kurs przygotowawczy na studia inżynierskie mgr Kamila Haule Siła Zasady dynamiki Newtona Skąd się bierze przyspieszenie? Siła powoduje przyspieszenie Siła jest wektorem! Siła jest przyczyną przyspieszania

Bardziej szczegółowo

Bryła sztywna Zadanie domowe

Bryła sztywna Zadanie domowe Bryła sztywna Zadanie domowe 1. Podczas ruszania samochodu, w pewnej chwili prędkość środka przedniego koła wynosiła. Sprawdź, czy pomiędzy kołem a podłożem występował poślizg, jeżeli średnica tego koła

Bardziej szczegółowo

Zasady zachowania, zderzenia ciał

Zasady zachowania, zderzenia ciał Naa -Japonia -7 (Jaoszewicz) slajdów Zasady zachowania, zdezenia ciał Paca, oc i enegia echaniczna Zasada zachowania enegii Zasada zachowania pędu Zasada zachowania oentu pędu Zasady zachowania a syetia

Bardziej szczegółowo

pobrano z serwisu Fizyka Dla Każdego - http://fizyka.dk - zadania fizyka, wzory fizyka, matura fizyka

pobrano z serwisu Fizyka Dla Każdego - http://fizyka.dk - zadania fizyka, wzory fizyka, matura fizyka 7. Pole magnetyczne zadania z arkusza I 7.8 7.1 7.9 7.2 7.3 7.10 7.11 7.4 7.12 7.5 7.13 7.6 7.7 7. Pole magnetyczne - 1 - 7.14 7.25 7.15 7.26 7.16 7.17 7.18 7.19 7.20 7.21 7.27 Kwadratową ramkę (rys.)

Bardziej szczegółowo

Dynamika punktu materialnego

Dynamika punktu materialnego Dynaika punktu aterialnego 1. O czasie t 1 =14.0 s saochód o asie =1200 kg był w punkcie r 1 =[100,0,25] i iał pęd p 1 =[6000,0,-3600] kg /s. Jaka była pozycja saochodu w czasie t 2 =14.5 s? 2. Kierowca

Bardziej szczegółowo

Badanie oddziaływania pola magnetycznego na przewodnik z prądem

Badanie oddziaływania pola magnetycznego na przewodnik z prądem Badanie oddziaływania pola magnetycznego na przewodnik z prądem Cele ćwiczenia Zapoznanie się ze zjawiskiem oddziaływania pola magnetycznego na przewodnik z prądem Wyznaczenie zależności siły elektrodynamicznej

Bardziej szczegółowo

Od redakcji. Symbolem oznaczono zadania wykraczające poza zakres materiału omówionego w podręczniku Fizyka z plusem cz. 1.

Od redakcji. Symbolem oznaczono zadania wykraczające poza zakres materiału omówionego w podręczniku Fizyka z plusem cz. 1. Od redakcji Niniejszy zbiór zadań powstał z myślą o tych wszystkich, dla których rozwiązanie zadania z fizyki nie polega wyłącznie na mechanicznym przekształceniu wzorów i podstawieniu do nich danych.

Bardziej szczegółowo

LABORATORIUM Z FIZYKI

LABORATORIUM Z FIZYKI Projekt Plan rozwoj Politechniki Częstochowskiej współinansowany ze środków UNII EUROPEJSKIEJ w ramach EUROPEJSKIEGO FUNDUSZU SPOŁECZNEGO Nmer Projekt: POKL.04.0.0-00-59/08 INSTYTUT FIZYKI WYDZIAŁINśYNIERII

Bardziej szczegółowo

XXXVII OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie teoretyczne

XXXVII OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie teoretyczne XXXVII OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie teoretyczne Wybierz lub podaj i krótko uzasadnij właściwą odpowiedź na dowolnie przez siebie wybrane siedem spośród dziesięciu poniższych punktów: ZADANIE

Bardziej szczegółowo

- obliczyć względne procentowe odchylenie otrzymanej wartości od wartości tablicowej:

- obliczyć względne procentowe odchylenie otrzymanej wartości od wartości tablicowej: Kila uwa: - Doświadczenia przeprowadzay w rupach - osobowych (nie więszych), jedna w raach rupy ażdy suden wyonuje swoje osobne poiary i obliczenia. - Na zajęcia przychodziy z wydruowanyi wybranyi ćwiczeniai

Bardziej szczegółowo

ĆWICZENIE 7 WYZNACZANIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA. Wprowadzenie

ĆWICZENIE 7 WYZNACZANIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA. Wprowadzenie ĆWICZENIE 7 WYZNACZIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA Wprowadzenie Ciało drgające w rzeczywisym ośrodku z upływem czasu zmniejsza ampliudę drgań maleje energia mechaniczna

Bardziej szczegółowo