II.1 Serie widmowe wodoru
|
|
- Małgorzata Borowska
- 8 lat temu
- Przeglądów:
Transkrypt
1 II.1 Serie widmowe wodoru Jan Królikowski Fizyka IVBC 1
2 II.1 Serie widmowe wodoru W obszarze widzialnym wystepują 3 silne linie wodoru: H α (656.3 nm), H β (486.1 nm) i H γ (434.0 nm) oraz szereg linii w nadfiolecie, o długościach fal zbliżających się w regularny sposób do granicy krótkofalowej H. Balmer (1855) ustalił, że długości fal tych linii można doskonale (<10-4 ) opisać prostym wzorem: λ = gdzie n 1 jest kolejną liczbą całkowitą= 3,4,..., a G stałą empiryczną. Inny sposób zapisu wykorzystujący liczbę falową: 1 Ê 1 1 ˆ ν = = R - ; n H 1 =,,... λ Á n 34 Ë n 1 n G 1 Jan Królikowski Fizyka IVBC
3 Seria Balmera czyli przejścia z różnych poziomów do poziomu o n= Granica serii Jan Królikowski Fizyka IVBC 3
4 Serie widmowe wodoru cd. W następnych latach odkryto w widmie gwiazd wiele linii wodoru układających się w kilka serii widmowych. Ogólnie wzór na liczbę falową określonej serii został podany przez Rydberga (1889): 1 Ê 1 1 ˆ ν = = R - ; n <n H λ Á Ë n n Różnica dwóch termów widmowych Przy zastosowaniu radioteleskopów zaobserwowano linie wodoru o n= Jan Królikowski Fizyka IVBC 4
5 194 Serie widmowe wodoru cd Jan Królikowski Fizyka IVBC 5
6 Serie widmowe wodoru cd. Jan Królikowski Fizyka IVBC 6
7 II. Model atomu wodoru Bohra Jan Królikowski Fizyka IVBC 7
8 II..1 Doświadczenie Rutherforda II.. Postulaty Bohra II..3 Obliczenie energii w modelu Bohra II..4 Orbitalny moment pędu w modelu Bohra II..5 Poprawki na ruch jąder i efekt izotopowy II..6 Widma elektronów walencyjnych metali alkalicznych w modelu Bohra II..7 Zgodność modelu Bohra z doświadczeniem Jan Królikowski Fizyka IVBC 8
9 II..1 Doświadczenie Rutherforda(1911) i jego model atomu Odkrycie jądra atomowego przez Rutherforda, Geigera i Marsdena w 1911: Cała masa atomu jest skupiona w dodatnio naładowanym jądrze o r=10-15 m. Nie obserwuje się rozproszeń cząstek alfa na elektronach Jan Królikowski Fizyka IVBC 9
10 II.. Postulaty Bohra (1913) Model Rutherforda nie wyjaśniał widm wodoru. Zrobił to Bohr w 1913 dodając 3 postulaty: Klasyczne równania ruchu obowiązują dla elektronów na kołowych orbitach dookoła jądra, ale dozwolone są tylko niektóre orbity o energiach E n. Są to poziomy energetyczne atomu. Ruch elektronów na dozwolonych orbitach przebiega bez strat energii (niezgodnie z elektrodynamiką Maxwella). Procesy emisji i absorpcji promieniowania e-m przez atom związane są ze zmianą poziomów przez elektron: Ê Rhc ˆ Ê Rhc ˆ hν = En - E = n Ë n Ë n Ze wzrastającym promieniem orbity prawa fizyki atomowej stają się identyczne z prawami fizyki klasycznej. Jan Królikowski Fizyka IVBC 10
11 II..3 Obliczenie energii w modelu Bohra Dla orbit kołowych w problemie Keplera: p e 1 e E = - = mω r - m 4πε r 4πε r równowaga si ł: e Ê e ˆ = mω r; co daje nam r= πε r Á 4 πε mω Ë 4 razem dostajemy: / 3 r. akad. 004/005 1 E=- e 1 = - 4πε r ( 4πε ) 0 0 / 3 4 ( mω e ) 1/ 3 Jan Królikowski Fizyka IVBC 11
12 Obliczenie energii cd. Obliczenie stałej Rydberga przez Bohra: Rozważmy emisję światła przy przejściu między dwoma kolejnymi poziomami n-n =1 dla dużych n. Zgodnie ze wzorem Rydberga (n-n =d=1): ω ν Rc Ê 1 1 ˆ Ê 1 1 ˆ = = - - = Rc - = π Ë n n' Á Ë(n - d) n 1 Ê 1 ˆ Êdˆ Rc = Rc Rc n Á - 1 ª = ( ( d Ë - n)) Ë 3 n 3 1 n Wobec tego: Rhc n 1 1 Ê πrc = ( πν ) = 4 ( πε ) 4 ( ) n Uwzględniając ruch Środka masy 4 1/ 3 4 m( )e m( )e / 3 / 3 πε Ë R = mz Jan Królikowski Fizyka IVBC 1 e 4 3 8ε h c m M ˆ 1/ 3
13 Obliczenie energii cd. Istotne założenie fizyczne Bohra oznaczone jest zieloną strzałką na poprzedniej transparencji. W granicy klasycznej częstość promieniowania ω dana różnicą termów widmowych musi być równa częstości drgań dipola atomowego, czyli częstości obiegu elektronu dookoła jądra Ω. Jan Królikowski Fizyka IVBC 13
14 Obliczenie energii cd. Stała Rydberga dla atomu wodoru: R H =R (1+m/M) -1 = cm -1 = ev Jest to energia jonizacji atomu wodoru. Poprawka: Jan Królikowski Fizyka IVBC 14
15 Promień n-tej orbity: rn Obliczenie energii cd. = 4πε m e Promień 1-szej orbity wodoru = promień Bohra: 0 Z n a r(h). = = nm Jan Królikowski Fizyka IVBC 15
16 Obliczenie energii cd. Częstość obiegu n-tej orbity: Ω n 4 1 ÊmZ e ˆ = Ë Á 3 3 n 4 ( πε ) 0 Jan Królikowski Fizyka IVBC 16
17 Model atomu Bohra cd. Energia n-tego poziomu: E n =- 4 mz e 3πε 0 1 n n nazywamy główną liczbą kwantową. Jan Królikowski Fizyka IVBC 17
18 II..4 Orbitalny moment pędu w modelu Bohra L = r m( Ω r) Orbitalny moment pędu: Długość L jest skwantowana: n n n n L = n r. akad. 004/005 Na obwodzie orbity Bohra mieści się n długości fal de Broglia elektronu: h Ln = rn pn = λ = = p Z drugiej strony możemy policzyc długo ść bezposrednio: Czyli π r Ê 4 me ˆ Ê n ( 4πε ) ˆ Ln = mω nr 0 n = m Á = n ( π ε ) n Á Ë me 3 3 Ë 4 0 λ n πr λ n = n Jan Królikowski Fizyka IVBC 18
19 Orbitalny moment pędu w modelu Bohra cd. r. akad. 004/005 W modelu Bohra elektrony na orbitach kołowych mają maksymalny moment pędu dozwolony dla danej wartości głównej liczby kwantowej n. Wprowadza się orbitalną liczbę kwantową l (Sommerfeld 1916), która w mechanice kwantowej przyjmuje n wartości dyskretnych: l=0,...n-1 Kwadrat długości wektora momentu pędu jest skwantowany: L = ( + 1) Orbita o l < n-1 jest eliptyczna. Energia elektronu słabo zależy od l (rozszczepienie subtelne, patrz poniżej). Jan Królikowski Fizyka IVBC 19
20 II..5 poprawki na ruch jąder i efekt izotopowy Ruch jądra i efekt izotopowy: Małe poprawki na ruch jądra dla izotopów atomów wodoropodobnych powodują względne przesunięcia poziomów. Przykład: dla wodoru poprawka na ruch środka masy wynosi % E, dla ciężkiego wodoru jest dwa razy mniejsza. Odkrycie deuteru przez Ureya (1931) polegało właśnie na zaobserwowaniu tego przesunięcia. To odkrycie rozstrzygnęło sprzeczność miedzy masą cząsteczkową wodoru wyznaczoną metodami chemicznymi (średnia ważona mas wodoru i ciężkiego wodoru) i metodą spektroskopii masowej. Jan Królikowski Fizyka IVBC 0
21 II..7 Zgodność modelu Bohra z doświadczeniem r. akad. 004/005 Linia H α (przejscie z n=3 do n=) jest multipletem kilku linii (co najmniej trzech odległych o 0.33 cm -1). W atomie wodoru występuje rozszczepienie subtelne linii widmowych. Poziomy Bohra rozszczepiają się na bardzo blisko leżące podpoziomy Jest to efekt na poziomie Linia H α 1/λ=153.1 cm -1 Natężenie -4 E ª ~ 10 E Liczba falowa 1/λ Jan Królikowski Fizyka IVBC 1
22 II.3.3 Dygresja: symbole spektroskopowe Poziomy (termy, stany) w atomach oznaczamy symbolami spektroskopowymi np..: Główna liczba kwantowa n. Tu n=. S 1/ Multipletowość s+1; Tu s=1/. J = L + S Wartość orbitalnej liczby kwantowej l. Tradycyjnie oznaczana literami: S (l=0), P (l=1), D (l=), F (l=3) itd. Tu l=0. Wartość liczby całkowitego momentu pędu j=1/ Jan Królikowski Fizyka IVBC
23 Komentarze: Dygresja: symbole spektroskopowe cd. Oznaczenia l: małe litery stany jednoelektronowe np. w atomie wodoru 1s, duże litery stany wieloelektronowe, wszystkie liczby dotyczą sum wektorowych spinów, orbitalnych momentów pędu i całkowitych momentów pędu stanu wieloelektronowego. Pochodzenie oznaczeń literowych dla l: Nazwy serii widmowych w widmie sodu: P= Principal: przejścia z n=3, 4,..., l=1 na n=3, l=0, S=Sharp: przejścia z n=4, 5,... l=0 na n=3, 4,... l=1, D=Diffuse: przejścia z n=3, 4,... l= na n=3,4...l=1, F=Fundamental: przejścia z n>3, l=3 na n=3, l= Jan Królikowski Fizyka IVBC 3
24 Dygresja: symbole spektroskopowe cd. S=sharp F=fundamental D=diffuse P=principal Diagram Grotariana dla przejść elektronów walencyjnych sodu Na Jan Królikowski Fizyka IVBC 4
25 II..6 Widma elektronów walencyjnych metali alkalicznych w modelu Bohra r. akad. 004/005 Cechą charakterystyczną pierwiastków alkalicznych jest pojedynczy, słabo związany elektron walencyjny. Pozostałe Z-1 elektronów umieszczone są na zapełnionych niższych powłokach. W porównaniu z atomem wodoru elektron walencyjny jest ekranowany: Elektrony wewnętrzne (Z-1) Jądro +Ze r Elektron walencyjny -e Jan Królikowski Fizyka IVBC 5
26 Efektywny potencjał w którym porusza się elektron walencyjny pierwiastka alkalicznego. Dla małych odległości potencjał zachowuje się jak: V(Ze ) = Zaś dla dużych jak: V(e ) = Widma metali alkalicznych cd. Ze 4πε e 4πε o 0 r r -e /r -Ze /r ekranowanie Następuje zniesienie degeneracji Ze względu na orbitalny moment pędu Jan Królikowski Fizyka IVBC 6
27 Widma metali alkalicznych cd. Energie przejść elektronów walencyjnych dla pierwiastka alkalicznego można opisać wzorem podobnym do wzoru Bohra: hν = E - E n,l n',l' 1 Ê 1 ˆ E =- R hc =-R hcá n Ë(n - n, ) n, alkaliczny alkaliczny ef ( ) n ef =(n- (n,l)) jest efektywną główną liczbą kwantową (na ogół nie jest to liczba całkowita), zaś poprawkę (n,l) nazywamy defektem kwantowym. Dla ustalonego l defekt kwantowy słabo zmienia się z n. Defekt kwantowy maleje ze wzrostem l (orbity stają się bardziej kołowe i potencjał efektywny bardziej podobny do wodorowego). Jan Królikowski Fizyka IVBC 7
28 Widma metali alkalicznych cd. Poziomy energetyczne elektronów walencyjnych pierwiastków alkalicznych n l Jan Królikowski Fizyka IVBC 8
29 Widma metali alkalicznych cd. Ważniejsze serie widmowe sodu: Przejścia d p Przejścia p s Przejścia s p Seria rozmyta (diffuse) Seria główna (pricipal) Seria ostra (sharp) Jan Królikowski Fizyka IVBC 9
30 Powłoki wewnętrzne pierwiastków alkalicznych Jeżeli usuniemy elektron z wewnętrznej powłoki atomu pierwiastka alkalicznego możemy zaobserwować przejście któregoś z bardziej zewnętrznych elektronów na te puste miejsce. Powoduje to powstanie linii, często w obszarze UV czy rentgenowskim. Przykład: widmo potasu K gdzie pokazano przejścia widzialne, w podczerwieni powodowane przez poziomy elektronów walencyjnych oraz pełny schemat przejść. Proszę zwrócić uwagę na skale energii na obu rysunkach. Jan Królikowski Fizyka IVBC 30
31 Potas K- widma elektronów walencyjnych r. akad. 004/005 Jan Królikowski Fizyka IVBC 31
32 Potas K- pełny diagram przejść Jan Królikowski Fizyka IVBC 3
Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków).
Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków). 1925r. postulat Pauliego: Na jednej orbicie może znajdować się nie więcej
Rysunek 3-23 Hipotetyczne widmo ciągłe atomu Ernesta Rutherforda oraz rzeczywiste widmo emisyjne wodoru w zakresie światła widzialnego
3.5. Model Bohra-Sommerfelda Przeciw modelowi atomu zaproponowanego przez Ernesta Rutherforda przemawiały także wyniki badań spektroskopowych pierwiastków. Jeśli elektrony, jak wynika z teorii Maxwella,
Wykład Budowa atomu 1
Wykład 30. 11. 2016 Budowa atomu 1 O atomach Trochę historii i wprowadzenie w temat Promieniowanie i widma Doświadczenie Rutherforda i odkrycie jądra atomowego Model atomu wodoru Bohra sukcesy i ograniczenia
Model Bohra budowy atomu wodoru - opis matematyczny
Model Bohra budowy atomu wodoru - opis matematyczny Uwzględniając postulaty kwantowe Bohra, można obliczyć promienie orbit dozwolonych, energie elektronu na tych orbitach, wartość prędkości elektronu na
Temat: Promieniowanie atomu wodoru (teoria)
Temat: Promieniowanie atomu wodoru (teoria) Zgodnie z drugim postulatem Bohra elektron poruszając się po dozwolonej orbicie nie wypromieniowuje energii. Promieniowanie zostaje wyemitowane, gdy elektron
II.6 Atomy w zewnętrznym polu magnetycznym
II.6 Atomy w zewnętrznym polu magnetycznym 1. Kwantowanie przestrzenne w zewnętrznym polu magnetycznym. Model wektorowy raz jeszcze 2. Zjawisko Zeemana Normalne zjawisko Zeemana i jego wyjaśnienie w modelu
Modele atomu wodoru. Modele atomu wodoru Thomson'a Rutherford'a Bohr'a
Modele atomu wodoru Modele atomu wodoru Thomson'a Rutherford'a Bohr'a Demokryt: V w. p.n.e najmniejszy, niepodzielny metodami chemicznymi składnik materii. atomos - niepodzielny Co to jest atom? trochę
Wczesne modele atomu
Wczesne modele atomu Wczesne modele atomu Demokryt (400 p.n.e.) Grecki filozof Demokryt rozpoczął poszukiwania opisu materii około 2400 lat temu. Postawił pytanie: Czy materia może być podzielona na mniejsze
Modele atomu wodoru. Modele atomu wodoru Thomson'a Rutherford'a Bohr'a
Modele atomu wodoru Modele atomu wodoru Thomson'a Rutherford'a Bohr'a Demokryt: V w. p.n.e najmniejszy, niepodzielny metodami chemicznymi składnik materii. atomos - niepodzielny Co to jest atom? trochę
Fizyka 3. Konsultacje: p. 329, Mechatronika
Fizyka 3 Konsultacje: p. 39, Mechatronika marzan@mech.pw.edu.pl Zaliczenie: 1 sprawdzian 30 pkt 15.1 18 3.0 18.1 1 3.5 1.1 4 4.0 4.1 7 4.5 7.1 30 5.0 http:\\adam.mech.pw.edu.pl\~marzan Program: - elementy
Atom wodoru i jony wodoropodobne
Atom wodoru i jony wodoropodobne dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2012/13 Spis treści Spis treści 1. Model Bohra atomu wodoru 2 1.1. Porządek
Mechanika kwantowa. Erwin Schrödinger ( ) Werner Heisenberg
Mechanika kwantowa Erwin Schrödinger (1887-1961) Werner Heisenberg 1901-1976 Falowe równanie ruchu (uproszczenie: przypadek jednowymiarowy) Dla fotonów Dla cząstek Równanie Schrödingera y x = 1 c y t y(
III.1 Atom helu i zakaz Pauliego. Atomy wieloelektronowe. Układ okresowy
III.1 Atom helu i zakaz Pauliego. Atomy wieloelektronowe. Układ okresowy r. akad. 2004/2005 1. Atom helu: struktura poziomów, reguły wyboru, 2. Zakaz Pauliego, 3. Moment pędu w atomach wieloelektronowych:
Wykład 17: Dr inż. Zbigniew Szklarski. Katedra Elektroniki, paw. C-1, pok
Wykład 17: Atom Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Wczesne modele atomu Grecki filozof Demokryt rozpoczął poszukiwania
Atom wodoru. Model klasyczny: nieruchome jądro +p i poruszający się wokół niego elektron e w odległości r; energia potencjalna elektronu:
ATOM WODORU Atom wodoru Model klasyczny: nieruchome jądro +p i poruszający się wokół niego elektron e w odległości r; energia potencjalna elektronu: U = 4πε Opis kwantowy: wykorzystując zasadę odpowiedniości
Podstawy fizyki kwantowej i budowy materii
Podstawy fizyki kwantowej i budowy materii prof. dr hab. Aleksander Filip Żarnecki Zakład Cząstek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej Wykład 9 5 grudnia 2016 A.F.Żarnecki Podstawy
II.5 Sprzężenie spin-orbita - oddziaływanie orbitalnych i spinowych momentów magnetycznych
r. akad. 004/005 II.5 Sprzężenie spin-orbita - oddziaływanie orbitalnych i spinowych momentów magnetycznych Sprzężenie spin - orbita jest drugim, po efektach relatywistycznych, źródłem rozszczepienia subtelnego
IV. TEORIA (MODEL) BOHRA ATOMU (1913)
IV. TEORIA (MODEL) BOHRA ATOMU (1913) Bohr zastanawiał się, jak wyjaśnić strukturę widm liniowych. Elektron musi krążyć, aby zrównoważyć siłę Coulomba (przyciągającą). Skoro krąży to doznaje przyspieszenia
Podsumowanie wykładu ze Wstępu do Fizyki IV
Podsumowanie wykładu ze Wstępu do Fizyki IV Jan Królikowski Fizyka IVBC 1 Terminy egzaminów Egzamin pisemny odbędzie się: 9 czerwca w SDD i SSD w godz. 9-13 Egzaminy ustne 11.06 zgodnie z wywieszoną listą.
Stara i nowa teoria kwantowa
Stara i nowa teoria kwantowa Braki teorii Bohra: - podane jedynie położenia linii, brak natężeń -nie tłumaczy ilości elektronów na poszczególnych orbitach - model działa gorzej dla atomów z więcej niż
Energetyka Jądrowa. Wykład 28 lutego Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów
Energetyka Jądrowa Wykład 8 lutego 07 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Model atomu. Promieniowanie atomów 8.II.07 EJ - Wykład / r
Własności jąder w stanie podstawowym
Własności jąder w stanie podstawowym Najważniejsze liczby kwantowe charakteryzujące jądro: A liczba masowa = liczbie nukleonów (l. barionów) Z liczba atomowa = liczbie protonów (ładunek) N liczba neutronów
Wstęp do astrofizyki I
Wstęp do astrofizyki I Wykład 3 Tomasz Kwiatkowski 2010-10-20 Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 3 1/22 Plan wykładu Linie widmowe Linie Fraunhofera Prawa Kirchhoffa Analiza widmowa Zjawisko
Fizyka 2. Janusz Andrzejewski
Fizyka 2 wykład 14 Janusz Andrzejewski Atom wodoru Wczesne modele atomu -W czasach Newtona atom uważany była za małą twardą kulkę co dość dobrze sprawdzało się w rozważaniach dotyczących kinetycznej teorii
II.3 Atom helu i zakaz Pauliego. Atomy wieloelektronowe. Układ okresowy
II.3 Atom helu i zakaz Pauliego. Atomy wieloelektronowe. Układ okresowy 1. Atom helu: struktura poziomów, reguły wyboru, 2. Zakaz Pauliego, 3. Moment pędu w atomach wieloelektronowych: sprzężenie LS i
p.n.e. Demokryt z Abdery. Wszystko jest zbudowane z niewidzialnych cząstek - atomów (atomos ->niepodzielny)
O atomie 460-370 p.n.e. Demokryt z Abdery Wszystko jest zbudowane z niewidzialnych cząstek - atomów (atomos ->niepodzielny) 1808 John Dalton teoria atomistyczna 1. Pierwiastki składają się z małych, niepodzielnych
Atom wodoru w mechanice kwantowej. Równanie Schrödingera
Fizyka atomowa Atom wodoru w mechanice kwantowej Moment pędu Funkcje falowe atomu wodoru Spin Liczby kwantowe Poprawki do równania Schrödingera: struktura subtelna i nadsubtelna; przesunięcie Lamba Zakaz
II.4 Kwantowy moment pędu i kwantowy moment magnetyczny w modelu wektorowym
II.4 Kwantowy moment pędu i kwantowy moment magnetyczny w modelu wektorowym Jan Królikowski Fizyka IVBC 1 II.4.1 Ogólne własności wektora kwantowego momentu pędu Podane poniżej własności kwantowych wektorów
Atomy w zewnętrznym polu magnetycznym i elektrycznym
Atomy w zewnętrznym polu magnetycznym i elektrycznym 1. Kwantowanie przestrzenne momentów magnetycznych i rezonans spinowy 2. Efekt Zeemana (normalny i anomalny) oraz zjawisko Paschena-Backa 3. Efekt Starka
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 4 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2013/14
Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki?
Mechanika kwantowa Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Elektron fala stojąca wokół jądra Mechanika kwantowa Równanie Schrödingera Ĥ E ψ H ˆψ = Eψ operator różniczkowy
Liczby kwantowe elektronu w atomie wodoru
Liczby kwantowe elektronu w atomie wodoru Efekt Zeemana Atom wodoru wg mechaniki kwantowej ms = magnetyczna liczba spinowa ms = -1/2, do pełnego opisu stanu elektronu potrzebna jest ta liczba własność
ANALITYKA W KONTROLI JAKOŚCI
ANALITYKA W KONTROLI JAKOŚCI ANALIZA ŚLADÓW METODA ICP-OES Optyczna spektroskopia emisyjna ze wzbudzeniem w indukcyjnie sprzężonej plazmie WYKŁAD 4 Rodzaje widm i mechanizm ich powstania PODSTAWY SPEKTROSKOPII
II.3 Rozszczepienie subtelne. Poprawka relatywistyczna Sommerfelda
. akad. 004/005 II.3 Rozszczepienie subtelne. Popawka elatywistyczna Sommefelda Jan Kólikowski Fizyka IVBC . akad. 004/005 II.3. Mechanizmy fizyczne odpowiedzialne za ozszczepienie subtelne Istnieją dwie
Informacje ogólne. 45 min. test na podstawie wykładu Zaliczenie ćwiczeń na podstawie prezentacji Punkty: test: 60 %, prezentacja: 40 %.
Informacje ogólne Wykład 28 h Ćwiczenia 14 Charakter seminaryjny zespołu dwuosobowe ~20 min. prezentacje Lista tematów na stronie Materiały do wykładu na stronie: http://urbaniak.fizyka.pw.edu.pl Zaliczenie:
Wykład Budowa atomu 3
Wykład 14. 12.2016 Budowa atomu 3 Model atomu według mechaniki kwantowej Równanie Schrödingera dla atomu wodoru i jego rozwiązania Liczby kwantowe n, l, m l : - Kwantowanie energii i liczba kwantowa n
Budowa atomów. Atomy wieloelektronowe Układ okresowy pierwiastków
Budowa atomów Atomy wieloelektronowe Układ okresowy pierwiastków Model atomu Bohra atom zjonizowany (ciągłe wartości energii) stany wzbudzone jądro Energia (ev) elektron orbita stan podstawowy Poziomy
Widmo sodu, serie. p główna s- ostra d rozmyta f -podstawowa
Widmo sodu, serie p główna s- ostra d rozmyta f -podstawowa Przejścia dozwolone w Na Reguły wyboru: l =± 1 Diagram Grotriana dla sodu, z lewej strony poziomy energetyczne wodoru; należy zwrócić uwagę,
Metody analizy pierwiastków z zastosowaniem wtórnego promieniowania rentgenowskiego. XRF, SRIXE, PIXE, SEM (EPMA)
Metody analizy pierwiastków z zastosowaniem wtórnego promieniowania rentgenowskiego. XRF, SRIXE, PIXE, SEM (EPMA) Promieniowaniem X nazywa się promieniowanie elektromagnetyczne o długości fali od około
CHEMIA LEKCJA 1. Budowa atomu, Izotopy Promieniotwórczość naturalna i sztuczna. Model atomu Bohra
CHEMIA LEKCJA 1. Budowa atomu, Izotopy Promieniotwórczość naturalna i sztuczna Model atomu Bohra SPIS TREŚCI: 1. Modele budowy atomu Thomsona, Rutherforda i Bohra 2. Budowa atomu 3. Liczba atomowa a liczba
TEORIA PASMOWA CIAŁ STAŁYCH
TEORIA PASMOWA CIAŁ STAŁYCH Skolektywizowane elektrony w metalu Weźmy pod uwagę pewną ilość atomów jakiegoś metalu, np. sodu. Pojedynczy atom sodu zawiera 11 elektronów o konfiguracji 1s 2 2s 2 2p 6 3s
Fizyka 3.3 WYKŁAD II
Fizyka 3.3 WYKŁAD II Promieniowanie elektromagnetyczne Dualizm korpuskularno-falowy światła Fala elektromagnetyczna Strumień fotonów o energii E F : E F = hc λ c = 3 10 8 m/s h = 6. 63 10 34 J s Światło
Stałe : h=6, Js h= 4, eVs 1eV= J nie zależy
T_atom-All 1 Nazwisko i imię klasa Stałe : h=6,626 10 34 Js h= 4,14 10 15 evs 1eV=1.60217657 10-19 J Zaznacz zjawiska świadczące o falowej naturze światła a) zjawisko fotoelektryczne b) interferencja c)
Pomiar widm emisyjnych He, Na, Hg, Cd oraz Zn
Ćwiczenie 33 Pomiar widm emisyjnych He, Na, Hg, Cd oraz Zn 33.1. Zasada ćwiczenia W ćwiczeniu mierzone są widma emisyjne atomów helu(he), sodu(na), rtęci (Hg), kadmu(cd) i cynku(zn). Pomiar widma helu
Teorie wiązania chemicznego i podstawowe zasady mechaniki kwantowej Zjawiska, które zapowiadały nadejście nowej ery w fizyce i przybliżały
WYKŁAD 1 Teorie wiązania chemicznego i podstawowe zasady mechaniki kwantowej Zjawiska, które zapowiadały nadejście nowej ery w fizyce i przybliżały sformułowanie praw fizyki kwantowej: promieniowanie katodowe
Podstawy fizyki wykład 3
D. Halliday, R. Resnick, J.Walker: Podstawy Fizyki, tom 5, PWN, Warszawa 2003. H. D. Young, R. A. Freedman, Sear s & Zemansky s University Physics with Modern Physics, Addison-Wesley Publishing Company,
26 Okresowy układ pierwiastków
26 Okresowy układ pierwiastków Przyjmując procedurę Hartree ego otrzymujemy poziomy numerowane, jak w atomie wodoru, liczbami kwantowymi (n, l, m) z tym, że degeneracja ze względu na l na ogół już nie
FIZYKA-egzamin opracowanie pozostałych pytań
FIZYKA-egzamin opracowanie pozostałych pytań Andrzej Przybyszewski Michał Witczak Marcin Talarek. Definicja pracy na odcinku A-B 2. Zdefiniować różnicę energii potencjalnych gdy ciało przenosimy z do B
Wykład Budowa atomu 2
Wykład 7.12.2016 Budowa atomu 2 O atomach cd Model Bohra podsumowanie Serie widmowe O czym nie mówi model Bohra Wzbudzenie, emisja, absorpcja O liniach widmowych Kwantowomechaniczny model atomu sformułowanie
Rok akademicki: 2012/2013 Kod: JFM s Punkty ECTS: 6. Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne
Nazwa modułu: Wstęp do fizyki atomowej i kwantowej Rok akademicki: 2012/2013 Kod: JFM-1-302-s Punkty ECTS: 6 Wydział: Fizyki i Informatyki Stosowanej Kierunek: Fizyka Medyczna Specjalność: Poziom studiów:
autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 39 ATOM WODORU. PROMIENIOWANIE. WIDMA TEST JEDNOKROTNEGO WYBORU
autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 39 ATOM WODORU. PROMIENIOWANIE. WIDMA Zadanie 1 1 punkt TEST JEDNOKROTNEGO WYBORU Moment pędu elektronu znajdującego się na drugiej orbicie w atomie
III. EFEKT COMPTONA (1923)
III. EFEKT COMPTONA (1923) Zjawisko zmiany długości fali promieniowania roentgenowskiego rozpraszanego na swobodnych elektronach. Zjawisko to stoi u podstaw mechaniki kwantowej. III.1. EFEKT COMPTONA Rys.III.1.
Podstawowe własności jąder atomowych
Podstawowe własności jąder atomowych 1. Ilość protonów i neutronów Z, N 2. Masa jądra M j = M p + M n - B 2 2 Q ( M c ) ( M c ) 3. Energia rozpadu p 0 k 0 Rozpad zachodzi jeżeli Q > 0, ta nadwyżka energii
41P6 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - V POZIOM PODSTAWOWY
41P6 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - V Optyka fizyczna POZIOM PODSTAWOWY Dualizm korpuskularno-falowy Atom wodoru. Widma Fizyka jądrowa Teoria względności Rozwiązanie zadań należy
r. akad. 2012/2013 Atom wodoru wykład 5-6 Podstawy Procesów i Konstrukcji Inżynierskich Atom wodoru Zakład Biofizyki 1
r. akad. 01/013 wykład 5-6 Podstawy Procesów i Konstrukcji Inżynierskich Atom wodoru Zakład Biofizyki 1 Model atomu Thompsona Model atomu typu ciastka z rodzynkami w 1903 J.J. Thompson zaproponował model
OPTYCZNA ANALIZA WIDMOWA
Politechnika Warszawska Wydział Fizyki Laboratorium Fizyki I P Piotr Jaśkiewicz Jerzy Antonowicz 9 OPTYCZNA ANALIZA WIDMOWA 1. Podstawy fizyczne Ciało ogrzane do wysokiej temperatury, poddane wyładowaniu
Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki?
Mechanika kwantowa Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Równanie Schrödingera Ĥ E ψ H ˆψ = Eψ operator różniczkow Hamiltona energia funkcja falowa h d d d + + m d d dz
Wykład FIZYKA II. 13. Fizyka atomowa. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA II 13. Fizyka atomowa Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ ZASADA PAULIEGO Układ okresowy pierwiastków lub jakiekolwiek
Początek XX wieku. Dualizm korpuskularno - falowy
Początek XX wieku Światło: fala czy cząstka? Kwantowanie energii promieniowania termicznego postulat Plancka efekt fotoelektryczny efekt Comptona Fale materii de Broglie a Dualizm korpuskularno - falowy
I.4 Promieniowanie rentgenowskie. Efekt Comptona. Otrzymywanie promieniowania X Pochłanianie X przez materię Efekt Comptona
r. akad. 004/005 I.4 Promieniowanie rentgenowskie. Efekt Comptona Otrzymywanie promieniowania X Pochłanianie X przez materię Efekt Comptona Jan Królikowski Fizyka IVBC 1 r. akad. 004/005 0.01 nm=0.1 A
Wykład Atomy wieloelektronowe, układ okresowy pierwiastków.
Wykład 36 36. Atomy wieloelektronowe, układ okresowy pierwiastków. Fizycy badający strukturę atomów wieloelektronowych starali się odpowiedzieć na fundamentalne pytanie, dlaczego wszystkie elektrony w
Atomy mają moment pędu
Atomy mają moment pędu Model na rysunku jest modelem tylko klasycznym i jak wiemy z mechaniki kwantowej, nie odpowiada dokładnie rzeczywistości Jednakże w mechanice kwantowej elektron nadal ma orbitalny
FIZYKA 2. Janusz Andrzejewski
FIZYKA 2 wykład 11 Janusz Andrzejewski Fizyka Fizyka klasyczna do 1900 roku Mechanika klasyczna (w tym statyka i dynamika) Hydrodynamika (mechanika ośrodków ciągłych) Elektrodynamika klasyczna Klasyczna
Spektroskopia magnetyczna
Spektroskopia magnetyczna Literatura Zbigniew Kęcki, Podstawy spektroskopii molekularnej, PWN W- wa 1992 lub nowsze wydanie Przypomnienie 1) Mechanika ruchu obrotowego - moment bezwładności, moment pędu,
Wstęp do astrofizyki I
Wstęp do astrofizyki I Wykład 13 Tomasz Kwiatkowski Uniwersytet im. Adama Mickiewicza w Poznaniu Wydział Fizyki Instytut Obserwatorium Astronomiczne Tomasz Kwiatkowski, OA UAM Wstęp do astrofizyki I, Wykład
FALOWY I KWANTOWY OPIS ŚWIATŁA. Światło wykazuje dualizm korpuskularno-falowy. W niektórych zjawiskach takich jak
FALOWY KWANTOWY OPS ŚWATŁA Dualizm korpuskularno - falowy Światło wykazuje dualizm korpuskularno-falowy. W niektórych zjawiskach takich jak interferencja, dyfrakcja i polaryzacja ma naturę falową, a w
Źródła światła. W lampach płomieniowych i jarzeniowych źródłem promieniowania jest wzbudzony gaz. Widmo lamp jarzeniowych nie jest ciągłe!
Źródła światła W lampach płomieniowych i jarzeniowych źródłem promieniowania jest wzbudzony gaz. Widmo ciągłe: ciało doskonale czarne Widmo emisyjne: linie emisyjne Linie absorpcyjne Widmo lamp jarzeniowych
(U.13) Atom wodoropodobny
3.10.200 3. U.13 Atom wodoropodobny 122 Rozdział 3 U.13 Atom wodoropodobny 3.1 Model Bohra przypomnienie Zaznaczmy na wstępie o czym już wspominaliśmy w kontekście zasady nieoznaczoności, że model Bohra
Elektronowa struktura atomu
Elektronowa struktura atomu Model atomu Bohra oparty na teorii klasycznych oddziaływań elektrostatycznych Elektrony mogą przebywać tylko w określonych stanach, zwanych stacjonarnymi, o określonej energii
Atom wodoropodobny. Biegunowy układ współrzędnych. współrzędne w układzie. kartezjańskim. współrzędne w układzie. (x,y,z) biegunowym.
Atom wodoropodobny z współrzędne w układzie kartezjańskim r sinθ cosφ x r cosθ φ θ r r sinθ (x,y,z) r sinθ sinφ Biegunowy układ współrzędnych y funkcja faowa współrzędne w układzie biegunowym ( ) r,θ,φ
Atomy. Model Bohra. 28 października Model Bohra
28 października 2016 struktura materii dyskusja o strukturze materii: ciagła czy dyskretna prawa gazowe: Boyle (1627-1691) : przy stałej T dla gazu PV = const Charles (1746-1823) i niezależnie Gay-Lussac
Spis treści. Przedmowa redaktora do wydania czwartego 11
Mechanika kwantowa : teoria nierelatywistyczna / Lew D. Landau, Jewgienij M. Lifszyc ; z jęz. ros. tł. Ludwik Dobrzyński, Andrzej Pindor. - Wyd. 3. Warszawa, 2012 Spis treści Przedmowa redaktora do wydania
Wykład 16: Atomy wieloelektronowe
Wykład 16: Atomy wieloelektronowe Funkcje falowe Kolejność zapełniania orbitali Energia elektronów Konfiguracja elektronowa Reguła Hunda i zakaz Pauliego Efektywna liczba atomowa Reguły Slatera Wydział
Spektroskopia Analiza rotacyjna widma cząsteczki N 2. Cel ćwiczenia: Wyznaczenie stałych rotacyjnych i odległości między atomami w cząsteczce N 2
Spektroskopia Analiza rotacyjna widma cząsteczki N 2 Cel ćwiczenia: Wyznaczenie stałych rotacyjnych i odległości między atomami w cząsteczce N 2 w stanach B 2 v=0 oraz X 2 v=0. System B 2 u - X 2 g cząsteczki
I. PROMIENIOWANIE CIEPLNE
I. PROMIENIOWANIE CIEPLNE - lata '90 XIX wieku WSTĘP Widmo promieniowania elektromagnetycznego zakres "pokrycia" różnymi rodzajami fal elektromagnetycznych promieniowania zawartego w danej wiązce. rys.i.1.
Chemia Ogólna wykład 1
Chemia Ogólna wykład 1 Materia związki chemiczne cząsteczka http://scholaris.pl/ obojętne elektrycznie indywiduum chemiczne, złożone z więcej niż jednego atomu, które są ze sobą trwale połączone wiązaniami
I ,11-1, 1, C, , 1, C
Materiał powtórzeniowy - budowa atomu - cząstki elementarne, izotopy, promieniotwórczość naturalna, okres półtrwania, średnia masa atomowa z przykładowymi zadaniami I. Cząstki elementarne atomu 1. Elektrony
r. akad. 2012/2013 Atom wodoru wykład V-VI Podstawy Procesów i Konstrukcji Inżynierskich Atom wodoru Zakład Biofizyki 1
r. akad. 01/013 wykład V-VI Podstawy Procesów i Konstrukcji Inżynierskic Atom wodoru Zakład Biofizyki 1 Model atomu Tompsona Model atomu typu ciastka z rodzynkami w 1903 J.J. Tompson zaproponował model
Promieniowanie jonizujące i metody radioizotopowe. dr Marcin Lipowczan
Promieniowanie jonizujące i metody radioizotopowe dr Marcin Lipowczan Budowa atomu 897 Thomson, 0 0 m, kula dodatnio naładowana ładunki ujemne 9 Rutherford, rozpraszanie cząstek alfa na folię metalową,
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 3 wykład: Piotr Fita pokazy: Jacek Szczytko ćwiczenia: Aneta Drabińska, Paweł Kowalczyk, Barbara Piętka Wydział Fizyki Uniwersytet
Absorpcja związana z defektami kryształu
W rzeczywistych materiałach sieć krystaliczna nie jest idealna występują różnego rodzaju defekty. Podział najważniejszych defektów ze względu na właściwości optyczne: - inny atom w węźle sieci: C A atom
Wykład FIZYKA II. 12. Mechanika kwantowa. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA II. Mechanika kwantowa Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ MECHANIKA KWANTOWA Podstawę mechaniki kwantowej stanowi
W6. Model atomu Thomsona
W6. Model atomu Thomsona Na początku XX w. znano wiele wyników eksperymentalnych, które wskazywały na to, że atomy zawierają elektrony. Z faktu, że atomy są elektrycznie obojętne wnioskowano, że mają one
Atomy wieloelektronowe
Wiązania atomowe Atomy wieloelektronowe, obsadzanie stanów elektronowych, układ poziomów energii. Przykładowe konfiguracje elektronów, gazy szlachetne, litowce, chlorowce, układ okresowy pierwiastków,
W drugiej części przedstawiono podstawowe wiadomości z fizyki atomowej, fizyki ciała stałego oraz fizyki jądrowej.
W drugiej części przedstawiono podstawowe wiadomości z fizyki atomowej, fizyki ciała stałego oraz fizyki jądrowej. Na całość pracy składają się dwie części (cz. I Fizyka klasyczna J. Massalski, M. Massalska).
Oddziaływanie atomu z kwantowym polem E-M: C.D.
Oddziaływanie atomu z kwantowym polem E-M: C.D. 1 atom jakoźródło 1 fotonu. Emisja spontaniczna wg. złotej reguły Fermiego. Absorpcja i emisja kolektywna ˆ E( x,t)=i λ Powtórzenie d 3 ω k k 2ǫ(2π) 3 e
2008/2009. Seweryn Kowalski IVp IF pok.424
2008/2009 seweryn.kowalski@us.edu.pl Seweryn Kowalski IVp IF pok.424 Plan wykładu Wstęp, podstawowe jednostki fizyki jądrowej, Własności jądra atomowego, Metody wyznaczania własności jądra atomowego, Wyznaczanie
17 Naturalne jednostki w fizyce atomowej
7 Naturalne jednostki w fizyce atomowej W systemie CGS wszystkie wielkości fizyczne wyrażane są jako potęgi trzech fundamentalnych jednostek:. długości (l) cm,. masy (m) g, 3. czasu (t) s. Wymiary innych
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 2006 Instytut Fizyki Uniwersytetu Szczecińskiego Rezonansowe oddziaływanie układu atomowego z promieniowaniem "! "!! # $%&'()*+,-./-(01+'2'34'*5%.25%&+)*-(6
Teoria pasmowa ciał stałych Zastosowanie półprzewodników
Teoria pasmowa ciał stałych Zastosowanie półprzewodników Model atomu Bohra Niels Bohr - 1915 elektrony krążą wokół jądra jądro jest zbudowane z: i) dodatnich protonów ii) neutralnych neutronów Liczba atomowa
Pasmowa teoria przewodnictwa. Anna Pietnoczka
Pasmowa teoria przewodnictwa elektrycznego Anna Pietnoczka Wpływ rodzaju wiązań na przewodność próbki: Wiązanie jonowe - izolatory Wiązanie metaliczne - przewodniki Wiązanie kowalencyjne - półprzewodniki
Foton, kwant światła. w klasycznym opisie świata, światło jest falą sinusoidalną o częstości n równej: c gdzie: c prędkość światła, długość fali św.
Foton, kwant światła Wielkość fizyczna jest skwantowana jeśli istnieje w pewnych minimalnych (elementarnych) porcjach lub ich całkowitych wielokrotnościach w klasycznym opisie świata, światło jest falą
Analiza spektralna widma gwiezdnego
Analiza spektralna widma gwiezdnego JG &WJ 13 kwietnia 2007 Wprowadzenie Wprowadzenie- światło- podstawowe źródło informacji Wprowadzenie- światło- podstawowe źródło informacji Wprowadzenie- światło- podstawowe
Wykład Atom o wielu elektronach Laser Rezonans magnetyczny
Wykład 21. 12.2016 Atom o wielu elektronach Laser Rezonans magnetyczny Jeszcze o atomach Przypomnienie: liczby kwantowe elektronu w atomie wodoru, zakaz Pauliego, powłoki, podpowłoki, orbitale, Atomy wieloelektronowe
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 2, Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 2, 17.02.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Równania Maxwella r-nie falowe
FIZYKA KLASA I LO LICEUM OGÓLNOKSZTAŁCĄCEGO wymagania edukacyjne
FIZYKA KLASA I LO LICEUM OGÓLNOKSZTAŁCĄCEGO wymagania edukacyjne TEMAT (rozumiany jako lekcja) 1.1. Kinematyka ruchu jednostajnego po okręgu 1.2. Dynamika ruchu jednostajnego po okręgu 1.3. Układ Słoneczny
Fizyka promieniowania jonizującego. Zygmunt Szefliński
Fizyka promieniowania jonizującego Zygmunt Szefliński 1 Wykład 6 Promieniowanie. Produkcja i oddziaływanie. Potencjały jonizacyjne 3 Podpowłoki Tab. Oznaczenia literowe podpowłok l 0 1 3 4 5 Oznaczenie
VIII. VIII.1. ORBITALNY MOMENT MAGNETYCZNY ELEKTRONU, L= r p (VIII.1.1) p=m v (VIII.1.2) L= L =mvr (VIII.1.1a) r v. r=v (VIII.1.3)
VIII. VIII.1. ORBITALNY MOMENT MAGNETYCZNY ELEKTRONU, L= r p (VIII.1.1) p=m v (VIII.1.2) Z (VIII.1.1) i (VIII.1.2) wynika (VIII.1.1a): L= L =mvr (VIII.1.1a) r v r=v (VIII.1.3) Z zależności (VIII.1.1a)
Budowa atomu, poziomy energetyczne, model Bohra (ćw. 11)
Budowa atomu, poziomy energetyczne, model Bohra (ćw. ) Podstawowa literatura: D. Halliday, R. Resnick, J. Walker, Podstawy fizyki, PWN, Warszawa 26 Budowa atomu Atom (z gr. atomos: "niepodzielny") najmniejszy,