FALOWY I KWANTOWY OPIS ŚWIATŁA. Światło wykazuje dualizm korpuskularno-falowy. W niektórych zjawiskach takich jak

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "FALOWY I KWANTOWY OPIS ŚWIATŁA. Światło wykazuje dualizm korpuskularno-falowy. W niektórych zjawiskach takich jak"

Transkrypt

1 FALOWY KWANTOWY OPS ŚWATŁA Dualizm korpuskularno - falowy Światło wykazuje dualizm korpuskularno-falowy. W niektórych zjawiskach takich jak interferencja, dyfrakcja i polaryzacja ma naturę falową, a w innych takich jak np. efekt fotoelektryczny czy też rozproszenie comptonowskie wykazuje naturę korpuskularną. Omówimy kilka zjawisk, które świadczą o dualnym charakterze promieniowania elektromagnetycznego. Polaryzacja światła W ubiegłym semestrze opisywaliśmy światło uważając je za falę elektromagnetyczną. Światło przedstawialiśmy jako drgające pole elektryczne i prostopadłe do niego pole magnetyczne. Fala E-M jest falą poprzeczną, jej pola elektryczne i magnetyczne są Z prostopadłe do kierunku rozchodzenia się fali. W świetle naturalnym wszystkie kierunki drgań np. pola elektrycznego są równoprawdopodobne i takie światło nie jest spolaryzowane. Światło jest spolaryzowane, jeśli drgania wektora natężenia pola elektrycznego E są w pewien sposób uporządkowane ( ukierunkowane ). Sposób uporządkowania drgań pola E pozwala na rozróżnienie rodzajów polaryzacji. Polaryzacja liniowa ( płaska ) jest to rodzaj polaryzacji, przy której drgania wektora E ( oraz B: E = B vf ) zachodzą w jednej płaszczyźnie obecnie nazywanej płaszczyzną polaryzacji. E x E= E e + E e t kz+ ( 0x 0 ) cos ( 0) x y y ω ϕ z y

2 Polaryzacja eliptyczna koniec wektora E porusza się po linii śrubowej o osi będącej kierunkiem rozchodzenia się wiązki światła. Może być otrzymana przez złożenie dwóch drgań prostopadłych spolaryzowanych płasko i przesuniętych w fazie o 90 np. E = E e cos t kz+ ± E e sin t kz+. ( ω ϕ) ( ω ϕ ) ox x oy y W przypadku znaku ( ) polaryzacja jest prawoskrętna, a przy znaku ( + ) mamy polaryzację lewoskrętną. Kiedy E 0x = E0y mamy do czynienia z polaryzacją kołową. Światło naturalne przedstawia się niekiedy tak, jak pokazuje poniższy rysunek. Z Z Światło może być częściowo spolaryzowane, co przedstawia się, tak jak niżej Z Polaryzatory są to urządzenia służące do otrzymania światła spolaryzowanego. W przypadku polaryzatora liniowego zasadę jego działania pokazuje rysunek 0 = 0 α α α = cos ( ) Z E0 P E0 E0 P P, P - polaryzatory, - natężenie światła ( ) E, E = E cos( α), E ( α) ( α) 0 = = cos = cos. E0 (6.)

3 Równanie (6.) wyraża prawo Malusa. Do otrzymywania światła spolaryzowanego wykorzystuje się takie zjawiska jak:. Polaryzację światła przy odbiciu od dielektryka. Światło naturalne ulega częściowej polaryzacji podczas odbicia i załamania od powierzchni dielektryka. Przy kącie padania α nazywanym kątem Brewstera α B, światło odbite jest całkowicie spolaryzowane. Odbija się wtedy tylko składowa pola elektrycznego prostopadła do płaszczyzny padania. Przy kącie Brewstera stwierdzono, że kąt między promieniem odbitym i załamanym wynosi 90. n α B α B 90 β Z prawa Snella otrzymamy: ( αb) ( β) ( αb) ( α ) sin sin = = tg ( αb ) = n prawo Brewstera. sin sin 90 B (6.). Dwójłomność: Niektóre kryształy ( np. CaCO 3 kalcyt ) podwójnie załamują światło. Jedna wiązka załamanego światła nazywana jest wiązką zwyczajną ( o ), a druga wiązka wiązką nadzwyczajną ( e ). Wiązki e i o są Z CaCO3 e o spolaryzowane liniowo wzajemnie prostopadle i mają różne współczynniki załamania. 3. Dichroizm: Polega na tym, że niektóre ( np. turmalin ) selektywnie Z kryształy pochłaniają światło w zależności od jego polaryzacji. 3

4 Promieniowanie ciała doskonale czarnego Ciało doskonale czarne to ciało, które doskonale ( całkowicie ) absorbuje i emituje promieniowanie elektromagnetyczne. Żadne inne ciało nie jest lepszym emiterem i absorberem promieniowania. Dobrym modelem ciała doskonale czarnego może być pusty zbiornik z małym otworem w ściance umieszczony w termostacie utrzymującym jednorodny rozkład temperatury T. Zaglądając przez otwór do zbiornika ( przy niewysokiej temperaturze ) zobaczymy doskonałą czerń. W wysokiej temperaturze T przez otwór wydobywa się promieniowanie widzialne. Jeśli przez gęstość spektralną promieniowania u ( λ ) oznaczymy ilość energii tego promieniowania przypadającą na przedział długości fali dλ i na jednostkę objętości dv to otrzymane doświadczalnie krzywe rozkładu u ( λ) w funkcji długości fali λ mają przedstawioną na rysunku postać. u(λ) j. w. x Rozkład Plancka T=3000 K 3 T=5000 K 0 0,00E+00,00E-06,00E-06 3,00E-06 4,00E-06 λ [m] W ramach fizyki klasycznej nie potrafiono opisać poprawnie tych krzywych. Dopiero Planck w 900 r. podał wzór opisujący w całym przedziale długości fal promieniowanie ciała doskonale czarnego: u ( λ) = 5 8π hc hc, λ kt e λ (6.3) 4

5 34 gdzie: h = 6,63 0 J s stała Plancka, c - prędkość światła, k - stała Boltzmanna. Aby otrzymać wyrażenie (6.3) Planck założył, że wymiana energii między ścianką i wnęką zbiornika odbywa się skończonymi porcjami kwantami energii c E = hv = h. λ Promieniowanie ciała doskonale czarnego spełnia:. Prawo Wiena 3 λmax T = const, const =,9 0 K m, (6.4) gdzie λ max oznacza długość fali, przy której krzywa rozkładu promieniowania w temperaturze T osiąga maksimum.. Prawo Stefana Boltzmanna 4 8 W ( λ) λ σ, σ 5,7 0, 4 K 0 c P= u d = T = 4 m (6.5) gdzie P oznacza moc wypromieniowaną przez jednostkę powierzchni we wszystkich kierunkach. Efekt fotoelektryczny FK hν A FK - fotokatoda A - anoda Efektem fotoelektrycznym nazywamy zjawisko emisji elektronów pod działaniem światła ( Hertz 887 r. ). Badając to zjawisko stwierdzono szereg faktów sprzecznych z falową naturą światła, np. energia wybijanych elektronów nie wzrastała ze wzrostem natężenia światła. Nie stwierdzono także opóźnienia między chwilą włączenia światła a momentem pojawienia się 5

6 fotoprądu. Wykazano także doświadczalnie istnienie częstotliwości granicznej ν, poniżej której fotoprąd nie pojawiał się bez względu na wartość natężenia światła. g f f = const > λ λ= const U λ λ < λ U E kmax U h U h = eu h ν - fotoprąd, - natężenie swiatla, f ν - częstotliwosć, U - napięcie, λ - dlugosć fali, E - maksym. enrgia kinet. elektronów k max Φ ν g Fotoefekt został objaśniony przez Einsteina w 905 roku. Einstein założył, że światło w tym zjawisku składa się z fotonów o energii E = hν. Foton może zostać pochłonięty przez elektron w metalu i uzyskana przez elektron dodatkowa energia może wystarczyć, aby mógł on opuścić metal. Energia fotonu E = hν zostaje więc zużyta na wyrwanie elektronu z metalu czyli na wykonanie pracy wyjścia Φ i na nadanie elektronowi energii kinetycznej, maksymalnie E : k max hν = E k max +Φ. (6.6) Ponieważ doświadczenie pokazuje, że emisję można zatrzymać stosując napięcie wsteczne hamujące to U h 6

7 E = eu e ładunek elektronu. (6.7) kmax h, Z równań (6.6) i (6.7) otrzymamy eu h = hν Φ. (6.8) Dla częstotliwości granicznej ν g zachodzi hν = Φ. (6.9) g Z równania (6.8) wynika przedstawiona na rysunku wyżej zależność napięcia hamowania od częstotliwości światła. Z nachylenia wykresu Miliken w 96 r. wyznaczył wartość stałej U h Plancka h. Zjawisko Comptona Zjawisko to zostało odkryte w 93 roku przez Comptona podczas badania rozproszenia promieni rentgenowskich przez różne substancje. Compton zaobserwował w promieniowaniu rozproszonym obok promieniowania o takiej samej długości fali λ jak promieniowanie padające promieniowanie o większej długości fali λ, tak, że Δ λ = λ λ zależy tylko od kąta ϑ między wiązką pierwotną i rozproszoną natężenie λ ϑ λ λ λ λ λ Wzór na Δ λ, opisujący wyniki doświadczalne, można uzyskać zakładając korpuskularną naturę promieniowania 7

8 p p p e ϑ Zakłada się, że foton zderza się z praktycznie nieruchomym elektronem rozpraszacza oraz, że zachodzą prawa zachowania pędu (6.0) i energii (6.). Ponieważ pęd fotonu: h ν h p = ep = ep c λ to h h e = p + e λ λ p e p, (6.0) hc hc + mc = + c pe + m c λ λ, (6.) gdzie: m- masa elektronu. p e - pęd rozproszonego elektronu. Ostatnie równanie dzielimy przez c, podnosimy do kwadratu i zapisujemy w postaci pe + m c = h + m c hmc. + + λ λ λλ λ λ Z zasady zachowania pędu (6.0) mamy pe = h + cos( ϑ ). λ λ λλ Po porównaniu ostatnich dwóch równań otrzymamy h + c + hmc = h + os( ϑ) λ λ λλ λ λ λ λ λλ, h mc = ( cos( ϑ) ), λ λ λλ h λ λ = ( cos( ϑ) ), mc ( ) Δ λ = λ C cos( ϑ ), (6.) h gdzie λc = =,43 0 m - comptonowska długość fali. mc 8

9 Model atomu wodoru Bohra Na początku 0. wieku było wiadomo, że atomy składają się z elektronów i ładunku dodatniego skupionego w jądrze o małych rozmiarach rzędu szacowano natomiast na Rozmiary atomu Eksperymenty wykazywały, że atomy wysyłają lub pochłaniają światło o określonych długościach fal charakterystycznych dla każdego rodzaju atomów. Fizyka klasyczna nie była w stanie objaśnić tego liniowego charakteru świecenia atomów, a nawet nie potrafiła objaśnić faktu stabilności układu ładunków, jaki stanowi atom. Teoria Bohra (93r.) była pierwszą teorią, która odniosła sukces w opisie najprostszego atomu, jakim jest atom wodoru. Model Bohra opiera się na dwóch postulatach o naturze kwantowej: 0 0 m. 5 0 m. postulat: Elektron o masie m krąży z prędkością v wokół nieruchomego protonu po orbicie kołowej o takim promieniu h /( π ) r, że jego moment pędu jest całkowitą wielokrotnością mvr = n, n =,,3 (6.3) postulat: Atom promieniuje lub absorbuje foton o energii hν tylko wtedy, kiedy przechodzi z jednej orbity na drugą hc hν = = E. m E n (6.4) λ Korzystając z powyższych postulatów możemy obliczyć promień n - tej orbity i energię elektronu na n - tej orbicie: Siła Coulomba jest siłą dośrodkową mv ke n n ke r r mr m r r 4πε 0 r = n = n, kme me =, oraz v= m = 9

10 oznaczając r 4πε = = = me 0 0 0,53 0 m 0,53 Ǻ, r = r = rn n. (6.5) Na energię elektronu uzyskamy wzór E n 4 ke ke ke ke k me mvn rn rn rn rn n = = = = 4 me = = E, 3πε 0 n n = (6.6) gdzie 4 me E = = 3πε0 9 3,6 ev, ev=,6 0 J. Korzystając z drugiego postulatu Bohra uzyskamy wzór na długości fal promieniowania emitowanego przez atom wodoru hc E E = = E, λ m n n m E = R, = λ hc n m n m (6.7) gdzie R = 7,097 0 /m to stała Rydberga. Dla n = wzór (6.7) został odgadnięty już w 9. wieku przez Balmera z dopasowania do znanych linii widmowych wodoru w obszarze widzialnym. Emitowane lub absorbowane przez wodór linie widmowe można usystematyzować w serie widmowe. Jeśli w wyrażeniu (6.7) podstawimy: n=, m=,3, 4, otrzymamy serię Lymana n=, m= 3, 4,5, otrzymamy serię Balmera n= 3, m= 4,5, 6, otrzymamy serię Paschena 0

11 n= 4, m= 5,6,7, otrzymamy serię Bracketta Serie widmowe przedstawione są niżej na wykresie poziomów energii: E n n=5 n=4 n=3 n= E = 0 E E 5 4 E 3 E Lyman Balmer Paschen Brackett α α β α β γ α β γ δ n= E = 3,6 ev Linie przerywane oznaczają granice serii widmowych ( m ). Teoria Bohra zawodzi w przypadku innych atomów np. nie opisuje już widma helu.

Rysunek 3-23 Hipotetyczne widmo ciągłe atomu Ernesta Rutherforda oraz rzeczywiste widmo emisyjne wodoru w zakresie światła widzialnego

Rysunek 3-23 Hipotetyczne widmo ciągłe atomu Ernesta Rutherforda oraz rzeczywiste widmo emisyjne wodoru w zakresie światła widzialnego 3.5. Model Bohra-Sommerfelda Przeciw modelowi atomu zaproponowanego przez Ernesta Rutherforda przemawiały także wyniki badań spektroskopowych pierwiastków. Jeśli elektrony, jak wynika z teorii Maxwella,

Bardziej szczegółowo

Promieniowanie cieplne ciał.

Promieniowanie cieplne ciał. Wypromieniowanie fal elektromagnetycznych przez ciała Promieniowanie cieplne (termiczne) Luminescencja Chemiluminescencja Elektroluminescencja Katodoluminescencja Fotoluminescencja Emitowanie fal elektromagnetycznych

Bardziej szczegółowo

FIZYKA-egzamin opracowanie pozostałych pytań

FIZYKA-egzamin opracowanie pozostałych pytań FIZYKA-egzamin opracowanie pozostałych pytań Andrzej Przybyszewski Michał Witczak Marcin Talarek. Definicja pracy na odcinku A-B 2. Zdefiniować różnicę energii potencjalnych gdy ciało przenosimy z do B

Bardziej szczegółowo

Atom wodoru i jony wodoropodobne

Atom wodoru i jony wodoropodobne Atom wodoru i jony wodoropodobne dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2012/13 Spis treści Spis treści 1. Model Bohra atomu wodoru 2 1.1. Porządek

Bardziej szczegółowo

Kwantowa teoria promieniowania

Kwantowa teoria promieniowania Rozdział 3 Kwantowa teoria promieniowania 3.1 Zjawisko fotoelektryczne 3.1.1 Kwanty promieniowania Szereg faktów doświadczalnych wskazuje, że promieniowanie elektromagnetyczne, w szczególności światło,

Bardziej szczegółowo

Prawa optyki geometrycznej

Prawa optyki geometrycznej Optyka Podstawowe pojęcia Światłem nazywamy fale elektromagnetyczne, o długościach, na które reaguje oko ludzkie, tzn. 380-780 nm. O falowych własnościach światła świadczą takie zjawiska, jak ugięcie (dyfrakcja)

Bardziej szczegółowo

Rysunek 3-19 Model ciała doskonale czarnego

Rysunek 3-19 Model ciała doskonale czarnego 3.4. Początki teorii kwantów narodziny fizyki kwantowej Od czasów sformułowania przez Isaaca Newtona zasad mechaniki klasycznej teoria ta stała się podstawą wszystkich nowopowstałych atomistycznych modeli

Bardziej szczegółowo

WYDZIAŁ.. LABORATORIUM FIZYCZNE

WYDZIAŁ.. LABORATORIUM FIZYCZNE WSEiZ W WARSZAWIE WYDZIAŁ.. LABORATORIUM FIZYCZNE Ćw. nr 8 BADANIE ŚWIATŁA SPOLARYZOWANEGO: SPRAWDZANIE PRAWA MALUSA Warszawa 29 1. Wstęp Wiemy, że fale świetlne stanowią niewielki wycinek widma fal elektromagnetycznych

Bardziej szczegółowo

BADANIE EFEKTU FOTOELEKTRYCZNEGO ZEWNĘTRZNEGO

BADANIE EFEKTU FOTOELEKTRYCZNEGO ZEWNĘTRZNEGO Politechnika Warszawska Wydział Fizyki Laboratorium Fizyki I P Jerzy Politechnika Filipowicz Warszawska Wydział Fizyki Laboratorium Fizyki I P Jerzy Filipowicz BADANIE EFEKTU FOTOELEKTRYCZNEGO ZEWNĘTRZNEGO

Bardziej szczegółowo

Polaryzatory/analizatory

Polaryzatory/analizatory Polaryzatory/analizatory Polaryzator eliptyczny element układu optycznego lub układ optyczny, za którym światło jest spolaryzowane eliptycznie i o parametrach ściśle określonych przez polaryzator zazwyczaj

Bardziej szczegółowo

Wykład FIZYKA II. 12. Mechanika kwantowa. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA II. 12. Mechanika kwantowa.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA II. Mechanika kwantowa Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ MECHANIKA KWANTOWA Podstawę mechaniki kwantowej stanowi

Bardziej szczegółowo

Fale materii. gdzie h= 6.6 10-34 J s jest stałą Plancka.

Fale materii. gdzie h= 6.6 10-34 J s jest stałą Plancka. Fale materii 194- Louis de Broglie teoria fal materii, 199- nagroda Nobla Hipoteza de Broglie głosi, że dwoiste korpuskularno falowe zachowanie jest cechą nie tylko promieniowania, lecz również materii.

Bardziej szczegółowo

PDF stworzony przez wersję demonstracyjną pdffactory

PDF stworzony przez wersję demonstracyjną pdffactory Promieniowanie elektromagnetyczne (fala elektromagnetyczna) rozchodzące się w przestrzeni zaburzenie pola elektromagnetycznego. Zaburzenie to ma charakter fali poprzecznej, w której składowa elektryczna

Bardziej szczegółowo

Wyznaczanie zależności współczynnika załamania światła od długości fali światła

Wyznaczanie zależności współczynnika załamania światła od długości fali światła Ćwiczenie O3 Wyznaczanie zależności współczynnika załamania światła od długości fali światła O3.1. Cel ćwiczenia Celem ćwiczenia jest zbadanie zależności współczynnika załamania światła od długości fali

Bardziej szczegółowo

Ćwiczenie 373. Wyznaczanie stężenia roztworu cukru za pomocą polarymetru. Długość rurki, l [dm] Zdolność skręcająca a. Stężenie roztworu II d.

Ćwiczenie 373. Wyznaczanie stężenia roztworu cukru za pomocą polarymetru. Długość rurki, l [dm] Zdolność skręcająca a. Stężenie roztworu II d. Nazwisko Data Nr na liście Imię Wydział Dzień tyg Godzina Ćwiczenie 373 Wyznaczanie stężenia roztworu cukru za pomocą polarymetru Stężenie roztworu I d [g/dm 3 ] Rodzaj cieczy Położenie analizatora [w

Bardziej szczegółowo

Interferencja jest to zjawisko nakładania się fal prowadzące do zwiększania lub zmniejszania amplitudy fali wypadkowej. Interferencja zachodzi dla

Interferencja jest to zjawisko nakładania się fal prowadzące do zwiększania lub zmniejszania amplitudy fali wypadkowej. Interferencja zachodzi dla Interferencja jest to zjawisko nakładania się fal prowadzące do zwiększania lub zmniejszania amplitudy fali wypadkowej. Interferencja zachodzi dla wszystkich rodzajów fal, we wszystkich ośrodkach, w których

Bardziej szczegółowo

WYZNACZANIE STAŁEJ PLANCKA NA PODSTAWIE PRAWA PLANCKA PROMIENIOWANIA CIAŁA DOSKONALE CZARNEGO

WYZNACZANIE STAŁEJ PLANCKA NA PODSTAWIE PRAWA PLANCKA PROMIENIOWANIA CIAŁA DOSKONALE CZARNEGO ĆWICZENIE 107 WYZNACZANIE STAŁEJ PLANCKA NA PODSTAWIE PRAWA PLANCKA PROMIENIOWANIA CIAŁA DOSKONALE CZARNEGO Cel ćwiczenia: pomiary zdolności emisyjnej ciała jako funkcji jego temperatury, wyznaczenie stałej

Bardziej szczegółowo

Wykład FIZYKA II 8. Optyka falowa Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ Nakładanie się fal nazywamy ogólnie superpozycją. Nakładanie

Bardziej szczegółowo

Promieniowanie rentgenowskie. Podstawowe pojęcia krystalograficzne

Promieniowanie rentgenowskie. Podstawowe pojęcia krystalograficzne Promieniowanie rentgenowskie Podstawowe pojęcia krystalograficzne Krystalografia - podstawowe pojęcia Komórka elementarna (zasadnicza): najmniejszy, charakterystyczny fragment sieci przestrzennej (lub

Bardziej szczegółowo

WYZNACZENIE STAŁEJ STEFANA - BOLTZMANNA

WYZNACZENIE STAŁEJ STEFANA - BOLTZMANNA ĆWICZENIE 32 WYZNACZENIE STAŁEJ STEFANA - BOLTZMANNA Cel ćwiczenia: Wyznaczenie stałej Stefana-Boltzmanna metodami jednakowej temperatury i jednakowej mocy. Zagadnienia: ciało doskonale czarne, zdolność

Bardziej szczegółowo

SPIS TREŚCI ««*» ( # * *»»

SPIS TREŚCI ««*» ( # * *»» ««*» ( # * *»» CZĘŚĆ I. POJĘCIA PODSTAWOWE 1. Co to jest fizyka? 11 2. Wielkości fizyczne 11 3. Prawa fizyki 17 4. Teorie fizyki 19 5. Układ jednostek SI 20 6. Stałe fizyczne 20 CZĘŚĆ II. MECHANIKA 7.

Bardziej szczegółowo

Wykład 13 Mechanika Kwantowa

Wykład 13 Mechanika Kwantowa Wykład 13 Mechanika Kwantowa Maciej J. Mrowiński mrow@if.pw.edu.pl Wydział Fizyki Politechnika Warszawska 25 maja 2016 Maciej J. Mrowiński (IF PW) Wykład 13 25 maja 2016 1 / 21 Wprowadzenie Sprawy organizacyjne

Bardziej szczegółowo

Promieniowanie jonizujące i metody radioizotopowe. dr Marcin Lipowczan

Promieniowanie jonizujące i metody radioizotopowe. dr Marcin Lipowczan Promieniowanie jonizujące i metody radioizotopowe dr Marcin Lipowczan Budowa atomu 897 Thomson, 0 0 m, kula dodatnio naładowana ładunki ujemne 9 Rutherford, rozpraszanie cząstek alfa na folię metalową,

Bardziej szczegółowo

40. Międzynarodowa Olimpiada Fizyczna Meksyk, lipca 2009 r. DWÓJŁOMNOŚĆ MIKI

40. Międzynarodowa Olimpiada Fizyczna Meksyk, lipca 2009 r. DWÓJŁOMNOŚĆ MIKI ZADANIE DOŚWIADCZALNE 2 DWÓJŁOMNOŚĆ MIKI W tym doświadczeniu zmierzysz dwójłomność miki (kryształu szeroko używanego w optycznych elementach polaryzujących). WYPOSAŻENIE Oprócz elementów 1), 2) i 3) powinieneś

Bardziej szczegółowo

Charakterystyka promieniowania miedziowej lampy rentgenowskiej.

Charakterystyka promieniowania miedziowej lampy rentgenowskiej. Uniwersytet Śląski - Instytut Chemii Zakładu Krystalografii ul. Bankowa 14, pok. 133, 40-006 Katowice tel. 0323591503, e-mail: izajen@wp.pl, opracowanie: dr Izabela Jendrzejewska Laboratorium z Krystalografii

Bardziej szczegółowo

FIZYKA Podręcznik: Fizyka i astronomia dla każdego pod red. Barbary Sagnowskiej, wyd. ZamKor.

FIZYKA Podręcznik: Fizyka i astronomia dla każdego pod red. Barbary Sagnowskiej, wyd. ZamKor. DKOS-5002-2\04 Anna Basza-Szuland FIZYKA Podręcznik: Fizyka i astronomia dla każdego pod red. Barbary Sagnowskiej, wyd. ZamKor. WYMAGANIA NA OCENĘ DOPUSZCZAJĄCĄ DLA REALIZOWANYCH TREŚCI PROGRAMOWYCH Kinematyka

Bardziej szczegółowo

Wyznaczanie współczynnika załamania światła

Wyznaczanie współczynnika załamania światła Ćwiczenie O2 Wyznaczanie współczynnika załamania światła O2.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie współczynnika załamania światła dla przeźroczystych, płaskorównoległych płytek wykonanych z

Bardziej szczegółowo

Zestaw 1cR. Dane: t = 6 s czas spadania ciała, g = 10 m/s 2 przyspieszenie ziemskie. Szukane: H wysokość, z której rzucono ciało poziomo, Rozwiązanie

Zestaw 1cR. Dane: t = 6 s czas spadania ciała, g = 10 m/s 2 przyspieszenie ziemskie. Szukane: H wysokość, z której rzucono ciało poziomo, Rozwiązanie Zestaw 1cR Zadanie 1 Sterowiec wisi nieruchomo na wysokości H nad punktem A położonym bezpośrednio pod nim na poziomej powierzchni lotniska. Ze sterowca wyrzucono poziomo ciało, nadając mu prędkość początkową

Bardziej szczegółowo

EGZAMIN MATURALNY 2010 FIZYKA I ASTRONOMIA

EGZAMIN MATURALNY 2010 FIZYKA I ASTRONOMIA Centralna Komisja Egzaminacyjna w Warszawie EGZAMIN MATURALNY 010 FIZYKA I ASTRONOMIA POZIOM PODSTAWOWY Klucz punktowania odpowiedzi MAJ 010 Egzamin maturalny z fizyki i astronomii Zadanie 1. Przypisanie

Bardziej szczegółowo

SZKIC ODPOWIEDZI I SCHEMAT OCENIANIA ROZWIĄZAŃ ZADAŃ W ARKUSZU II. Zadanie 28. Kołowrót

SZKIC ODPOWIEDZI I SCHEMAT OCENIANIA ROZWIĄZAŃ ZADAŃ W ARKUSZU II. Zadanie 28. Kołowrót SZKIC ODPOWIEDZI I SCHEMAT OCENIANIA ROZWIĄZAŃ ZADAŃ W ARKUSZU II Zadanie 8. Kołowrót Numer dania Narysowanie sił działających na układ. czynność danie N N Q 8. Zapisanie równania ruchu obrotowego kołowrotu.

Bardziej szczegółowo

Metody Optyczne w Technice. Wykład 8 Polarymetria

Metody Optyczne w Technice. Wykład 8 Polarymetria Metody Optyczne w Technice Wykład 8 Polarymetria Fala elektromagnetyczna div D div B 0 D E rot rot E H B t D t J B J H E Fala elektromagnetyczna 2 2 E H 2 t 2 E 2 t H 2 v n 1 0 0 c n 0 Fala elektromagnetyczna

Bardziej szczegółowo

pobrano z serwisu Fizyka Dla Każdego - http://fizyka.dk - zadania z fizyki, wzory fizyczne, fizyka matura

pobrano z serwisu Fizyka Dla Każdego - http://fizyka.dk - zadania z fizyki, wzory fizyczne, fizyka matura 12. Fale elektromagnetyczne zadania z arkusza I 12.5 12.1 12.6 12.2 12.7 12.8 12.9 12.3 12.10 12.4 12.11 12. Fale elektromagnetyczne - 1 - 12.12 12.20 12.13 12.14 12.21 12.22 12.15 12.23 12.16 12.24 12.17

Bardziej szczegółowo

V OGÓLNOPOLSKI KONKURS Z FIZYKI Fizyka się liczy Eliminacje TEST 27 lutego 2013r.

V OGÓLNOPOLSKI KONKURS Z FIZYKI Fizyka się liczy Eliminacje TEST 27 lutego 2013r. V OGÓLNOPOLSKI KONKURS Z FIZYKI Fizyka się liczy Eliminacje TEST 27 lutego 2013r. 1. Po wirującej płycie gramofonowej idzie wzdłuż promienia mrówka ze stałą prędkością względem płyty. Torem ruchu mrówki

Bardziej szczegółowo

Optyka kwantowa fotony i fale materii

Optyka kwantowa fotony i fale materii Optyka kwantowa fotony i fale materii dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2012/13 Plan wykładu Spis treści 1. Narodziny mechaniki kwantowej 2 1.1.

Bardziej szczegółowo

Ćwiczenie 46 Spektrometr. Wyznaczanie długości fal linii widmowych pierwiastków

Ćwiczenie 46 Spektrometr. Wyznaczanie długości fal linii widmowych pierwiastków Ćwiczenie 46 Spektrometr. Wyznaczanie długości fal linii widmowych pierwiastków Wstęp teoretyczny: Krzysztof Rębilas. Autorem ćwiczenia w Pracowni Fizycznej Zakładu Fizyki Uniwersytetu Rolniczego w Krakowie

Bardziej szczegółowo

Szczegółowe kryteria oceniania z fizyki w gimnazjum. kl. III

Szczegółowe kryteria oceniania z fizyki w gimnazjum. kl. III Szczegółowe kryteria oceniania z fizyki w gimnazjum kl. III Semestr I Drgania i fale Rozpoznaje ruch drgający Wie co to jest fala Wie, że w danym ośrodku fala porusza się ze stałą szybkością Zna pojęcia:

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z FIZYKI

WYMAGANIA EDUKACYJNE Z FIZYKI WYMAGANIA EDUKACYJNE Z FIZYKI KLASA III Drgania i fale mechaniczne Wymagania na stopień dopuszczający obejmują treści niezbędne dla dalszego kształcenia oraz użyteczne w pozaszkolnej działalności ucznia.

Bardziej szczegółowo

MATERIAŁ DIAGNOSTYCZNY Z FIZYKI I ASTRONOMII

MATERIAŁ DIAGNOSTYCZNY Z FIZYKI I ASTRONOMII Miejsce na naklejkę z kodem szkoły dysleksja MATERIAŁ DIAGNOSTYCZNY Z FIZYKI I ASTRONOMII POZIOM PODSTAWOWY Czas pracy 120 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 13

Bardziej szczegółowo

Plan realizacji materiału z fizyki.

Plan realizacji materiału z fizyki. Plan realizacji materiału z fizyki. Ze względu na małą ilość godzin jaką mamy do dyspozycji w całym cyklu nauczania fizyki pojawił się problem odpowiedniego doboru podręczników oraz podziału programu na

Bardziej szczegółowo

Spektroskop, rurki Plückera, cewka Ruhmkorffa, aparat fotogtaficzny, źródło prądu

Spektroskop, rurki Plückera, cewka Ruhmkorffa, aparat fotogtaficzny, źródło prądu Imię i nazwisko ucznia Nazwa i adres szkoły Imię i nazwisko nauczyciela Tytuł eksperymentu Dział fizyki Potrzebne materiały do doświadczeń Kamil Jańczyk i Mateusz Kowalkowski I Liceum Ogólnokształcące

Bardziej szczegółowo

Własności optyczne materii. Jak zachowuje się światło w zetknięciu z materią?

Własności optyczne materii. Jak zachowuje się światło w zetknięciu z materią? Własności optyczne materii Jak zachowuje się światło w zetknięciu z materią? Właściwości optyczne materiału wynikają ze zjawisk: Absorpcji Załamania Odbicia Rozpraszania Własności elektrycznych Refrakcja

Bardziej szczegółowo

ĆWICZENIE 44 BADANIE DYSPERSJI. I. Wprowadzenie teoretyczne.

ĆWICZENIE 44 BADANIE DYSPERSJI. I. Wprowadzenie teoretyczne. ĆWICZENIE 44 BADANIE DYSPERSJI I. Wprowadzenie teoretyczne. Światło białe przechodząc przez ośrodek o współczynniku załamania n> na granicy ośrodka optycznie rzadszego i gęstszego ulega załamaniu. Jeżeli

Bardziej szczegółowo

EGZAMIN MATURALNY 2012 FIZYKA I ASTRONOMIA

EGZAMIN MATURALNY 2012 FIZYKA I ASTRONOMIA Centralna Komisja Egzaminacyjna EGZAMIN MATURALNY 2012 FIZYKA I ASTRONOMIA POZIOM PODSTAWOWY Kryteria oceniania odpowiedzi MAJ 2012 2 Egzamin maturalny z fizyki i astronomii Zadanie 1. (0 1) Obszar standardów

Bardziej szczegółowo

h λ= mv h - stała Plancka (4.14x10-15 ev s)

h λ= mv h - stała Plancka (4.14x10-15 ev s) Twórcy podstaw optyki elektronowej: De Broglie LV. 1924 hipoteza: każde ciało poruszające się ma przyporządkowaną falę a jej długość jest ilorazem stałej Plancka i pędu. Elektrony powinny więc mieć naturę

Bardziej szczegółowo

WYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ

WYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ ĆWICZENIE 84 WYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ Cel ćwiczenia: Wyznaczenie długości fali emisji lasera lub innego źródła światła monochromatycznego, wyznaczenie stałej siatki

Bardziej szczegółowo

Ćwiczenie: "Zagadnienia optyki"

Ćwiczenie: Zagadnienia optyki Ćwiczenie: "Zagadnienia optyki" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: 1.

Bardziej szczegółowo

Dział: 7. Światło i jego rola w przyrodzie.

Dział: 7. Światło i jego rola w przyrodzie. Dział: 7. Światło i jego rola w przyrodzie. TEMATY I ZAKRES TREŚCI NAUCZANIA Fizyka klasa 3 LO Nr programu: DKOS-4015-89/02 Moduł Dział - Temat L. Zjawisko odbicia i załamania światła 1 Prawo odbicia i

Bardziej szczegółowo

1. Promieniowanie termiczne. Katastrofa w nadfiolecie.

1. Promieniowanie termiczne. Katastrofa w nadfiolecie. FIZYKA KWANTOWA Edited by Foxit PDF Editor 1 1. Promieniowanie termiczne. Katastrofa w nadfiolecie. Promieniowanie wysyłane przez ciało ogrzane do pewnej temperatury nazywane jest promieniowaniem termicznym

Bardziej szczegółowo

r. akad. 2012/2013 wykład III-IV Mechanika kwantowa Podstawy Procesów i Konstrukcji Inżynierskich Mechanika kwantowa

r. akad. 2012/2013 wykład III-IV Mechanika kwantowa Podstawy Procesów i Konstrukcji Inżynierskich Mechanika kwantowa r. akad. 01/013 wykład III-IV Podstawy Procesów i Konstrukcji Inżynierskich Mechanika kwantowa Zakład Zakład Biofizyki Biofizyki 1 Falowa natura materii Zarówno fale elektromagnetyczne (fotony) jaki i

Bardziej szczegółowo

K W A N T Y. Niektóre powody dla których warto zafascynować się tym działem fizyki:

K W A N T Y. Niektóre powody dla których warto zafascynować się tym działem fizyki: K W A N T Y Niektóre powody dla których warto zafascynować się tym działem fizyki: dzięki jej odkryciom powstało większość nowoczesnych technologii, przeżywa nieustanny rozwój; pojawiają się coraz to nowe

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z FIZYKI

PRÓBNY EGZAMIN MATURALNY Z FIZYKI Miejsce na naklejkę z kodem (Wpisuje zdający przed rozpoczęciem pracy) KOD ZDAJĄCEGO OKRĘGOWA K O M I S J A EGZAMINACYJNA w KRAKOWIE PRÓBNY EGZAMIN MATURALNY Z FIZYKI Czas pracy 120 minut Informacje 1.

Bardziej szczegółowo

Wykład 26. Elementy mechaniki kwantowej.

Wykład 26. Elementy mechaniki kwantowej. 1 Wykład 6 Elementy mechaniki kwantowej. 11.1 Modele atomu Thomsona i Rutherforda. Pierwsza próba stworzenia modelu atomu na podstawie zebranych danych doświadczalnych była dokonana przez J.J. Thomsona

Bardziej szczegółowo

ZASADY PRZEPROWADZANIA EGZAMINU DYPLOMOWEGO KOŃCZĄCEGO STUDIA PIERWSZEGO ORAZ DRUGIEGO STOPNIA NA KIERUNKU FIZYKA

ZASADY PRZEPROWADZANIA EGZAMINU DYPLOMOWEGO KOŃCZĄCEGO STUDIA PIERWSZEGO ORAZ DRUGIEGO STOPNIA NA KIERUNKU FIZYKA ZASADY PRZEPROWADZANIA EGZAMINU DYPLOMOWEGO KOŃCZĄCEGO STUDIA PIERWSZEGO ORAZ DRUGIEGO STOPNIA NA KIERUNKU FIZYKA INSTYTUT FIZYKI WYDZIAŁ MATEMATYKI, FIZYKI I TECHNIKI UNIWERSYTET KAZIMIERZA WIELKIEGO

Bardziej szczegółowo

Ciała stałe. Ciała krystaliczne. Ciała amorficzne. Bardzo często mamy do czynienia z ciałami polikrystalicznymi, rzadko monokryształami.

Ciała stałe. Ciała krystaliczne. Ciała amorficzne. Bardzo często mamy do czynienia z ciałami polikrystalicznymi, rzadko monokryształami. Ciała stałe Ciała krystaliczne Ciała amorficzne Bardzo często mamy do czynienia z ciałami polikrystalicznymi, rzadko monokryształami. r T = Kryształy rosną przez regularne powtarzanie się identycznych

Bardziej szczegółowo

Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu.

Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem EGZAMIN MATURALNY

Bardziej szczegółowo

WYDZIAŁ.. LABORATORIUM FIZYCZNE

WYDZIAŁ.. LABORATORIUM FIZYCZNE W S E i Z W WARSZAWIE WYDZIAŁ LABORATORIUM FIZYCZNE Ćwiczenie Nr 6 Temat: WYZNACZANIE DYSPERSJI OPTYCZNEJ PRYZMATU METODĄ POMIARU KĄTA NAJMNIEJSZEGO ODCHYLENIA Warszawa 009 WYZNACZANIE DYSPERSJI OPTYCZNEJ

Bardziej szczegółowo

LIV OLIMPIADA FIZYCZNA 2004/2005 Zawody II stopnia

LIV OLIMPIADA FIZYCZNA 2004/2005 Zawody II stopnia LIV OLIMPIADA FIZYCZNA 004/005 Zawody II stopnia Zadanie doświadczalne Masz do dyspozycji: cienki drut z niemagnetycznego metalu, silny magnes stały, ciężarek o masie m=(100,0±0,5) g, statyw, pręty stalowe,

Bardziej szczegółowo

Ćwiczenie 375. Badanie zależności mocy promieniowania cieplnego od temperatury. U [V] I [ma] R [ ] R/R 0 T [K] P [W] ln(t) ln(p)

Ćwiczenie 375. Badanie zależności mocy promieniowania cieplnego od temperatury. U [V] I [ma] R [ ] R/R 0 T [K] P [W] ln(t) ln(p) 1 Nazwisko... Data... Wydział... Imię... Dzień tyg.... Godzina... Ćwiczenie 375 Badanie zależności mocy promieniowania cieplnego od temperatury = U [V] I [ma] [] / T [K] P [W] ln(t) ln(p) 1.. 3. 4. 5.

Bardziej szczegółowo

GEOFIZYKA STOSOWANA wykład 2. Podstawy sejsmiki

GEOFIZYKA STOSOWANA wykład 2. Podstawy sejsmiki GEOFIZYKA STOSOWANA wykład Podstawy sejsmiki Naprężenie całkowite działające na nieskończenie mały element ośrodka ciągłego o objętości dv i powierzchni ds można opisać jeśli znamy rozkład naprężeń działających

Bardziej szczegółowo

Polaryzacja chromatyczna

Polaryzacja chromatyczna FOTON 11, Lato 013 5 Polaryzacja chromatyczna Jerzy Ginter Uniwersytet Warszawski Zjawisko Zwykle nie zdajemy sobie sprawy, że bardzo wiele przezroczystych ciał w naszym otoczeniu jest zbudowanych z substancji

Bardziej szczegółowo

Ponadto, jeśli fala charakteryzuje się sferycznym czołem falowym, powyższy wzór można zapisać w następujący sposób:

Ponadto, jeśli fala charakteryzuje się sferycznym czołem falowym, powyższy wzór można zapisać w następujący sposób: Zastosowanie laserów w Obrazowaniu Medycznym Spis treści 1 Powtórka z fizyki Zjawisko Interferencji 1.1 Koherencja czasowa i przestrzenna 1.2 Droga i czas koherencji 2 Lasery 2.1 Emisja Spontaniczna 2.2

Bardziej szczegółowo

Podpis prowadzącego SPRAWOZDANIE

Podpis prowadzącego SPRAWOZDANIE Imię i nazwisko.. Grupa. Data. Podpis prowadzącego. SPRAWOZDANIE LABORATORIUM POFA/POFAT - ĆWICZENIE NR 1 Zadanie nr 1 (plik strip.pro,nazwa ośrodka wypełniającego prowadnicę - "airlossy") Rozważamy przypadek

Bardziej szczegółowo

KLASA III ZAKRES ROZSZERZONY

KLASA III ZAKRES ROZSZERZONY KLASA III ZAKRES ROZSZERZONY 9. Pole elektryczne 1 8 T 7 (2, 3, 4, 5, 6, 12) Natężenie pola elektrostatycznego Zasada superpozycji natężeń pól Praca w polu elektrostatycznym Praca w polu elektrostatycznym

Bardziej szczegółowo

Wstęp do mechaniki kwantowej

Wstęp do mechaniki kwantowej Wstęp do mechaniki kwantowej Krzysztof Golec Biernat Uniwersytetu Rzeszowski Instytut Fizyki Jądrowej PAN (13 listopada 2016) Wersja robocza Rzeszów 2015 2 Spis treści 1 Początki 7 1.1 Widmo promieniowania

Bardziej szczegółowo

F = e(v B) (2) F = evb (3)

F = e(v B) (2) F = evb (3) Sprawozdanie z fizyki współczesnej 1 1 Część teoretyczna Umieśćmy płytkę o szerokości a, grubości d i długości l, przez którą płynie prąd o natężeniu I, w poprzecznym polu magnetycznym o indukcji B. Wówczas

Bardziej szczegółowo

KRYTERIA OCENIANIA Z FIZYKI DLA KLASY III GIMNAZJUM

KRYTERIA OCENIANIA Z FIZYKI DLA KLASY III GIMNAZJUM KRYTERIA OCENIANIA Z FIZYKI DLA KLASY III GIMNAZJUM DRGANIA I FALE MECHANICZNE - Uczeń nie opanował wiedzy i umiejętności niezbędnych w dalszej nauce. -Wie, że fale sprężyste nie mogą rozchodzić się w

Bardziej szczegółowo

Przedmiotowy system oceniania z fizyki dla klasy III gimnazjum

Przedmiotowy system oceniania z fizyki dla klasy III gimnazjum Przedmiotowy system oceniania z fizyki dla klasy III gimnazjum Szczegółowe wymagania na poszczególne stopnie (oceny) 1. Drgania i fale R treści nadprogramowe Stopień dopuszczający Stopień dostateczny Stopień

Bardziej szczegółowo

Falowa natura promieniowania elektromagnetycznego.

Falowa natura promieniowania elektromagnetycznego. Zadanie 1. Falowa natura promieniowania elektromagnetycznego. W telefonii komórkowej poziom bezpieczeństwa (w odniesieniu do szkodliwości oddziaływania promieniowania na materię żywą) określany jest za

Bardziej szczegółowo

Ć W I C Z E N I E N R O-11

Ć W I C Z E N I E N R O-11 INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PROCESOWEJ, MATERIAŁOWEJ I FIZYKI STOSOWANEJ POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA OPTYKI Ć W I C Z E N I E N R O-11 WYZNACZANIE STAŁEJ VERDETA I. Zagadnienia do przestudiowania

Bardziej szczegółowo

Plan Wynikowy. Klasa czwarta Mgr Jolanta Lipińska, mgr Magdalena Englart. 1. Prąd stały

Plan Wynikowy. Klasa czwarta Mgr Jolanta Lipińska, mgr Magdalena Englart. 1. Prąd stały Plan Wynikowy. Klasa czwarta Mgr Jolanta Lipińska, mgr Magdalena Englart 1. Prąd stały 1 9 Prąd elektryczny jako przepływ ładunku. Natężenie prądu Pierwsze prawo Kirchhoffa Prawo Ohma dla odcinka obwodu

Bardziej szczegółowo

Reflekcyjno-absorpcyjna spektroskopia w podczerwieni RAIRS (IRRAS) Reflection-Absorption InfraRed Spectroscopy

Reflekcyjno-absorpcyjna spektroskopia w podczerwieni RAIRS (IRRAS) Reflection-Absorption InfraRed Spectroscopy Reflekcyjno-absorpcyjna spektroskopia w podczerwieni RAIRS (IRRAS) Reflection-Absorption InfraRed Spectroscopy Odbicie promienia od powierzchni metalu E n 1 Równania Fresnela E θ 1 θ 1 r E = E odb, 0,

Bardziej szczegółowo

Zwierciadło kuliste stanowi część gładkiej, wypolerowanej powierzchni kuli. Wyróżniamy zwierciadła kuliste:

Zwierciadło kuliste stanowi część gładkiej, wypolerowanej powierzchni kuli. Wyróżniamy zwierciadła kuliste: Fale świetlne Światło jest falą elektromagnetyczną, czyli rozchodzącymi się w przestrzeni zmiennymi i wzajemnie przenikającymi się polami: elektrycznym i magnetycznym. Szybkość światła w próżni jest największa

Bardziej szczegółowo

Spektroskopia ramanowska w badaniach powierzchni

Spektroskopia ramanowska w badaniach powierzchni Spektroskopia ramanowska w badaniach powierzchni z Efekt Ramana (1922, CV Raman) I, ν próbka y Chandra Shekhara Venketa Raman x I 0, ν 0 Monochromatyczne promieniowanie o częstości ν 0 ulega rozproszeniu

Bardziej szczegółowo

EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII

EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZĘCIA EGZAMINU! Miejsce na naklejkę MFA-P1_1P-092 EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII MAJ ROK 2009 POZIOM PODSTAWOWY Czas pracy 120 minut

Bardziej szczegółowo

KLUCZ PUNKTOWANIA ODPOWIEDZI

KLUCZ PUNKTOWANIA ODPOWIEDZI Egzamin maturalny maj 009 FIZYKA I ASTRONOMIA POZIOM ROZSZERZONY KLUCZ PUNKTOWANIA ODPOWIEDZI Zadanie 1.1 Narysowanie toru ruchu ciała w rzucie ukośnym. Narysowanie wektora siły działającej na ciało w

Bardziej szczegółowo

ĆWICZENIE 41 POMIARY PRZY UŻYCIU GONIOMETRU KOŁOWEGO. Wprowadzenie teoretyczne

ĆWICZENIE 41 POMIARY PRZY UŻYCIU GONIOMETRU KOŁOWEGO. Wprowadzenie teoretyczne ĆWICZENIE 4 POMIARY PRZY UŻYCIU GONIOMETRU KOŁOWEGO Wprowadzenie teoretyczne Rys. Promień przechodzący przez pryzmat ulega dwukrotnemu załamaniu na jego powierzchniach bocznych i odchyleniu o kąt δ. Jeżeli

Bardziej szczegółowo

2.1 Dyfrakcja i interferencja światła. 2.1.1 Dyfrakcja światła. Zasada Huygensa

2.1 Dyfrakcja i interferencja światła. 2.1.1 Dyfrakcja światła. Zasada Huygensa Rozdział 2 Optyka falowa 2.1 Dyfrakcja i interferencja światła 2.1.1 Dyfrakcja światła. Zasada Huygensa Zgodnie z treścią poprzedniego rozdziału, światło jest falą elektromagnetyczną o długości zawartej

Bardziej szczegółowo

MGR 10. Ćw. 1. Badanie polaryzacji światła 2. Wyznaczanie długości fal świetlnych 3. Pokaz zmiany długości fali świetlnej przy użyciu lasera.

MGR 10. Ćw. 1. Badanie polaryzacji światła 2. Wyznaczanie długości fal świetlnych 3. Pokaz zmiany długości fali świetlnej przy użyciu lasera. MGR 10 10. Optyka fizyczna. Dyfrakcja i interferencja światła. Siatka dyfrakcyjna. Wyznaczanie długości fali świetlnej za pomocą siatki dyfrakcyjnej. Elektromagnetyczna teoria światła. Polaryzacja światła.

Bardziej szczegółowo

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM Fizyka Poziom rozszerzony. Listopad 2015

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM Fizyka Poziom rozszerzony. Listopad 2015 kod wewnątrz Zadanie 1. (0 1) KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM Fizyka Poziom rozszerzony Listopad 2015 Vademecum Fizyka fizyka ZAKRES ROZSZERZONY VADEMECUM MATURA 2016 Zacznij przygotowania

Bardziej szczegółowo

Agata Saternus piątek Dwójłomność kryształów, dwójłomność światłowodów, dwójłomność próżni (z ang. vacuum birefringence)

Agata Saternus piątek Dwójłomność kryształów, dwójłomność światłowodów, dwójłomność próżni (z ang. vacuum birefringence) Agata Saternus piątek 9.07.011 Dwójłomność kryształów, dwójłomność światłowodów, dwójłomność próżni (z ang. vacuum birefringence) Dwójłomność odkrył Rasmus Bartholin w 1669 roku, dwójłomność kryształu

Bardziej szczegółowo

Zaznacz prawdziwą odpowiedź: Fale elektromagnetyczne do rozchodzenia się... ośrodka materialnego A. B.

Zaznacz prawdziwą odpowiedź: Fale elektromagnetyczne do rozchodzenia się... ośrodka materialnego A. B. Imię i nazwisko Pytanie 1/ Zaznacz właściwą odpowiedź: Fale elektromagnetyczne są falami poprzecznymi podłużnymi Pytanie 2/ Zaznacz prawdziwą odpowiedź: Fale elektromagnetyczne do rozchodzenia się... ośrodka

Bardziej szczegółowo

Atomy w zewnętrznym polu magnetycznym i elektrycznym

Atomy w zewnętrznym polu magnetycznym i elektrycznym Atomy w zewnętrznym polu magnetycznym i elektrycznym 1. Kwantowanie przestrzenne momentów magnetycznych i rezonans spinowy 2. Efekt Zeemana (normalny i anomalny) oraz zjawisko Paschena-Backa 3. Efekt Starka

Bardziej szczegółowo

Czym jest prąd elektryczny

Czym jest prąd elektryczny Prąd elektryczny Ruch elektronów w przewodniku Wektor gęstości prądu Przewodność elektryczna Prawo Ohma Klasyczny model przewodnictwa w metalach Zależność przewodności/oporności od temperatury dla metali,

Bardziej szczegółowo

Ciało doskonale czarne ćwiczenie w Excelu

Ciało doskonale czarne ćwiczenie w Excelu Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego (POKL) Ciało doskonale czarne ćwiczenie w Excelu Wstęp Każde ciało o temperaturze wyższej od 0 K, czyli od tzw.

Bardziej szczegółowo

XXIX OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie teoretyczne

XXIX OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie teoretyczne XXIX OLIMPIADA FIZYCZNA EAP WSĘPNY Zadanie teoretyczne Rozwiąż wybrane przez siebie dwa zadania spośród podanych trzech: ZADANIE A. Przez opornik o oporze R płyną jednocześnie trzy prądy sinusoidalne o

Bardziej szczegółowo

Program zajęć wyrównawczych z fizyki dla studentów Kierunku Biotechnologia w ramach projektu "Era inżyniera - pewna lokata na przyszłość"

Program zajęć wyrównawczych z fizyki dla studentów Kierunku Biotechnologia w ramach projektu Era inżyniera - pewna lokata na przyszłość Program zajęć wyrównawczych z fizyki dla studentów Kierunku Biotechnologia w ramach projektu "Era inżyniera - pewna lokata na przyszłość" 1. Informacje ogólne Kierunek studiów: Profil kształcenia: Forma

Bardziej szczegółowo

Zbigniew Osiak ZADA IA PROBLEMOWE Z FIZYKI

Zbigniew Osiak ZADA IA PROBLEMOWE Z FIZYKI Zbigniew Osiak ZADA IA PROBLEMOWE Z FIZYKI 3 Copyright by Zbigniew Osiak Wszelkie prawa zastrzeżone. Rozpowszechnianie i kopiowanie całości lub części publikacji zabronione bez pisemnej zgody autora. Portret

Bardziej szczegółowo

FIZYKA I ASTRONOMIA RUCH JEDNOSTAJNIE PROSTOLINIOWY RUCH PROSTOLINIOWY JEDNOSTAJNIE PRZYSPIESZONY RUCH PROSTOLINIOWY JEDNOSTAJNIE OPÓŹNIONY

FIZYKA I ASTRONOMIA RUCH JEDNOSTAJNIE PROSTOLINIOWY RUCH PROSTOLINIOWY JEDNOSTAJNIE PRZYSPIESZONY RUCH PROSTOLINIOWY JEDNOSTAJNIE OPÓŹNIONY FIZYKA I ASTRONOMIA RUCH JEDNOSTAJNIE PROSTOLINIOWY Każdy ruch jest zmienną położenia w czasie danego ciała lub układu ciał względem pewnego wybranego układu odniesienia. v= s/t RUCH

Bardziej szczegółowo

5.1. Powstawanie i rozchodzenie się fal mechanicznych.

5.1. Powstawanie i rozchodzenie się fal mechanicznych. 5. Fale mechaniczne 5.1. Powstawanie i rozchodzenie się fal mechanicznych. Ruch falowy jest zjawiskiem bardzo rozpowszechnionym w przyrodzie. Spotkałeś się z pewnością w życiu codziennym z takimi pojęciami

Bardziej szczegółowo

WSTĘP DO ĆWICZEŃ DOTYCZĄCYCH CIEPŁA WŁAŚCIWEGO

WSTĘP DO ĆWICZEŃ DOTYCZĄCYCH CIEPŁA WŁAŚCIWEGO W3 WSTĘP DO ĆWICZEŃ DOTYCZĄCYCH CIEPŁA WŁAŚCIWEGO Ciepło właściwe jest jedną z podstawowych cech termodynamicznych ciał, mającą duże znaczenie praktyczne. Zależność ciepła właściwego różnych ciał od temperatury

Bardziej szczegółowo

CIĘŻAR. gdzie: F ciężar [N] m masa [kg] g przyspieszenie ziemskie ( 10 N ) kg

CIĘŻAR. gdzie: F ciężar [N] m masa [kg] g przyspieszenie ziemskie ( 10 N ) kg WZORY CIĘŻAR F = m g F ciężar [N] m masa [kg] g przyspieszenie ziemskie ( 10 N ) kg 1N = kg m s 2 GĘSTOŚĆ ρ = m V ρ gęstość substancji, z jakiej zbudowane jest ciało [ kg m 3] m- masa [kg] V objętość [m

Bardziej szczegółowo

Optyka i kwanty promieniowania

Optyka i kwanty promieniowania WIRTUALNE LABORATORIA FIZYCZNE NOWOCZESNĄ METODĄ NAUCZANIA INNOWACYJNY PROGRAM NAUCZANIA FIZYKI W SZKOŁACH PONADGIMNAZJALNYCH Moduł dydaktyczny: fizyka informatyka Optyka i kwanty promieniowania Grzegorz

Bardziej szczegółowo

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE Ćwiczenie nr 6 Temat: Wyznaczenie stałej siatki dyfrakcyjnej i dyfrakcja światła na otworach kwadratowych i okrągłych. 1. Wprowadzenie Fale

Bardziej szczegółowo

41P POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII. POZIOM PODSTAWOWY (od początku do końca)

41P POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII. POZIOM PODSTAWOWY (od początku do końca) Włodzimierz Wolczyński 41P POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII POZIOM PODSTAWOWY (od początku do końca) Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania

Bardziej szczegółowo

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Fizyka. Poziom rozszerzony. Listopad 2014

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Fizyka. Poziom rozszerzony. Listopad 2014 Vademecum Fizyka KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM nowa vademecum MATURA 015 FIZYKA zakres rozszerzony Fizyka Poziom rozszerzony KOD WEWNĄTRZ Zacznij przygotowania do matury już dziś

Bardziej szczegółowo

ZJAWISKO SKRĘCENIA PŁASZCZYZNY POLARYZACJI ŚWIATŁA

ZJAWISKO SKRĘCENIA PŁASZCZYZNY POLARYZACJI ŚWIATŁA Politechnika Warszawska Wydział Fizyki Laboratorium Fizyki I P Irma Śledzińska Andrzej Kubiaczyk 28 ZJAWISKO SKRĘCENIA PŁASZCZYZNY POLARYZACJI ŚWIATŁA 1. Podstawy fizyczne W zjawisku dyfrakcji, interferencji

Bardziej szczegółowo

KLUCZ PUNKTOWANIA ODPOWIEDZI

KLUCZ PUNKTOWANIA ODPOWIEDZI Egzamin maturalny maj 009 FIZYKA I ASTRONOMIA POZIOM PODSTAWOWY KLUCZ PUNKTOWANIA ODPOWIEDZI Fizyka i astronomia poziom podstawowy Zadanie 1. Wyznaczenie wartości prędkości i przyspieszenia ciała wykorzystując

Bardziej szczegółowo

FIZYKA I ASTRONOMIA. Matura z Kwazarem. Życzymy powodzenia!

FIZYKA I ASTRONOMIA. Matura z Kwazarem. Życzymy powodzenia! FIZYKA I ASTRONOMIA Matura z Kwazarem ARKUSZ PRÓBNEJ MATURY FIZYKA I ASTRONOMIA POZIOM ROZSZERZONY Instrukcje dla zdającego: 1. Sprawdź, czy arkusz egzaminacyjny zawiera 12 stron (zadania 1 6). Ewentualny

Bardziej szczegółowo

1. FALE ELEKTROMAGNETYCZNE: WŁASNOŚCI I PARAMETRY.

1. FALE ELEKTROMAGNETYCZNE: WŁASNOŚCI I PARAMETRY. 1. FALE ELEKTROMAGNETYCZNE: WŁASNOŚCI I PARAMETRY. 1. Napisz układ równań Maxwella w postaci: a) różniczkowej b) całkowej 2. Podaj trzy podstawowe równania materiałowe wiążące E z D, B z H, E z j 3. Zapisz

Bardziej szczegółowo