Metoda pseudospektralna dla stochastycznych równań różniczkowych

Wielkość: px
Rozpocząć pokaz od strony:

Download "Metoda pseudospektralna dla stochastycznych równań różniczkowych"

Transkrypt

1 Uniwersytet Wrocławski Wydział Matematyki i Informatyki Instytut Informatyki kierunek: informatyka Grzegorz Świderski Metoda pseudospektralna dla stochastycznych równań różniczkowych Praca magisterska napisana pod kierunkiem dr. hab. Pawła Woźnego Wrocław 2015

2 Oświadczam, że pracę magisterską wykonałem samodzielnie i zgłaszam ją do oceny. Data:... Podpis autora pracy:... Oświadczam, że praca jest gotowa do oceny przez recenzenta. Data:... Podpis opiekuna pracy:...

3 Spis treści 1. Wstęp Notacja i oznaczenia Wielomiany ortogonalne Wielomiany Jacobiego Wielomiany Laguerre a Wielomiany Hermite a Rozkłady zmiennych losowych Rozkład Beta Rozkład Gamma Rozkład Normalny Kwadratury Sformułowanie zadania Kwadratura Gaussa Zamiana przedziału całkowania na przedział ( 1, 1) Kwadratura Clenshawa-Curtisa Kwadratura Fejéra (II rodzaju) Kubatury Sformułowanie zadania Kubatury tensorowe Kubatura Smolyaka Chaos wielomianowy Przypadek jednej zmiennej losowej Przypadek ogólny Obliczanie statystyk Numeryczne rozwiązywanie równań różniczkowych Metoda Rungego-Kutty 4. rzędu Metoda różnic skończonych dla stacjonarnego równania dyfuzji Metoda pseudospektralna Algorytmy numeryczne użyte w implementacji Algorytm Clenshawa Obliczanie zmodyfikowanych momentów Czebyszewa Momenty pierwszego rodzaju Momenty drugiego rodzaju Algorytm Olivera-Loziera Obliczanie wag kwadratur Przypadek kwadratury Gaussa Obliczanie dyskretnej transformaty sinusowej I rodzaju Przypadek kwadratury Clenshawa-Curtisa Przypadek kwadratury Fejéra Przykłady Model Malthusa Ujemny współczynnik wzrostu Dodatni współczynnik wzrostu Niestabilność numeryczna Stacjonarne równanie dyfuzji Mieszane rozkłady

4 4 1. Wstęp Rozkłady Beta Pewien model pracy transformatora Rozkłady Beta Mieszane rozkłady Testy pozostałych algorytmów numerycznych Obliczanie zmodyfikowanych momentów Kwadratury na przedziale ( 1, 1) Kubatury w kostce ( 1, 1) d Zamiana zmiennych na ( 1, 1) Zamiana zmiennych na ( 1, 1) d Dokumentacja programisty Plik momenty.mpl Plik kwadratury.mpl Plik kubatury.mpl Plik wielomianyortogonalne.mpl Plik rozkladyzmiennychlosowych.mpl Plik wektorylosowe.mpl Plik kolokacja.mpl Dokumentacja użytkownika Literatura Wstęp Rozważmy przykładowy model przepływu ładunku w obwodzie elektrycznym. Ładunek Q(t) w chwili t spełnia równanie różniczkowe L Q (t) + R Q (t) + 1 Q(t) = F (t), C Q(0) = Q 0, Q (0) = I 0, (1.1) gdzie R opór, L to indukcyjność, C pojemność a F (t) to potencjał źródła w chwili t. Jak widzimy w równaniu (1.1) występują parametry będące liczbami: R, L, C, Q 0 i I 0 oraz parametr F (t) będący funkcją. W praktyce powyższe parametry są dobierane poprzez eksperymentalny pomiar odpowiednich wielkości. Każdy pomiar jest obarczony pewnym błędem. Z tego powodu nawet jeśli model (1.1) jest adekwatny, to rozwiązania nie będą dokładnie odpowiadać obserwowanemu zjawisku. Z praktycznego punktu widzenia ważnym zadaniem jest zbadanie na ile błędy pomiaru powodują zmianę trajektorii rozwiązania. Jeśli zmiana jest duża, to ze względu na błędy pomiaru nie będziemy w stanie dobrze przewidzieć ewolucji badanego układu. W statystyce pomiar to realizacja pewnej zmiennej losowej ze znanej rodziny rozkładów, ale o nieznanych parametrach. Często używaną rodziną rozkładów jest na przykład rodzina rokładów normalnych {N (m, σ 2 ): m R, σ 2 > 0} o nieznanej wartości oczekiwanej m oraz nieznanej wariancji σ 2. Statystyka podaje metody jak powtarzając wielokrotnie eksperyment, można otrzymać przybliżenie nieznanych parametrów. Używając powyższej statystycznej interpretacji możemy rozumieć równanie (1.1) w ten sposób, że nieznane parametry liczbowe są zmiennymi losowymi o znanym rozkładzie. Wtedy rozwiązanie równania (1.1) przestaje być deterministyczne i staje się tzw. procesem stochastycznym. Wówczas możemy zapytać się o różne statystyki rozwiązania tego

5 równania. Na przykład wielkość wariancji mówi, na ile trajektorie rozwiązań są wrażliwe na niepewność pomiaru. Istnieje wiele metod rozwiązywania takich równań. Popularnym podejściem są tzw. metody Monte-Carlo (zob. [20]) polegające na (wielokrotnym) generowaniu wartości niezależnych zmiennych losowych mających rozkłady naszych parametrów. Następnie obliczane są rozwiązania równania dla tak ustalonej wartości parametrów. W końcu metodami statystycznymi obliczamy z nich szukane statystyki. Znaną wadą metody Monte-Carlo jest jej wolne tempo zbieżności. Poza tym ze względu na jej losowość nie można mieć pewności na ile otrzymany wynik nie jest przypadkowy. Innym podejściem są metody deterministyczne. Jedną z możliwości jest metoda Galerkina (zob. [20]), która polega na rozwiązywaniu odpowiednio zbudowanego układu równań różniczkowych związanych z badanym równaniem. W tym wypadku czasami rozwiązywany układ jest dużo bardziej skomplikowany i wymaga tworzenia (czasami zupełnie) nowych metod numerycznych. Czyli w tym przypadku do konkretnego równania i rozkładów musimy podchodzić indywidualnie. Metoda prezentowana w tej pracy jest deterministyczna i jest oparta na pomyśle rozwinięcia rozwiązania w postaci sumy wielomianów ortogonalnych względem odpowiedniego iloczynu skalarnego. W tym celu zakładamy, że wszystkie występujące parametry da się sparametryzować za pomocą skończonej ilości niezależnych zmiennych losowych. Prezentowana metoda jest podobna do metody Monte-Carlo w tym sensie, że musimy jedynie umieć rozwiązywać równanie z ustalonymi wartościami parametrów. Dla takich równań mamy zazwyczaj dobre metody numeryczne je rozwiązujące. Jedną z jej zalet jest szybsze tempo zbieżności (przy umiarkowanej liczbie parametrów) do rozwiązania w porównaniu do metod Monte-Carlo (zob. [4]). Inną zaletą jest to, że jest ona deterministyczna. Założenie, że parametry zależą od skończonej liczby zmiennych losowych z matematycznego punktu widzenia wydaje się dość restrykcyjne. Jednakże bardziej ogólne równania stochastyczne (zob. [11]) da się w pewnym stopniu przybliżać za pomocą tego modelu. W wypadku procesów gaussowskich da się to zrobić za pomocą tzw. transformaty Karhunena Loève (zob. [20]). W ogólnym wypadku metody dyskretyzacji prowadzą również do opisywanego modelu (zob. [21]). Teraz parę słów o strukturze pracy. W rozdziale 2 zamieszczamy podstawowe oznaczenia używane dalej. Następnie. w rozdziale 3, przedstawiamy podstawy ogólnej teorii wielomianów ortogonalnych oraz ich szczególne przypadki. Dalej, w rozdziale 4, podajemy podstawowe definicje teorii prawdopodobieństwa, najważniejsze rozkłady oraz ich związki z wielomianami ortogonalnymi. Zadanie obliczania statystyk wymagać będzie umiejętności obliczania całek po wielowymiarowym obszarze. Pokażemy jak to wykonać: w rozdziale 5 rozpatrzymy przypadek jednowymiarowy, natomiast w rozdziale 6 zbadamy ogólny przypadek. W rozdziale 7 przedstawimy jak przybliżać funkcje za pomocą wielomianów oraz jak wówczas z tego przybliżenia obliczać poszukiwane statystyki. W rozdziale 8 przedstawimy używane w pracy metody rozwiązywania numerycznego równań różniczkowych, natomiast w rozdziale 9 jak zebrane w ten sposób informacje użyć do rozwiązania głównego zadania. W rozdziale 10 przedstawiono pewne pomocnicze algorytmy numeryczne. W rozdziale 11, na kilku przykładach, przedstawiono, jak skuteczna jest opisana metoda rozwiązywania równań. Natomiast w rozdziale 12 pokazano testy pomocniczych algorytmów numerycznych. Dokumentację programisty zamieszczono w rozdziale 13, natomiast sposób obsługi przygotowanego programu zamieszczono w rozdziale 14. 5

6 6 2. Notacja i oznaczenia 2. Notacja i oznaczenia Niech µ będzie miarą na przestrzeni X, a B(X) niech będzie rodziną zbiorów borelowskich na X (por. np. [14, rozdz. 1]). Dla każdej funkcji f : X C oraz p [1, ) normę związaną z miarą µ definiujemy wzorem: ( 1/p f L p (µ) := f(x) dµ(x)) p. X Zbiór wszystkich funkcji f spełniających warunek f L p (µ) < oznaczamy poprzez L p (µ). Jeśli miara µ ma gęstość w względem miary Lebesgue a (por. np. [14, rozdz. 2, rozdz. 6]), to będziemy używać również oznaczenia L p (w(x)dx). Jeżeli miara µ jest znana z kontekstu będziemy pisać po prostu L p. Dla funkcji f, g L 2 (µ) ich iloczyn skalarny definiujemy wzorem f, g := f(x)g(x)dµ(x). (2.1) Wówczas X f L 2 (µ) = f, f. Można pokazać, że L 2 (µ) z iloczynem skalarnym (2.1) jest przestrzenią Hilberta (zob. np. [14, rozdz. 4]). Dla funkcji określonych na R będziemy używać następujących oznaczeń: C c (R) zbiór funkcji ciągłych o zwartym nośniku, Cc (R) zbiór wszystkich funkcji nieskończenie wiele razy różniczkowalnych o zwartym nośniku. Dla a > 0, b > 0 oraz z C definiujemy funkcję hipergeometryczną F (a; b; z) wzorem F (a; b; z) = k=0 a k b k z k k!, (2.2) gdzie dla x R definiujemy potęgę przyrastającą poprzez x k = x(x + 1)... (x + k 1). Dla a > 0 funkcja Gamma zadana jest wzorem natomiast Γ(a) := B(α, β) := x a 1 e x dx, x α 1 (1 x) β 1 dx, to funkcja Beta określona dla α > 0, β > 0. Można sprawdzić, że funkcje Gamma i Beta łączy następująca zależność: B(α, β) = Γ(α)Γ(β) Γ(α + β). Symbol dwumianowy ( ) x y określamy wzorem ( ) x := y 1 (x + 1)B(x y + 1, y + 1).

7 7 Dla zbioru A funkcję indykatorową 1 A określamy wzorem 1 jeśli x A, 1 A (x) := 0 w p.p. Wielowskaźnikiem nazywamy d wyrazowy ciąg i = (i 1, i 2,..., i d ) liczb całkowitych nieujemnych. Długość wielowskaźnika i to suma jego wyrazów, tzn. i 1 := i 1 + i i d. Dla wektora x = (x 1, x 2,..., x d ) oraz wielowskaźnika i = (i 1, i 2,..., i d ) definiujemy jednomian x i wzorem x i := x i 1 1 x i x i d d, wówczas jego stopniem nazywamy ciąg i. Wprowadzamy relację częściowego porządku pomiędzy stopniami długości d. Mówimy, że i j, jeśli j k i k 0 (k = 1, 2,..., d). Przestrzeń wszystkich wielomianów d zmiennych całkowitego stopnia co najwyżej N określamy jako P d N := c i x i : c i R. (2.3) i 1 N Jeżeli d = 1, to będziemy również używać oznaczenia P N. Dla wielomianu p jego stopniem całkowitym nazywamy najmniejszą liczbę N taką, że p P d N. Wówczas jego stopniem nazywamy najmniejsze ograniczenie górne ze względu na porządek zbioru {i: c i 0}, gdzie c i to współczynniki występujące w reprezentacji (2.3). Deltą Kroneckera δ ij nazywamy funkcję postaci 1 jeśli i = j, δ ij := 0 w p.p. Dla wielowskaźników i oraz j symbol δ ij rozumiemy w następujący sposób: δ ij := δ i1 j 1 δ i2 j 2... δ id j d. Będziemy używać następujących oznaczeń: n k=m n k=m a k := 1 2 a m + a k := 1 2 a m + n k=m+1 n 1 k=m+1 a k, (2.4) a k a n. (2.5) 3. Wielomiany ortogonalne Podane w tej części fakty i definicje przywołujemy za monografią [2]. Dla miary µ określonej na R jej n-tym momentem nazywamy liczbę m n := x n dµ(x) (n = 0, 1,...). (3.1) R

8 8 3. Wielomiany ortogonalne Załóżmy, że dla miary µ wszystkie jej momenty m n są skończone, a jej nośnik jest zbiorem nieskończonym. Wówczas możemy wykonać ortogonalizację Grama-Schmidta (zob. np. [2, rozdz. 1.3]) dla ciągu (x n : n N) względem iloczynu skalarnego (2.1). Otrzymamy wówczas ciąg {p n } n=0 wielomianów ortogonalnych w L 2 (µ), tzn: p n, p m = γ n δ nm (γ n := p n 2 L 2 (µ) 0; n, m N) (por. (2.1)). Warto zauważyć, że dla każdych niezerowych stałych {a n } n=0 ciąg {a n p n } n=0 jest również ciągiem wielomianów ortogonalnych. W szczególności, mnożąc miarę przez stałą otrzymujemy te same wielomiany ortogonalne. Zauważmy, że bezpośrednio z ortogonalizacji Grama-Schmidta wynika, że zbiór {p 0, p 1,..., p N } tworzy bazę przestrzeni P N. Miarę µ nazywamy zdeterminowaną, jeśli nie istnieje inna miara, o takich samych momentach co miara µ. Wówczas wielomiany {p n } n=0 tworzą bazę ortogonalną w L 2 (µ). Wszystkie pojawiające się w tej pracy miary są miarami zdeterminowanymi. Każdy ciąg wielomianów ortogonalnych {p n } spełnia zależność rekurencyjną p 0 (x) α 0, p 1 (x) = α 1 x + β 1, p n (x) = (α n x + β n )p n 1 (x) γ n p n 2 (x) (n 2), dla pewnych stałych α k, β k, γ k. Zobacz [2, rozdz. 1.4, Tw. 4.1] Wielomiany Jacobiego (3.2) Niech miara µ ma gęstość w(x) := (1 x) α (1 + x) β dla x ( 1, 1) oraz stałych α, β > 1. Wówczas otrzymany ciąg wielomianów {P n (α,β) } nazywamy ciągiem wielomianów Jacobiego z parametrami α, β. Wielomiany te spełniają zależność rekurencyjną (3.2) dla α 0 = 1, α 1 = 1 + α + β, α n = 2 β 1 = α β 2 γ n = (2n + α + β 1)(2n + α + β), 2n(n + α + β), β n = (2n + α + β 1)(α2 β 2 ) 2n(n + α + β)(2n + α + β 2), (n + α 1)(n + β 1)(2n + α + β), n(n + α + β)(2n + α + β 2) p n (x) := P n (α,β) (x). Wielomiany Czebyszewa I rodzaju T n (n 0) są szczególnym przypadkiem wielomianów Jacobiego z parametrami α = β = 1/2. Wyrażają się one wzorem i spełniają zależność rekurencyjną postaci T n (x) = cos(n arccos(x)), x [ 1, 1] T 0 (x) = 1, T 1 (x) = x, T n (x) = 2xT n 1 (x) T n 2 (x) (n 2). Warto zaznaczyć, że ze względów historycznych używamy tutaj nieco innego normowania niż w przypadku P n ( 1/2, 1/2), tzn. ( ) 1 n 1/2 T n (x) = P n ( 1/2, 1/2) (x). n

9 3.2. Wielomiany Laguerre a 9 Rysunek 1. Wykres pierwszych czterech wielomianów Czebyszewa I rodzaju. Kolejnym ważnym wypadkiem wielomianów Jacobiego są tzw. wielomiany Czebyszewa II rodzaju (dla α = β = 1/2) wyrażające się wzorem U n (x) = sin((n + 1) arccos(x)), x [ 1, 1]. sin(arccos(x)) W tym wypadku mamy U 0 (x) = 1, U 1 (x) = 2x, U n (x) = 2xU n 1 (x) U n 2 (x) (n 2). I tutaj używamy innego normowania, dokładniej U n (x) = 1 ( ) 1 n + 1/2 2 P n (1/2,1/2) (x). n 3.2. Wielomiany Laguerre a Miarze µ o gęstości w(x) := x α e x dla x (0, ), gdzie α > 1, odpowiada tzw. ciąg wielomianów Laguerre a {L (α) n } dla parametru α. Jego wyrazy spełniają zależność rekurencyjną postaci L (α) 0 (x) 1, L (α) 1 (x) = α + 1 x, (x) = 2n + α 1 x L (α) n n L (α) n 1(x) n + α 1 n L (α) n 2(x) (n 2).

10 10 3. Wielomiany ortogonalne Rysunek 2. Wykres pierwszych czterech wielomianów Czebyszewa II rodzaju. Rysunek 3. Wykres pierwszych czterech wielomianów Laguerre a L (1).

11 3.3. Wielomiany Hermite a 11 Rysunek 4. Wykres pierwszych czterech wielomianów Hermite a Wielomiany Hermite a Jeśli miara µ ma gęstość w(x) := e x2 dla x R, to otrzymujemy wielomiany Hermite a {H n }, spełniające zależność rekurencyjną: H 0 (x) 1, H 1 (x) = 2x, H n (x) = 2xH n 1 (x) 2(n 1)H n 2 (x) (n 2). 4. Rozkłady zmiennych losowych Podaną niżej teorię przytaczamy za [6]. Niech (Ω, F, P ) będzie przestrzenią probabilityczną (zob. [6, rozdz. 1]). Wówczas rozkładem zmiennej losowej X (zob. [6, rozdz. 5]) nazywamy miarę na R określoną wzorem µ X (A) := P (ω Ω: X(ω) A) (A B(R)). Fakt, że zmienna losowa X ma rozkład µ będziemy oznaczać symbolem X µ. Zmienne losowe X, Y nazywamy (stochastycznie) niezależnymi, jeżeli dla wszystkich zbiorów A, B B(R) zachodzi P (ω : X(ω) A, Y (ω) B) = P (ω : X(ω) A) P (ω : Y (ω) B). Dla zmiennej losowej X jej wartość oczekiwaną E [X] definiujemy wzorem E [X] := Ω X(ω)dP (ω),

12 12 4. Rozkłady zmiennych losowych a jej wariancję VarX wzorem VarX := E [ (X E [X]) 2] = E [ X 2] (E [X]) 2. Jeżeli zmienne losowe X, Y są niezależne, a R, to zachodzą równości E [XY ] = E [X] E [Y ], Var(XY ) = E [ X 2] E [ Y 2] (E [X] E [Y ]) 2, Var(aX) = a 2 Var(X), Var(X + Y ) = Var(X) + Var(Y ). Dla zmiennej losowej X jej funkcja tworząca momenty M X wyraża się wzorem (4.1) M X (t) := E [exp(tx)], (4.2) dla wszystkich t R takich, że powyższe wyrażenie jest skończone. Dla rozkładu µ o nośniku w przedziale (a, b) i gęstości f definiujemy nowy rozkład o gęstości τ c,d a,b f danej wzorem ( ) (τ c,d b a b a a,b f)(x) := d c f ad bc x +. (4.3) d c d c Tak zdefiniowany rozkład ma nośnik w przedziale (c, d). Operację tą nazywamy przesunięciem rozkładu µ do przedziału (c, d) Rozkład Beta Rozkład B(α, β) (α, β > 1) ma gęstość postaci f B α,β(x) := W tym wypadku mamy E [X B ] = β + 1 α + β + 2, VarX B = 1 B(α + 1, β + 1) xβ (1 x) α 1 (0,1) (x). (α + 1)(β + 1) (α + β + 2) 2 (α + β + 3). Natomiast jej funkcja tworząca momenty M XB wyraża się poprzez funkcję hipergeometryczną (por. (2.2)) w następujący sposób M XB (t) = F (α + 1; α + β + 2; t), (t R). (4.4) Warto zaznaczyć, że podana tu definicja różni się od tej przyjętej w rachunku prawdopodobieństwa znaczeniem parametrów α oraz β. Dokładniej, aby uzyskać standardową definicję musimy użyć parametrów α = β +1 oraz β = α+1. Zrobiono tak, aby uwypuklić związki z teorią wielomianów ortogonalnych. {P (α,β) n Zauważmy, że gęstości τ 1,1 0,1 fα,β B (por. (4.3)) odpowiada ciąg wielomianów Jacobiego }. W ogólności wielomiany { ( P n (α,β) 2 b+a (x b a 2 ))} są ortogonalne względem gęstości τ a,b 0,1f B α,β bo b a P (α,β) n ( ( 2 x b + a b a 2 = 2 b a 1 1 )) (τ a,b 0,1f B α,β)(x)dx ( b a P n (α,β) (y)(τ0,1f a,b α,β) B = 2 y + b + a ) dy P (α,β) n (y)(τ 1,1 0,1 f B α,β)(y)dy. (4.5)

13 4.2. Rozkład Gamma 13 Rysunek 5. Wykres gęstości rozkładu Beta dla różnych parametrów. Rozkład B(α, β) przesunięty do przedziału (a, b) będziemy oznaczać przez B(α, β, a, b). W szczególności, jeśli Y B(α, β, a, b), to Y = (b a)x B + a, (4.6) dla pewnej zmiennej X B B(α, β). Szczególnym przypadkiem powyższego rozkładu jesy rozkład jednostajny U(a, b), który uzyskujemy dla α = β = Rozkład Gamma Rozkład o gęstości postaci f G α,λ(x) := λα+1 Γ(α + 1) xα e λx 1 (0, ) (x) (α > 1, λ > 0) nazywamy rozkładem Gamma i oznaczamy symbolem Γ(α, λ). Można sprawdzić, że oraz E [X G ] = α + 1 λ, VarX G = α + 1 λ 2 M XG (t) = ( 1 t λ) α 1 (t < λ). Dla niezależnych zmiennych X Γ(α 1, λ) i Y Γ(α 1, λ) oraz liczby c > 0 mamy X + Y Γ(α 1 + α 2 1, λ), cx Γ(α 1, λ/c). (4.7)

14 14 4. Rozkłady zmiennych losowych Rysunek 6. Wykres gęstości rozkładu Gamma dla różnych parametrów. Oznacza to, że wystarczy rozpatrywać zmienne o ustalonej wartości λ (np. Γ(α, 1)). Zauważmy, że gęstości fα,1 G odpowiada ciąg wielomianów Laguerre a {L (α) n }. Natomiast wielomiany {L (α) n (λx)} są ortogonalne względem fα,1, G bo 0 L (α) n (λx)fα,λ(x)dx G = 1 λ 0 ( y L (α) n (y)fα,λ λ) G dy = L (α) n (y)fα,1(y)dy. G (4.8) 0 Warto zaznaczyć, że podana definicja różni się od tej przyjętej w rachunku prawdopodobieństwa znaczeniem parametru α, tzn. aby uzyskać standardową definicję musimy przyjąć α = α + 1). I w tym wypadku, zrobiono tak, aby uwypuklić związki z teorią wielomianów ortogonalnych. Szczególnym wariantem rozkładu Gamma jest rozkład wykładniczy Ex(λ) := Γ(0, λ) Rozkład Normalny oraz Rozkład N (m, σ 2 ) jest zdefiniowany dla m R, σ > 0. Ma on gęstość postaci Mamy fm,σ N 1 2(x) := e (x m)2 /(2σ 2). 2πσ E [X N ] = m, VarX N = σ 2. ( M XN (t) = exp µt + σ2 t 2 ) 2 Dla zmiennej X N (m, σ 2 ) oraz c > 0 zachodzi (t R). X m σ N (0, 1), cx N (cm, c 2 σ 2 ). Stąd wystarczy rozpatrywać zmienne o średniej zero i ustalonej wariancji (np. N (0, 1/2)).

15 15 Rysunek 7. Wykres gęstości Rozkładu Normalnego dla różnych parametrów. Ciąg wielomianów Hermite a {H n } związany jest z gęstością f 0,1/2. Natomiast wielomiany { ( )} H x m n 2σ są ortogonalne względem gęstości f N m,σ 2, bo ( ) x m H n fm,σ N 2(x)dx = 2σ H n (y)f N m,σ 2( 2σy + m)dy = H n (y)f N 0,1/2(y)dy. (4.9) 5. Kwadratury 5.1. Sformułowanie zadania Definicja 1. Funkcję w : R [0, + ) nazywamy funkcją wagową, jeżeli dla każdego k N zachodzi R x k w(x)dx <. Dla ustalonej funkcji wagowej definiujemy funkcjonał liniowy I : L 1 (w(x)dx) R postaci I(f) := f(x)w(x)dx. (5.1) R Głównym zadaniem, którym zajmujemy się w tym rozdziale jest obliczenie wartości I(f) dla danej funkcji f. Zazwyczaj nie potrafimy zrobić tego analitycznie, więc próbujemy zrobić to w sposób przybliżony. Niech ciąg funkcjonałów {Q n } n=1 wyraża się wzorem Q n (f) := p(n) j=1 w n j f(x n j ), (5.2) dla pewnej monotonicznej funkcji p, ciągów wag {w n i } p(n) i=1 oraz węzłów {x n i } p(n) i=1. Funkcjonał Q n nazywamy kwadraturą.

16 16 5. Kwadratury Z praktycznego punktu widzenia, ważne jest to, aby lim Q n(f) = I(f), (5.3) n dla każdej funkcji f z pewnego zbioru (np. f C c (R) lub f C c (R)). Definicja 2. Dla kwadratury Q zbiorem dokładnym nazywamy zbiór E(Q) := {f : Q(f) = I(f)}. W praktyce często używa się kwadratur Q, których zbiór dokładny zawiera zbiór wielomianów stopnia nie większego niż n, tzn. E(Q) P n. Jeżeli n jest maksymalne, to liczbę n nazywamy rzędem kwadratury Q. Definicja 3. Niech {Q n } n=1 będzie ciągiem kwadratur postaci (5.2). Mówimy, że {Q n } n=1 ma zagnieżdżone węzły, jeżeli {x n i } p(n) i=1 {x n+1 i } p(n+1) i=1, (n 1). Kwadratury posiadające zagnieżdżone węzły okażą się później istotne w kubaturze Smolyaka, o której piszemy w rozdziale Kwadratura Gaussa Załóżmy, że chcemy obliczyć wartość całki postaci R f(x)dµ(x), (5.4) dla pewnej miary µ mającej skończone wszystkie momenty (por. (3.1)). Niech {p k } k=0 będzie ciągiem wielomianów ortogonalnych w L 2 (µ). Wówczas dla każdego n wielomian p n ma dokładnie n pojedyńczych, rzeczywistych miejsc zerowych t n1 < t n2 <... < t nn (zob. [2, rozdz. 1.5, Tw. 5.2]). Dla ustalonej liczby n niech I f n 1 będzie wielomianem interpolującym wartości funkcji f w węzłach x n j = t nj (j = 1, 2,..., n). (5.5) Całkując I f n 1 otrzymujemy dla pewnego ciągu liczb {w n j } n j=1. Określamy kwadraturę Gaussa wzorem: n In 1(x)dµ(x) f = wj n f(x n j ), (5.6) R j=1 n Q G n (f) := wj n f(x n j ). j=1 Daje ona następujące przybliżenie całki (5.4): R f(x)dµ(x) Q G n (f).

17 5.3. Zamiana przedziału całkowania na przedział ( 1, 1) 17 Kwadratura Gaussa ma największy możliwy rząd i wynosi on 2n 1 (zob. [2, rozdz. 1.6, ćw. 6.7]). W rozdziale omówimy efektywny algorytm obliczania wartości ciągów {w n j } n j=1 oraz {x n k} n j=1. W ogólności kwadratury Gaussa nie mają zagnieżdżonych węzłów (por. def. 3), co jest ich istotną wadą w kontekście kubatury Smolyaka (patrz rozdz. 6.3). Jednakże, istnieją modyfikacje kwadratur Gaussa (tzw. kwadratury Gaussa Pattersona), które mają tą pożądaną własność (patrz [4]) Zamiana przedziału całkowania na przedział ( 1, 1) W dalszym ciągu zajmiemy się obliczaniem wartości (5.1) dla funkcji wagowych, które są niezerowe tylko na przedziale ( 1, 1). Aby zamienić ogólny przedział całkowania na odcinek ( 1, 1) będziemy korzystać z następującej zamiany zmiennych: b f(x)dx = b a ( 1 b a f a y + b + a ) dy, (5.7) 2 f(x)dx = 2 ( ) 1 1 y dy f, (λ > 0) (5.8) 0 λ 1 λ(1 + y) (1 + y) 2 ( ) 1 2σy 2σdy f(x)dx = f + m (σ > 0, m R). (5.9) 1 1 y 2 (1 y 2 ) 3/ Kwadratura Clenshawa-Curtisa Chcemy obliczyć wartość całki postaci 1 f(x)w(x)dx, (5.10) 1 gdzie w jest funkcją wagową. Niech n > 1 oraz niech Jn 1(x) f będzie wielomianem interpolującym wartości funkcji f w węzłach (k 1)π y k = cos, k = 1, 2,..., n. n 1 Można pokazać, że wielomian J f n 1(x) wyraża się wzorem gdzie b j := 2 n 1 Zobacz np. [10]. Całkując J f n 1 otrzymujemy J f n 1(x) = n k=1 n 1 j=0 b j T j (x), f(y k )T j (y k ) (j = 0, 1,..., n 1). gdzie 1 1 J n 1 f(x)w(x)dx = m j [w] := 1 1 n 1 j=0 b j m j [w], T j (x)w(x)dx, (5.11)

18 18 5. Kwadratury jest zmodyfikowanym momentem Czebyszewa I rodzaju funkcji wagowej w. Jeżeli n = 1, to przyjmujemy y 1 = 0 oraz w 1 = m 0 [w]. Określamy kwadraturę Clenshawa-Curtisa wzorem: Q CC n (f) := n 1 n w j f(y j ) = 1=0 j=0 Daje ona następujące przybliżenie całki (5.10): 1 f(x)w(x)dx Q CC n (f). 1 b j m j [w]. (5.12) Ze względu na to, że kwadratura Clenshawa-Curtisa jest kwadraturą interpolacyjną, jej rząd wynosi co najmniej n 1. W testach pokażemy, że czasami jest on większy, lecz w ogólności jest równy n 1. Przyjmując 1, gdy n = 1, p(n) := 2 n 1 + 1, w p.p. otrzymujemy ciąg kwadratur {Q CC p(n) } n=1 o zagnieżdżonych węzłach (por. def. 3) Kwadratura Fejéra (II rodzaju) Tak jak w przypadku kwadratury Clenshawa-Curtisa rozważanym zadaniem jest obliczenie wartości całki (5.10). Wykorzystujemy w tym celu wielomian I f n 1 interpolujący wartości funkcji f w węzłach kπ z k := cos, k = 1, 2,... n. n + 1 Należy zauważyć, że użyte węzły różnią się od węzłów kwadratury Clenshawa-Curtisa tylko brakiem wartości brzegowych 1 oraz 1. Jest to przydatna własność w przypadku, gdy funkcja f ma osobliwości na końcach przedziału [ 1, 1]. W [16] pokazano, że całkując I f n 1 otrzymujemy następujące wagi gdzie w k = 2(1 y2 k) n + 1 λ j [w] := 1 1 n 1 j=0 U j (z k )λ j [w], (5.13) U j (x)w(x)dx (5.14) jest tzw. zmodyfikowanym momentem Czebyszewa II rodzaju funkcji wagowej w. Kwadraturę Fejéra (II rodzaju) określamy wzorem: n Q F n II (f) := w k f(z k ). k=1 Daje ona następujące przybliżenie całki (5.10): 1 f(x)w(x)dx Q F n II (f). 1 Ze względu na to, że kwadratura Fejéra jest kwadraturą interpolacyjną, jej rząd wynosi co najmniej n 1. Przyjmując p(n) := 2 n 1, otrzymujemy, ciąg kwadratur {Q F p(n) II } n=1 o zagnieżdżonych węzłach (por. def. 3).

19 19 6. Kubatury Poniższą teorię przytaczamy za artykułem [3] Sformułowanie zadania Dla danych funkcji wagowych {w (i) } d i=1, wprowadzamy funkcjonały {I (i) } d i=1 postaci I (i) f := f(x i )w (i) (x i )dx i (f : R R) (6.1) R (por. z (5.1)). Rozważane tu zadanie polega na obliczeniu wartości funkcjonału postaci I(f) := (I (1) I (2)... I (d) )(f) := f(x)w(x)dx, (6.2) R d gdzie f : R d R oraz 6.2. Kubatury tensorowe x := (x 1, x 2,..., x d ), w(x) := w (1) (x 1 )w (2) (x 2 )... w (d) (x d ). Poniżej podajemy definicję iloczynu tensorowego dla kilku szczególnych przypadków. Definicja 4. Niech {Q (i) } d i=1 będzie ciągiem funkcjonałów postaci Wówczas funkcjonał gdzie p (i) Q (i) (g) := j=1 w (i) j g(x (i) j ) (i = 1, 2,..., d; g : R R). (Q (1) Q (2)... Q (d) )(f) := w j = w (1) j 1 w (2) j 2 nazywamy iloczynem tensorowym ciągu {Q (i) } d i=1. Definicja 5. Niech f, g : R R. Wówczas funkcję 1 j i p (i) 1 i d w j f(x j ),... w (d) j d, x j = (x j1, x j2,..., x jd ), (f g)(x, y) := f(x) g(y) nazywamy iloczynem tensorowym funkcji f i g. Zauważmy, że iloczyn tensorowy nie jest w ogólności przemienny, ale jest łączny i wieloliniowy. Iloczyn tensorowy jest prostym sposobem na to, aby z kwadratur jednowymiarowych utworzyć tzw. kubaturę, czyli funkcjonał, który ma przybliżać wartość (6.2). O znaczeniu tej uwagi mówi następujący fakt. Fakt 1 ([3, Lemma 2.2]). Niech {Q (i) } d i=1 będą kwadraturami. Wówczas dla Q Q (1) Q (2)... Q (d) mamy następujące zawieranie zbiorów dokładnych (por. def. 2). E(Q (1) ) E(Q (2) )... E(Q (d) ) E(Q) Problemem w korzystaniu z kubatur tensorowych jest to, że przy d liczba węzłów zazwyczaj szybko rośnie.

20 20 6. Kubatury 6.3. Kubatura Smolyaka Zacznijmy od następującego przykładu. Niech będzie f(x, y) := x 16 + y 16 + x 5 y 2. Wówczas, aby dokładnie obliczyć wartość I(f) za pomocą iloczynu tensorowego kwadratur Clenshawa-Curtisa (patrz rozdział 5.4) potrzebujemy aż węzłów. Za pomocą uzyskanej w ten sposób kubatury można dokładnie obliczać całki z każdego wielomianu o stopniu nie większym niż (16, 16) (por. rozdz. 2). Z drugiej strony, aby obliczyć całki poszczególnych składników wystarczą kwadratury tensorowe o liczbie węzłów odpowienio: 17 1, 1 17 oraz 6 3. Poniżej przedstawimy metodę, która pozwala na dobranie węzłów kubatury w sposób bardziej oszczędny niż w przypadku kwadratury tensorowej. W poniższej konstrukcji będziemy zakładać, że dla każdego i = 1, 2,..., d dany jest ciąg kwadratur {Q (i) n } n=1 postaci (5.2). Definicja 6. Przy powyższych założeniach, operator różnicowy definiujemy wzorem (i) 0 := Q (i) 0 := 0, (6.3) (i) n := Q (i) n Zauważmy, że dla każdego i możemy zapisać Q (i) N = N n=1 Q (i) n Q (i) n 1, (n > 0). (6.4) Q (i) n 1 = Zatem z wieloliniowości iloczynu tensorowego mamy Q (1) N 1 Q (2) N 2... Q (d) N d = N 1 n 1 =1 (1) n N 2 n 2 =1 (2) n 2 N n=1... (i) n. N d n d =1 = 1 n i N i 1 i d (d) n d (1) n 1 (2) n 2... (d) n d. Obcinając odpowiednio ostatnią sumę, otrzymujemy tzw. kubaturę Smolyaka (por. [15]). Precyzuje to następująca definicja. Definicja 7. Kubaturą Smolyaka nazywamy funkcjonał liniowy określony wzorem Sn d := (1) l 1 (2) l 2... (d) l d. l 1 n+d 1 Liczbę n nazywamy wówczas rozdzielczością tejże kubatury. Zauważmy, że wprost z definicji S d n oraz łączności i wieloliniowości iloczynu tensorowego mamy Sn d = (1) l 1 (2) l 2... (d) l d l 1 n+d 1 n = (1) l 1 (2) l 2 l d =1 (l 1,l 2,...,l d 1 ) 1 n+d 1 l d... (d 1) l d 1 = (d) l d n l d =1 S d 1 n+1 l d (d) l d.

Wstęp do analizy matematycznej

Wstęp do analizy matematycznej Wstęp do analizy matematycznej Andrzej Marciniak Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii informatycznych i ich zastosowań w

Bardziej szczegółowo

Metody numeryczne. materiały do wykładu dla studentów. 7. Całkowanie numeryczne

Metody numeryczne. materiały do wykładu dla studentów. 7. Całkowanie numeryczne Metody numeryczne materiały do wykładu dla studentów 7. Całkowanie numeryczne 7.1. Całkowanie numeryczne 7.2. Metoda trapezów 7.3. Metoda Simpsona 7.4. Metoda 3/8 Newtona 7.5. Ogólna postać wzorów kwadratur

Bardziej szczegółowo

Algebra liniowa z geometrią

Algebra liniowa z geometrią Algebra liniowa z geometrią Maciej Czarnecki 15 stycznia 2013 Spis treści 1 Geometria płaszczyzny 2 1.1 Wektory i skalary........................... 2 1.2 Macierze, wyznaczniki, układy równań liniowych.........

Bardziej szczegółowo

III. ZMIENNE LOSOWE JEDNOWYMIAROWE

III. ZMIENNE LOSOWE JEDNOWYMIAROWE III. ZMIENNE LOSOWE JEDNOWYMIAROWE.. Zmienna losowa i pojęcie rozkładu prawdopodobieństwa W dotychczas rozpatrywanych przykładach każdemu zdarzeniu była przyporządkowana odpowiednia wartość liczbowa. Ta

Bardziej szczegółowo

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora.

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. 1. Podstawy matematyki 1.1. Geometria analityczna W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. Skalarem w fizyce nazywamy

Bardziej szczegółowo

Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje

Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje Opracował: Zbigniew Rudnicki Powtórka z poprzedniego wykładu 2 1 Dokument, regiony, klawisze: Dokument Mathcada realizuje

Bardziej szczegółowo

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale Zestaw nr 1 Poziom Rozszerzony Zad.1. (1p) Liczby oraz, są jednocześnie ujemne wtedy i tylko wtedy, gdy A. B. C. D. Zad.2. (1p) Funkcja przyjmuje wartości większe od funkcji dokładnie w przedziale. Wtedy

Bardziej szczegółowo

MATeMAtyka klasa II poziom rozszerzony

MATeMAtyka klasa II poziom rozszerzony MATeMAtyka klasa II poziom rozszerzony W klasie drugiej na poziomie rozszerzonym realizujemy materiał z klasy pierwszej tylko z poziomu rozszerzonego (na czerwono) oraz cały materiał z klasy drugiej. Rozkład

Bardziej szczegółowo

Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe.

Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Rachunek prawdopodobieństwa MAP3040 WPPT FT, rok akad. 2010/11, sem. zimowy Wykładowca: dr hab. Agnieszka Jurlewicz Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Warunkowa wartość oczekiwana.

Bardziej szczegółowo

φ(x 1,..., x n ) = a i x 2 i +

φ(x 1,..., x n ) = a i x 2 i + Teoria na egzamin z algebry liniowej Wszystkie podane pojęcia należy umieć określić i podać pprzykłady, ewentualnie kontrprzykłady. Ponadto należy znać dowody tam gdzie to jest zaznaczone. Liczby zespolone.

Bardziej szczegółowo

Rozdział 9. Funkcja pierwotna. 9.1 Funkcja pierwotna

Rozdział 9. Funkcja pierwotna. 9.1 Funkcja pierwotna Rozdział 9 Funkcja pierwotna 9. Funkcja pierwotna Definicja funkcji pierwotnej. Niech f będzie funkcją określoną na przedziale P. Mówimy, że funkcja F : P R jest funkcją pierwotną funkcji f w przedziale

Bardziej szczegółowo

KADD Metoda najmniejszych kwadratów funkcje nieliniowe

KADD Metoda najmniejszych kwadratów funkcje nieliniowe Metoda najmn. kwadr. - funkcje nieliniowe Metoda najmniejszych kwadratów Funkcje nieliniowe Procedura z redukcją kroku iteracji Przykłady zastosowań Dopasowanie funkcji wykładniczej Dopasowanie funkcji

Bardziej szczegółowo

Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów.

Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów. Rachunek prawdopodobieństwa MAP1181 Wydział PPT, MS, rok akad. 213/14, sem. zimowy Wykładowca: dr hab. Agnieszka Jurlewicz Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów.

Bardziej szczegółowo

A,B M! v V ; A + v = B, (1.3) AB = v. (1.4)

A,B M! v V ; A + v = B, (1.3) AB = v. (1.4) Rozdział 1 Prosta i płaszczyzna 1.1 Przestrzeń afiniczna Przestrzeń afiniczna to matematyczny model przestrzeni jednorodnej, bez wyróżnionego punktu. Można w niej przesuwać punkty równolegle do zadanego

Bardziej szczegółowo

Wielomiany. dr Tadeusz Werbiński. Teoria

Wielomiany. dr Tadeusz Werbiński. Teoria Wielomiany dr Tadeusz Werbiński Teoria Na początku przypomnimy kilka szkolnych definicji i twierdzeń dotyczących wielomianów. Autorzy podręczników szkolnych podają różne definicje wielomianu - dla jednych

Bardziej szczegółowo

Zadania o numerze 4 z zestawów licencjat 2014.

Zadania o numerze 4 z zestawów licencjat 2014. Zadania o numerze 4 z zestawów licencjat 2014. W nawiasie przy zadaniu jego występowanie w numerze zestawu Spis treści (Z1, Z22, Z43) Definicja granicy ciągu. Obliczyć granicę:... 3 Definicja granicy ciągu...

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III ZAKRES ROZSZERZONY (90 godz.) , x

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III ZAKRES ROZSZERZONY (90 godz.) , x WYMAGANIA EDUACYJNE Z MATEMATYI LASA III ZARES ROZSZERZONY (90 godz.) Oznaczenia: wymagania konieczne (dopuszczający); P wymagania podstawowe (dostateczny); R wymagania rozszerzające (dobry); D wymagania

Bardziej szczegółowo

FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y.

FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. FUNKCJE LICZBOWE Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. Innymi słowy f X Y = {(x, y) : x X oraz y Y }, o ile (x, y) f oraz (x, z) f pociąga

Bardziej szczegółowo

Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1

Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1 Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1 Równania różniczkowe pierwszego rzędu Równaniem różniczkowym zwyczajnym pierwszego rzędu nazywamy równanie postaci (R) y = f(x, y). Najogólniejszą

Bardziej szczegółowo

Obliczenia naukowe Wykład nr 6

Obliczenia naukowe Wykład nr 6 Obliczenia naukowe Wykład nr 6 Paweł Zieliński Katedra Informatyki, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Literatura Literatura podstawowa [1] D. Kincaid, W. Cheney, Analiza

Bardziej szczegółowo

PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ

PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ L.p. 1. Liczby rzeczywiste 2. Wyrażenia algebraiczne bada, czy wynik obliczeń jest liczbą

Bardziej szczegółowo

4. O funkcji uwikłanej 4.1. Twierdzenie. Niech będzie dana funkcja f klasy C 1 na otwartym podzbiorze. ϕ : K(x 0, δ) (y 0 η, y 0 + η), taka że

4. O funkcji uwikłanej 4.1. Twierdzenie. Niech będzie dana funkcja f klasy C 1 na otwartym podzbiorze. ϕ : K(x 0, δ) (y 0 η, y 0 + η), taka że 4. O funkcji uwikłanej 4.1. Twierdzenie. Niech będzie dana funkcja f klasy C 1 na otwartym podzbiorze taka że K(x 0, δ) (y 0 η, y 0 + η) R n R, f(x 0, y 0 ) = 0, y f(x 0, y 0 ) 0. Wówczas dla odpowiednio

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA Zadanie 0.1 Zmienna losowa X ma rozkład określony funkcją prawdopodobieństwa: x k 0 4 p k 1/3 1/6 1/ obliczyć EX, D X. (odp. 4/3;

Bardziej szczegółowo

Interpolacja krzywymi sklejanymi stopnia drugiego (SPLINE-2)

Interpolacja krzywymi sklejanymi stopnia drugiego (SPLINE-2) Jacek Złydach (JW) Wstęp Interpolacja krzywymi sklejanymi stopnia drugiego (SPLINE-) Implementacja praktyczna Poniższa praktyczna implementacja stanowi uzupełnienie teoretycznych rozważań na temat interpolacji

Bardziej szczegółowo

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16 Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego

Bardziej szczegółowo

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI SPIS TREŚCI WSTĘP.................................................................. 8 1. LICZBY RZECZYWISTE Teoria............................................................ 11 Rozgrzewka 1.....................................................

Bardziej szczegółowo

Rozdział 8. Analiza fourierowska. 8.1 Rozwinięcie w szereg Fouriera

Rozdział 8. Analiza fourierowska. 8.1 Rozwinięcie w szereg Fouriera Rozdział 8 Analiza fourierowska 8.1 Rozwinięcie w szereg Fouriera Rozważmy funkcję rzeczywistą f określoną na okręgu o promieniu jednostkowym. Parametryzując okrąg przy pomocy kąta φ [, π] otrzymujemy

Bardziej szczegółowo

Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/

Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/ Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/ MATEMATYKA Klasa III ZAKRES PODSTAWOWY Dział programu Temat Wymagania. Uczeń: 1. Miara łukowa kąta zna pojęcia: kąt skierowany, kąt

Bardziej szczegółowo

REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH

REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH Transport, studia I stopnia rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Pojęcie

Bardziej szczegółowo

y f x 0 f x 0 x x 0 x 0 lim 0 h f x 0 lim x x0 - o ile ta granica właściwa istnieje. f x x2 Definicja pochodnych jednostronnych 1.5 0.

y f x 0 f x 0 x x 0 x 0 lim 0 h f x 0 lim x x0 - o ile ta granica właściwa istnieje. f x x2 Definicja pochodnych jednostronnych 1.5 0. Matematyka ZLic - 3 Pochodne i różniczki funkcji jednej zmiennej Definicja Pochodną funkcji f w punkcie x, nazwiemy liczbę oznaczaną symbolem f x lub df x dx, równą granicy właściwej f x lim h - o ile

Bardziej szczegółowo

(a 1 2 + b 1 2); : ( b a + b ab 2 + c ). : a2 2ab+b 2. Politechnika Białostocka KATEDRA MATEMATYKI. Zajęcia fakultatywne z matematyki 2008

(a 1 2 + b 1 2); : ( b a + b ab 2 + c ). : a2 2ab+b 2. Politechnika Białostocka KATEDRA MATEMATYKI. Zajęcia fakultatywne z matematyki 2008 Zajęcia fakultatywne z matematyki 008 WYRAŻENIA ARYTMETYCZNE I ALGEBRAICZNE. Wylicz b z równania a) ba + a = + b; b) a = b ; b+a c) a b = b ; d) a +ab =. a b. Oblicz a) [ 4 (0, 5) ] + ; b) 5 5 5 5+ 5 5

Bardziej szczegółowo

MATeMAtyka cz.1. Zakres podstawowy

MATeMAtyka cz.1. Zakres podstawowy MATeMAtyka cz.1 Zakres podstawowy Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające poza program nauczania (W). Wymienione

Bardziej szczegółowo

Newton vs. Lagrange - kto lepszy?

Newton vs. Lagrange - kto lepszy? Uniwersytet Mikołaja Kopernika Wydział Matematyki i Informatyki Katedra Analizy Matematycznej Agnieszka Rydzyńska nr albumu: 254231 Praca Zaliczeniowa z Seminarium Newton vs. Lagrange - kto lepszy? Opiekun

Bardziej szczegółowo

ZASTOSOWANIE ZASADY MAKSIMUM PONTRIAGINA DO ZAGADNIENIA

ZASTOSOWANIE ZASADY MAKSIMUM PONTRIAGINA DO ZAGADNIENIA ZASTOSOWANIE ZASADY MAKSIMUM PONTRIAGINA DO ZAGADNIENIA DYNAMICZNYCH LOKAT KAPITAŁOWYCH Krzysztof Gąsior Uniwersytet Rzeszowski Streszczenie Celem referatu jest zaprezentowanie praktycznego zastosowania

Bardziej szczegółowo

Macierze - obliczanie wyznacznika macierzy z użyciem permutacji

Macierze - obliczanie wyznacznika macierzy z użyciem permutacji Macierze - obliczanie wyznacznika macierzy z użyciem permutacji I LO im. F. Ceynowy w Świeciu Radosław Rudnicki joix@mat.uni.torun.pl 17.03.2009 r. Typeset by FoilTEX Streszczenie Celem wykładu jest wprowadzenie

Bardziej szczegółowo

Propozycje rozwiązań zadań otwartych z próbnej matury rozszerzonej przygotowanej przez OPERON.

Propozycje rozwiązań zadań otwartych z próbnej matury rozszerzonej przygotowanej przez OPERON. Propozycje rozwiązań zadań otwartych z próbnej matury rozszerzonej przygotowanej przez OPERON. Zadanie 6. Dane są punkty A=(5; 2); B=(1; -3); C=(-2; -8). Oblicz odległość punktu A od prostej l przechodzącej

Bardziej szczegółowo

Metody numeryczne. materiały do wykładu dla studentów

Metody numeryczne. materiały do wykładu dla studentów Metody numeryczne materiały do wykładu dla studentów 4. Wartości własne i wektory własne 4.1. Podstawowe definicje, własności i twierdzenia 4.2. Lokalizacja wartości własnych 4.3. Metoda potęgowa znajdowania

Bardziej szczegółowo

ODRZUCANIE WYNIKÓW POJEDYNCZYCH POMIARÓW

ODRZUCANIE WYNIKÓW POJEDYNCZYCH POMIARÓW ODRZUCANIE WYNIKÓW OJEDYNCZYCH OMIARÓW W praktyce pomiarowej zdarzają się sytuacje gdy jeden z pomiarów odstaje od pozostałych. Jeżeli wykorzystamy fakt, że wyniki pomiarów są zmienną losową opisywaną

Bardziej szczegółowo

Wykład z modelowania matematycznego. Zagadnienie transportowe.

Wykład z modelowania matematycznego. Zagadnienie transportowe. Wykład z modelowania matematycznego. Zagadnienie transportowe. 1 Zagadnienie transportowe zostało sformułowane w 1941 przez F.L.Hitchcocka. Metoda rozwiązania tego zagadnienia zwana algorytmem transportowymópracowana

Bardziej szczegółowo

1. Liczby zespolone. Jacek Jędrzejewski 2011/2012

1. Liczby zespolone. Jacek Jędrzejewski 2011/2012 1. Liczby zespolone Jacek Jędrzejewski 2011/2012 Spis treści 1 Liczby zespolone 2 1.1 Definicja liczby zespolonej.................... 2 1.2 Postać kanoniczna liczby zespolonej............... 1. Postać

Bardziej szczegółowo

L A TEX krok po kroku

L A TEX krok po kroku L A TEX krok po kroku Imię i nazwisko Spis treści 1 Sekcja pierwsza 1 1.1 Lista numerowana.......................... 1 2 Wymagania podstawowe 2 2.1 Lista numerowana.......................... 2 3 Troszkę

Bardziej szczegółowo

Plan wynikowy. Klasa III Technik pojazdów samochodowych/ Technik urządzeń i systemów energetyki odnawialnej. Kształcenie ogólne w zakresie podstawowym

Plan wynikowy. Klasa III Technik pojazdów samochodowych/ Technik urządzeń i systemów energetyki odnawialnej. Kształcenie ogólne w zakresie podstawowym Oznaczenia: wymagania konieczne, P wymagania podstawowe, R wymagania rozszerzające, D wymagania dopełniające, W wymagania wykraczające. Plan wynikowy lasa III Technik pojazdów samochodowych/ Technik urządzeń

Bardziej szczegółowo

Twierdzenie spektralne

Twierdzenie spektralne Twierdzenie spektralne Algebrę ograniczonych funkcji borelowskich na K R będziemy oznaczać przez B (K). Spektralnym rozkładem jedności w przestrzeni Hilberta H nazywamy odwzorowanie, które każdemu zbiorowi

Bardziej szczegółowo

Systemy. Krzysztof Patan

Systemy. Krzysztof Patan Systemy Krzysztof Patan Systemy z pamięcią System jest bez pamięci (statyczny), jeżeli dla dowolnej chwili t 0 wartość sygnału wyjściowego y(t 0 ) zależy wyłącznie od wartości sygnału wejściowego w tej

Bardziej szczegółowo

Analiza matematyczna - 14. Analiza zmiennych dyskretnych: ciągi i szeregi liczbowe

Analiza matematyczna - 14. Analiza zmiennych dyskretnych: ciągi i szeregi liczbowe Analiza matematyczna - 4. Analiza zmiennych dyskretnych: ciągi i szeregi liczbowe Wstęp: zmienne ciągłe i zmienne dyskretne Podczas dotychczasowych wykładów rozważaliśmy przede wszystkim zależności funkcyjne

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Inżynieria i Gospodarka Wodna w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt

Bardziej szczegółowo

Generacja liczb pseudolosowych

Generacja liczb pseudolosowych Generacja liczb pseudolosowych Zapis liczb w komputerze Generatory liczb pseudolosowych Liniowe kongruentne Liniowe mutiplikatywne kongruentne Jakość generatorów Test widmowy Generowanie liczb losowych

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie III gimnazjum

Wymagania edukacyjne z matematyki w klasie III gimnazjum Wymagania edukacyjne z matematyki w klasie III gimnazjum - nie potrafi konstrukcyjnie podzielić odcinka - nie potrafi konstruować figur jednokładnych - nie zna pojęcia skali - nie rozpoznaje figur jednokładnych

Bardziej szczegółowo

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie Politechnika Wrocławska, Wydział Informatyki i Zarządzania Modelowanie Zad Wyznacz transformaty Laplace a poniższych funkcji, korzystając z tabeli transformat: a) 8 3e 3t b) 4 sin 5t 2e 5t + 5 c) e5t e

Bardziej szczegółowo

Przykładowe rozwiązania zadań. Próbnej Matury 2014 z matematyki na poziomie rozszerzonym

Przykładowe rozwiązania zadań. Próbnej Matury 2014 z matematyki na poziomie rozszerzonym Zadania rozwiązali: Przykładowe rozwiązania zadań Próbnej Matury 014 z matematyki na poziomie rozszerzonym Małgorzata Zygora-nauczyciel matematyki w II Liceum Ogólnokształcącym w Inowrocławiu Mariusz Walkowiak-nauczyciel

Bardziej szczegółowo

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej 7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej Definicja 1 n-elementowa losowa próba prosta nazywamy ciag n niezależnych zmiennych losowych o jednakowych rozkładach

Bardziej szczegółowo

LXIII Olimpiada Matematyczna

LXIII Olimpiada Matematyczna 1 Zadanie 1. LXIII Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia drugiego 17 lutego 2012 r. (pierwszy dzień zawodów) Rozwiązać w liczbach rzeczywistych a, b, c, d układ równań a

Bardziej szczegółowo

Przedmiotowy System Oceniania klasa I TH matematyka PP 2015/16

Przedmiotowy System Oceniania klasa I TH matematyka PP 2015/16 Przedmiotowy System Oceniania klasa I TH matematyka PP 2015/16 PROPOZYCJA POZIOMÓW WYMAGAŃ Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające

Bardziej szczegółowo

Analiza korespondencji

Analiza korespondencji Analiza korespondencji Kiedy stosujemy? 2 W wielu badaniach mamy do czynienia ze zmiennymi jakościowymi (nominalne i porządkowe) typu np.: płeć, wykształcenie, status palenia. Punktem wyjścia do analizy

Bardziej szczegółowo

dr inż. Ryszard Rębowski 1 WPROWADZENIE

dr inż. Ryszard Rębowski 1 WPROWADZENIE dr inż. Ryszard Rębowski 1 WPROWADZENIE Zarządzanie i Inżynieria Produkcji studia stacjonarne Konspekt do wykładu z Matematyki 1 1 Postać trygonometryczna liczby zespolonej zastosowania i przykłady 1 Wprowadzenie

Bardziej szczegółowo

Nieskończona jednowymiarowa studnia potencjału

Nieskończona jednowymiarowa studnia potencjału Nieskończona jednowymiarowa studnia potencjału Zagadnienie dane jest następująco: znaleźć funkcje własne i wartości własne operatora energii dla cząstki umieszczonej w nieskończonej studni potencjału,

Bardziej szczegółowo

Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne:

Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne: Prosto do matury klasa d Rok szkolny 014/015 WYMAGANIA EDUKACYJNE Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające

Bardziej szczegółowo

Typ szkoły: ZASADNICZA SZKOŁA ZAWODOWA Rok szkolny 2015/2016 Zawód: FRYZJER, CUKIERNIK, PIEKARZ, SPRZEDAWCA, FOTOGRAF i inne zawody.

Typ szkoły: ZASADNICZA SZKOŁA ZAWODOWA Rok szkolny 2015/2016 Zawód: FRYZJER, CUKIERNIK, PIEKARZ, SPRZEDAWCA, FOTOGRAF i inne zawody. Typ szkoły: ZASADNICZA SZKOŁA ZAWODOWA Rok szkolny 05/06 Zawód: FRYZJER, CUKIERNIK, PIEKARZ, SPRZEDAWCA, FOTOGRAF i inne zawody Przedmiot: MATEMATYKA Klasa I (60 godz) Rozdział. Liczby rzeczywiste Numer

Bardziej szczegółowo

Komputerowa Analiza Danych Doświadczalnych

Komputerowa Analiza Danych Doświadczalnych Komputerowa Analiza Danych Doświadczalnych dr inż. Adam Kisiel kisiel@if.pw.edu.pl pokój 117b (12b) 1 Materiały do wykładu Transparencje do wykładów: http://www.if.pw.edu.pl/~kisiel/kadd/kadd.html Literatura

Bardziej szczegółowo

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO ĆWICZENIE 53 PRAWO OHMA DLA PRĄDU PRZEMIENNEGO Cel ćwiczenia: wyznaczenie wartości indukcyjności cewek i pojemności kondensatorów przy wykorzystaniu prawa Ohma dla prądu przemiennego; sprawdzenie prawa

Bardziej szczegółowo

Podstawy Automatyki. wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak. Politechnika Wrocławska. Instytut Technologii Maszyn i Automatyzacji (I-24)

Podstawy Automatyki. wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak. Politechnika Wrocławska. Instytut Technologii Maszyn i Automatyzacji (I-24) Podstawy Automatyki wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak Politechnika Wrocławska Instytut Technologii Maszyn i Automatyzacji (I-24) Laboratorium Podstaw Automatyzacji (L6) 105/2 B1 Sprawy organizacyjne

Bardziej szczegółowo

Zadanie 1. Zmienne losowe X 1, X 2 są niezależne i mają taki sam rozkład z atomami:

Zadanie 1. Zmienne losowe X 1, X 2 są niezależne i mają taki sam rozkład z atomami: Zadanie 1. Zmienne losowe X 1, X 2 są niezależne i mają taki sam rozkład z atomami: Pr(X 1 = 0) = 6/10, Pr(X 1 = 1) = 1/10, i gęstością: f(x) = 3/10 na przedziale (0, 1). Wobec tego Pr(X 1 + X 2 5/3) wynosi:

Bardziej szczegółowo

MATEMATYKA WYDZIAŁ MATEMATYKI - TEST 1

MATEMATYKA WYDZIAŁ MATEMATYKI - TEST 1 Wszelkie prawa zastrzeżone. Rozpowszechnianie, wypożyczanie i powielanie niniejszych testów w jakiejkolwiek formie surowo zabronione. W przypadku złamania zakazu mają zastosowanie przepisy dotyczące naruszenia

Bardziej szczegółowo

Niegaussowskie procesy stochastyczne w oceanotechnice

Niegaussowskie procesy stochastyczne w oceanotechnice Niegaussowskie procesy stochastyczne w oceanotechnice Joanna Dys 29 listopada 2009 Streszczenie Referat na podstawie artykułu Michela K. Ochi, Non-Gaussian random processes in ocean engineering, Probabilistic

Bardziej szczegółowo

Maria Romanowska UDOWODNIJ, ŻE... PRZYKŁADOWE ZADANIA MATURALNE Z MATEMATYKI

Maria Romanowska UDOWODNIJ, ŻE... PRZYKŁADOWE ZADANIA MATURALNE Z MATEMATYKI Maria Romanowska UDOWODNIJ, ŻE... PRZYKŁADOWE ZADANIA MATURALNE Z MATEMATYKI Matematyka dla liceum ogólnokształcącego i technikum w zakresie podstawowym i rozszerzonym Z E S Z Y T M E T O D Y C Z N Y Miejski

Bardziej szczegółowo

Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. 2 godz. = 76 godz.)

Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. 2 godz. = 76 godz.) Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. godz. = 76 godz.) I. Funkcja i jej własności.4godz. II. Przekształcenia wykresów funkcji...9 godz. III. Funkcja

Bardziej szczegółowo

Przegląd ważniejszych rozkładów

Przegląd ważniejszych rozkładów Przegląd ważniejszych rozkładów Rozkład dwupunktowy P (X = x) = { p dla x = a, 1 p dla x = b, to zmienna losowa X ma rozkład dwupunktowy z parametrem p (0 < p < 1). Rozkład ten pojawia się przy opisie

Bardziej szczegółowo

PODSTAWA PROGRAMOWA PRZEDMIOTU MATEMATYKA IV etap edukacyjny: liceum Cele kształcenia wymagania ogólne

PODSTAWA PROGRAMOWA PRZEDMIOTU MATEMATYKA IV etap edukacyjny: liceum Cele kształcenia wymagania ogólne PODSTAWA PROGRAMOWA PRZEDMIOTU MATEMATYKA IV etap edukacyjny: liceum Cele kształcenia wymagania ogólne ZAKRES PODSTAWOWY ZAKRES ROZSZERZONY I. Wykorzystanie i tworzenie informacji. Uczeń używa języka matematycznego

Bardziej szczegółowo

Formy kwadratowe. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. 14. wykład z algebry liniowej Warszawa, styczeń 2011

Formy kwadratowe. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. 14. wykład z algebry liniowej Warszawa, styczeń 2011 Formy kwadratowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 14. wykład z algebry liniowej Warszawa, styczeń 2011 Mirosław Sobolewski (UW) Warszawa, 2011 1 / 16 Definicja Niech V,

Bardziej szczegółowo

Rozdział 4. Ciągi nieskończone. 4.1 Ciągi nieskończone

Rozdział 4. Ciągi nieskończone. 4.1 Ciągi nieskończone Rozdział 4 Ciągi nieskończone W rozdziale tym wprowadzimy pojęcie granicy ciągu. Dalej rozszerzymy to pojęcie na przypadek dowolnych funkcji. Jak zauważyliśmy we wstępie jest to najważniejsze pojęcie analizy

Bardziej szczegółowo

Nowa podstawa programowa z matematyki ( w liceum od 01.09.2012 r.)

Nowa podstawa programowa z matematyki ( w liceum od 01.09.2012 r.) IV etap edukacyjny Nowa podstawa programowa z matematyki ( w liceum od 01.09.01 r.) Cele kształcenia wymagania ogólne ZAKRES PODSTAWOWY ZAKRES ROZSZERZONY I. Wykorzystanie i tworzenie informacji. Uczeń

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący

Bardziej szczegółowo

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą 1. Statystyka odczytać informacje z tabeli odczytać informacje z diagramu 2. Mnożenie i dzielenie potęg o tych samych podstawach 3. Mnożenie i dzielenie potęg o tych samych wykładnikach 4. Potęga o wykładniku

Bardziej szczegółowo

Wykład 1. Przestrzeń Hilberta

Wykład 1. Przestrzeń Hilberta Wykład 1. Przestrzeń Hilberta Sygnały. Funkcje (w języku inżynierów - sygnały) które będziemy rozważali na tym wykładzie będą kilku typów Sygnały ciągłe (analogowe). ) L 2 (R) to funkcje na prostej spełniające

Bardziej szczegółowo

Matematyka Dyskretna Zestaw 2

Matematyka Dyskretna Zestaw 2 Materiały dydaktyczne Matematyka Dyskretna (Zestaw ) Matematyka Dyskretna Zestaw 1. Wykazać, że nie istnieje liczba naturalna, która przy dzieleniu przez 18 daje resztę 13, a przy dzieleniu przez 1 daje

Bardziej szczegółowo

Kurs Start plus - matematyka poziom podstawowy, materiały dla prowadzących, Marcin Kościelecki. Zajęcia 1.

Kurs Start plus - matematyka poziom podstawowy, materiały dla prowadzących, Marcin Kościelecki. Zajęcia 1. Projekt Fizyka Plus nr POKL.04.0.0-00-034/ współfinansowany przez Unię Europejską ze środków Europejskiego Funduszu Społecznego w ramach Programu Operacyjnego Kapitał Ludzki Kurs Start plus - matematyka

Bardziej szczegółowo

Luty 2001 Algorytmy (7) 2000/2001 s-rg@siwy.il.pw.edu.pl

Luty 2001 Algorytmy (7) 2000/2001 s-rg@siwy.il.pw.edu.pl System dziesiętny 7 * 10 4 + 3 * 10 3 + 0 * 10 2 + 5 *10 1 + 1 * 10 0 = 73051 Liczba 10 w tym zapisie nazywa się podstawą systemu liczenia. Jeśli liczba 73051 byłaby zapisana w systemie ósemkowym, co powinniśmy

Bardziej szczegółowo

EGZAMIN MAGISTERSKI, czerwiec 2014 Matematyka w ekonomii i ubezpieczeniach

EGZAMIN MAGISTERSKI, czerwiec 2014 Matematyka w ekonomii i ubezpieczeniach Matematyka w ekonomii i ubezpieczeniach Sprawdź, czy wektor x 0 = (0,5,,0,0) jest rozwiązaniem dopuszczalnym zagadnienia programowania liniowego: Zminimalizować 3x 1 +x +x 3 +4x 4 +6x 5, przy ograniczeniach

Bardziej szczegółowo

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com Analiza korelacji i regresji KORELACJA zależność liniowa Obserwujemy parę cech ilościowych (X,Y). Doświadczenie jest tak pomyślane, aby obserwowane pary cech X i Y (tzn i ta para x i i y i dla różnych

Bardziej szczegółowo

Wykaz treści i umiejętności zawartych w podstawie programowej z matematyki dla IV etapu edukacyjnego

Wykaz treści i umiejętności zawartych w podstawie programowej z matematyki dla IV etapu edukacyjnego Wykaz treści i umiejętności zawartych w podstawie programowej z matematyki dla IV etapu edukacyjnego 1. Liczby rzeczywiste P1.1. Przedstawianie liczb rzeczywistych w różnych postaciach (np. ułamka zwykłego,

Bardziej szczegółowo

Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy

Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy Wariant nr (klasa I 4 godz., klasa II godz., klasa III godz.) Klasa I 7 tygodni 4 godziny = 48 godzin Lp. Tematyka zajęć

Bardziej szczegółowo

Rozkłady dwóch zmiennych losowych

Rozkłady dwóch zmiennych losowych Rozkłady dwóch zmiennych losowych Uogólnienie pojęć na rozkład dwóch zmiennych Dystrybuanta i gęstość prawdopodobieństwa Rozkład brzegowy Prawdopodobieństwo warunkowe Wartości średnie i odchylenia standardowe

Bardziej szczegółowo

1 Zmienne losowe wielowymiarowe.

1 Zmienne losowe wielowymiarowe. 1 Zmienne losowe wielowymiarowe. 1.1 Definicja i przykłady. Definicja1.1. Wektorem losowym n-wymiarowym(zmienna losowa n-wymiarowa )nazywamywektorn-wymiarowy,któregoskładowymisązmiennelosowex i dlai=1,,...,n,

Bardziej szczegółowo

Proces Poissona. Proces {N(t), t 0} nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t.

Proces Poissona. Proces {N(t), t 0} nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t. Procesy stochastyczne WYKŁAD 5 Proces Poissona. Proces {N(t), t } nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t. Proces zliczający musi

Bardziej szczegółowo

Podstawa programowa przedmiotu MATEMATYKA. III etap edukacyjny (klasy I - III gimnazjum)

Podstawa programowa przedmiotu MATEMATYKA. III etap edukacyjny (klasy I - III gimnazjum) Podstawa programowa przedmiotu MATEMATYKA III etap edukacyjny (klasy I - III gimnazjum) Cele kształcenia wymagania ogólne: I. Wykorzystanie i tworzenie informacji. Uczeń interpretuje i tworzy teksty o

Bardziej szczegółowo

Ekonomia matematyczna - 1.2

Ekonomia matematyczna - 1.2 Ekonomia matematyczna - 1.2 6. Popyt Marshalla, a popyt Hicksa. Poruszać się będziemy w tzw. standardowym polu preferencji X,, gdzie X R n i jest relacją preferencji, która jest: a) rosnąca (tzn. x y x

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Inżynieria i Gospodarka Wodna w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt

Bardziej szczegółowo

a 1, a 2, a 3,..., a n,...

a 1, a 2, a 3,..., a n,... III. Ciągi liczbowe. 1. Definicja ciągu liczbowego. Definicja 1.1. Ciągiem liczbowym nazywamy funkcję a : N R odwzorowującą zbiór liczb naturalnych N w zbiór liczb rzeczywistych R i oznaczamy przez {a

Bardziej szczegółowo

ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE II ( zakres podstawowy)

ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE II ( zakres podstawowy) 1 ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE II ( zakres podstawowy) Program nauczania: Matematyka z plusem Liczba godzin nauki w tygodniu: 3 Planowana liczba godzin w ciągu roku:

Bardziej szczegółowo

Komputerowa Analiza Danych Doświadczalnych

Komputerowa Analiza Danych Doświadczalnych Komputerowa Analiza Danych Doświadczalnych Prowadząca: dr inż. Hanna Zbroszczyk e-mail: gos@if.pw.edu.pl tel: +48 22 234 58 51 konsultacje: poniedziałek: 10-11, środa: 11-12 www: http://www.if.pw.edu.pl/~gos/students/kadd

Bardziej szczegółowo

Zastosowanie Excela w matematyce

Zastosowanie Excela w matematyce Zastosowanie Excela w matematyce Komputer w dzisiejszych czasach zajmuje bardzo znamienne miejsce. Trudno sobie wyobrazić jakąkolwiek firmę czy instytucję działającą bez tego urządzenia. W szkołach pierwsze

Bardziej szczegółowo

Dyskretne modele populacji

Dyskretne modele populacji Dyskretne modele populacji Micha l Machtel Adam Soboczyński 19 stycznia 2007 Typeset by FoilTEX Dyskretne modele populacji [1] Wst ep Dyskretny opis modelu matematycznego jest dobry dla populacji w których

Bardziej szczegółowo

Wymagania edukacyjne. Hasło z podstawy programowej 1. Liczby naturalne 1 Liczby naturalne, cechy podzielności. Liczba godzin

Wymagania edukacyjne. Hasło z podstawy programowej 1. Liczby naturalne 1 Liczby naturalne, cechy podzielności. Liczba godzin . Liczby rzeczywiste (3 h) PRZEDMIOT: Matematyka KLASA: I zasadnicza szkoła zawodowa Dział programowy Temat Wymagania edukacyjne Liczba godzin Hasło z podstawy programowej. Liczby naturalne Liczby naturalne,

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY W KLASIE I GIMNAZJUM

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY W KLASIE I GIMNAZJUM WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY W KLASIE I GIMNAZJUM NA OCENĘ DOPUSZCZJĄCĄ UCZEN: zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby ujemne umie

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna wykład 1: Indukcja i zależności rekurencyjne Gniewomir Sarbicki Literatura Kenneth A. Ross, Charles R. B. Wright Matematyka Dyskretna PWN 005 J. Jaworski, Z. Palka, J. Szymański Matematyka

Bardziej szczegółowo

Test kwalifikacyjny na I Warsztaty Matematyczne

Test kwalifikacyjny na I Warsztaty Matematyczne Test kwalifikacyjny na I Warsztaty Matematyczne Na pytania odpowiada się tak lub nie poprzez wpisanie odpowiednio T bądź N w pole obok pytania. W danym trzypytaniowym zestawie możliwa jest dowolna kombinacja

Bardziej szczegółowo

ZADANIA MATURALNE - ANALIZA MATEMATYCZNA - POZIOM ROZSZERZONY Opracowała - mgr Danuta Brzezińska. 2 3x. 2. Sformułuj odpowiedź.

ZADANIA MATURALNE - ANALIZA MATEMATYCZNA - POZIOM ROZSZERZONY Opracowała - mgr Danuta Brzezińska. 2 3x. 2. Sformułuj odpowiedź. ZADANIA MATURALNE - ANALIZA MATEMATYCZNA - POZIOM ROZSZERZONY Opracowała - mgr Danuta Brzezińska Zad.1. (5 pkt) Sprawdź, czy funkcja określona wzorem x( x 1)( x ) x 3x dla x 1 i x dla x 1 f ( x) 1 3 dla

Bardziej szczegółowo