Metoda pseudospektralna dla stochastycznych równań różniczkowych

Wielkość: px
Rozpocząć pokaz od strony:

Download "Metoda pseudospektralna dla stochastycznych równań różniczkowych"

Transkrypt

1 Uniwersytet Wrocławski Wydział Matematyki i Informatyki Instytut Informatyki kierunek: informatyka Grzegorz Świderski Metoda pseudospektralna dla stochastycznych równań różniczkowych Praca magisterska napisana pod kierunkiem dr. hab. Pawła Woźnego Wrocław 2015

2 Oświadczam, że pracę magisterską wykonałem samodzielnie i zgłaszam ją do oceny. Data:... Podpis autora pracy:... Oświadczam, że praca jest gotowa do oceny przez recenzenta. Data:... Podpis opiekuna pracy:...

3 Spis treści 1. Wstęp Notacja i oznaczenia Wielomiany ortogonalne Wielomiany Jacobiego Wielomiany Laguerre a Wielomiany Hermite a Rozkłady zmiennych losowych Rozkład Beta Rozkład Gamma Rozkład Normalny Kwadratury Sformułowanie zadania Kwadratura Gaussa Zamiana przedziału całkowania na przedział ( 1, 1) Kwadratura Clenshawa-Curtisa Kwadratura Fejéra (II rodzaju) Kubatury Sformułowanie zadania Kubatury tensorowe Kubatura Smolyaka Chaos wielomianowy Przypadek jednej zmiennej losowej Przypadek ogólny Obliczanie statystyk Numeryczne rozwiązywanie równań różniczkowych Metoda Rungego-Kutty 4. rzędu Metoda różnic skończonych dla stacjonarnego równania dyfuzji Metoda pseudospektralna Algorytmy numeryczne użyte w implementacji Algorytm Clenshawa Obliczanie zmodyfikowanych momentów Czebyszewa Momenty pierwszego rodzaju Momenty drugiego rodzaju Algorytm Olivera-Loziera Obliczanie wag kwadratur Przypadek kwadratury Gaussa Obliczanie dyskretnej transformaty sinusowej I rodzaju Przypadek kwadratury Clenshawa-Curtisa Przypadek kwadratury Fejéra Przykłady Model Malthusa Ujemny współczynnik wzrostu Dodatni współczynnik wzrostu Niestabilność numeryczna Stacjonarne równanie dyfuzji Mieszane rozkłady

4 4 1. Wstęp Rozkłady Beta Pewien model pracy transformatora Rozkłady Beta Mieszane rozkłady Testy pozostałych algorytmów numerycznych Obliczanie zmodyfikowanych momentów Kwadratury na przedziale ( 1, 1) Kubatury w kostce ( 1, 1) d Zamiana zmiennych na ( 1, 1) Zamiana zmiennych na ( 1, 1) d Dokumentacja programisty Plik momenty.mpl Plik kwadratury.mpl Plik kubatury.mpl Plik wielomianyortogonalne.mpl Plik rozkladyzmiennychlosowych.mpl Plik wektorylosowe.mpl Plik kolokacja.mpl Dokumentacja użytkownika Literatura Wstęp Rozważmy przykładowy model przepływu ładunku w obwodzie elektrycznym. Ładunek Q(t) w chwili t spełnia równanie różniczkowe L Q (t) + R Q (t) + 1 Q(t) = F (t), C Q(0) = Q 0, Q (0) = I 0, (1.1) gdzie R opór, L to indukcyjność, C pojemność a F (t) to potencjał źródła w chwili t. Jak widzimy w równaniu (1.1) występują parametry będące liczbami: R, L, C, Q 0 i I 0 oraz parametr F (t) będący funkcją. W praktyce powyższe parametry są dobierane poprzez eksperymentalny pomiar odpowiednich wielkości. Każdy pomiar jest obarczony pewnym błędem. Z tego powodu nawet jeśli model (1.1) jest adekwatny, to rozwiązania nie będą dokładnie odpowiadać obserwowanemu zjawisku. Z praktycznego punktu widzenia ważnym zadaniem jest zbadanie na ile błędy pomiaru powodują zmianę trajektorii rozwiązania. Jeśli zmiana jest duża, to ze względu na błędy pomiaru nie będziemy w stanie dobrze przewidzieć ewolucji badanego układu. W statystyce pomiar to realizacja pewnej zmiennej losowej ze znanej rodziny rozkładów, ale o nieznanych parametrach. Często używaną rodziną rozkładów jest na przykład rodzina rokładów normalnych {N (m, σ 2 ): m R, σ 2 > 0} o nieznanej wartości oczekiwanej m oraz nieznanej wariancji σ 2. Statystyka podaje metody jak powtarzając wielokrotnie eksperyment, można otrzymać przybliżenie nieznanych parametrów. Używając powyższej statystycznej interpretacji możemy rozumieć równanie (1.1) w ten sposób, że nieznane parametry liczbowe są zmiennymi losowymi o znanym rozkładzie. Wtedy rozwiązanie równania (1.1) przestaje być deterministyczne i staje się tzw. procesem stochastycznym. Wówczas możemy zapytać się o różne statystyki rozwiązania tego

5 równania. Na przykład wielkość wariancji mówi, na ile trajektorie rozwiązań są wrażliwe na niepewność pomiaru. Istnieje wiele metod rozwiązywania takich równań. Popularnym podejściem są tzw. metody Monte-Carlo (zob. [20]) polegające na (wielokrotnym) generowaniu wartości niezależnych zmiennych losowych mających rozkłady naszych parametrów. Następnie obliczane są rozwiązania równania dla tak ustalonej wartości parametrów. W końcu metodami statystycznymi obliczamy z nich szukane statystyki. Znaną wadą metody Monte-Carlo jest jej wolne tempo zbieżności. Poza tym ze względu na jej losowość nie można mieć pewności na ile otrzymany wynik nie jest przypadkowy. Innym podejściem są metody deterministyczne. Jedną z możliwości jest metoda Galerkina (zob. [20]), która polega na rozwiązywaniu odpowiednio zbudowanego układu równań różniczkowych związanych z badanym równaniem. W tym wypadku czasami rozwiązywany układ jest dużo bardziej skomplikowany i wymaga tworzenia (czasami zupełnie) nowych metod numerycznych. Czyli w tym przypadku do konkretnego równania i rozkładów musimy podchodzić indywidualnie. Metoda prezentowana w tej pracy jest deterministyczna i jest oparta na pomyśle rozwinięcia rozwiązania w postaci sumy wielomianów ortogonalnych względem odpowiedniego iloczynu skalarnego. W tym celu zakładamy, że wszystkie występujące parametry da się sparametryzować za pomocą skończonej ilości niezależnych zmiennych losowych. Prezentowana metoda jest podobna do metody Monte-Carlo w tym sensie, że musimy jedynie umieć rozwiązywać równanie z ustalonymi wartościami parametrów. Dla takich równań mamy zazwyczaj dobre metody numeryczne je rozwiązujące. Jedną z jej zalet jest szybsze tempo zbieżności (przy umiarkowanej liczbie parametrów) do rozwiązania w porównaniu do metod Monte-Carlo (zob. [4]). Inną zaletą jest to, że jest ona deterministyczna. Założenie, że parametry zależą od skończonej liczby zmiennych losowych z matematycznego punktu widzenia wydaje się dość restrykcyjne. Jednakże bardziej ogólne równania stochastyczne (zob. [11]) da się w pewnym stopniu przybliżać za pomocą tego modelu. W wypadku procesów gaussowskich da się to zrobić za pomocą tzw. transformaty Karhunena Loève (zob. [20]). W ogólnym wypadku metody dyskretyzacji prowadzą również do opisywanego modelu (zob. [21]). Teraz parę słów o strukturze pracy. W rozdziale 2 zamieszczamy podstawowe oznaczenia używane dalej. Następnie. w rozdziale 3, przedstawiamy podstawy ogólnej teorii wielomianów ortogonalnych oraz ich szczególne przypadki. Dalej, w rozdziale 4, podajemy podstawowe definicje teorii prawdopodobieństwa, najważniejsze rozkłady oraz ich związki z wielomianami ortogonalnymi. Zadanie obliczania statystyk wymagać będzie umiejętności obliczania całek po wielowymiarowym obszarze. Pokażemy jak to wykonać: w rozdziale 5 rozpatrzymy przypadek jednowymiarowy, natomiast w rozdziale 6 zbadamy ogólny przypadek. W rozdziale 7 przedstawimy jak przybliżać funkcje za pomocą wielomianów oraz jak wówczas z tego przybliżenia obliczać poszukiwane statystyki. W rozdziale 8 przedstawimy używane w pracy metody rozwiązywania numerycznego równań różniczkowych, natomiast w rozdziale 9 jak zebrane w ten sposób informacje użyć do rozwiązania głównego zadania. W rozdziale 10 przedstawiono pewne pomocnicze algorytmy numeryczne. W rozdziale 11, na kilku przykładach, przedstawiono, jak skuteczna jest opisana metoda rozwiązywania równań. Natomiast w rozdziale 12 pokazano testy pomocniczych algorytmów numerycznych. Dokumentację programisty zamieszczono w rozdziale 13, natomiast sposób obsługi przygotowanego programu zamieszczono w rozdziale 14. 5

6 6 2. Notacja i oznaczenia 2. Notacja i oznaczenia Niech µ będzie miarą na przestrzeni X, a B(X) niech będzie rodziną zbiorów borelowskich na X (por. np. [14, rozdz. 1]). Dla każdej funkcji f : X C oraz p [1, ) normę związaną z miarą µ definiujemy wzorem: ( 1/p f L p (µ) := f(x) dµ(x)) p. X Zbiór wszystkich funkcji f spełniających warunek f L p (µ) < oznaczamy poprzez L p (µ). Jeśli miara µ ma gęstość w względem miary Lebesgue a (por. np. [14, rozdz. 2, rozdz. 6]), to będziemy używać również oznaczenia L p (w(x)dx). Jeżeli miara µ jest znana z kontekstu będziemy pisać po prostu L p. Dla funkcji f, g L 2 (µ) ich iloczyn skalarny definiujemy wzorem f, g := f(x)g(x)dµ(x). (2.1) Wówczas X f L 2 (µ) = f, f. Można pokazać, że L 2 (µ) z iloczynem skalarnym (2.1) jest przestrzenią Hilberta (zob. np. [14, rozdz. 4]). Dla funkcji określonych na R będziemy używać następujących oznaczeń: C c (R) zbiór funkcji ciągłych o zwartym nośniku, Cc (R) zbiór wszystkich funkcji nieskończenie wiele razy różniczkowalnych o zwartym nośniku. Dla a > 0, b > 0 oraz z C definiujemy funkcję hipergeometryczną F (a; b; z) wzorem F (a; b; z) = k=0 a k b k z k k!, (2.2) gdzie dla x R definiujemy potęgę przyrastającą poprzez x k = x(x + 1)... (x + k 1). Dla a > 0 funkcja Gamma zadana jest wzorem natomiast Γ(a) := B(α, β) := x a 1 e x dx, x α 1 (1 x) β 1 dx, to funkcja Beta określona dla α > 0, β > 0. Można sprawdzić, że funkcje Gamma i Beta łączy następująca zależność: B(α, β) = Γ(α)Γ(β) Γ(α + β). Symbol dwumianowy ( ) x y określamy wzorem ( ) x := y 1 (x + 1)B(x y + 1, y + 1).

7 7 Dla zbioru A funkcję indykatorową 1 A określamy wzorem 1 jeśli x A, 1 A (x) := 0 w p.p. Wielowskaźnikiem nazywamy d wyrazowy ciąg i = (i 1, i 2,..., i d ) liczb całkowitych nieujemnych. Długość wielowskaźnika i to suma jego wyrazów, tzn. i 1 := i 1 + i i d. Dla wektora x = (x 1, x 2,..., x d ) oraz wielowskaźnika i = (i 1, i 2,..., i d ) definiujemy jednomian x i wzorem x i := x i 1 1 x i x i d d, wówczas jego stopniem nazywamy ciąg i. Wprowadzamy relację częściowego porządku pomiędzy stopniami długości d. Mówimy, że i j, jeśli j k i k 0 (k = 1, 2,..., d). Przestrzeń wszystkich wielomianów d zmiennych całkowitego stopnia co najwyżej N określamy jako P d N := c i x i : c i R. (2.3) i 1 N Jeżeli d = 1, to będziemy również używać oznaczenia P N. Dla wielomianu p jego stopniem całkowitym nazywamy najmniejszą liczbę N taką, że p P d N. Wówczas jego stopniem nazywamy najmniejsze ograniczenie górne ze względu na porządek zbioru {i: c i 0}, gdzie c i to współczynniki występujące w reprezentacji (2.3). Deltą Kroneckera δ ij nazywamy funkcję postaci 1 jeśli i = j, δ ij := 0 w p.p. Dla wielowskaźników i oraz j symbol δ ij rozumiemy w następujący sposób: δ ij := δ i1 j 1 δ i2 j 2... δ id j d. Będziemy używać następujących oznaczeń: n k=m n k=m a k := 1 2 a m + a k := 1 2 a m + n k=m+1 n 1 k=m+1 a k, (2.4) a k a n. (2.5) 3. Wielomiany ortogonalne Podane w tej części fakty i definicje przywołujemy za monografią [2]. Dla miary µ określonej na R jej n-tym momentem nazywamy liczbę m n := x n dµ(x) (n = 0, 1,...). (3.1) R

8 8 3. Wielomiany ortogonalne Załóżmy, że dla miary µ wszystkie jej momenty m n są skończone, a jej nośnik jest zbiorem nieskończonym. Wówczas możemy wykonać ortogonalizację Grama-Schmidta (zob. np. [2, rozdz. 1.3]) dla ciągu (x n : n N) względem iloczynu skalarnego (2.1). Otrzymamy wówczas ciąg {p n } n=0 wielomianów ortogonalnych w L 2 (µ), tzn: p n, p m = γ n δ nm (γ n := p n 2 L 2 (µ) 0; n, m N) (por. (2.1)). Warto zauważyć, że dla każdych niezerowych stałych {a n } n=0 ciąg {a n p n } n=0 jest również ciągiem wielomianów ortogonalnych. W szczególności, mnożąc miarę przez stałą otrzymujemy te same wielomiany ortogonalne. Zauważmy, że bezpośrednio z ortogonalizacji Grama-Schmidta wynika, że zbiór {p 0, p 1,..., p N } tworzy bazę przestrzeni P N. Miarę µ nazywamy zdeterminowaną, jeśli nie istnieje inna miara, o takich samych momentach co miara µ. Wówczas wielomiany {p n } n=0 tworzą bazę ortogonalną w L 2 (µ). Wszystkie pojawiające się w tej pracy miary są miarami zdeterminowanymi. Każdy ciąg wielomianów ortogonalnych {p n } spełnia zależność rekurencyjną p 0 (x) α 0, p 1 (x) = α 1 x + β 1, p n (x) = (α n x + β n )p n 1 (x) γ n p n 2 (x) (n 2), dla pewnych stałych α k, β k, γ k. Zobacz [2, rozdz. 1.4, Tw. 4.1] Wielomiany Jacobiego (3.2) Niech miara µ ma gęstość w(x) := (1 x) α (1 + x) β dla x ( 1, 1) oraz stałych α, β > 1. Wówczas otrzymany ciąg wielomianów {P n (α,β) } nazywamy ciągiem wielomianów Jacobiego z parametrami α, β. Wielomiany te spełniają zależność rekurencyjną (3.2) dla α 0 = 1, α 1 = 1 + α + β, α n = 2 β 1 = α β 2 γ n = (2n + α + β 1)(2n + α + β), 2n(n + α + β), β n = (2n + α + β 1)(α2 β 2 ) 2n(n + α + β)(2n + α + β 2), (n + α 1)(n + β 1)(2n + α + β), n(n + α + β)(2n + α + β 2) p n (x) := P n (α,β) (x). Wielomiany Czebyszewa I rodzaju T n (n 0) są szczególnym przypadkiem wielomianów Jacobiego z parametrami α = β = 1/2. Wyrażają się one wzorem i spełniają zależność rekurencyjną postaci T n (x) = cos(n arccos(x)), x [ 1, 1] T 0 (x) = 1, T 1 (x) = x, T n (x) = 2xT n 1 (x) T n 2 (x) (n 2). Warto zaznaczyć, że ze względów historycznych używamy tutaj nieco innego normowania niż w przypadku P n ( 1/2, 1/2), tzn. ( ) 1 n 1/2 T n (x) = P n ( 1/2, 1/2) (x). n

9 3.2. Wielomiany Laguerre a 9 Rysunek 1. Wykres pierwszych czterech wielomianów Czebyszewa I rodzaju. Kolejnym ważnym wypadkiem wielomianów Jacobiego są tzw. wielomiany Czebyszewa II rodzaju (dla α = β = 1/2) wyrażające się wzorem U n (x) = sin((n + 1) arccos(x)), x [ 1, 1]. sin(arccos(x)) W tym wypadku mamy U 0 (x) = 1, U 1 (x) = 2x, U n (x) = 2xU n 1 (x) U n 2 (x) (n 2). I tutaj używamy innego normowania, dokładniej U n (x) = 1 ( ) 1 n + 1/2 2 P n (1/2,1/2) (x). n 3.2. Wielomiany Laguerre a Miarze µ o gęstości w(x) := x α e x dla x (0, ), gdzie α > 1, odpowiada tzw. ciąg wielomianów Laguerre a {L (α) n } dla parametru α. Jego wyrazy spełniają zależność rekurencyjną postaci L (α) 0 (x) 1, L (α) 1 (x) = α + 1 x, (x) = 2n + α 1 x L (α) n n L (α) n 1(x) n + α 1 n L (α) n 2(x) (n 2).

10 10 3. Wielomiany ortogonalne Rysunek 2. Wykres pierwszych czterech wielomianów Czebyszewa II rodzaju. Rysunek 3. Wykres pierwszych czterech wielomianów Laguerre a L (1).

11 3.3. Wielomiany Hermite a 11 Rysunek 4. Wykres pierwszych czterech wielomianów Hermite a Wielomiany Hermite a Jeśli miara µ ma gęstość w(x) := e x2 dla x R, to otrzymujemy wielomiany Hermite a {H n }, spełniające zależność rekurencyjną: H 0 (x) 1, H 1 (x) = 2x, H n (x) = 2xH n 1 (x) 2(n 1)H n 2 (x) (n 2). 4. Rozkłady zmiennych losowych Podaną niżej teorię przytaczamy za [6]. Niech (Ω, F, P ) będzie przestrzenią probabilityczną (zob. [6, rozdz. 1]). Wówczas rozkładem zmiennej losowej X (zob. [6, rozdz. 5]) nazywamy miarę na R określoną wzorem µ X (A) := P (ω Ω: X(ω) A) (A B(R)). Fakt, że zmienna losowa X ma rozkład µ będziemy oznaczać symbolem X µ. Zmienne losowe X, Y nazywamy (stochastycznie) niezależnymi, jeżeli dla wszystkich zbiorów A, B B(R) zachodzi P (ω : X(ω) A, Y (ω) B) = P (ω : X(ω) A) P (ω : Y (ω) B). Dla zmiennej losowej X jej wartość oczekiwaną E [X] definiujemy wzorem E [X] := Ω X(ω)dP (ω),

12 12 4. Rozkłady zmiennych losowych a jej wariancję VarX wzorem VarX := E [ (X E [X]) 2] = E [ X 2] (E [X]) 2. Jeżeli zmienne losowe X, Y są niezależne, a R, to zachodzą równości E [XY ] = E [X] E [Y ], Var(XY ) = E [ X 2] E [ Y 2] (E [X] E [Y ]) 2, Var(aX) = a 2 Var(X), Var(X + Y ) = Var(X) + Var(Y ). Dla zmiennej losowej X jej funkcja tworząca momenty M X wyraża się wzorem (4.1) M X (t) := E [exp(tx)], (4.2) dla wszystkich t R takich, że powyższe wyrażenie jest skończone. Dla rozkładu µ o nośniku w przedziale (a, b) i gęstości f definiujemy nowy rozkład o gęstości τ c,d a,b f danej wzorem ( ) (τ c,d b a b a a,b f)(x) := d c f ad bc x +. (4.3) d c d c Tak zdefiniowany rozkład ma nośnik w przedziale (c, d). Operację tą nazywamy przesunięciem rozkładu µ do przedziału (c, d) Rozkład Beta Rozkład B(α, β) (α, β > 1) ma gęstość postaci f B α,β(x) := W tym wypadku mamy E [X B ] = β + 1 α + β + 2, VarX B = 1 B(α + 1, β + 1) xβ (1 x) α 1 (0,1) (x). (α + 1)(β + 1) (α + β + 2) 2 (α + β + 3). Natomiast jej funkcja tworząca momenty M XB wyraża się poprzez funkcję hipergeometryczną (por. (2.2)) w następujący sposób M XB (t) = F (α + 1; α + β + 2; t), (t R). (4.4) Warto zaznaczyć, że podana tu definicja różni się od tej przyjętej w rachunku prawdopodobieństwa znaczeniem parametrów α oraz β. Dokładniej, aby uzyskać standardową definicję musimy użyć parametrów α = β +1 oraz β = α+1. Zrobiono tak, aby uwypuklić związki z teorią wielomianów ortogonalnych. {P (α,β) n Zauważmy, że gęstości τ 1,1 0,1 fα,β B (por. (4.3)) odpowiada ciąg wielomianów Jacobiego }. W ogólności wielomiany { ( P n (α,β) 2 b+a (x b a 2 ))} są ortogonalne względem gęstości τ a,b 0,1f B α,β bo b a P (α,β) n ( ( 2 x b + a b a 2 = 2 b a 1 1 )) (τ a,b 0,1f B α,β)(x)dx ( b a P n (α,β) (y)(τ0,1f a,b α,β) B = 2 y + b + a ) dy P (α,β) n (y)(τ 1,1 0,1 f B α,β)(y)dy. (4.5)

13 4.2. Rozkład Gamma 13 Rysunek 5. Wykres gęstości rozkładu Beta dla różnych parametrów. Rozkład B(α, β) przesunięty do przedziału (a, b) będziemy oznaczać przez B(α, β, a, b). W szczególności, jeśli Y B(α, β, a, b), to Y = (b a)x B + a, (4.6) dla pewnej zmiennej X B B(α, β). Szczególnym przypadkiem powyższego rozkładu jesy rozkład jednostajny U(a, b), który uzyskujemy dla α = β = Rozkład Gamma Rozkład o gęstości postaci f G α,λ(x) := λα+1 Γ(α + 1) xα e λx 1 (0, ) (x) (α > 1, λ > 0) nazywamy rozkładem Gamma i oznaczamy symbolem Γ(α, λ). Można sprawdzić, że oraz E [X G ] = α + 1 λ, VarX G = α + 1 λ 2 M XG (t) = ( 1 t λ) α 1 (t < λ). Dla niezależnych zmiennych X Γ(α 1, λ) i Y Γ(α 1, λ) oraz liczby c > 0 mamy X + Y Γ(α 1 + α 2 1, λ), cx Γ(α 1, λ/c). (4.7)

14 14 4. Rozkłady zmiennych losowych Rysunek 6. Wykres gęstości rozkładu Gamma dla różnych parametrów. Oznacza to, że wystarczy rozpatrywać zmienne o ustalonej wartości λ (np. Γ(α, 1)). Zauważmy, że gęstości fα,1 G odpowiada ciąg wielomianów Laguerre a {L (α) n }. Natomiast wielomiany {L (α) n (λx)} są ortogonalne względem fα,1, G bo 0 L (α) n (λx)fα,λ(x)dx G = 1 λ 0 ( y L (α) n (y)fα,λ λ) G dy = L (α) n (y)fα,1(y)dy. G (4.8) 0 Warto zaznaczyć, że podana definicja różni się od tej przyjętej w rachunku prawdopodobieństwa znaczeniem parametru α, tzn. aby uzyskać standardową definicję musimy przyjąć α = α + 1). I w tym wypadku, zrobiono tak, aby uwypuklić związki z teorią wielomianów ortogonalnych. Szczególnym wariantem rozkładu Gamma jest rozkład wykładniczy Ex(λ) := Γ(0, λ) Rozkład Normalny oraz Rozkład N (m, σ 2 ) jest zdefiniowany dla m R, σ > 0. Ma on gęstość postaci Mamy fm,σ N 1 2(x) := e (x m)2 /(2σ 2). 2πσ E [X N ] = m, VarX N = σ 2. ( M XN (t) = exp µt + σ2 t 2 ) 2 Dla zmiennej X N (m, σ 2 ) oraz c > 0 zachodzi (t R). X m σ N (0, 1), cx N (cm, c 2 σ 2 ). Stąd wystarczy rozpatrywać zmienne o średniej zero i ustalonej wariancji (np. N (0, 1/2)).

15 15 Rysunek 7. Wykres gęstości Rozkładu Normalnego dla różnych parametrów. Ciąg wielomianów Hermite a {H n } związany jest z gęstością f 0,1/2. Natomiast wielomiany { ( )} H x m n 2σ są ortogonalne względem gęstości f N m,σ 2, bo ( ) x m H n fm,σ N 2(x)dx = 2σ H n (y)f N m,σ 2( 2σy + m)dy = H n (y)f N 0,1/2(y)dy. (4.9) 5. Kwadratury 5.1. Sformułowanie zadania Definicja 1. Funkcję w : R [0, + ) nazywamy funkcją wagową, jeżeli dla każdego k N zachodzi R x k w(x)dx <. Dla ustalonej funkcji wagowej definiujemy funkcjonał liniowy I : L 1 (w(x)dx) R postaci I(f) := f(x)w(x)dx. (5.1) R Głównym zadaniem, którym zajmujemy się w tym rozdziale jest obliczenie wartości I(f) dla danej funkcji f. Zazwyczaj nie potrafimy zrobić tego analitycznie, więc próbujemy zrobić to w sposób przybliżony. Niech ciąg funkcjonałów {Q n } n=1 wyraża się wzorem Q n (f) := p(n) j=1 w n j f(x n j ), (5.2) dla pewnej monotonicznej funkcji p, ciągów wag {w n i } p(n) i=1 oraz węzłów {x n i } p(n) i=1. Funkcjonał Q n nazywamy kwadraturą.

16 16 5. Kwadratury Z praktycznego punktu widzenia, ważne jest to, aby lim Q n(f) = I(f), (5.3) n dla każdej funkcji f z pewnego zbioru (np. f C c (R) lub f C c (R)). Definicja 2. Dla kwadratury Q zbiorem dokładnym nazywamy zbiór E(Q) := {f : Q(f) = I(f)}. W praktyce często używa się kwadratur Q, których zbiór dokładny zawiera zbiór wielomianów stopnia nie większego niż n, tzn. E(Q) P n. Jeżeli n jest maksymalne, to liczbę n nazywamy rzędem kwadratury Q. Definicja 3. Niech {Q n } n=1 będzie ciągiem kwadratur postaci (5.2). Mówimy, że {Q n } n=1 ma zagnieżdżone węzły, jeżeli {x n i } p(n) i=1 {x n+1 i } p(n+1) i=1, (n 1). Kwadratury posiadające zagnieżdżone węzły okażą się później istotne w kubaturze Smolyaka, o której piszemy w rozdziale Kwadratura Gaussa Załóżmy, że chcemy obliczyć wartość całki postaci R f(x)dµ(x), (5.4) dla pewnej miary µ mającej skończone wszystkie momenty (por. (3.1)). Niech {p k } k=0 będzie ciągiem wielomianów ortogonalnych w L 2 (µ). Wówczas dla każdego n wielomian p n ma dokładnie n pojedyńczych, rzeczywistych miejsc zerowych t n1 < t n2 <... < t nn (zob. [2, rozdz. 1.5, Tw. 5.2]). Dla ustalonej liczby n niech I f n 1 będzie wielomianem interpolującym wartości funkcji f w węzłach x n j = t nj (j = 1, 2,..., n). (5.5) Całkując I f n 1 otrzymujemy dla pewnego ciągu liczb {w n j } n j=1. Określamy kwadraturę Gaussa wzorem: n In 1(x)dµ(x) f = wj n f(x n j ), (5.6) R j=1 n Q G n (f) := wj n f(x n j ). j=1 Daje ona następujące przybliżenie całki (5.4): R f(x)dµ(x) Q G n (f).

17 5.3. Zamiana przedziału całkowania na przedział ( 1, 1) 17 Kwadratura Gaussa ma największy możliwy rząd i wynosi on 2n 1 (zob. [2, rozdz. 1.6, ćw. 6.7]). W rozdziale omówimy efektywny algorytm obliczania wartości ciągów {w n j } n j=1 oraz {x n k} n j=1. W ogólności kwadratury Gaussa nie mają zagnieżdżonych węzłów (por. def. 3), co jest ich istotną wadą w kontekście kubatury Smolyaka (patrz rozdz. 6.3). Jednakże, istnieją modyfikacje kwadratur Gaussa (tzw. kwadratury Gaussa Pattersona), które mają tą pożądaną własność (patrz [4]) Zamiana przedziału całkowania na przedział ( 1, 1) W dalszym ciągu zajmiemy się obliczaniem wartości (5.1) dla funkcji wagowych, które są niezerowe tylko na przedziale ( 1, 1). Aby zamienić ogólny przedział całkowania na odcinek ( 1, 1) będziemy korzystać z następującej zamiany zmiennych: b f(x)dx = b a ( 1 b a f a y + b + a ) dy, (5.7) 2 f(x)dx = 2 ( ) 1 1 y dy f, (λ > 0) (5.8) 0 λ 1 λ(1 + y) (1 + y) 2 ( ) 1 2σy 2σdy f(x)dx = f + m (σ > 0, m R). (5.9) 1 1 y 2 (1 y 2 ) 3/ Kwadratura Clenshawa-Curtisa Chcemy obliczyć wartość całki postaci 1 f(x)w(x)dx, (5.10) 1 gdzie w jest funkcją wagową. Niech n > 1 oraz niech Jn 1(x) f będzie wielomianem interpolującym wartości funkcji f w węzłach (k 1)π y k = cos, k = 1, 2,..., n. n 1 Można pokazać, że wielomian J f n 1(x) wyraża się wzorem gdzie b j := 2 n 1 Zobacz np. [10]. Całkując J f n 1 otrzymujemy J f n 1(x) = n k=1 n 1 j=0 b j T j (x), f(y k )T j (y k ) (j = 0, 1,..., n 1). gdzie 1 1 J n 1 f(x)w(x)dx = m j [w] := 1 1 n 1 j=0 b j m j [w], T j (x)w(x)dx, (5.11)

18 18 5. Kwadratury jest zmodyfikowanym momentem Czebyszewa I rodzaju funkcji wagowej w. Jeżeli n = 1, to przyjmujemy y 1 = 0 oraz w 1 = m 0 [w]. Określamy kwadraturę Clenshawa-Curtisa wzorem: Q CC n (f) := n 1 n w j f(y j ) = 1=0 j=0 Daje ona następujące przybliżenie całki (5.10): 1 f(x)w(x)dx Q CC n (f). 1 b j m j [w]. (5.12) Ze względu na to, że kwadratura Clenshawa-Curtisa jest kwadraturą interpolacyjną, jej rząd wynosi co najmniej n 1. W testach pokażemy, że czasami jest on większy, lecz w ogólności jest równy n 1. Przyjmując 1, gdy n = 1, p(n) := 2 n 1 + 1, w p.p. otrzymujemy ciąg kwadratur {Q CC p(n) } n=1 o zagnieżdżonych węzłach (por. def. 3) Kwadratura Fejéra (II rodzaju) Tak jak w przypadku kwadratury Clenshawa-Curtisa rozważanym zadaniem jest obliczenie wartości całki (5.10). Wykorzystujemy w tym celu wielomian I f n 1 interpolujący wartości funkcji f w węzłach kπ z k := cos, k = 1, 2,... n. n + 1 Należy zauważyć, że użyte węzły różnią się od węzłów kwadratury Clenshawa-Curtisa tylko brakiem wartości brzegowych 1 oraz 1. Jest to przydatna własność w przypadku, gdy funkcja f ma osobliwości na końcach przedziału [ 1, 1]. W [16] pokazano, że całkując I f n 1 otrzymujemy następujące wagi gdzie w k = 2(1 y2 k) n + 1 λ j [w] := 1 1 n 1 j=0 U j (z k )λ j [w], (5.13) U j (x)w(x)dx (5.14) jest tzw. zmodyfikowanym momentem Czebyszewa II rodzaju funkcji wagowej w. Kwadraturę Fejéra (II rodzaju) określamy wzorem: n Q F n II (f) := w k f(z k ). k=1 Daje ona następujące przybliżenie całki (5.10): 1 f(x)w(x)dx Q F n II (f). 1 Ze względu na to, że kwadratura Fejéra jest kwadraturą interpolacyjną, jej rząd wynosi co najmniej n 1. Przyjmując p(n) := 2 n 1, otrzymujemy, ciąg kwadratur {Q F p(n) II } n=1 o zagnieżdżonych węzłach (por. def. 3).

19 19 6. Kubatury Poniższą teorię przytaczamy za artykułem [3] Sformułowanie zadania Dla danych funkcji wagowych {w (i) } d i=1, wprowadzamy funkcjonały {I (i) } d i=1 postaci I (i) f := f(x i )w (i) (x i )dx i (f : R R) (6.1) R (por. z (5.1)). Rozważane tu zadanie polega na obliczeniu wartości funkcjonału postaci I(f) := (I (1) I (2)... I (d) )(f) := f(x)w(x)dx, (6.2) R d gdzie f : R d R oraz 6.2. Kubatury tensorowe x := (x 1, x 2,..., x d ), w(x) := w (1) (x 1 )w (2) (x 2 )... w (d) (x d ). Poniżej podajemy definicję iloczynu tensorowego dla kilku szczególnych przypadków. Definicja 4. Niech {Q (i) } d i=1 będzie ciągiem funkcjonałów postaci Wówczas funkcjonał gdzie p (i) Q (i) (g) := j=1 w (i) j g(x (i) j ) (i = 1, 2,..., d; g : R R). (Q (1) Q (2)... Q (d) )(f) := w j = w (1) j 1 w (2) j 2 nazywamy iloczynem tensorowym ciągu {Q (i) } d i=1. Definicja 5. Niech f, g : R R. Wówczas funkcję 1 j i p (i) 1 i d w j f(x j ),... w (d) j d, x j = (x j1, x j2,..., x jd ), (f g)(x, y) := f(x) g(y) nazywamy iloczynem tensorowym funkcji f i g. Zauważmy, że iloczyn tensorowy nie jest w ogólności przemienny, ale jest łączny i wieloliniowy. Iloczyn tensorowy jest prostym sposobem na to, aby z kwadratur jednowymiarowych utworzyć tzw. kubaturę, czyli funkcjonał, który ma przybliżać wartość (6.2). O znaczeniu tej uwagi mówi następujący fakt. Fakt 1 ([3, Lemma 2.2]). Niech {Q (i) } d i=1 będą kwadraturami. Wówczas dla Q Q (1) Q (2)... Q (d) mamy następujące zawieranie zbiorów dokładnych (por. def. 2). E(Q (1) ) E(Q (2) )... E(Q (d) ) E(Q) Problemem w korzystaniu z kubatur tensorowych jest to, że przy d liczba węzłów zazwyczaj szybko rośnie.

20 20 6. Kubatury 6.3. Kubatura Smolyaka Zacznijmy od następującego przykładu. Niech będzie f(x, y) := x 16 + y 16 + x 5 y 2. Wówczas, aby dokładnie obliczyć wartość I(f) za pomocą iloczynu tensorowego kwadratur Clenshawa-Curtisa (patrz rozdział 5.4) potrzebujemy aż węzłów. Za pomocą uzyskanej w ten sposób kubatury można dokładnie obliczać całki z każdego wielomianu o stopniu nie większym niż (16, 16) (por. rozdz. 2). Z drugiej strony, aby obliczyć całki poszczególnych składników wystarczą kwadratury tensorowe o liczbie węzłów odpowienio: 17 1, 1 17 oraz 6 3. Poniżej przedstawimy metodę, która pozwala na dobranie węzłów kubatury w sposób bardziej oszczędny niż w przypadku kwadratury tensorowej. W poniższej konstrukcji będziemy zakładać, że dla każdego i = 1, 2,..., d dany jest ciąg kwadratur {Q (i) n } n=1 postaci (5.2). Definicja 6. Przy powyższych założeniach, operator różnicowy definiujemy wzorem (i) 0 := Q (i) 0 := 0, (6.3) (i) n := Q (i) n Zauważmy, że dla każdego i możemy zapisać Q (i) N = N n=1 Q (i) n Q (i) n 1, (n > 0). (6.4) Q (i) n 1 = Zatem z wieloliniowości iloczynu tensorowego mamy Q (1) N 1 Q (2) N 2... Q (d) N d = N 1 n 1 =1 (1) n N 2 n 2 =1 (2) n 2 N n=1... (i) n. N d n d =1 = 1 n i N i 1 i d (d) n d (1) n 1 (2) n 2... (d) n d. Obcinając odpowiednio ostatnią sumę, otrzymujemy tzw. kubaturę Smolyaka (por. [15]). Precyzuje to następująca definicja. Definicja 7. Kubaturą Smolyaka nazywamy funkcjonał liniowy określony wzorem Sn d := (1) l 1 (2) l 2... (d) l d. l 1 n+d 1 Liczbę n nazywamy wówczas rozdzielczością tejże kubatury. Zauważmy, że wprost z definicji S d n oraz łączności i wieloliniowości iloczynu tensorowego mamy Sn d = (1) l 1 (2) l 2... (d) l d l 1 n+d 1 n = (1) l 1 (2) l 2 l d =1 (l 1,l 2,...,l d 1 ) 1 n+d 1 l d... (d 1) l d 1 = (d) l d n l d =1 S d 1 n+1 l d (d) l d.

Aproksymacja. funkcji: ,a 2. ,...,a m. - są funkcjami bazowymi m+1 wymiarowej podprzestrzeni liniowej X m+1

Aproksymacja. funkcji: ,a 2. ,...,a m. - są funkcjami bazowymi m+1 wymiarowej podprzestrzeni liniowej X m+1 Założenie: f(x) funkcja którą aproksymujemy X jest przestrzenią liniową Aproksymacja liniowa funkcji f(x) polega na wyznaczeniu współczynników a 0,a 1,a 2,...,a m funkcji: Gdzie: - są funkcjami bazowymi

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład XIV: Metody Monte Carlo 19 stycznia 2016 Przybliżone obliczanie całki oznaczonej Rozważmy całkowalną funkcję f : [0, 1] R. Chcemy znaleźć przybliżoną wartość liczbową całki 1 f (x) dx. 0 Jeden ze

Bardziej szczegółowo

3. Interpolacja. Interpolacja w sensie Lagrange'a (3.1) Dana jest funkcja y= f x określona i ciągła w przedziale [a ;b], która

3. Interpolacja. Interpolacja w sensie Lagrange'a (3.1) Dana jest funkcja y= f x określona i ciągła w przedziale [a ;b], która 3. Interpolacja Interpolacja w sensie Lagrange'a (3.1) Dana jest funkcja y= f x określona i ciągła w przedziale [a ;b], która przyjmuje wartości y 1, y 2,, y n, dla skończonego zbioru argumentów x 1, x

Bardziej szczegółowo

Funkcja kwadratowa. f(x) = ax 2 + bx + c = a

Funkcja kwadratowa. f(x) = ax 2 + bx + c = a Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax, a R \ {0}.

Bardziej szczegółowo

Funkcja kwadratowa. f(x) = ax 2 + bx + c,

Funkcja kwadratowa. f(x) = ax 2 + bx + c, Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax 2 + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax 2, a R \

Bardziej szczegółowo

Przykład 1 W przypadku jednokrotnego rzutu kostką przestrzeń zdarzeń elementarnych

Przykład 1 W przypadku jednokrotnego rzutu kostką przestrzeń zdarzeń elementarnych Rozdział 1 Zmienne losowe, ich rozkłady i charakterystyki 1.1 Definicja zmiennej losowej Niech Ω będzie przestrzenią zdarzeń elementarnych. Definicja 1 Rodzinę S zdarzeń losowych (zbiór S podzbiorów zbioru

Bardziej szczegółowo

Zaawansowane metody numeryczne

Zaawansowane metody numeryczne Wykład 6 Własności wielomianów ortogonalnych Wszystkie znane rodziny wielomianów ortogonalnych dzielą pewne wspólne cechy: 1) definicja za pomocą wzoru różniczkowego, jawnej sumy lub funkcji tworzącej;

Bardziej szczegółowo

Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k.

Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k. Funkcje wymierne Jerzy Rutkowski Teoria Przypomnijmy, że przez R[x] oznaczamy zbiór wszystkich wielomianów zmiennej x i o współczynnikach rzeczywistych Definicja Funkcją wymierną jednej zmiennej nazywamy

Bardziej szczegółowo

Egzamin z Metod Numerycznych ZSI, Egzamin, Gr. A

Egzamin z Metod Numerycznych ZSI, Egzamin, Gr. A Egzamin z Metod Numerycznych ZSI, 06.2007. Egzamin, Gr. A Imię i nazwisko: Nr indeksu: Section 1. Test wyboru, max 33 pkt Zaznacz prawidziwe odpowiedzi literą T, a fałszywe N. Każda prawidłowa odpowiedź

Bardziej szczegółowo

Informacja o przestrzeniach Hilberta

Informacja o przestrzeniach Hilberta Temat 10 Informacja o przestrzeniach Hilberta 10.1 Przestrzenie unitarne, iloczyn skalarny Niech dana będzie przestrzeń liniowa X. Załóżmy, że każdej parze elementów x, y X została przyporządkowana liczba

Bardziej szczegółowo

INTERPOLACJA I APROKSYMACJA FUNKCJI

INTERPOLACJA I APROKSYMACJA FUNKCJI Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Wprowadzenie Na czym polega interpolacja? Interpolacja polega

Bardziej szczegółowo

Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład

Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład Rozdział 1 Wektory losowe 1.1 Wektor losowy i jego rozkład Definicja 1 Wektor X = (X 1,..., X n ), którego każda współrzędna jest zmienną losową, nazywamy n-wymiarowym wektorem losowym (krótko wektorem

Bardziej szczegółowo

Liczby zespolone. x + 2 = 0.

Liczby zespolone. x + 2 = 0. Liczby zespolone 1 Wiadomości wstępne Rozważmy równanie wielomianowe postaci x + 2 = 0. Współczynniki wielomianu stojącego po lewej stronie są liczbami całkowitymi i jedyny pierwiastek x = 2 jest liczbą

Bardziej szczegółowo

13. Równania różniczkowe - portrety fazowe

13. Równania różniczkowe - portrety fazowe 13. Równania różniczkowe - portrety fazowe Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie rzegorz Kosiorowski (Uniwersytet Ekonomiczny 13. wrównania Krakowie) różniczkowe - portrety fazowe 1 /

Bardziej szczegółowo

Wstęp do analizy matematycznej

Wstęp do analizy matematycznej Wstęp do analizy matematycznej Andrzej Marciniak Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii informatycznych i ich zastosowań w

Bardziej szczegółowo

UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH

UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać układu równań liniowych Układ liniowych równań algebraicznych

Bardziej szczegółowo

Zajęcia nr. 3 notatki

Zajęcia nr. 3 notatki Zajęcia nr. 3 notatki 22 kwietnia 2005 1 Funkcje liczbowe wprowadzenie Istnieje nieskończenie wiele funkcji w matematyce. W dodaktu nie wszystkie są liczbowe. Rozpatruje się funkcje które pobierają argumenty

Bardziej szczegółowo

ELEMENTY ANALIZY NUMERYCZNEJ ELEMENTY ANALIZY NUMERYCZNEJ. Egzamin pisemny zestaw 1 24 czerwca 2019 roku

ELEMENTY ANALIZY NUMERYCZNEJ ELEMENTY ANALIZY NUMERYCZNEJ. Egzamin pisemny zestaw 1 24 czerwca 2019 roku Egzamin pisemny zestaw. ( pkt.) Udowodnić, że jeśli funkcja g interpoluje funkcję f w węzłach x 0, x, K, x n, a funk- cja h interpoluje funkcję f w węzłach x, x, K, x n, to funkcja x0 x gx ( ) + [ gx (

Bardziej szczegółowo

Programowanie celowe #1

Programowanie celowe #1 Programowanie celowe #1 Problem programowania celowego (PC) jest przykładem problemu programowania matematycznego nieliniowego, który można skutecznie zlinearyzować, tzn. zapisać (i rozwiązać) jako problem

Bardziej szczegółowo

ELEMENTY ANALIZY NUMERYCZNEJ ELEMENTY ANALIZY NUMERYCZNEJ. Egzamin pisemny zestaw 1 26 czerwca 2017 roku

ELEMENTY ANALIZY NUMERYCZNEJ ELEMENTY ANALIZY NUMERYCZNEJ. Egzamin pisemny zestaw 1 26 czerwca 2017 roku Egzamin pisemny zestaw czerwca 0 roku Imię i nazwisko:.... ( pkt.) Udowodnić, że jeśli funkcja g interpoluje funkcję f w węzłach x 0, x, K, x n, a funk- cja h interpoluje funkcję f w węzłach x, x, K, x

Bardziej szczegółowo

Przykładowe zadania z teorii liczb

Przykładowe zadania z teorii liczb Przykładowe zadania z teorii liczb I. Podzielność liczb całkowitych. Liczba a = 346 przy dzieleniu przez pewną liczbę dodatnią całkowitą b daje iloraz k = 85 i resztę r. Znaleźć dzielnik b oraz resztę

Bardziej szczegółowo

Metody numeryczne. materiały do wykładu dla studentów. 7. Całkowanie numeryczne

Metody numeryczne. materiały do wykładu dla studentów. 7. Całkowanie numeryczne Metody numeryczne materiały do wykładu dla studentów 7. Całkowanie numeryczne 7.1. Całkowanie numeryczne 7.2. Metoda trapezów 7.3. Metoda Simpsona 7.4. Metoda 3/8 Newtona 7.5. Ogólna postać wzorów kwadratur

Bardziej szczegółowo

Interpolacja. Marcin Orchel. Drugi przypadek szczególny to interpolacja trygonometryczna

Interpolacja. Marcin Orchel. Drugi przypadek szczególny to interpolacja trygonometryczna Interpolacja Marcin Orchel 1 Wstęp Mamy daną funkcję φ (x; a 0,..., a n ) zależną od n + 1 parametrów a 0,..., a n. Zadanie interpolacji funkcji φ polega na określeniu parametrów a i tak aby dla n + 1

Bardziej szczegółowo

Bardzo łatwa lista powtórkowa

Bardzo łatwa lista powtórkowa Analiza numeryczna, II rok inf., WPPT- 12 stycznia 2008 Terminy egzaminów Przypominam, że egzaminy odbędą się w następujących terminach: egzamin podstawowy: 30 stycznia, godz. 13 15, C-13/1.31 egzamin

Bardziej szczegółowo

Dystrybucje. Marcin Orchel. 1 Wstęp Dystrybucje Pochodna dystrybucyjna Przestrzenie... 5

Dystrybucje. Marcin Orchel. 1 Wstęp Dystrybucje Pochodna dystrybucyjna Przestrzenie... 5 Dystrybucje Marcin Orchel Spis treści 1 Wstęp 1 1.1 Dystrybucje................................... 1 1.2 Pochodna dystrybucyjna............................ 3 1.3 Przestrzenie...................................

Bardziej szczegółowo

Metody numeryczne I Równania nieliniowe

Metody numeryczne I Równania nieliniowe Metody numeryczne I Równania nieliniowe Janusz Szwabiński szwabin@ift.uni.wroc.pl Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/66 Równania nieliniowe 1. Równania nieliniowe z pojedynczym pierwiastkiem

Bardziej szczegółowo

Dystrybucje, wiadomości wstępne (I)

Dystrybucje, wiadomości wstępne (I) Temat 8 Dystrybucje, wiadomości wstępne (I) Wielkości fizyczne opisujemy najczęściej przyporządkowując im funkcje (np. zależne od czasu). Inną drogą opisu tych wielkości jest przyporządkowanie im funkcjonałów

Bardziej szczegółowo

1 + x 1 x 1 + x + 1 x. dla x 0.. Korzystając z otrzymanego wykresu wyznaczyć funkcję g(m) wyrażającą liczbę pierwiastków równania.

1 + x 1 x 1 + x + 1 x. dla x 0.. Korzystając z otrzymanego wykresu wyznaczyć funkcję g(m) wyrażającą liczbę pierwiastków równania. 10 1 Wykazać, że liczba 008 008 10 + + jest większa od Nie używając kalkulatora, porównać liczby a = log 5 log 0 + log oraz b = 6 5 Rozwiązać równanie x + 4y + x y + 1 = 4xy 4 W prostokątnym układzie współrzędnych

Bardziej szczegółowo

Z52: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania, zagadnienie brzegowe.

Z52: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania, zagadnienie brzegowe. Z5: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania zagadnienie brzegowe Dyskretne operatory różniczkowania Numeryczne obliczanie pochodnych oraz rozwiązywanie

Bardziej szczegółowo

Całkowanie numeryczne przy użyciu kwadratur

Całkowanie numeryczne przy użyciu kwadratur Całkowanie numeryczne przy użyciu kwadratur Plan wykładu: 1. Kwadratury Newtona-Cotesa a) wzory: trapezów, parabol etc. b) kwadratury złożone 2. Ekstrapolacja a) ekstrapolacja Richardsona b) metoda Romberga

Bardziej szczegółowo

5. Rozwiązywanie układów równań liniowych

5. Rozwiązywanie układów równań liniowych 5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a

Bardziej szczegółowo

Wstęp do Rachunku Prawdopodobieństwa, IIr. WMS

Wstęp do Rachunku Prawdopodobieństwa, IIr. WMS Wstęp do Rachunku Prawdopodobieństwa, IIr. WMS przykładowe zadania na. kolokwium czerwca 6r. Poniżej podany jest przykładowy zestaw zadań. Podczas kolokwium na ich rozwiązanie przeznaczone będzie ok. 85

Bardziej szczegółowo

Elementy metod numerycznych

Elementy metod numerycznych Wykład nr 5 i jej modyfikacje. i zera wielomianów Założenia metody Newtona Niech będzie dane równanie f (x) = 0 oraz przedział a, b taki, że w jego wnętrzu znajduje się dokładnie jeden pierwiastek α badanego

Bardziej szczegółowo

ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.

ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. LICZBA TEMAT GODZIN LEKCYJNYCH Potęgi, pierwiastki i logarytmy (8 h) Potęgi 3 Pierwiastki 3 Potęgi o wykładnikach

Bardziej szczegółowo

Ważne rozkłady i twierdzenia c.d.

Ważne rozkłady i twierdzenia c.d. Ważne rozkłady i twierdzenia c.d. Funkcja charakterystyczna rozkładu Wielowymiarowy rozkład normalny Elipsa kowariacji Sploty rozkładów Rozkłady jednostajne Sploty z rozkładem normalnym Pobieranie próby

Bardziej szczegółowo

Aproksymacja. j<k. L 2 p[a, b] l 2 p,n X = Lemat 1. Wielomiany ortogonalne P 0,P 1,...,P n tworza przestrzeni liniowej Π n. Dowód.

Aproksymacja. j<k. L 2 p[a, b] l 2 p,n X = Lemat 1. Wielomiany ortogonalne P 0,P 1,...,P n tworza przestrzeni liniowej Π n. Dowód. Metody numeryczne Paweł Zieliński p. 1/19 Lemat 1. Wielomiany ortogonalne P 0,P 1,...,P n tworza bazę przestrzeni liniowej Π n. Dowód. Lemat 2. Dowolny wielomian Q j stopnia j niższego od k jest prostopadły

Bardziej szczegółowo

Ciała i wielomiany 1. przez 1, i nazywamy jedynką, zaś element odwrotny do a 0 względem działania oznaczamy przez a 1, i nazywamy odwrotnością a);

Ciała i wielomiany 1. przez 1, i nazywamy jedynką, zaś element odwrotny do a 0 względem działania oznaczamy przez a 1, i nazywamy odwrotnością a); Ciała i wielomiany 1 Ciała i wielomiany 1 Definicja ciała Niech F będzie zbiorem, i niech + ( dodawanie ) oraz ( mnożenie ) będą działaniami na zbiorze F. Definicja. Zbiór F wraz z działaniami + i nazywamy

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 2

RÓWNANIA RÓŻNICZKOWE WYKŁAD 2 RÓWNANIA RÓŻNICZKOWE WYKŁAD 2 Równania różniczkowe o zmiennych rozdzielonych Równania sprowadzalne do równań o zmiennych rozdzielonych Niech f będzie funkcją ciągłą na przedziale (a, b), spełniającą na

Bardziej szczegółowo

Definicja i własności wartości bezwzględnej.

Definicja i własności wartości bezwzględnej. Równania i nierówności z wartością bezwzględną. Rozwiązywanie układów dwóch (trzech) równań z dwiema (trzema) niewiadomymi. Układy równań liniowych z parametrem, analiza rozwiązań. Definicja i własności

Bardziej szczegółowo

W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych:

W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych: W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych: Zmienne losowe skokowe (dyskretne) przyjmujące co najwyżej przeliczalnie wiele wartości Zmienne losowe ciągłe

Bardziej szczegółowo

Zmienne losowe i ich rozkłady. Momenty zmiennych losowych. Wrocław, 10 października 2014

Zmienne losowe i ich rozkłady. Momenty zmiennych losowych. Wrocław, 10 października 2014 Zmienne losowe i ich rozkłady. Momenty zmiennych losowych. Wrocław, 10 października 2014 Zmienne losowe i ich rozkłady Doświadczenie losowe: Rzut monetą Rzut kostką Wybór losowy n kart z talii 52 Gry losowe

Bardziej szczegółowo

Finanse i Rachunkowość studia niestacjonarne Wprowadzenie do teorii ciągów liczbowych (treść wykładu z 21 grudnia 2014)

Finanse i Rachunkowość studia niestacjonarne Wprowadzenie do teorii ciągów liczbowych (treść wykładu z 21 grudnia 2014) dr inż. Ryszard Rębowski DEFINICJA CIĄGU LICZBOWEGO Finanse i Rachunkowość studia niestacjonarne Wprowadzenie do teorii ciągów liczbowych (treść wykładu z grudnia 04) Definicja ciągu liczbowego Spośród

Bardziej szczegółowo

Analiza numeryczna kolokwium2a-15grudnia2005

Analiza numeryczna kolokwium2a-15grudnia2005 kolokwium2a-15grudnia2005 1.Niechf(x)=a n x n +a n 1 x n 1 +...+a 0.Jakąwartośćprzyjmujeilorazróżnicowy f[x 0,...,x n ]dladowolnychn+1paramiróżnychwęzłówx j?odpowiedźuzasadnić. 2. Pokazać, że zamiana zmiennych

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, /15

Matematyka dyskretna. Andrzej Łachwa, UJ, /15 Matematyka dyskretna Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl 7/15 Rachunek różnicowy Dobrym narzędziem do obliczania skończonych sum jest rachunek różnicowy. W rachunku tym odpowiednikiem operatora

Bardziej szczegółowo

Rozdział 1. Zmienne losowe, ich rozkłady i charakterystyki. 1.1 Definicja zmiennej losowej

Rozdział 1. Zmienne losowe, ich rozkłady i charakterystyki. 1.1 Definicja zmiennej losowej Rozdział 1 Zmienne losowe, ich rozkłady i charakterystyki 1.1 Definicja zmiennej losowej Zbiór możliwych wyników eksperymentu będziemy nazywać przestrzenią zdarzeń elementarnych i oznaczać Ω, natomiast

Bardziej szczegółowo

Definicje i przykłady

Definicje i przykłady Rozdział 1 Definicje i przykłady 1.1 Definicja równania różniczkowego 1.1 DEFINICJA. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie F (t, x, ẋ, ẍ,..., x (n) ) = 0. (1.1) W równaniu tym t jest

Bardziej szczegółowo

0 + 0 = 0, = 1, = 1, = 0.

0 + 0 = 0, = 1, = 1, = 0. 5 Kody liniowe Jak już wiemy, w celu przesłania zakodowanego tekstu dzielimy go na bloki i do każdego z bloków dodajemy tak zwane bity sprawdzające. Bity te są w ścisłej zależności z bitami informacyjnymi,

Bardziej szczegółowo

Ważne rozkłady i twierdzenia

Ważne rozkłady i twierdzenia Ważne rozkłady i twierdzenia Rozkład dwumianowy i wielomianowy Częstość. Prawo wielkich liczb Rozkład hipergeometryczny Rozkład Poissona Rozkład normalny i rozkład Gaussa Centralne twierdzenie graniczne

Bardziej szczegółowo

Układy równań liniowych. Krzysztof Patan

Układy równań liniowych. Krzysztof Patan Układy równań liniowych Krzysztof Patan Motywacje Zagadnienie kluczowe dla przetwarzania numerycznego Wiele innych zadań redukuje się do problemu rozwiązania układu równań liniowych, często o bardzo dużych

Bardziej szczegółowo

Metody numeryczne w przykładach

Metody numeryczne w przykładach Metody numeryczne w przykładach Bartosz Ziemkiewicz Wydział Matematyki i Informatyki UMK, Toruń Regionalne Koło Matematyczne 8 kwietnia 2010 r. Bartosz Ziemkiewicz (WMiI UMK) Metody numeryczne w przykładach

Bardziej szczegółowo

Wykład z równań różnicowych

Wykład z równań różnicowych Wykład z równań różnicowych 1 Wiadomości wstępne Umówmy się, że na czas tego wykładu zrezygnujemy z oznaczania n-tego wyrazu ciągu symbolem typu x n, y n itp. Zamiast tego pisać będziemy x (n), y (n) itp.

Bardziej szczegółowo

Pochodna i różniczka funkcji oraz jej zastosowanie do obliczania niepewności pomiarowych

Pochodna i różniczka funkcji oraz jej zastosowanie do obliczania niepewności pomiarowych Pochodna i różniczka unkcji oraz jej zastosowanie do obliczania niepewności pomiarowych Krzyszto Rębilas DEFINICJA POCHODNEJ Pochodna unkcji () w punkcie określona jest jako granica: lim 0 Oznaczamy ją

Bardziej szczegółowo

Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne.

Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne. Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne. Funkcja homograficzna. Definicja. Funkcja homograficzna jest to funkcja określona wzorem f() = a + b c + d, () gdzie współczynniki

Bardziej szczegółowo

Matematyka licea ogólnokształcące, technika

Matematyka licea ogólnokształcące, technika Matematyka licea ogólnokształcące, technika Opracowano m.in. na podstawie podręcznika MATEMATYKA w otaczającym nas świecie zakres podstawowy i rozszerzony Funkcja liniowa Funkcję f: R R określoną wzorem

Bardziej szczegółowo

II. RÓŻNICZKOWANIE I CAŁKOWANIE NUMERYCZNE Janusz Adamowski

II. RÓŻNICZKOWANIE I CAŁKOWANIE NUMERYCZNE Janusz Adamowski II. RÓŻNICZKOWANIE I CAŁKOWANIE NUMERYCZNE Janusz Adamowski 1 1 Różniczkowanie numeryczne Rozważmy funkcję f(x) określoną na sieci równoodległyc węzłów. Funkcja f(x) może być dana za pomocą wzoru analitycznego

Bardziej szczegółowo

Zaawansowane metody numeryczne

Zaawansowane metody numeryczne Wykład 11 Ogólna postać metody iteracyjnej Definicja 11.1. (metoda iteracyjna rozwiązywania układów równań) Metodą iteracyjną rozwiązywania { układów równań liniowych nazywamy ciąg wektorów zdefiniowany

Bardziej szczegółowo

Egzamin z Metod Numerycznych ZSI, Grupa: A

Egzamin z Metod Numerycznych ZSI, Grupa: A Egzamin z Metod Numerycznych ZSI, 06.2005. Grupa: A Nazwisko: Imię: Numer indeksu: Ćwiczenia z: Data: Część 1. Test wyboru, max 36 pkt Zaznacz prawidziwe odpowiedzi literą T, a fałszywe N. Każda prawidłowa

Bardziej szczegółowo

IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych,

IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych, IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. Definicja 1.1. Niech D będzie podzbiorem przestrzeni R n, n 2. Odwzorowanie f : D R nazywamy

Bardziej szczegółowo

Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum. w roku szkolnym 2012/2013

Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum. w roku szkolnym 2012/2013 Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum w roku szkolnym 2012/2013 I. Zakres materiału do próbnego egzaminu maturalnego z matematyki: 1) liczby rzeczywiste 2) wyrażenia algebraiczne

Bardziej szczegółowo

SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa

SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa SIMR 06/07, Analiza, wykład, 07-0- Przestrzeń wektorowa Przestrzeń wektorowa (liniowa) - przestrzeń (zbiór) w której określone są działania (funkcje) dodawania elementów i mnożenia elementów przez liczbę

Bardziej szczegółowo

Funkcje dwóch zmiennych

Funkcje dwóch zmiennych Funkcje dwóch zmiennych Andrzej Musielak Str Funkcje dwóch zmiennych Wstęp Funkcja rzeczywista dwóch zmiennych to funkcja, której argumentem jest para liczb rzeczywistych, a wartością liczba rzeczywista.

Bardziej szczegółowo

UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH

UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH Transport, studia I stopnia rok akademicki 2011/2012 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Uwagi wstępne Układ liniowych równań algebraicznych można

Bardziej szczegółowo

Indukcja matematyczna

Indukcja matematyczna Indukcja matematyczna Zadanie. Zapisać, używając symboli i, następujące wyrażenia (a) n!; (b) sin() + sin() sin() +... + sin() sin()... sin(n); (c) ( + )( + /)( + / + /)... ( + / + / +... + /R). Zadanie.

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład II: Zmienne losowe i charakterystyki ich rozkładów 13 października 2014 Zmienne losowe Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Definicja zmiennej losowej i jej

Bardziej szczegółowo

Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne.

Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne. Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne. Definicja. Niech a i b będą dodatnimi liczbami rzeczywistymi i niech a. Logarytmem liczby b przy podstawie

Bardziej szczegółowo

3a. Wstęp: Elementarne równania i nierówności

3a. Wstęp: Elementarne równania i nierówności 3a. Wstęp: Elementarne równania i nierówności Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2017/2018 Grzegorz Kosiorowski (Uniwersytet Ekonomiczny 3a. Wstęp: w Krakowie) Elementarne równania

Bardziej szczegółowo

( ) Arkusz I Zadanie 1. Wartość bezwzględna Rozwiąż równanie. Naszkicujmy wykresy funkcji f ( x) = x + 3 oraz g ( x) 2x

( ) Arkusz I Zadanie 1. Wartość bezwzględna Rozwiąż równanie. Naszkicujmy wykresy funkcji f ( x) = x + 3 oraz g ( x) 2x Arkusz I Zadanie. Wartość bezwzględna Rozwiąż równanie x + 3 x 4 x 7. Naszkicujmy wykresy funkcji f ( x) x + 3 oraz g ( x) x 4 uwzględniając tylko ich miejsca zerowe i monotoniczność w ten sposób znajdziemy

Bardziej szczegółowo

1 Metody rozwiązywania równań nieliniowych. Postawienie problemu

1 Metody rozwiązywania równań nieliniowych. Postawienie problemu 1 Metody rozwiązywania równań nieliniowych. Postawienie problemu Dla danej funkcji ciągłej f znaleźć wartości x, dla których f(x) = 0. (1) 2 Przedział izolacji pierwiastka Będziemy zakładać, że równanie

Bardziej szczegółowo

Szukanie rozwiązań funkcji uwikłanych (równań nieliniowych)

Szukanie rozwiązań funkcji uwikłanych (równań nieliniowych) Szukanie rozwiązań funkcji uwikłanych (równań nieliniowych) Funkcja uwikłana (równanie nieliniowe) jest to funkcja, która nie jest przedstawiona jawnym przepisem, wzorem wyrażającym zależność wartości

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład VII: Rozkład i jego charakterystyki 22 listopada 2016 Uprzednio wprowadzone pojęcia i ich własności Definicja zmiennej losowej Zmienna losowa na przestrzeni probabilistycznej (Ω, F, P) to funkcja

Bardziej szczegółowo

Wielomiany Legendre a

Wielomiany Legendre a grudzień 2013 grudzień 2013 Funkcja tworząca 1 (4.1) g(x, t) = = P n (x)t n, 1 2xt + t 2 albo pamiętając, że x = cos θ 1 (4.2) g(cos θ, t) = = P n (cos θ)t n. 1 2 cos θ t + t 2 jeżeli rozpatrzyć pole wytwarzane

Bardziej szczegółowo

3.Funkcje elementarne - przypomnienie

3.Funkcje elementarne - przypomnienie 3.Funkcje elementarne - przypomnienie Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie rzegorz Kosiorowski (Uniwersytet Ekonomiczny3.Funkcje w Krakowie) elementarne - przypomnienie 1 / 51 1 Funkcje

Bardziej szczegółowo

Wykład 3 Momenty zmiennych losowych.

Wykład 3 Momenty zmiennych losowych. Wykład 3 Momenty zmiennych losowych. Wrocław, 19 października 2016r Momenty zmiennych losowych Wartość oczekiwana - przypomnienie Definicja 3.1: 1 Niech X będzie daną zmienną losową. Jeżeli X jest zmienną

Bardziej szczegółowo

Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie:

Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie: Ciągi rekurencyjne Zadanie 1 Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie: w dwóch przypadkach: dla i, oraz dla i. Wskazówka Należy poszukiwać rozwiązania w postaci, gdzie

Bardziej szczegółowo

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora.

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. 1. Podstawy matematyki 1.1. Geometria analityczna W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. Skalarem w fizyce nazywamy

Bardziej szczegółowo

Wykład 3 Momenty zmiennych losowych.

Wykład 3 Momenty zmiennych losowych. Wykład 3 Momenty zmiennych losowych. Wrocław, 18 października 2017r Momenty zmiennych losowych Wartość oczekiwana - przypomnienie Definicja 3.1: 1 Niech X będzie daną zmienną losową. Jeżeli X jest zmienną

Bardziej szczegółowo

Spacery losowe generowanie realizacji procesu losowego

Spacery losowe generowanie realizacji procesu losowego Spacery losowe generowanie realizacji procesu losowego Michał Krzemiński Streszczenie Omówimy metodę generowania trajektorii spacerów losowych (błądzenia losowego), tj. szczególnych procesów Markowa z

Bardziej szczegółowo

W. Guzicki Próbna matura, grudzień 2014 r. poziom rozszerzony 1

W. Guzicki Próbna matura, grudzień 2014 r. poziom rozszerzony 1 W. Guzicki Próbna matura, grudzień 01 r. poziom rozszerzony 1 Próbna matura rozszerzona (jesień 01 r.) Zadanie 18 kilka innych rozwiązań Wojciech Guzicki Zadanie 18. Okno na poddaszu ma mieć kształt trapezu

Bardziej szczegółowo

Matematyka stosowana i metody numeryczne

Matematyka stosowana i metody numeryczne Ewa Pabisek Adam Wosatko Piotr Pluciński Matematyka stosowana i metody numeryczne Konspekt z wykładu 8 Interpolacja Interpolacja polega na budowaniu tzw. funkcji interpolujących ϕ(x) na podstawie zadanych

Bardziej szczegółowo

W. Guzicki Zadanie IV z Informatora Maturalnego poziom rozszerzony 1

W. Guzicki Zadanie IV z Informatora Maturalnego poziom rozszerzony 1 W. Guzicki Zadanie IV z Informatora Maturalnego poziom rozszerzony 1 Zadanie IV. Dany jest prostokątny arkusz kartony o długości 80 cm i szerokości 50 cm. W czterech rogach tego arkusza wycięto kwadratowe

Bardziej szczegółowo

Rozwiązywanie równań nieliniowych

Rozwiązywanie równań nieliniowych Rozwiązywanie równań nieliniowych Marcin Orchel 1 Wstęp Przykłady wyznaczania miejsc zerowych funkcji f : f(ξ) = 0. Wyszukiwanie miejsc zerowych wielomianu n-tego stopnia. Wymiar tej przestrzeni wektorowej

Bardziej szczegółowo

Wykład 4. Określimy teraz pewną ważną klasę pierścieni.

Wykład 4. Określimy teraz pewną ważną klasę pierścieni. Wykład 4 Określimy teraz pewną ważną klasę pierścieni. Twierdzenie 1 Niech m, n Z. Jeśli n > 0 to istnieje dokładnie jedna para licz q, r, że: m = qn + r, 0 r < n. Liczbę r nazywamy resztą z dzielenia

Bardziej szczegółowo

III. Wstęp: Elementarne równania i nierówności

III. Wstęp: Elementarne równania i nierówności III. Wstęp: Elementarne równania i nierówności Fryderyk Falniowski, Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie ryderyk Falniowski, Grzegorz Kosiorowski (Uniwersytet III. Wstęp: Ekonomiczny

Bardziej szczegółowo

Rozkłady statystyk z próby

Rozkłady statystyk z próby Rozkłady statystyk z próby Rozkłady statystyk z próby Przypuśćmy, że wykonujemy serię doświadczeń polegających na 4 krotnym rzucie symetryczną kostką do gry, obserwując liczbę wyrzuconych oczek Nr kolejny

Bardziej szczegółowo

Matematyka II. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 2018/2019 wykład 13 (27 maja)

Matematyka II. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 2018/2019 wykład 13 (27 maja) Matematyka II Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 208/209 wykład 3 (27 maja) Całki niewłaściwe przedział nieograniczony Rozpatrujemy funkcje ciągłe określone na zbiorach < a, ),

Bardziej szczegółowo

Metoda rozdzielania zmiennych

Metoda rozdzielania zmiennych Rozdział 12 Metoda rozdzielania zmiennych W tym rozdziale zajmiemy się metodą rozdzielania zmiennych, którą można zastosować, aby wyrazić jawnymi wzorami rozwiązania pewnych konkretnych równań różniczkowych

Bardziej szczegółowo

VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa.

VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa. VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa. W rozdziale tym zajmiemy się dokładniej badaniem stabilności rozwiązań równania różniczkowego. Pojęcie stabilności w

Bardziej szczegółowo

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria Technologia Chemiczna 008/09 Zajęcia wyrównawcze. Pokazać, że: ( )( ) n k k l = ( n l )( n l k l Zajęcia nr (h) Dwumian Newtona. Indukcja. ). Rozwiązać ( ) ( równanie: ) n n a) = 0 b) 3 ( ) n 3. Znaleźć

Bardziej szczegółowo

6. Liczby wymierne i niewymierne. Niewymierność pierwiastków i logarytmów (c.d.).

6. Liczby wymierne i niewymierne. Niewymierność pierwiastków i logarytmów (c.d.). 6. Liczby wymierne i niewymierne. Niewymierność pierwiastków i logarytmów (c.d.). 0 grudnia 008 r. 88. Obliczyć podając wynik w postaci ułamka zwykłego a) 0,(4)+ 3 3,374(9) b) (0,(9)+1,(09)) 1,() c) (0,(037))

Bardziej szczegółowo

Zaawansowane metody numeryczne

Zaawansowane metody numeryczne Wykład 1 Zadanie Definicja 1.1. (zadanie) Zadaniem nazywamy zagadnienie znalezienia rozwiązania x spełniającego równanie F (x, d) = 0, gdzie d jest zbiorem danych (od których zależy rozwiązanie x), a F

Bardziej szczegółowo

Biostatystyka, # 3 /Weterynaria I/

Biostatystyka, # 3 /Weterynaria I/ Biostatystyka, # 3 /Weterynaria I/ dr n. mat. Zdzisław Otachel Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Głęboka 28, p. 221 bud. CIW, e-mail: zdzislaw.otachel@up.lublin.pl

Bardziej szczegółowo

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z obowiązkowych

Bardziej szczegółowo

Ciągi liczbowe wykład 3

Ciągi liczbowe wykład 3 Ciągi liczbowe wykład 3 dr Mariusz Grządziel 3 kwietnia 203 Definicja (ciągu liczbowego). Ciagiem liczbowym nazywamy funkcję odwzorowuja- ca zbiór liczb naturalnych w zbiór liczb rzeczywistych. Wartość

Bardziej szczegółowo

7. CIĄGI. WYKŁAD 5. Przykłady :

7. CIĄGI. WYKŁAD 5. Przykłady : WYKŁAD 5 1 7. CIĄGI. CIĄGIEM NIESKOŃCZONYM nazywamy funkcję określoną na zbiorze liczb naturalnych, dodatnich, a wyrazami ciągu są wartości tej funkcji. CIĄGIEM SKOŃCZONYM nazywamy funkcję określoną na

Bardziej szczegółowo

Ćwiczenia 7 - Zmienna losowa i jej rozkład. Parametry rozkładu.

Ćwiczenia 7 - Zmienna losowa i jej rozkład. Parametry rozkładu. Ćwiczenia 7 - Zmienna losowa i jej rozkład. Parametry rozkładu. A Teoria Definicja A.1. Niech (Ω, F, P) będzie przestrzenią probabilistyczną. Zmienną losową określoną na przestrzeni Ω nazywamy dowolną

Bardziej szczegółowo

Układy równań i równania wyższych rzędów

Układy równań i równania wyższych rzędów Rozdział Układy równań i równania wyższych rzędów Układy równań różniczkowych zwyczajnych Wprowadzenie W poprzednich paragrafach zajmowaliśmy się równaniami różniczkowymi y = f(x, y), których rozwiązaniem

Bardziej szczegółowo

Obliczanie całek. Instytut Fizyki Akademia Pomorska w Słupsku

Obliczanie całek. Instytut Fizyki Akademia Pomorska w Słupsku Obliczanie całek. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się ze sposobami i możliwościami przybliżonego obliczania całek w środowisku GNU octave. Wprowadzenie Kwadratury Zajmijmy się przybliżonym

Bardziej szczegółowo

Równanie przewodnictwa cieplnego (I)

Równanie przewodnictwa cieplnego (I) Wykład 4 Równanie przewodnictwa cieplnego (I) 4.1 Zagadnienie Cauchy ego dla pręta nieograniczonego Rozkład temperatury w jednowymiarowym nieograniczonym pręcie opisuje funkcja u = u(x, t), spełniająca

Bardziej szczegółowo

Rozkład materiału a wymagania podstawy programowej dla I klasy czteroletniego liceum i pięcioletniego technikum. Zakres rozszerzony

Rozkład materiału a wymagania podstawy programowej dla I klasy czteroletniego liceum i pięcioletniego technikum. Zakres rozszerzony Rozkład materiału a wymagania podstawy programowej dla I klasy czteroletniego liceum i pięcioletniego technikum. Zakres rozszerzony ZBIORY TEMAT LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY

Bardziej szczegółowo

6. Zmienne losowe typu ciagłego ( ) Pole trapezu krzywoliniowego

6. Zmienne losowe typu ciagłego ( ) Pole trapezu krzywoliniowego 6. Zmienne losowe typu ciagłego (2.04.2007) Pole trapezu krzywoliniowego Przypomnienie: figurę ograniczoną przez: wykres funkcji y = f(x), gdzie f jest funkcją ciągłą; proste x = a, x = b, a < b, oś OX

Bardziej szczegółowo