Analiza szeregów czasowych bezrobocia i inflacji w Danii

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Analiza szeregów czasowych bezrobocia i inflacji w Danii"

Transkrypt

1 Uniwersytet Warszawski Wydział Nauk Ekonomicznych Mateusz Błażej Nr albumu: Analiza szeregów czasowych bezrobocia i inflacji w Danii Projekt zaliczeniowy z przedmiotu: Analiza Szeregów Czasowych Praca wykonana pod kierunkiem dr. Pawła Strawińskiego z Katedry Statystyki i Ekonometrii WNE UW Warszawa, czerwiec 2013

2 ś ą Ś ś ś ż ś ł ś ó ą ą ś ż ó Ę ńą ą ą ą Ę

3 SPIS TREŚCI WSTĘP... 3 ROZDZIAŁ I. Bezrobocie w Danii w okresie styczeń 1988 r. marzec 2013 r Opis danych Dekompozycja Modele ekstrapolacyjne Model podwójnego wygładzania wykładniczego Model sezonowy Holta-Wintersa Model SARIMA Oszacowanie modelu Prognoza ROZDZIAŁ II. Inflacja w Danii w okresie styczeń 1998 r. marzec 2013 r Opis danych Dekompozycja Modele ekstrapolacyjne Model podwójnego wygładzania wykładniczego Model sezonowy Holta-Wintersa Model ARIMA Oszacowanie modelu Prognoza ZAKOŃCZENIE ZESTAWIENIE SPISÓW

4 WSTĘP Celem pracy jest przeanalizowanie dwóch szeregów czasowych jednego sezonowego oraz drugiego niesezonowego. Przeprowadzono dekompozycję szeregów czasowych, dopasowano do nich odpowiednie modele z klas ARIMA/SARIMA oraz dokonano prognoz z modeli klas ARIMA, SARIMA oraz za pomocą modeli ekstrapolacyjnych. 3

5 ROZDZIAŁ I Bezrobocie w Danii w okresie styczeń 1988 r. marzec 2013 r Opis danych Pierwszym analizowanym szeregiem jest bezrobocie w Danii w okresie od stycznia 1983 r. do marca 2013 r. włącznie. Dane zostały opublikowane na stronie Europejskiego Banku Centralnego, gdzie uaktualniane są ostatniego dnia każdego miesiąca (ostatnia dostępna statystyka pochodzi z marca 2013 r.), jednak dla zachowania ciągłości okresów rocznych zakończono zbiór danych na ostatnim miesiącu 2012 r. Są to statystyki miesięczne, gdzie pierwszym okresem jest styczeń 1983 r., a ostatnim marzec 2013 r., stąd przeprowadzona praca opiera się na 363 obserwacjach (3 ostatnie obserwacje wykorzystywane zostaną tylko do porównania prognoz). Na rysunku 1 przedstawiony został wykres zjawiska. Rys. 1. Bezrobocie w Danii w okresie styczeń 1988 r. grudzień 2012 r. 4

6 Po analizie wykresu można stwierdzić, że bezrobocie nie wykazuje trendu, w początkowych okresach rosło, następnie mało, dalej wielokrotnie różnił się kierunek zmian wartości. Na rysunku 2 przedstawiony został wykres bezrobocia od stycznia 2007 r. Rys. 2. Bezrobocie w Danii w okresie styczeń 2007 r. grudzień 2012 r. Rysunek 2 potwierdza występującą sezonowość zauważalną również na rysunku 1 odzwierciedlającym cały okres badanego zjawiska. Typowo dla bezrobocia spadek następuje w miesiącach letnich, ponieważ wzrasta podaż pracy w turystyce oraz rolnictwie Dekompozycja Eliminacja czynnika sezonowego z szeregu bezrobocia nastąpiła z użyciem filtru Baxtera- Kinga. Jest to filtr pasmowy wpływający jedynie na amplitudę wahań. W procesie filtracji eliminuje zarówno wahania krótkookresowe, jak i wahania długookresowe (trend). Na rysunku 3 przedstawione zostały przebiegi trzech szeregów: oryginalnego bezrobocia, wygładzonego bezrobocia po użyciu filtru Baxtera-Kinga oraz wyodrębnionego czynnika 5

7 sezonowego. Zakres jest krótszy o rok od okresu dla danych dla bezrobocia z racji użycia metody średniej ruchomej dla 12 miesięcy przez ten filtr. Rys. 3. Dekompozycja bezrobocia 1.3. Modele ekstrapolacyjne Przeprowadzono prognozy za pomocą dwóch modeli: podwójnego wygładzania wykładniczego oraz sezonowego Holta-Wintersa. Ze względu na brak występowania trendu, jest możliwe, że model podwójnego wygładzania wykładniczego okaże się najlepszy. Prognozy wykonane są na 3 pierwsze miesiące 2013 r. Następnie porównane były z faktycznymi danymi, które zostały już opublikowane, po czym oszacowano błędy prognoz i wybrano najlepszy model Model podwójnego wygładzania wykładniczego W szeregu występują zarówno wahania sezonowe, jak i przypadkowe, stąd prognoza za pomocą podwójnego modelu wykładniczego nie jest idealna. Na rysunku 4 przedstawiony jest 6

8 wykres faktycznego bezrobocia oraz oszacowanego za pomocą modelu podwójnego wygładzania wykładniczego wraz z prognozą na pierwsze 3 miesiące 2013 r. Rys. 4. Bezrobocie model podwójnego wygładzania wykładniczego Prognoza jest słaba. Potwierdza to między innymi oszacowany średni absolutny błąd procentowy, który wynosi 9,61%. Dokładne miary jakości prognozy przedstawione zostały w tabeli 1. Tabela. 1. Bezrobocie miary jakości prognozy modelu podwójnego wygładzania wykładniczego Błąd Model Podwójnego wygładzania wykładniczego MSE 0,61 MAE 0,76 MAPE 9,61% AMAPE 5,06% 7

9 Model sezonowy Holta-Wintersa Wybrana została addytywna wersja modelu Holta-Wintersa. Nie występuje jednoznaczny trend, jednak oprócz wahań sezonowych pojawiają się również wahania przypadkowe, co sugeruje wybór właśnie tego wariantu. Próby oszacowania parametrów przez oprogramowanie Stata okazały się nieskuteczne, stąd zdecydowano się na próby ręcznego ustawienia optymalnych wartości w celu jak najlepszego wyboru modelu na podstawie jak najmniejszych miar błędów. Po kilkudziesięciu próbach zdecydowano się na prognozę z parametrami kolejno 0,1, 0,3 i 0,65. Dla pewności zdecydowano się na oszacowanie modelu w wersji multiplikatywnej, jednak jego oszacowania były mniej dokładne od wersji addytywnej (szczegóły w do-file). Na rysunku 5 przedstawiony jest wykres faktycznego bezrobocia oraz oszacowanego za pomocą modelu sezonowego Holta-Wintersa w wersji addytywnej z parametrami kolejno 0.1, 0.3 i 0.65 wraz z prognozą na pierwsze 3 miesiące 2013 r. Rys. 5. Bezrobocie model sezonowy Holta-Wintersa w wersji addytywnej Jakość prognozy za pomocą modelu sezonowego modelu Holta-Wintersa w wersji addytywnej jest zdecydowanie lepsza niż z użyciem modelu podwójnego wykładniczego. 8

10 Potwierdzają to miary jakości prognoz. Precyzyjnie porównanie oszacowanych wartości przedstawione zostało w tabeli 2. Tabela. 2. Bezrobocie porównanie miar jakości prognoz modeli podwójnego wygładzania wykładniczego i sezonowego Holta-Wintersa Błąd Model Podwójnego wygładzania wykładniczego Sezonowy Holta-Wintersa MSE 0,61 0,02 MAE 0,76 0,09 MAPE 9,61% 1,12% AMAPE 5,06% 0,55% 1.4. Model SARIMA Celem jest dopasowanie modelu SARIMA do badanego szeregu czasowego. Posłużono się procedurą Boxa-Jenkinsa. Konieczne jest, by analizowana zmienna była w postaci stacjonarnej. W celu usunięcia sezonowości zróżnicowano szereg. Wykres zróżnicowanego sezonowo bezrobocia przedstawia rysunek 6. 9

11 Rys. 6. Bezrobocie zróżnicowane sezonowo Po analizie rysunku 6 można przypuszczać, że szereg nie jest stacjonarny. Przed przystąpieniem do weryfikacji testowej, sprawdzono autokorelację reszt. Breusch-Godfrey LM test for autocorrelation lags(p) chi2 df Prob > chi H0: no serial correlation 10

12 Dla pierwszych dwunastu opóźnień odrzucamy hipotezę zerową o braku autokorelacji reszt, stąd występuje autokorelacja reszt. Za pomocą rozszerzonego testu Dickeya-Fullera uwzględniającego jedno opóźnienie sprawdzono stacjonarność szeregu. Augmented Dickey-Fuller test for unit root Number of obs = Interpolated Dickey-Fuller Test 1% Critical 5% Critical 10% Critical Statistic Value Value Value Z(t) MacKinnon approximate p-value for Z(t) = Na poziomie istotności 5% odrzucono hipotezę zerową o niestacjonarności szeregu. Postanowiono sprawdzić dodatkowo stacjonarność za pomocą testu KPSS. 11

13 KPSS test for bezrobocie_niesezonowe Maxlag = 16 chosen by Schwert criterion Autocovariances weighted by Bartlett kernel Critical values for H0: bezrobocie_niesezonowe is trend stationary 10%: % : %: % : Lag order Test statistic Statystyka testowa dla sześciu opóźnień jest większa od statystyki krytycznej (na 5% poziomie ufności), a więc odrzucono hipotezę zerową o stacjonarności szeregu. Biorąc pod uwagę test KPSS oraz przebieg wykresu na rysunku 6, zróżnicowano szereg. Na rysunku 7 przedstawiony jest wykres pierwszej różnicy zróżnicowanego wcześniej sezonowo szeregu bezrobocia. 12

14 Rys. 7. Bezrobocie pierwsza różnica zróżnicowanego sezonowo szeregu Na podstawie rysunku 7 można przypuszczać, że już pierwsza różnica doprowadziła szereg do postaci stacjonarnej. W celu weryfikacji przeprowadzono rozszerzony test Dickeya- Fullera uwzględniający jedno opóźnienie. Augmented Dickey-Fuller test for unit root Number of obs = Interpolated Dickey-Fuller Test 1% Critical 5% Critical 10% Critical Statistic Value Value Value Z(t) MacKinnon approximate p-value for Z(t) = Na dowolnie przyjętym istotności odrzucono hipotezę zerową o niestacjonarności szeregu. Postanowiono sprawdzić dodatkowo stacjonarność za pomocą testu KPSS. 13

15 KPSS test for bezrobocie_roznicowane Maxlag = 16 chosen by Schwert criterion Autocovariances weighted by Bartlett kernel Critical values for H0: bezrobocie_roznicowane is trend stationary 10%: % : %: % : Lag order Test statistic Statystyka testowa dla szesnastu opóźnień jest mniejsza od statystyki krytycznej (na 5% poziomie ufności), a więc brak podstaw do odrzucenia hipotezy zerowej o stacjonarności szeregu Oszacowanie modelu Kolejnym krokiem jest wybór odpowiednich rzędów sezonowych (P, Q) w modelu SARIMA. Pomocne mogą okazać się wykresy funkcji autokorelacji oraz cząstkowej autokorelacji przedstawione na rysunkach 8 i 9. 14

16 Rys. 8. Bezrobocie autokorelacja Rys. 9. Bezrobocie cząstkowa autokorelacja 15

17 Wykresy ACF i PACF wskazują na istotność czternastu i dwunastu opóźnień, stąd rząd sezonowy będzie wynosił jeden. Porównano różne kombinacje rzędów sezonowych procesów. Ostatecznie wybrano AR i MA kolejno 0 i 1. Następnie ustalone zostały rzędy regularnych procesów AR i MA. Porównano wiele modeli, gdyż, ze względu na niewzorcowy charakter przebiegu wykresów ACF i PACF oraz brak możliwości wygenerowania rozszerzonej funkcji autokorelacji przez oprogramowanie Stata, określenie rzędów regularnych procesów AR i MA było utrudnione. Ostatecznie dokonano wyboru między trzema porównywalnymi modelami przedstawionymi w tabeli 3. Tabela. 3. Bezrobocie początkowe porównanie modeli SARIMA Model df ll AIC BIC arima(1,1,0) sarima(0,1,1,12) 4 136,25-264,50-249,11 arima(0,1,2) sarima(0,1,1,12) 5 136,50-263,00-243,75 arima(2,1,0) sarima(0,1,1,12) 5 138,26-266,53-247,28 Wszystkie parametry oprócz stałej okazały się istotne statystycznie. Na podstawie tabeli 2 dokonano wyboru modelu arima(1,1,0) sarima(0,1,1,12) ze względu na najmniejszą liczbę parametrów oraz najmniejsze bayesowskie kryterium informacyjne. Przy użyciu testu Portmanteau sprawdzono, czy reszty są białym szumem. Portmanteau test for white noise Portmanteau (Q) statistic = Prob > chi2(40) = Na poziomie istotności 5% odrzucono hipotezę zerową, że reszty są białym szumem. Odrzucono więc wcześniej wybrany model i na podstawie tabeli 4 dokonano kolejnego wyboru. 16

18 Tabela. 4. Bezrobocie końcowe porównanie modeli SARIMA Model df ll AIC BIC arima(2,0,0) sarima(0,1,1,12) 5 137,81-265,63-246,37 arima(2,1,0) sarima(0,1,1,12) 5 138,26-266,53-247,28 W obydwu modelach reszty okazują się białym szumem. Jednak korzystniejsza statystyka testowa wychodzi w przypadku modelu arima(2,1,0) sarima(0,1,1,12), co obok lepszych wszystkich statystyk decyduje o wyborze jako docelowego. Poniżej przedstawione zostały dokładne statystyki. Sample: 1984m2-2012m12 Number of obs = 347 Wald chi2(3) = Log likelihood = Prob > chi2 = DS12. OPG bezrobocie Coef. Std. Err. z P> z [95% Conf. Interval] bezrobocie _cons ARMA ar L L ARMA12 ma L /sigma Model Obs ll(null) ll(model) df AIC BIC

19 Korelogramy reszt dla modelu wyglądają następująco LAG AC PAC Q Prob>Q [Autocorrelation] [Partial Autocor]

20 Dodatkowo przedstawione zostało potwierdzenie, że na podstawie testu Portmanteau reszty są białym szumem. Portmanteau test for white noise Portmanteau (Q) statistic = Prob > chi2(40) = Na poziomie istotności 5% brak podstaw do odrzucenia hipotezy zerowej, a więc reszty są białym szumem Prognoza Wykonano dwunastomiesięczną prognozę dynamiczną dla 2012 r., na następnie porównano wyniki z rzeczywistymi wartościami bezrobocia tego roku. Rysunek 10 przedstawia rzeczywiste wartości oraz prognozę. Rys. 10. Bezrobocie model arima(2,1,0) sarima(0,1,1,12) 19

21 Prognoza za pomocą modelu arima(2,1,0) sarima(0,1,1,12) nie wydaje się być dokładna. Potwierdzają to miary jakości prognoz. Precyzyjnie porównanie oszacowanych wartości przedstawione zostało w tabeli 5. Tabela. 5. Bezrobocie porównanie miar jakości prognoz modeli podwójnego wygładzania wykładniczego, sezonowego Holta-Wintersa oraz arima(2,1,0) sarima(0,1,1,12) Błąd Model Podwójnego wygładzania wykładniczego Sezonowy Holta-Wintersa arima(2,1,0) sarima(0,1,1,12) MSE 0,61 0,02 0,24 MAE 0,76 0,09 0,38 MAPE 9,61% 1,12% 5,26% AMAPE 5,06% 0,55% 2,52% Model arima(2,1,0) sarima(0,1,1,12) okazuje się lepszy od modelu podwójnego wygładzania wykładniczego, gorszy natomiast od sezonowego Holta-Wintersa. Jednak ten ostatni miał narzucone parametry, tak by zminimalizować błędy prognozy, co sugeruje wybór modelu arima(2,1,0) sarima(0,1,1,12), jako docelowego, do szacowania wartości bezrobocia w kolejnych okresach. 20

22 ROZDZIAŁ II Inflacja w Danii w okresie styczeń 1998 r. marzec 2013 r Opis danych Drugim analizowanym szeregiem jest inflacja w Danii w okresie od stycznia 1998 r. do marca 2013 r. włącznie. Jako inflację należy rozumieć zharmonizowane wskaźniki cen konsumpcyjnych (HICP) obliczane są według ujednoliconej metodologii Unii Europejskiej przez kraje członkowskie. Wybrano wariant - zmiana cen (w %) - 12-miesięczna średnia ruchoma. Dane zostały opublikowane na stronie Europejskiego Banku Centralnego, gdzie uaktualniane są ostatniego dnia każdego miesiąca (ostatnia dostępna statystyka pochodzi z marca 2013 r.), jednak dla zachowania ciągłości okresów rocznych zakończono zbiór danych na ostatnim miesiącu 2012 r. Są to statystyki miesięczne, gdzie pierwszym okresem jest styczeń 1998 r., a ostatnim marzec 2013 r., stąd przeprowadzona praca opiera się na 183 obserwacjach (3 ostatnie obserwacje wykorzystywane zostaną tylko do porównania prognoz). Na rysunku 11 przedstawiony został wykres zjawiska. Rys. 11. Inflacja w Danii w okresie styczeń 1998 r. grudzień 2012 r. 21

23 Po analizie wykresu można stwierdzić, że inflacja nie wykazuje trendu, wielokrotnie różnił się kierunek zmian wartości. Na rysunku 12 przedstawiony został wykres inflacji od stycznia 2007 r. Rys. 12. Inflacja w Danii w okresie styczeń 2007 r. grudzień 2012 r. Rysunek 12 potwierdza brak występowania sezonowości, które jest niezauważalne również na rysunku 11 odzwierciedlającym cały okres badanego zjawiska Dekompozycja Eliminacja czynnika sezonowego z szeregu inflacji nastąpiła z użyciem filtru Hodricka- Prescotta. Jest on standardową procedurą, której celem jest określenie długookresowych tendencji w makroekonomicznych szeregach czasowych. Na rysunku 13 przedstawione zostały przebiegi trzech szeregów: oryginalnego inflacji, wygładzonej inflacji po użyciu filtru Hodricka-Prescotta oraz wyodrębnionych wahań. 22

24 Rys. 13. Dekompozycja inflacji 1.7. Modele ekstrapolacyjne Przeprowadzono prognozy za pomocą dwóch modeli: podwójnego wygładzania wykładniczego oraz Holta-Wintersa. Ze względu na brak występowania trendu, jest możliwe, że model podwójnego wygładzania wykładniczego okaże się najlepszy. Prognozy wykonane są na 3 pierwsze miesiące 2013 r. Następnie porównane były z faktycznymi danymi, które zostały już opublikowane, po czym oszacowano błędy prognoz i wybrano najlepszy model Model podwójnego wygładzania wykładniczego Prognoza za pomocą modelu wykładniczego nie jest dobra. Na rysunku 14 przedstawiony jest wykres faktycznej inflacji oraz oszacowanej za pomocą modelu podwójnego wygładzania wykładniczego wraz z prognozą na pierwsze 3 miesiące 2013 r. 23

25 Rys. 14. Inflacja model podwójnego wygładzania wykładniczego Prognoza jest słaba. Potwierdza to między innymi oszacowany średni absolutny błąd procentowy, który wynosi 15,57%. Dokładne miary jakości prognozy przedstawione zostały w tabeli 6. Tabela. 6. Inflacja miary jakości prognozy modelu podwójnego wygładzania wykładniczego Błąd Model Podwójnego wygładzania wykładniczego MSE 0,11 MAE 0,31 MAPE 15,57% AMAPE 7,13% 24

26 Model sezonowy Holta-Wintersa Nie zaobserwowano wahań sezonowych. Wybrana została multiplikatywna wersja modelu Holta-Wintersa. Próby ustalenia parametrów przez oprogramowanie Stata okazały się skuteczne, stąd oszacowano prognozę z parametrami alpha = 0,8406 i beta = 0,7859. Na rysunku 15 przedstawiony jest wykres faktycznej inflacji oraz oszacowanej za pomocą modelu Holta-Wintersa w wersji multiplikatywnej z parametrami kolejno 0,8406 i 0,7859 wraz z prognozą na pierwsze 3 miesiące 2013 r. Rys. 15. Inflacja model Holta-Wintersa w wersji multiplikatywnej Prognoza za pomocą modelu Holta-Wintersa jest minimalnie lepsza niż z użyciem modelu podwójnego wykładniczego, jednak obydwie nie są satysfakcjonujące. Potwierdzają to miary jakości prognoz. Precyzyjnie porównanie oszacowanych wartości przedstawione zostało w tabeli 7. 25

27 Tabela. 7. Inflacja porównanie miar jakości prognoz modeli podwójnego wygładzania wykładniczego i Holta-Wintersa Podwójnego Model wygładzania Błąd wykładniczego Holta-Wintersa MSE 0,11 0,11 MAE 0,31 0,31 MAPE 15,57% 15,53% AMAPE 7,13% 7,11% Przyczyną tak słabej jakość prognoz jest gwałtowny spadek wartości inflacji w trzech pierwszych miesiącach 2013 r. Gdyby oszacowano prognozę przykładowo dla trzech ostatnich miesięcy 2012 r. miary jakości prognoz byłyby dużo lepsze Model ARIMA Celem jest dopasowanie modelu ARIMA do badanego szeregu czasowego. Posłużono się procedurą Boxa-Jenkinsa. Konieczne jest, by analizowana zmienna była w postaci stacjonarnej. Przed przystąpieniem do weryfikacji testowej, sprawdzono autokorelację reszt. Breusch-Godfrey LM test for autocorrelation lags(p) chi2 df Prob > chi H0: no serial correlation 26

28 Dla pierwszych dwunastu opóźnień odrzucamy hipotezę zerową o braku autokorelacji reszt, stąd występuje autokorelacja reszt. Za pomocą rozszerzonego testu Dickeya-Fullera uwzględniającego jedno opóźnienie sprawdzono stacjonarność szeregu. Augmented Dickey-Fuller test for unit root Number of obs = Interpolated Dickey-Fuller Test 1% Critical 5% Critical 10% Critical Statistic Value Value Value Z(t) MacKinnon approximate p-value for Z(t) = Na poziomie istotności 5% odrzucono hipotezę zerową o niestacjonarności szeregu. Postanowiono sprawdzić dodatkowo stacjonarność za pomocą testu KPSS. KPSS test for inflacja Maxlag = 13 chosen by Schwert criterion Autocovariances weighted by Bartlett kernel Critical values for H0: inflacja is trend stationary 10%: % : %: % : Lag order Test statistic

29 Statystyka testowa dla czterech opóźnień jest większa od statystyki krytycznej (na 5% poziomie ufności), a więc odrzucono hipotezę zerową o stacjonarności szeregu. Biorąc pod uwagę test KPSS, zróżnicowano szereg. Na rysunku 16 przedstawiony jest wykres pierwszej różnicy inflacji. Rys. 16. Inflacja pierwsza różnica szeregu Na podstawie rysunku 16 można przypuszczać, że już pierwsza różnica doprowadziła szereg do postaci stacjonarnej. W celu weryfikacji przeprowadzono rozszerzony test Dickeya- Fullera uwzględniający jedno opóźnienie. Augmented Dickey-Fuller test for unit root Number of obs = Interpolated Dickey-Fuller Test 1% Critical 5% Critical 10% Critical Statistic Value Value Value Z(t) MacKinnon approximate p-value for Z(t) =

30 Na poziomie istotności 5% odrzucono hipotezę zerową o niestacjonarności szeregu. Postanowiono sprawdzić dodatkowo stacjonarność za pomocą testu KPSS. KPSS test for inflacja_roznicowana Maxlag = 13 chosen by Schwert criterion Autocovariances weighted by Bartlett kernel Critical values for H0: inflacja_roznicowana is trend stationary 10%: % : %: % : Lag order Test statistic Statystyka testowa dla trzynastu opóźnień jest mniejsza od statystyki krytycznej (na 5% poziomie ufności), a więc brak podstaw do odrzucenia hipotezy zerowej o stacjonarności szeregu Oszacowanie modelu Kolejnym krokiem jest wyznaczenie rzędów części autoregresyjnej (AR) oraz średniej ruchomej (MA) modelu ARIMA. Do tego celu wykorzystane mogą być wykresy funkcji autokorelacji oraz cząstkowej autokorelacji przedstawione na rysunkach 17 i

31 Rys. 17. Inflacja autokorelacja Rys. 18. Inflacja cząstkowa autokorelacja 30

32 Sinusoidalny kształt autokorelacji i istotność dwóch pierwszych wypustek na wykresie PACF sugerowałaby wybór drugiego rzędu regularnego procesu AR. Jednak istotne są również późniejsze wypustki na wykresie PACF, stąd porównano wiele modeli, gdyż, ze względu na niewzorcowy charakter przebiegu wykresów ACF i PACF oraz brak możliwości wygenerowania rozszerzonej funkcji autokorelacji przez oprogramowanie Stata, określenie rzędów regularnych procesów AR i MA było utrudnione. Ostatecznie dokonano wyboru między dwoma porównywalnymi modelami przedstawionymi w tabeli 8. Pozostałe modele zostały odrzucone ze względu na nieistotność niektórych parametrów lub zauważalny brak wystąpienia białego szumu reszt (szczegóły w dofile). Tabela. 8. Inflacja początkowe porównanie modeli ARIMA Model df ll AIC BIC arima(1,1,2) 5 219,74-429,47-413,54 arima(2,1,0) 4 220,47-432,94-420,19 Przypuszczenia odnośnie drugiego rzędu regularnego procesu AR okazały się prawdziwe. Każde kryterium jest korzystniejsze od występującego w konkurencyjnym modelu. Wszystkie parametry oprócz stałej okazały się istotne statystycznie. Na podstawie tabeli 8 dokonano wyboru modelu arima(2,1,0) ze względu na najmniejszą liczbę parametrów, najmniejsze kryteria informacyjne oraz najwyższy logarytm wskaźnika wiarygodności. Przy użyciu testu Portmanteau sprawdzono, czy reszty są białym szumem. Portmanteau test for white noise Portmanteau (Q) statistic = Prob > chi2(40) = Na poziomie istotności 5% odrzucono hipotezę zerową, że reszty są białym szumem. Odrzucono więc wcześniej wybrany model i na podstawie tabeli 7 wybrano model arima(1,1,2). Okazało się, że i w tym przypadku reszty nie są białym szumem. Postanowiono sprawdzić wszystkie kombinacje rzędów regularnych procesów AR i MA. Korzystny wydawał się model arima(2,1,4), jednak jeden parametr oprócz stałej okazał się nieistotny statystycznie - reszty były białym szumem. Poniżej przedstawione zostały dokładne statystyki. 31

33 Sample: 1998m2-2012m12 Number of obs = 179 Wald chi2(6) = Log likelihood = Prob > chi2 = OPG D.inflacja Coef. Std. Err. z P> z [95% Conf. Interval] inflacja _cons ARMA ar L L ma L L L L /sigma Zdecydowano się na wybór modelu z jeszcze większą ilością parametrów. Model arima(3,1,5) miał najmniejsze kryteria informacyjne oraz najwyższy logarytm wskaźnika wiarygodności. Dodatkowo reszty okazały się białym szumem. Tabela 9 przedstawia porównanie modeli arima(2,1,4) i arima(3,1,5). Tabela. 9. Inflacja końcowe porównanie modeli ARIMA Model df ll AIC BIC arima(2,1,4) 8 237,86-459,73-434,23 arima(3,1,5) 9 242,28-466,56-437,88 Korelogramy reszt dla wybranego modelu wyglądają następująco. 32

34 LAG AC PAC Q Prob>Q [Autocorrelation] [Partial Autocor]

35 szumem. Sprawdzono za pomocą testu Portmanteau czy w przypadku tego modelu reszty są białym Portmanteau test for white noise Portmanteau (Q) statistic = Prob > chi2(40) = Na poziomie istotności 5% brak podstaw do odrzucenia hipotezy zerowej, a więc reszty są białym szumem Prognoza Wykonano krótkookresową prognozę dynamiczną dla pierwszych trzech miesięcy 2013 r., na następnie porównano wyniki z rzeczywistymi wartościami bezrobocia odnotowanego w tych miesiącach. Rysunek 19 przedstawia rzeczywiste wartości oraz prognozę. Rys. 19. Inflacja model arima(3,1,5) 34

36 Prognoza za pomocą modelu arima(3,1,5) nie wydaje się być dokładna. Potwierdzają to miary jakości prognoz. Precyzyjnie porównanie oszacowanych wartości przedstawione zostało w tabeli 10. Tabela. 10. Inflacja porównanie miar jakości prognoz modeli podwójnego wygładzania wykładniczego, Holta-Wintersa oraz arima(3,1,5) Błąd Model Podwójnego wygładzania wykładniczego Holta-Wintersa arima(3,1,5) MSE 0,11 0,11 0,13 MAE 0,31 0,31 0,34 MAPE 15,57% 15,53% 16,94% AMAPE 7,13% 7,11% 7,71% Model arima(3,1,5) okazał się gorszy zarówno od modelu podwójnego wygładzania wykładniczego, jak i Holta-Wintersa. Gwałtowny spadek inflacji w pierwszych trzech miesiącach 2013 r. sprawia, że bardzo trudny jest wybór optymalnego modelu. 35

37 ZAKOŃCZENIE Celem pracy było przeanalizowanie dwóch szeregów czasowych sezonowego bezrobocia oraz niesezonowej inflacji. Dla każdego z szeregów dopasowany trzy modele: podwójnego wygładzania wykładniczego, (sezonowego) Holta-Wintersa oraz (S)ARIMA. Przeprowadzono prognozy krótkookresowe dla modeli podwójnego wygładzania wykładniczego oraz (sezonowego) Holta-Wintersa. Dla inflacji oszacowano również prognozę trzymiesięczną ARIMA, w przypadku bezrobocia była to roczna SARIMA. Oszacowane miary błędów prognoz dla inflacji nie dają jednoznacznej odpowiedzi, który model najlepiej wybrać do oszacowania wartości dla kolejnych okresów. W przypadku bezrobocia najbardziej efektywne powinno być skorzystanie z modelu SARIMA lub sezonowego Holta-Wintersa. 36

38 ZESTAWIENIE SPISÓW Spis tabel Tabela 1. Tabela 2. Bezrobocie miary jakości prognozy modelu podwójnego wygładzania wykładniczego... 7 Bezrobocie porównanie miar jakości prognoz modeli podwójnego wygładzania wykładniczego i sezonowego Holta-Wintersa... 9 Tabela 3. Bezrobocie początkowe porównanie modeli SARIMA Tabela 4. Bezrobocie końcowe porównanie modeli SARIMA Tabela 5. Tabela 6. Tabela 7. Bezrobocie porównanie miar jakości prognoz modeli podwójnego wygładzania wykładniczego, sezonowego Holta-Wintersa oraz arima(2,1,0) sarima(0,1,1,12) Inflacja miary jakości prognozy modelu podwójnego wygładzania wykładniczego Inflacja porównanie miar jakości prognoz modeli podwójnego wygładzania wykładniczego i Holta-Wintersa Tabela 8. Inflacja początkowe porównanie modeli ARIMA Tabela 9. Inflacja końcowe porównanie modeli ARIMA Tabela 10. Inflacja porównanie miar jakości prognoz modeli podwójnego wygładzania wykładniczego, Holta-Wintersa oraz arima(3,1,5) Spis rysunków Rys. 1. Bezrobocie w Danii w okresie styczeń 1988 r. grudzień 2012 r Rys. 2. Bezrobocie w Danii w okresie styczeń 2007 r. grudzień 2012 r Rys. 3. Dekompozycja bezrobocia... 6 Rys. 4. Bezrobocie model podwójnego wygładzania wykładniczego... 7 Rys. 5. Bezrobocie model sezonowy Holta-Wintersa w wersji addytywnej... 8 Rys. 6. Bezrobocie zróżnicowane sezonowo Rys. 7. Bezrobocie pierwsza różnica zróżnicowanego sezonowo szeregu

39 Rys. 8. Bezrobocie autokorelacja Rys. 9. Bezrobocie cząstkowa autokorelacja Rys. 10. Bezrobocie model arima(2,1,0) sarima(0,1,1,12) Rys. 11. Inflacja w Danii w okresie styczeń 1998 r. grudzień 2012 r Rys. 12. Inflacja w Danii w okresie styczeń 2007 r. grudzień 2012 r Rys. 13. Dekompozycja inflacji Rys. 14. Inflacja model podwójnego wygładzania wykładniczego Rys. 15. Inflacja model Holta-Wintersa w wersji multiplikatywnej Rys. 16. Inflacja pierwsza różnica szeregu Rys. 17. Inflacja autokorelacja Rys. 18. Inflacja cząstkowa autokorelacja Rys. 19. Inflacja model arima(3,1,5)

Wprowadzenie Model ARMA Sezonowość Prognozowanie Model regresji z błędami ARMA. Modele ARMA

Wprowadzenie Model ARMA Sezonowość Prognozowanie Model regresji z błędami ARMA. Modele ARMA Ważną klasę modeli dynamicznych stanowią modele ARMA(p, q) Ważną klasę modeli dynamicznych stanowią modele ARMA(p, q) Modele tej klasy są modelami ateoretycznymi Ważną klasę modeli dynamicznych stanowią

Bardziej szczegółowo

Przyczynowość Kointegracja. Kointegracja. Kointegracja

Przyczynowość Kointegracja. Kointegracja. Kointegracja korelacja a związek o charakterze przyczynowo-skutkowym korelacja a związek o charakterze przyczynowo-skutkowym Przyczynowość w sensie Grangera Zmienna x jest przyczyną w sensie Grangera zmiennej y jeżeli

Bardziej szczegółowo

1 Modele ADL - interpretacja współczynników

1 Modele ADL - interpretacja współczynników 1 Modele ADL - interpretacja współczynników ZADANIE 1.1 Dany jest proces DL następującej postaci: y t = µ + β 0 x t + β 1 x t 1 + ε t. 1. Wyjaśnić, jaka jest intepretacja współczynników β 0 i β 1. 2. Pokazać

Bardziej szczegółowo

Modele warunkowej heteroscedastyczności

Modele warunkowej heteroscedastyczności Teoria Przykład - zwroty z WIG Niskie koszty transakcyjne Teoria Przykład - zwroty z WIG Niskie koszty transakcyjne Racjonalne oczekiwania inwestorów P t = E(P t+1 I t ) 1 + R (1) Teoria Przykład - zwroty

Bardziej szczegółowo

3. Analiza własności szeregu czasowego i wybór typu modelu

3. Analiza własności szeregu czasowego i wybór typu modelu 3. Analiza własności szeregu czasowego i wybór typu modelu 1. Metody analizy własności szeregu czasowego obserwacji 1.1. Analiza wykresu szeregu czasowego 1.2. Analiza statystyk opisowych zmiennej prognozowanej

Bardziej szczegółowo

Heteroskedastyczość w szeregach czasowyh

Heteroskedastyczość w szeregach czasowyh Heteroskedastyczość w szeregach czasowyh Czesto zakłada się, że szeregi czasowe wykazuja autokorelację ae sa homoskedastyczne W rzeczywistości jednak często wariancja zmienia się w czasie Dobrym przykładem

Bardziej szczegółowo

4. Średnia i autoregresja zmiennej prognozowanej

4. Średnia i autoregresja zmiennej prognozowanej 4. Średnia i autoregresja zmiennej prognozowanej 1. Średnia w próbie uczącej Własności: y = y = 1 N y = y t = 1, 2, T s = s = 1 N 1 y y R = 0 v = s 1 +, 2. Przykład. Miesięczna sprzedaż żelazek (szt.)

Bardziej szczegółowo

O sezonowości mówimy wtedy, gdy zmienna zmienia się w pewnym cyklu zwykle zwiazanym z cyklem rocznym

O sezonowości mówimy wtedy, gdy zmienna zmienia się w pewnym cyklu zwykle zwiazanym z cyklem rocznym Sezonowość O sezonowości mówimy wtedy, gdy zmienna zmienia się w pewnym cyklu zwykle zwiazanym z cyklem rocznym Na przykład zmienne kwartalne charakteryzuja się zwykle sezonowościa kwartalna a zmienne

Bardziej szczegółowo

7.4 Automatyczne stawianie prognoz

7.4 Automatyczne stawianie prognoz szeregów czasowych za pomocą pakietu SPSS Następnie korzystamy z menu DANE WYBIERZ OBSERWACJE i wybieramy opcję WSZYSTKIE OBSERWACJE (wówczas wszystkie obserwacje są aktywne). Wreszcie wybieramy z menu

Bardziej szczegółowo

Diagnostyka w Pakiecie Stata

Diagnostyka w Pakiecie Stata Karol Kuhl Zgodnie z twierdzeniem Gaussa-Markowa, estymator MNK w KMRL jest liniowym estymatorem efektywnym i nieobciążonym, co po angielsku opisuje się za pomocą wyrażenia BLUE Best Linear Unbiased Estimator.

Bardziej szczegółowo

Jednowskaźnikowy model Sharpe`a

Jednowskaźnikowy model Sharpe`a Uniwersytet Warszawski Wydział Nauk Ekonomicznych Milena Jamroziak i Paweł Androszczuk Model ekonometryczny Jednowskaźnikowy model Sharpe`a dla akcji Amici Praca zaliczeniowa napisana pod kierunkiem mgr

Bardziej szczegółowo

Testy własności składnika losowego Testy formy funkcyjnej. Diagnostyka modelu. Część 2. Diagnostyka modelu

Testy własności składnika losowego Testy formy funkcyjnej. Diagnostyka modelu. Część 2. Diagnostyka modelu Część 2 Test Durbina-Watsona Test Durbina-Watsona Weryfikowana hipoteza H 0 : cov(ε t, ε t 1 ) = 0 H 1 : cov(ε t, ε t 1 ) 0 Test Durbina-Watsona Weryfikowana hipoteza H 0 : cov(ε t, ε t 1 ) = 0 H 1 : cov(ε

Bardziej szczegółowo

Zadanie 1 1. Czy wykresy zmiennych sugerują, że zmienne są stacjonarne. Czy występuje sezonowość?

Zadanie 1 1. Czy wykresy zmiennych sugerują, że zmienne są stacjonarne. Czy występuje sezonowość? Zadanie 1 1. Czy wykresy zmiennych sugerują, że zmienne są stacjonarne. Czy występuje sezonowość? Wykres stopy bezrobocia rejestrowanego w okresie 01.1998 12.2008, dane Polskie 22 20 18 16 stopa 14 12

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Zajęcia 15-16

Stanisław Cichocki. Natalia Nehrebecka. Zajęcia 15-16 Stanisław Cichocki Natalia Nehrebecka Zajęcia 15-16 1 1. Sezonowość 2. Zmienne stacjonarne 3. Zmienne zintegrowane 4. Test Dickey-Fullera 5. Rozszerzony test Dickey-Fullera 6. Test KPSS 7. Regresja pozorna

Bardziej szczegółowo

Egzamin z ekonometrii wersja IiE, MSEMAT

Egzamin z ekonometrii wersja IiE, MSEMAT Egzamin z ekonometrii wersja IiE, MSEMAT 04-02-2016 Pytania teoretyczne 1. Za pomocą jakiego testu weryfikowana jest normalność składnika losowego? Jakiemu założeniu KMRL odpowiada w tym teście? Jakie

Bardziej szczegółowo

1. Stacjonarnośd i niestacjonarnośd szeregów czasowych 2. Test ADF i test KPSS 3. Budowa modeli ARMA dla zmiennych niestacjonarnych 4.

1. Stacjonarnośd i niestacjonarnośd szeregów czasowych 2. Test ADF i test KPSS 3. Budowa modeli ARMA dla zmiennych niestacjonarnych 4. 1. Stacjonarnośd i niestacjonarnośd szeregów czasowych 2. Test ADF i test KPSS 3. Budowa modeli ARMA dla zmiennych niestacjonarnych 4. Prognozowanie stóp zwrotu na podstawie modeli ARMA 5. Relacje kointegrujące

Bardziej szczegółowo

Ekonometria Wykład 5. Procesy stochastyczne, stacjonarność, integracja. Dr Michał Gradzewicz Katedra Ekonomii I KAE

Ekonometria Wykład 5. Procesy stochastyczne, stacjonarność, integracja. Dr Michał Gradzewicz Katedra Ekonomii I KAE Ekonometria Wykład 5. Procesy stochastyczne, stacjonarność, integracja Dr Michał Gradzewicz Katedra Ekonomii I KAE Ekonometria szeregów czasowych Procesy stochastyczne Stacjonarność i biały szum Niestacjonarność:

Bardziej szczegółowo

Przykład 2. Stopa bezrobocia

Przykład 2. Stopa bezrobocia Przykład 2 Stopa bezrobocia Stopa bezrobocia. Komentarz: model ekonometryczny stopy bezrobocia w Polsce jest modelem nieliniowym autoregresyjnym. Podobnie jak model podaŝy pieniądza zbudowany został w

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Wykład 1

Stanisław Cichocki Natalia Nehrebecka. Wykład 1 Stanisław Cichocki Natalia Nehrebecka Wykład 1 1 1. Sprawy organizacyjne Zasady zaliczenia Ćwiczenia Literatura 2. Obciążenie Lovella 3. Metoda od ogólnego do szczególnego 4. Kryteria informacyjne 2 1.

Bardziej szczegółowo

Modele ARIMA prognoza, specykacja

Modele ARIMA prognoza, specykacja Modele ARIMA prognoza, specykacja Wst p do ekonometrii szeregów czasowych wiczenia 3 5 marca 2010 Plan prezentacji 1 Specykacja modelu ARIMA 2 3 Plan prezentacji 1 Specykacja modelu ARIMA 2 3 Funkcja autokorelacji

Bardziej szczegółowo

MODELE AUTOREGRESYJNE W PROGNOZOWANIU CEN ZBÓŻ W POLSCE

MODELE AUTOREGRESYJNE W PROGNOZOWANIU CEN ZBÓŻ W POLSCE METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XI/2, 2010, str. 254 263 MODELE AUTOREGRESYJNE W PROGNOZOWANIU CEN ZBÓŻ W POLSCE Agnieszka Tłuczak Zakład Ekonometrii i Metod Ilościowych, Wydział Ekonomiczny

Bardziej szczegółowo

PROGNOZOWANIE PRZYCHODÓW ZE SPRZEDAŻY

PROGNOZOWANIE PRZYCHODÓW ZE SPRZEDAŻY Joanna Chrabołowska Joanicjusz Nazarko PROGNOZOWANIE PRZYCHODÓW ZE SPRZEDAŻY NA PRZYKŁADZIE PRZEDSIĘBIORSTWA HANDLOWEGO TYPU CASH & CARRY Wprowadzenie Wśród wielu prognoz szczególną rolę w zarządzaniu

Bardziej szczegółowo

Egzamin z Ekonometrii

Egzamin z Ekonometrii Pytania teoretyczne Egzamin z Ekonometrii 18.06.2015 1. Opisać procedurę od ogólnego do szczegółowego na przykładzie doboru liczby opóźnień w modelu. 2. Na czym polega najważniejsza różnica między testowaniem

Bardziej szczegółowo

Ekonometria. Modelowanie szeregów czasowych. Stacjonarność. Testy pierwiastka jednostkowego. Modele ARDL. Kointegracja. Jakub Mućk

Ekonometria. Modelowanie szeregów czasowych. Stacjonarność. Testy pierwiastka jednostkowego. Modele ARDL. Kointegracja. Jakub Mućk Ekonometria Modelowanie szeregów czasowych. Stacjonarność. Testy pierwiastka jednostkowego. Modele ARDL. Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Ćwiczenia 5 & 6 Szaeregi czasowe 1

Bardziej szczegółowo

Ekonometria. Metodologia budowy modelu. Jerzy Mycielski. Luty, 2011 WNE, UW. Jerzy Mycielski (WNE, UW) Ekonometria Luty, / 18

Ekonometria. Metodologia budowy modelu. Jerzy Mycielski. Luty, 2011 WNE, UW. Jerzy Mycielski (WNE, UW) Ekonometria Luty, / 18 Ekonometria Metodologia budowy modelu Jerzy Mycielski WNE, UW Luty, 2011 Jerzy Mycielski (WNE, UW) Ekonometria Luty, 2011 1 / 18 Sprawy organizacyjne Dyżur: środa godz. 14-15 w sali 302. Strona internetowa

Bardziej szczegółowo

Analiza autokorelacji

Analiza autokorelacji Analiza autokorelacji Oblicza się wartości współczynników korelacji między y t oraz y t-i (dla i=1,2,...,k), czyli współczynniki autokorelacji różnych rzędów. Bada się statystyczną istotność tych współczynników.

Bardziej szczegółowo

Ćwiczenia IV

Ćwiczenia IV Ćwiczenia IV - 17.10.2007 1. Spośród podanych macierzy X wskaż te, których nie można wykorzystać do estymacji MNK parametrów modelu ekonometrycznego postaci y = β 0 + β 1 x 1 + β 2 x 2 + ε 2. Na podstawie

Bardziej szczegółowo

Estymacja modeli ARIMA przy uŝyciu Staty oraz Integracja i kointegracja. Grzegorz Ogonek KSiE WNE UW

Estymacja modeli ARIMA przy uŝyciu Staty oraz Integracja i kointegracja. Grzegorz Ogonek KSiE WNE UW Estymacja modeli ARIMA przy uŝyciu Staty oraz Integracja i kointegracja Grzegorz Ogonek KSiE WNE UW 26.02.2005 Budowa modelu ARIMA dla szeregu czasowego PPI (Producer Price Index) dla Polski dla okresu

Bardziej szczegółowo

Magdalena Gańko Rafał Janaczek. Model ekonometryczny. Zastosowanie mechanizmu korekty błędem w modelowaniu kursu walutowego

Magdalena Gańko Rafał Janaczek. Model ekonometryczny. Zastosowanie mechanizmu korekty błędem w modelowaniu kursu walutowego Magdalena Gańko Rafał Janaczek Model ekonometryczny Zastosowanie mechanizmu korekty błędem w modelowaniu kursu walutowego Warszawa 2006 Spis treści Wstęp...3 Rozdział I Podstawowe informacje teoretyczne...4

Bardziej szczegółowo

Stanisław Cichocki. Natalia Neherbecka. Zajęcia 13

Stanisław Cichocki. Natalia Neherbecka. Zajęcia 13 Stanisław Cichocki Natalia Neherbecka Zajęcia 13 1 1. Kryteria informacyjne 2. Testowanie autokorelacji 3. Modele dynamiczne: modele o rozłożonych opóźnieniach (DL) modele autoregresyjne o rozłożonych

Bardziej szczegółowo

Egzamin z ekonometrii wersja IiE, MSEMAT

Egzamin z ekonometrii wersja IiE, MSEMAT Pytania teoretyczne Egzamin z ekonometrii wersja IiE, MSEMAT 08-02-2017 1. W jaki sposób przeprowadzamy test Chowa? 2. Pokazać, że jest nieobciążonym estymatorem. 3. Udowodnić, że w modelu ze stałą TSSESS+RSS.

Bardziej szczegółowo

Egzamin z ekonometrii wersja ogolna

Egzamin z ekonometrii wersja ogolna Egzamin z ekonometrii wersja ogolna 04-02-2016 Pytania teoretyczne 1. Wymienić założenia Klasycznego Modelu Regresji Liniowej (KMRL). 2. Wyprowadzić estymator MNK dla modelu z wieloma zmiennymi objaśniającymi.

Bardziej szczegółowo

Modelowanie zachowania kursu EURUSD po ogłoszeniu odczytu US Nonfarm Payrolls z wykorzystaniem modeli ARIMA-GARCH

Modelowanie zachowania kursu EURUSD po ogłoszeniu odczytu US Nonfarm Payrolls z wykorzystaniem modeli ARIMA-GARCH Raport 10/2015 Modelowanie zachowania kursu EURUSD po ogłoszeniu odczytu US Nonfarm Payrolls z wykorzystaniem modeli ARIMA-GARCH autor: Michał Osmoła INIME Instytut nauk informatycznych i matematycznych

Bardziej szczegółowo

2. Założenie niezależności zakłóceń modelu - autokorelacja składnika losowego - test Durbina - Watsona

2. Założenie niezależności zakłóceń modelu - autokorelacja składnika losowego - test Durbina - Watsona Sprawdzanie założeń przyjętych o modelu (etap IIIC przyjętego schematu modelowania regresyjnego) 1. Szum 2. Założenie niezależności zakłóceń modelu - autokorelacja składnika losowego - test Durbina - Watsona

Bardziej szczegółowo

Niestacjonarne zmienne czasowe własności i testowanie

Niestacjonarne zmienne czasowe własności i testowanie Materiał dla studentów Niestacjonarne zmienne czasowe własności i testowanie (studium przypadku) Część 3: Przykłady testowania niestacjonarności Nazwa przedmiotu: ekonometria finansowa I (22204), analiza

Bardziej szczegółowo

Co trzeba wiedzieć korzystając z modelu ARIMA i które parametry są kluczowe?

Co trzeba wiedzieć korzystając z modelu ARIMA i które parametry są kluczowe? Prognozowanie Co trzeba wiedzieć korzystając z modelu ARIMA Marta Płonka Predictive Solutions W trzecim już artykule dotyczącym szeregów czasowych przyjrzymy się modelom ARIMA. Dzisiaj skupimy się na metodzie

Bardziej szczegółowo

Podczas zajęć będziemy zajmować się głownie procesami ergodycznymi zdefiniowanymi na przestrzeniach ciągłych.

Podczas zajęć będziemy zajmować się głownie procesami ergodycznymi zdefiniowanymi na przestrzeniach ciągłych. Trochę teorii W celu przeprowadzenia rygorystycznej ekonometrycznej analizy szeregu finansowego będziemy traktowali obserwowany ciąg danych (x 1, x 2,..., x T ) jako realizację pewnego procesu stochastycznego.

Bardziej szczegółowo

MODELE ARIMA W PROGNOZOWANIU SPRZEDAŻY***

MODELE ARIMA W PROGNOZOWANIU SPRZEDAŻY*** ZAGADNIENIA TECHNICZNO-EKONOMICZNE Tom 48 Zeszyt 3 2003 Joanna Chrabołowska*, Joanicjusz Nazarko** MODELE ARIMA W PROGNOZOWANIU SPRZEDAŻY*** W artykule przedstawiono metodykę budowy modeli ARIMA oraz ich

Bardziej szczegółowo

Ekonometria egzamin 02/02/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora.

Ekonometria egzamin 02/02/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora. imię, nazwisko, nr indeksu: Ekonometria egzamin 0/0/0. Egzamin trwa 90 minut.. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu. Złamanie

Bardziej szczegółowo

Ekonometria. Modelowanie szeregów czasowych. Stacjonarność. Testy pierwiastka jednostkowego. Modele ARDL. Kointegracja. Jakub Mućk

Ekonometria. Modelowanie szeregów czasowych. Stacjonarność. Testy pierwiastka jednostkowego. Modele ARDL. Kointegracja. Jakub Mućk Ekonometria Modelowanie szeregów czasowych. Stacjonarność. Testy pierwiastka jednostkowego. Modele ARDL. Kointegracja Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Wykład 5 & 6 Szaeregi

Bardziej szczegółowo

Ekonometria ćwiczenia 3. Prowadzący: Sebastian Czarnota

Ekonometria ćwiczenia 3. Prowadzący: Sebastian Czarnota Ekonometria ćwiczenia 3 Prowadzący: Sebastian Czarnota Strona - niezbędnik http://sebastianczarnota.com/sgh/ Normalność rozkładu składnika losowego Brak normalności rozkładu nie odbija się na jakości otrzymywanych

Bardziej szczegółowo

Szeregi czasowe, analiza zależności krótkoi długozasięgowych

Szeregi czasowe, analiza zależności krótkoi długozasięgowych Szeregi czasowe, analiza zależności krótkoi długozasięgowych Rafał Weron rweron@im.pwr.wroc.pl Definicje Mając dany proces {X t } autokowariancję definiujemy jako : γ(t, t ) = cov(x t, X t ) = = E[(X t

Bardziej szczegółowo

FORECASTING THE DISTRIBUTION OF AMOUNT OF UNEMPLOYED BY THE REGIONS

FORECASTING THE DISTRIBUTION OF AMOUNT OF UNEMPLOYED BY THE REGIONS FOLIA UNIVERSITATIS AGRICULTURAE STETINENSIS Folia Univ. Agric. Stetin. 007, Oeconomica 54 (47), 73 80 Mateusz GOC PROGNOZOWANIE ROZKŁADÓW LICZBY BEZROBOTNYCH WEDŁUG MIAST I POWIATÓW FORECASTING THE DISTRIBUTION

Bardziej szczegółowo

OBLICZENIE PRZEPŁYWÓW MAKSYMALNYCH ROCZNYCH O OKREŚLONYM PRAWDOPODOBIEŃSTWIE PRZEWYŻSZENIA. z wykorzystaniem programu obliczeniowego Q maxp

OBLICZENIE PRZEPŁYWÓW MAKSYMALNYCH ROCZNYCH O OKREŚLONYM PRAWDOPODOBIEŃSTWIE PRZEWYŻSZENIA. z wykorzystaniem programu obliczeniowego Q maxp tel.: +48 662 635 712 Liczba stron: 15 Data: 20.07.2010r OBLICZENIE PRZEPŁYWÓW MAKSYMALNYCH ROCZNYCH O OKREŚLONYM PRAWDOPODOBIEŃSTWIE PRZEWYŻSZENIA z wykorzystaniem programu obliczeniowego Q maxp DŁUGIE

Bardziej szczegółowo

Indeksy dynamiki (o stałej i zmiennej podstawie)

Indeksy dynamiki (o stałej i zmiennej podstawie) Indeksy dynamiki (o stałej i zmiennej podstawie) Proste indeksy dynamiki określają tempo zmian pojedynczego szeregu czasowego. Wyodrębnia się dwa podstawowe typy indeksów: indeksy o stałej podstawie; indeksy

Bardziej szczegółowo

Testowanie stopnia zintegrowania. czasowego. Wst p do ekonometrii szeregów czasowych wiczenia 1. Andrzej Torój. 19 lutego 2010

Testowanie stopnia zintegrowania. czasowego. Wst p do ekonometrii szeregów czasowych wiczenia 1. Andrzej Torój. 19 lutego 2010 szeregu czasowego Wst p do ekonometrii szeregów czasowych wiczenia 1 19 lutego 2010 Plan prezentacji 1 Szereg czasowy, poj cie stacjonarno±ci 2 3 4 5 6 7 Plan prezentacji 1 Szereg czasowy, poj cie stacjonarno±ci

Bardziej szczegółowo

3. Modele tendencji czasowej w prognozowaniu

3. Modele tendencji czasowej w prognozowaniu II Modele tendencji czasowej w prognozowaniu 1 Składniki szeregu czasowego W teorii szeregów czasowych wyróżnia się zwykle następujące składowe szeregu czasowego: a) składowa systematyczna; b) składowa

Bardziej szczegółowo

Analiza Danych Sprawozdanie regresja Marek Lewandowski Inf 59817

Analiza Danych Sprawozdanie regresja Marek Lewandowski Inf 59817 Analiza Danych Sprawozdanie regresja Marek Lewandowski Inf 59817 Zadanie 1: wiek 7 8 9 1 11 11,5 12 13 14 14 15 16 17 18 18,5 19 wzrost 12 122 125 131 135 14 142 145 15 1 154 159 162 164 168 17 Wykres

Bardziej szczegółowo

EKONOMETRIA STOSOWANA PRZYKŁADOWE ZADANIA EGZAMINACYJNE

EKONOMETRIA STOSOWANA PRZYKŁADOWE ZADANIA EGZAMINACYJNE EKONOMETRIA STOSOWANA PRZYKŁADOWE ZADANIA EGZAMINACYJNE ZADANIE 1 Oszacowano zależność między luką popytowa a stopą inflacji dla gospodarki niemieckiej. Wyniki estymacji są następujące: Estymacja KMNK,

Bardziej szczegółowo

Ekonometryczna analiza popytu na wodę

Ekonometryczna analiza popytu na wodę Jacek Batóg Uniwersytet Szczeciński Ekonometryczna analiza popytu na wodę Jednym z czynników niezbędnych dla funkcjonowania gospodarstw domowych oraz realizacji wielu procesów technologicznych jest woda.

Bardziej szczegółowo

Niestacjonarne zmienne czasowe własności i testowanie

Niestacjonarne zmienne czasowe własności i testowanie Materiał dla studentów Niestacjonarne zmienne czasowe własności i testowanie (studium przypadku) Część 1: Opis ogólny i plan pracy Nazwa przedmiotu: ekonometria finansowa I (22204), analiza szeregów czasowych

Bardziej szczegółowo

Model 1: Estymacja KMNK z wykorzystaniem 32 obserwacji 1964-1995 Zmienna zależna: st_g

Model 1: Estymacja KMNK z wykorzystaniem 32 obserwacji 1964-1995 Zmienna zależna: st_g Zadanie 1 Dla modelu DL dla zależności stopy wzrostu konsumpcji benzyny od stopy wzrostu dochodu oraz od stopy wzrostu cen benzyny w latach 1960 i 1995 otrzymaliśmy następujące oszacowanie parametrów.

Bardziej szczegółowo

1 Metoda Najmniejszych Kwadratów (MNK) 2 Interpretacja parametrów modelu. 3 Klasyczny Model Regresji Liniowej (KMRL)

1 Metoda Najmniejszych Kwadratów (MNK) 2 Interpretacja parametrów modelu. 3 Klasyczny Model Regresji Liniowej (KMRL) 1 Metoda Najmniejszych Kwadratów (MNK) 1. Co to jest zmienna endogeniczna, a co to zmienne egzogeniczna? 2. Podaj postać macierzy obserwacji dla modelu y t = a + bt + ε t 3. Co to jest wartość dopasowana,

Bardziej szczegółowo

Metoda Johansena objaśnienia i przykłady

Metoda Johansena objaśnienia i przykłady Metoda Johansena objaśnienia i przykłady Model wektorowej autoregresji rzędu p, VAR(p), ma postad gdzie oznacza wektor zmiennych endogenicznych modelu. Model VAR jest stabilny, jeżeli dla, tzn. wielomian

Bardziej szczegółowo

Proces modelowania zjawiska handlu zagranicznego towarami

Proces modelowania zjawiska handlu zagranicznego towarami Załącznik nr 1 do raportu końcowego z wykonania pracy badawczej pt. Handel zagraniczny w województwach (NTS2) realizowanej przez Centrum Badań i Edukacji Statystycznej z siedzibą w Jachrance na podstawie

Bardziej szczegółowo

Wykład 10 (12.05.08). Testowanie hipotez w rodzinie rozkładów normalnych przypadek nieznanego odchylenia standardowego

Wykład 10 (12.05.08). Testowanie hipotez w rodzinie rozkładów normalnych przypadek nieznanego odchylenia standardowego Wykład 10 (12.05.08). Testowanie hipotez w rodzinie rozkładów normalnych przypadek nieznanego odchylenia standardowego Przykład Cena metra kwadratowego (w tys. zł) z dla 14 losowo wybranych mieszkań w

Bardziej szczegółowo

Ekonometria dla IiE i MSEMat Z7

Ekonometria dla IiE i MSEMat Z7 Ekonometria dla IiE i MSEMat Z7 Rafał Woźniak Faculty of Economic Sciences, University of Warsaw Warszawa, 21-11-2016 Na podstawie zbioru danych cps_small.dat z książki Principles of Econometrics oszacowany

Bardziej szczegółowo

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego

Bardziej szczegółowo

Ekonometria egzamin 02/02/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora.

Ekonometria egzamin 02/02/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora. imię, nazwisko, nr indeksu: Ekonometria egzamin 02/02/2011 1. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu.

Bardziej szczegółowo

Tadeusz Kufel Uniwersytet Mikołaja Kopernika w Toruniu. Narzędzia ekonometrii dynamicznej w oprogramowaniu GRETL

Tadeusz Kufel Uniwersytet Mikołaja Kopernika w Toruniu. Narzędzia ekonometrii dynamicznej w oprogramowaniu GRETL DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnopolskie Seminarium Naukowe, 6 8 września 2005 w Toruniu Katedra Ekonometrii i Statystyki, Uniwersytet Mikołaja Kopernika w Toruniu Uniwersytet Mikołaja Kopernika

Bardziej szczegółowo

Outlier to dana (punkt, obiekt, wartośd w zbiorze) znacznie odstająca od reszty. prezentacji punktów odstających jest rysunek poniżej.

Outlier to dana (punkt, obiekt, wartośd w zbiorze) znacznie odstająca od reszty. prezentacji punktów odstających jest rysunek poniżej. Temat: WYKRYWANIE ODCHYLEO W DANYCH Outlier to dana (punkt, obiekt, wartośd w zbiorze) znacznie odstająca od reszty. prezentacji punktów odstających jest rysunek poniżej. Przykładem Box Plot wygodną metodą

Bardziej szczegółowo

Projekt zaliczeniowy z Ekonometrii i prognozowania Wyższa Szkoła Bankowa w Toruniu 2014/2015

Projekt zaliczeniowy z Ekonometrii i prognozowania Wyższa Szkoła Bankowa w Toruniu 2014/2015 Projekt zaliczeniowy z Ekonometrii i prognozowania Wyższa Szkoła Bankowa w Toruniu 2014/2015 Nr indeksu... Imię i Nazwisko... Nr grupy ćwiczeniowej... Imię i Nazwisko prowadzącego... 1. Specyfikacja modelu

Bardziej szczegółowo

Porównanie generatorów liczb losowych wykorzystywanych w arkuszach kalkulacyjnych

Porównanie generatorów liczb losowych wykorzystywanych w arkuszach kalkulacyjnych dr Piotr Sulewski POMORSKA AKADEMIA PEDAGOGICZNA W SŁUPSKU KATEDRA INFORMATYKI I STATYSTYKI Porównanie generatorów liczb losowych wykorzystywanych w arkuszach kalkulacyjnych Wprowadzenie Obecnie bardzo

Bardziej szczegółowo

Wydział Nauk Ekonomicznych Uniwersytet Warszawski

Wydział Nauk Ekonomicznych Uniwersytet Warszawski Wydział Nauk Ekonomicznych Uniwersytet Warszawski Model ekonometryczny ADL: Wpływ czynników ekonomicznych i pozaekonomicznych na liczbę popełnianych zabójstw z użyciem broni palnej w Australii Warszawa,

Bardziej szczegółowo

Analiza sezonowości. Sezonowość może mieć charakter addytywny lub multiplikatywny

Analiza sezonowości. Sezonowość może mieć charakter addytywny lub multiplikatywny Analiza sezonowości Wiele zjawisk charakteryzuje się nie tylko trendem i wahaniami przypadkowymi, lecz także pewną sezonowością. Występowanie wahań sezonowych może mieć charakter kwartalny, miesięczny,

Bardziej szczegółowo

Plan wykładu: 1) Pojęcie stacjonarności i niestacjonarności zmiennych 2) Testowanie integracji 3) Pojęcie kointegracji metoda Engle a-grangera.

Plan wykładu: 1) Pojęcie stacjonarności i niestacjonarności zmiennych 2) Testowanie integracji 3) Pojęcie kointegracji metoda Engle a-grangera. 1 Plan wykładu: 1) Pojęcie stacjonarności i niestacjonarności zmiennych 2) Testowanie integracji 3) Pojęcie kointegracji metoda Engle a-grangera. Pojęcie stacjonarności i niestacjonarności zmiennych Szereg

Bardziej szczegółowo

Ekonometria. Prognozowanie ekonometryczne, ocena stabilności oszacowań parametrów strukturalnych. Jakub Mućk. Katedra Ekonomii Ilościowej

Ekonometria. Prognozowanie ekonometryczne, ocena stabilności oszacowań parametrów strukturalnych. Jakub Mućk. Katedra Ekonomii Ilościowej Ekonometria Prognozowanie ekonometryczne, ocena stabilności oszacowań parametrów strukturalnych Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Wykład 4 Prognozowanie, stabilność 1 / 17 Agenda

Bardziej szczegółowo

Ekonometria dynamiczna i finansowa Kod przedmiotu

Ekonometria dynamiczna i finansowa Kod przedmiotu Ekonometria dynamiczna i finansowa - opis przedmiotu Informacje ogólne Nazwa przedmiotu Ekonometria dynamiczna i finansowa Kod przedmiotu 11.5-WK-IiED-EDF-W-S14_pNadGenMOT56 Wydział Kierunek Wydział Matematyki,

Bardziej szczegółowo

Projekt z Ekonometrii Dynamicznej

Projekt z Ekonometrii Dynamicznej Projekt z Ekonometrii Dynamicznej Tomasz Tymecki L.p. Nazwa 1 KGHM 2 ORBIS 3 FERRUM 4 VISTULA 5 BORYSZEW 6 MOSTOSTALZAB 7 BYTOM 8 FORTE 9 PRÓCHNIK 1 ŻYWIEC 11 Indeks WIG 12 Indeks WIG2 Spis treści I. Analiza

Bardziej szczegółowo

Teoretyczne podstawy analizy indeksowej klasyfikacja indeksów, konstrukcja, zastosowanie

Teoretyczne podstawy analizy indeksowej klasyfikacja indeksów, konstrukcja, zastosowanie Teoretyczne podstawy analizy indeksowej klasyfikacja indeksów, konstrukcja, zastosowanie Szkolenie dla pracowników Urzędu Statystycznego nt. Wybrane metody statystyczne w analizach makroekonomicznych dr

Bardziej szczegółowo

Prognozowanie na podstawie modelu ekonometrycznego

Prognozowanie na podstawie modelu ekonometrycznego Prognozowanie na podstawie modelu ekonometrycznego Przykład. Firma usługowa świadcząca usługi doradcze w ostatnich kwartałach (t) odnotowała wynik finansowy (yt - tys. zł), obsługując liczbę klientów (x1t)

Bardziej szczegółowo

Zagadnienie 1: Prognozowanie za pomocą modeli liniowych i kwadratowych przy wykorzystaniu Analizy regresji wielorakiej w programie STATISTICA

Zagadnienie 1: Prognozowanie za pomocą modeli liniowych i kwadratowych przy wykorzystaniu Analizy regresji wielorakiej w programie STATISTICA Zagadnienie 1: Prognozowanie za pomocą modeli liniowych i kwadratowych przy wykorzystaniu Analizy regresji wielorakiej w programie STATISTICA Zadanie 1 (Plik danych: Transport w Polsce (1990-2015)) Na

Bardziej szczegółowo

parametrów strukturalnych modelu = Y zmienna objaśniana, X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających,

parametrów strukturalnych modelu = Y zmienna objaśniana, X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających, 诲 瞴瞶 瞶 ƭ0 ƭ 瞰 parametrów strukturalnych modelu Y zmienna objaśniana, = + + + + + X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających, α 0, α 1, α 2,,α k parametry strukturalne modelu, k+1 parametrów

Bardziej szczegółowo

Wykład 3 Hipotezy statystyczne

Wykład 3 Hipotezy statystyczne Wykład 3 Hipotezy statystyczne Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu obserwowanej zmiennej losowej (cechy populacji generalnej) Hipoteza zerowa (H 0 ) jest hipoteza

Bardziej szczegółowo

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

Statystyka matematyczna i ekonometria

Statystyka matematyczna i ekonometria Statystyka matematyczna i ekonometria Wykład 9 Anna Skowrońska-Szmer lato 2016/2017 Ekonometria (Gładysz B., Mercik J., Modelowanie ekonometryczne. Studium przypadku, Wydawnictwo PWr., Wrocław 2004.) 2

Bardziej szczegółowo

SIGMA KWADRAT. Weryfikacja hipotez statystycznych. Statystyka i demografia CZWARTY LUBELSKI KONKURS STATYSTYCZNO-DEMOGRAFICZNY

SIGMA KWADRAT. Weryfikacja hipotez statystycznych. Statystyka i demografia CZWARTY LUBELSKI KONKURS STATYSTYCZNO-DEMOGRAFICZNY SIGMA KWADRAT CZWARTY LUBELSKI KONKURS STATYSTYCZNO-DEMOGRAFICZNY Weryfikacja hipotez statystycznych Statystyka i demografia PROJEKT DOFINANSOWANY ZE ŚRODKÓW NARODOWEGO BANKU POLSKIEGO URZĄD STATYSTYCZNY

Bardziej szczegółowo

Badanie zależności skala nominalna

Badanie zależności skala nominalna Badanie zależności skala nominalna I. Jak kształtuje się zależność miedzy płcią a wykształceniem? II. Jak kształtuje się zależność między płcią a otyłością (opis BMI)? III. Jak kształtuje się zależność

Bardziej szczegółowo

Analiza metod prognozowania kursów akcji

Analiza metod prognozowania kursów akcji Analiza metod prognozowania kursów akcji Izabela Łabuś Wydział InŜynierii Mechanicznej i Informatyki Kierunek informatyka, Rok V Specjalność informatyka ekonomiczna Politechnika Częstochowska izulka184@o2.pl

Bardziej szczegółowo

Przykład 1 ceny mieszkań

Przykład 1 ceny mieszkań Przykład ceny mieszkań Przykład ceny mieszkań Model ekonometryczny zaleŝności ceny mieszkań od metraŝu - naleŝy do klasy modeli nieliniowych. - weryfikację empiryczną modelu przeprowadzono na przykładzie

Bardziej szczegółowo

1.9 Czasowy wymiar danych

1.9 Czasowy wymiar danych 1.9 Czasowy wymiar danych Do tej pory rozpatrywaliśmy jedynie modele tworzone na podstawie danych empirycznych pochodzących z prób przekrojowych. Teraz zajmiemy się zagadnieniem budowy modeli regresji,

Bardziej szczegółowo

2.6 Zmienne stacjonarne i niestacjonarne 2.6. ZMIENNE STACJONARNE I NIESTACJONARNE 33. RYSUNEK 2.6: PKB w wyrażeniu realnym

2.6 Zmienne stacjonarne i niestacjonarne 2.6. ZMIENNE STACJONARNE I NIESTACJONARNE 33. RYSUNEK 2.6: PKB w wyrażeniu realnym 2.6. ZMIENNE STACJONARNE I NIESTACJONARNE 33 tale. Rysunek 2.6 ilustruje sezonowość w logarytmie PKB w wyrażeniu realnym. Realny PKB został uzyskany poprzez zdeflowanie nominalnego PKB przez indeks cen

Bardziej szczegółowo

166 Wstęp do statystyki matematycznej

166 Wstęp do statystyki matematycznej 166 Wstęp do statystyki matematycznej Etap trzeci realizacji procesu analizy danych statystycznych w zasadzie powinien rozwiązać nasz zasadniczy problem związany z identyfikacją cechy populacji generalnej

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący

Bardziej szczegółowo

Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r

Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r Statystyka matematyczna Testowanie hipotez i estymacja parametrów Wrocław, 18.03.2016r Plan wykładu: 1. Testowanie hipotez 2. Etapy testowania hipotez 3. Błędy 4. Testowanie wielokrotne 5. Estymacja parametrów

Bardziej szczegółowo

Prognoza wybranych wskaźników rozwoju obrotu bezgotówkowego na lata 2014 2020

Prognoza wybranych wskaźników rozwoju obrotu bezgotówkowego na lata 2014 2020 Prognoza wybranych wskaźników rozwoju obrotu bezgotówkowego na lata 2014 2020 Mariusz Kozakiewicz i Marek Kwas Szkoła Główna Handlowa 18 grudnia 2014 Spis treści Prognoza wybranych wskaźników rozwoju obrotu

Bardziej szczegółowo

Testowanie hipotez. 1 Testowanie hipotez na temat średniej

Testowanie hipotez. 1 Testowanie hipotez na temat średniej Testowanie hipotez Poziom p Poziom p jest to najmniejszy poziom istotności α, przy którym możemy odrzucić hipotezę zerową dysponując otrzymaną wartością statystyki testowej. 1 Testowanie hipotez na temat

Bardziej szczegółowo

Adam Kirpsza Zastosowanie regresji logistycznej w studiach nad Unią Europejska. Anna Stankiewicz Izabela Słomska

Adam Kirpsza Zastosowanie regresji logistycznej w studiach nad Unią Europejska. Anna Stankiewicz Izabela Słomska Adam Kirpsza Zastosowanie regresji logistycznej w studiach nad Unią Europejska Anna Stankiewicz Izabela Słomska Wstęp- statystyka w politologii Rzadkie stosowanie narzędzi statystycznych Pisma Karla Poppera

Bardziej szczegółowo

Zyskowność i statystyczna istotność reguł analizy technicznej

Zyskowność i statystyczna istotność reguł analizy technicznej Katarzyna Sagan nr albumu: 240006 Robert Chyliński nr albumu: 239779 Zyskowność i statystyczna istotność reguł analizy technicznej White's Reality Check Praca zaliczeniowa wykonana w ramach przedmiotu:

Bardziej szczegółowo

Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski

Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski Zadanie 1 Eksploracja (EXAMINE) Informacja o analizowanych danych Obserwacje Uwzględnione Wykluczone Ogółem

Bardziej szczegółowo

wprowadzenie do analizy szeregów czasowych

wprowadzenie do analizy szeregów czasowych 19 stycznia 2016 Wprowadzenie Prezentacja danych Dekompozycja Preprocessing Model predykcji ARIMA Dobór parametrów modelu ARIMA Podsumowanie Definicje i przykłady Definicje Szeregiem czasowym nazywamy

Bardziej szczegółowo

Ćwiczenia 13 WAHANIA SEZONOWE

Ćwiczenia 13 WAHANIA SEZONOWE Ćwiczenia 3 WAHANIA SEZONOWE Wyrównanie szeregu czasowego (wyodrębnienie czystego trendu) mechanicznie Zadanie. Badano spożycie owoców i przetworów (yt) (w kg) w latach według kwartałów: kwartał lata 009

Bardziej szczegółowo

MODELOWANIE POLSKIEJ GOSPODARKI Z PAKIETEM R Michał Rubaszek

MODELOWANIE POLSKIEJ GOSPODARKI Z PAKIETEM R Michał Rubaszek Tytuł: Autor: MODELOWANIE POLSKIEJ GOSPODARKI Z PAKIETEM R Michał Rubaszek Wstęp Książka "Modelowanie polskiej gospodarki z pakietem R" powstała na bazie materiałów, które wykorzystywałem przez ostatnie

Bardziej szczegółowo

Wyniki badań reprezentatywnych są zawsze stwierdzeniami hipotetycznymi, o określonych granicach niepewności

Wyniki badań reprezentatywnych są zawsze stwierdzeniami hipotetycznymi, o określonych granicach niepewności Wyniki badań reprezentatywnych są zawsze stwierdzeniami hipotetycznymi, o określonych granicach niepewności Statystyka indukcyjna pozwala kontrolować i oszacować ryzyko popełnienia błędu statystycznego

Bardziej szczegółowo

ANALIZA ZALEŻNOŚCI MIĘDZY INDEKSAMI RYNKÓW AKCJI NA GIEŁDZIE POLSKIEJ I AMERYKAŃSKIEJ. Indeksy giełdowe

ANALIZA ZALEŻNOŚCI MIĘDZY INDEKSAMI RYNKÓW AKCJI NA GIEŁDZIE POLSKIEJ I AMERYKAŃSKIEJ. Indeksy giełdowe B A D A N I A O P E R A C Y J N E I D E C Y Z J E Nr 3 4 2007 Grzegorz PRZEKOTA* ANALIZA ZALEŻNOŚCI MIĘDZY INDEKSAMI RYNKÓW AKCJI NA GIEŁDZIE POLSKIEJ I AMERYKAŃSKIEJ W artykule skonstruowano dwa modele

Bardziej szczegółowo

Ekonometria. Ćwiczenia nr 3. Jakub Mućk. Katedra Ekonomii Ilościowej

Ekonometria. Ćwiczenia nr 3. Jakub Mućk. Katedra Ekonomii Ilościowej Ekonometria Ćwiczenia nr 3 Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Ćwiczenia 3 Własności składnika losowego 1 / 18 Agenda KMNK przypomnienie 1 KMNK przypomnienie 2 3 4 Jakub Mućk

Bardziej szczegółowo

Jak sprawdzić normalność rozkładu w teście dla prób zależnych?

Jak sprawdzić normalność rozkładu w teście dla prób zależnych? Jak sprawdzić normalność rozkładu w teście dla prób zależnych? W pliku zalezne_10.sta znajdują się dwie zmienne: czasu biegu przed rozpoczęciem cyklu treningowego (zmienna 1) oraz czasu biegu po zakończeniu

Bardziej szczegółowo

Regresja wielokrotna. PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com

Regresja wielokrotna. PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com Regresja wielokrotna Model dla zależności liniowej: Y=a+b 1 X 1 +b 2 X 2 +...+b n X n Cząstkowe współczynniki regresji wielokrotnej: b 1,..., b n Zmienne niezależne (przyczynowe): X 1,..., X n Zmienna

Bardziej szczegółowo

Prognozowanie cen surowców w rolnych na podstawie szeregów w czasowych - uwarunkowania i metody. Sylwia Grudkowska NBP Mariusz Hamulczuk IERIGś-PIB

Prognozowanie cen surowców w rolnych na podstawie szeregów w czasowych - uwarunkowania i metody. Sylwia Grudkowska NBP Mariusz Hamulczuk IERIGś-PIB Prognozowanie cen surowców w rolnych na podstawie szeregów w czasowych - uwarunkowania i metody Sylwia Grudkowska NBP Mariusz Hamulczuk IERIGś-PIB Plan prezentacji Wprowadzenie do prognozowania Metody

Bardziej szczegółowo

Wykład 2 Hipoteza statystyczna, test statystyczny, poziom istotn. istotności, p-wartość i moc testu

Wykład 2 Hipoteza statystyczna, test statystyczny, poziom istotn. istotności, p-wartość i moc testu Wykład 2 Hipoteza statystyczna, test statystyczny, poziom istotności, p-wartość i moc testu Wrocław, 01.03.2017r Przykład 2.1 Właściciel firmy produkującej telefony komórkowe twierdzi, że wśród jego produktów

Bardziej szczegółowo