Modele warunkowej heteroscedastyczności

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Modele warunkowej heteroscedastyczności"

Transkrypt

1

2 Teoria Przykład - zwroty z WIG Niskie koszty transakcyjne

3 Teoria Przykład - zwroty z WIG Niskie koszty transakcyjne Racjonalne oczekiwania inwestorów P t = E(P t+1 I t ) 1 + R (1)

4 Teoria Przykład - zwroty z WIG Niskie koszty transakcyjne Racjonalne oczekiwania inwestorów P t = E(P t+1 I t ) 1 + R (1) Jeżeli równość (1) jest spełniona to nie ma możliwości arbitrażu

5 Teoria Przykład - zwroty z WIG Niskie koszty transakcyjne Racjonalne oczekiwania inwestorów P t = E(P t+1 I t ) 1 + R (1) Jeżeli równość (1) jest spełniona to nie ma możliwości arbitrażu Równanie (1) nazywane jest hipotezą rynku efektywnego

6 Teoria Przykład - zwroty z WIG Jeżeli I t zawiera jedynie ceny z przeszłości, to E(P t P t 1, P t 2,...) = P t 1 (1 + R)

7 Teoria Przykład - zwroty z WIG Jeżeli I t zawiera jedynie ceny z przeszłości, to E(P t P t 1, P t 2,...) = P t 1 (1 + R) Dzieląc obie strony przez P t 1 i logarytmując E( ln P t P t 1, P t 2,...) = ln(1 + R)

8 Teoria Przykład - zwroty z WIG Jeżeli I t zawiera jedynie ceny z przeszłości, to E(P t P t 1, P t 2,...) = P t 1 (1 + R) Dzieląc obie strony przez P t 1 i logarytmując E( ln P t P t 1, P t 2,...) = ln(1 + R) Oznaczając p t = ln(p t ) oraz r = ln(1 + R) oraz definiując ε t = p t r uzyskujemy p t = r + ε t gdzie E(ε t P t, P t 1,...) = 0 E(ε t ε t, ε t 1,...) = 0

9 Teoria Przykład - zwroty z WIG Przyrost ceny ma warunkową wartość oczekiwaną r

10 Teoria Przykład - zwroty z WIG Przyrost ceny ma warunkową wartość oczekiwaną r Nie jest możliwe przewidzenie przyszłych cen

11 Teoria Przykład - zwroty z WIG Przyrost ceny ma warunkową wartość oczekiwaną r Nie jest możliwe przewidzenie przyszłych cen Logarytmy cen zachowują się zgodnie z procesem błądzenia przypadkowego

12 Teoria Przykład - zwroty z WIG Indeks WIG t

13 Teoria Przykład - zwroty z WIG Logartym indeksu WIG t

14 Stacjonarność logarytmu WIG Teoria Przykład - zwroty z WIG. dfuller lnwig, lags(20) reg Augmented Dickey-Fuller test for unit root Number of obs = Interpolated Dickey-Fuller Test 1% Critical 5% Critical 10% Critical Statistic Value Value Value Z(t) MacKinnon approximate p-value for Z(t) =

15 Stacjonarność logarytmu WIG Teoria Przykład - zwroty z WIG. dfuller lnwig, lags(20) reg Augmented Dickey-Fuller test for unit root Number of obs = Interpolated Dickey-Fuller Test 1% Critical 5% Critical 10% Critical Statistic Value Value Value Z(t) MacKinnon approximate p-value for Z(t) = Zatem logarytm WIG jest niestacjonarny

16 Teoria Przykład - zwroty z WIG Logarytm stopy zwrotu t

17 Stacjonarność zwrotów z WIG Teoria Przykład - zwroty z WIG. dfuller dlnwig, lags(20) reg Augmented Dickey-Fuller test for unit root Number of obs = Interpolated Dickey-Fuller Test 1% Critical 5% Critical 10% Critical Statistic Value Value Value Z(t) MacKinnon approximate p-value for Z(t) =

18 Stacjonarność zwrotów z WIG Teoria Przykład - zwroty z WIG. dfuller dlnwig, lags(20) reg Augmented Dickey-Fuller test for unit root Number of obs = Interpolated Dickey-Fuller Test 1% Critical 5% Critical 10% Critical Statistic Value Value Value Z(t) MacKinnon approximate p-value for Z(t) = Zatem logarytmiczna stopa zwrotu z WIG jest stacjonarna

19 Teoria Przykład - zwroty z WIG Czy zwrot z WIG jest białym szumem test Ljunga-Boxa dla WIG Portmanteau test for white noise Portmanteau (Q) statistic = Prob > chi2(40) =

20 Teoria Przykład - zwroty z WIG Czy zwrot z WIG jest białym szumem test Ljunga-Boxa dla WIG Portmanteau test for white noise Portmanteau (Q) statistic = Prob > chi2(40) = Na podstawie wartości statystyki testowej wnioskujemy, że WIG nie zachowuje się jak biały szum

21 Teoria Przykład - zwroty z WIG Autocorrelations of dlnwig Lag Bartlett s formula for MA(q) 95% confidence bands

22 Teoria Przykład - zwroty z WIG Partial autocorrelations of dlnwig Lag 95% Confidence bands [se = 1/sqrt(n)]

23 Teoria Przykład - zwroty z WIG Density 0 5.0e stopa zwrotu Density Logarytm stopy zwrotu

24 Teoria Przykład - zwroty z WIG stopa zwrotu logarytm stopy zwrotu Obs Mean Std. Dev Variance Skewness Kurtosis Zatem rozkład zwroty charakteryzuje się grubymi ogonami

25 W sposób ogólny warunkową heteroscedastyczność definiuje się nastepująco σ 2 t = E(ε 2 t ε t 1, ε t 2,... ε t k ) E(ε 2 t )

26 W sposób ogólny warunkową heteroscedastyczność definiuje się nastepująco σ 2 t = E(ε 2 t ε t 1, ε t 2,... ε t k ) E(ε 2 t ) Najprostszym wariantem jest proces AutoRegressive Conditional Heteroscedasticity σ 2 t = E(ε 2 t ε t 1, ε t 2,... ε t k ) = α 0 + α 1 ε 2 t α k ε 2 t k

27 Kwadrat logarytmicznej stopy zwrotu t

28 Występowanie zjawiska warunkowej heteroscedastyczności reszt bada się testem ARCHLM H 0 : E(ε 2 t ε t 1, ε t 2,... ε t k ) = E(ε 2 ) H 1 : E(ε 2 t ε t 1, ε t 2,... ε t k ) E(ε 2 )

29 Występowanie zjawiska warunkowej heteroscedastyczności reszt bada się testem ARCHLM H 0 : E(ε 2 t ε t 1, ε t 2,... ε t k ) = E(ε 2 ) H 1 : E(ε 2 t ε t 1, ε t 2,... ε t k ) E(ε 2 ) statystyka testowa ma rozkład χ 2 (k)

30 Procedura testowa przebiega następująco

31 Procedura testowa przebiega następująco 1 Szacujemy parametry modelu i reszty

32 Procedura testowa przebiega następująco 1 Szacujemy parametry modelu i reszty 2 Reszty e podnosimy do kwadratu

33 Procedura testowa przebiega następująco 1 Szacujemy parametry modelu i reszty 2 Reszty e podnosimy do kwadratu 3 Szacujemy model autoregresyjny dla kwadratów reszt zapamiętując R 2 0 e 2 t = α 0 + α 1 e 2 t α q e 2 t q

34 Procedura testowa przebiega następująco 1 Szacujemy parametry modelu i reszty 2 Reszty e podnosimy do kwadratu 3 Szacujemy model autoregresyjny dla kwadratów reszt zapamiętując R 2 0 e 2 t = α 0 + α 1 e 2 t α q e 2 t q 4 Testujemy łączną nieistotność parametrów α 1,... α q

35 Procedura testowa przebiega następująco 1 Szacujemy parametry modelu i reszty 2 Reszty e podnosimy do kwadratu 3 Szacujemy model autoregresyjny dla kwadratów reszt zapamiętując R 2 0 e 2 t = α 0 + α 1 e 2 t α q e 2 t q 4 Testujemy łączną nieistotność parametrów α 1,... α q 5 W tym celu budujemy statystykę ARCHLM = TR 2 0 a χ 2 (q)

36 . reg lnwig L.lnwig Source SS df MS Number of obs = F( 1, 3616) =. Model Prob > F = Residual R-squared = Adj R-squared = Total Root MSE = lnwig Coef. Std. Err. t P> t [95% Conf. Interval] lnwig L _cons estat archlm LM test for autoregressive conditional heteroskedasticity (ARCH) lags(p) chi2 df Prob > chi H0: no ARCH effects vs. H1: ARCH(p) disturbance

37 ARCH Modelowanie stóp zwrotu Podstawowym modelem jest model ARCH(q). y t = X t β + ε t E(ε t X t ) = 0 ε t = u t θ 0 + θ 1 ε 2 t θ qε 2 t q u t IID N (0, 1)

38 ARCH Modelowanie stóp zwrotu Podstawowym modelem jest model ARCH(q). y t = X t β + ε t E(ε t X t ) = 0 ε t = u t θ 0 + θ 1 ε 2 t θ qε 2 t q u t IID N (0, 1) Pierwsze równanie opisuje średnią, drugie wariancję.

39 ARCH Modelowanie stóp zwrotu Równoważnym sposobem zapisu modelu jest y t = X t β + ε t E(ε t X t ) = 0 ε t = u t σ t σt 2 = θ 0 + θ 1 ε 2 t θ q ε 2 t q

40 ARCH Modelowanie stóp zwrotu W modelu ARCH(q) warunkowa wariancja nie jest stała, ponieważ σ 2 t = var(ε t ε t 1,... ε t q ) = (θ 0 +θ 1 ε 2 t θ q ε 2 t q)var(u t )

41 ARCH Modelowanie stóp zwrotu W modelu ARCH(q) warunkowa wariancja nie jest stała, ponieważ σ 2 t = var(ε t ε t 1,... ε t q ) = (θ 0 +θ 1 ε 2 t θ q ε 2 t q)var(u t ) σ 2 t = θ 0 + θ 1 ε 2 t θ q ε 2 t q

42 ARCH Modelowanie stóp zwrotu W modelu ARCH(q) warunkowa wariancja nie jest stała, ponieważ σ 2 t = var(ε t ε t 1,... ε t q ) = (θ 0 +θ 1 ε 2 t θ q ε 2 t q)var(u t ) σ 2 t = θ 0 + θ 1 ε 2 t θ q ε 2 t q Pomimo tego wariancja bezwarunkowa jest stała, jeśli ε t jest stacjonarnym procesem stochastycznym, ponieważ var(ε t ) = var(ε t 1 ) =... = var(ε t q )

43 ARCH Modelowanie stóp zwrotu Przekształcając równanie warunkowej wariancji uzyskujemy var(ε t ) = E(ε 2 t ) = E(θ 0 + θ 1 ε 2 t θ q ε 2 t q)e(u 2 t ) =

44 ARCH Modelowanie stóp zwrotu Przekształcając równanie warunkowej wariancji uzyskujemy var(ε t ) = E(ε 2 t ) = E(θ 0 + θ 1 ε 2 t θ q ε 2 t q)e(u 2 t ) = var(ε t ) = θ 0 + θ 1 var(ε 2 t 1) θ q var(ε 2 t q)

45 ARCH Modelowanie stóp zwrotu Przekształcając równanie warunkowej wariancji uzyskujemy var(ε t ) = E(ε 2 t ) = E(θ 0 + θ 1 ε 2 t θ q ε 2 t q)e(u 2 t ) = var(ε t ) = θ 0 + θ 1 var(ε 2 t 1) θ q var(ε 2 t q) wobec tego var(ε t ) = θ 0 1 θ 1... θ q = σ 2

46 ARCH Modelowanie stóp zwrotu Przekształcając równanie warunkowej wariancji uzyskujemy var(ε t ) = E(ε 2 t ) = E(θ 0 + θ 1 ε 2 t θ q ε 2 t q)e(u 2 t ) = var(ε t ) = θ 0 + θ 1 var(ε 2 t 1) θ q var(ε 2 t q) wobec tego var(ε t ) = θ 0 1 θ 1... θ q = σ 2 gdzie σ 2 jest bezwarunkową wariancją

47 Szacowanie modelu ARCH MNK do równania średniej

48 Szacowanie modelu ARCH MNK do równania średniej MNK dla modelu autoregresyjnego dla reszt

49 Szacowanie modelu ARCH MNK do równania średniej MNK dla modelu autoregresyjnego dla reszt Dzięki temu uzyskuje się zgodne estymatory

50 Szacowanie modelu ARCH MNK do równania średniej MNK dla modelu autoregresyjnego dla reszt Dzięki temu uzyskuje się zgodne estymatory Estymatory efektywne otrzymuje się wykorzystując MNW

51 Najważniejsza różnica między modelem regresji a ARCH polega na innym sposobie szacowania błędu prognozy

52 Najważniejsza różnica między modelem regresji a ARCH polega na innym sposobie szacowania błędu prognozy Nieobciażoną prognozą dla y t+1 jest X t+1 ˆβ

53 Najważniejsza różnica między modelem regresji a ARCH polega na innym sposobie szacowania błędu prognozy Nieobciażoną prognozą dla y t+1 jest X t+1 ˆβ Jej wariancja jest równa var(x T +1 b) = σ 2 x T +1 (X X ) 1 x T +1 + σ 2

54 Najważniejsza różnica między modelem regresji a ARCH polega na innym sposobie szacowania błędu prognozy Nieobciażoną prognozą dla y t+1 jest X t+1 ˆβ Jej wariancja jest równa var(x T +1 b) = σ 2 x T +1 (X X ) 1 x T +1 + σ 2 dla składnika losowego zawierającego proces warunkowej heteroscedastyczności var(x T +1 b ε t 1,..., ε t q ) = x T +1 σ2 T +1 (X X ) 1 x T +1 + σ 2 gdzie σ 2 T +1 = ˆθ 0 + ˆθ 1 e 2 T ˆθ q e 2 T q+1

55 ARCH family regression -- AR disturbances Sample: Number of obs = 3618 Distribution: Gaussian Wald chi2(1) = Log likelihood = Prob > chi2 = OPG Coef. Std. Err. z P> z [95% Conf. Interval] dlnwig _cons ARMA ar L ARCH arch L _cons e

56 GARCH Modelowanie stóp zwrotu Rozszerzenia podstawowego modelu

57 GARCH Modelowanie stóp zwrotu Rozszerzenia podstawowego modelu Specyfikacja ARCH wymaga nieujemności parametrów

58 GARCH Modelowanie stóp zwrotu Rozszerzenia podstawowego modelu Specyfikacja ARCH wymaga nieujemności parametrów Bardziej ogólną formą jest model GARCH(p,q) y t = X t β + ε t ε t = u t σ t σ 2 t = α 1 σ 2 t α p σ 2 t p + θ 0 + θ 1 ε 2 t θ q ε 2 t q

59 GARCH Modelowanie stóp zwrotu Równanie wariancji składa się z części autoregresyjnej i części opisującej warunkową wariancję

60 GARCH Modelowanie stóp zwrotu Równanie wariancji składa się z części autoregresyjnej i części opisującej warunkową wariancję Model jest szacowany MNW

61 GARCH Modelowanie stóp zwrotu Równanie wariancji składa się z części autoregresyjnej i części opisującej warunkową wariancję Model jest szacowany MNW W praktyce ma on mniejszą liczbę parametrów niż model ARCH

62 ARCH family regression -- AR disturbances Sample: Number of obs = 3618 Distribution: Gaussian Wald chi2(1) = Log likelihood = Prob > chi2 = OPG Coef. Std. Err. z P> z [95% Conf. Interval] dlnwig _cons ARMA ar L ARCH arch L garch L _cons 4.62e e e e

63 TARCH Modelowanie stóp zwrotu Asymetryczność zmian cen

64 TARCH Modelowanie stóp zwrotu Asymetryczność zmian cen Modelem uwzględniającym ten efekt jest TARCH y t = X t β + ε t ε t = u t σ t σ 2 t = { θ0 + θ 1 ε t θ q ε t q θ 0 + θ 1 ε t θ qε t q

65 ARCH family regression -- AR disturbances Sample: Number of obs = 3618 Distribution: Gaussian Wald chi2(1) = Log likelihood = Prob > chi2 = OPG Coef. Std. Err. z P> z [95% Conf. Interval] dlnwig _cons ARMA ar L ARCH tarch L garch L _cons 1.35e e e e

66 ARCH-in-Mean Pozwala on uwzględnić wpływ wariancji na wartość oczekiwaną y t = X t β + δσ 2 t + ε t ε t = u t σ t σ 2 t = θ 0 + θ 1 ε t θ q ε t q

67 Diagnostyka Diagnostyka nie odbiega od standardowej diagnostyki modelu regresji

68 Diagnostyka Diagnostyka nie odbiega od standardowej diagnostyki modelu regresji Równanie średniej polega standardowej procedurze diagnostycznej

69 Diagnostyka Diagnostyka nie odbiega od standardowej diagnostyki modelu regresji Równanie średniej polega standardowej procedurze diagnostycznej Testem poprawności specyfikacji modelu jest test normalności reszt oraz zbadanie występowania efektów ARCH w resztach

70 Prawdopodobieństwo poniesienia wysokiej straty

71 Prawdopodobieństwo poniesienia wysokiej straty Dla danego poziomu prawdopodobieństwa α jest to strata jaka może się zdażyć z prawdopodobieństwem α Pr(L j > J t ) = 1 Pr(L j < J t ) = 1 F (J t ) = α J t jest wartością narażoną na ryzyko.

72 VaR dla WIG Stopa zwrotu jest dana przez r t = ln(p t ) ln(p t 1 )

73 VaR dla WIG Stopa zwrotu jest dana przez Bank inwestuje Q jednostek r t = ln(p t ) ln(p t 1 )

74 VaR dla WIG Stopa zwrotu jest dana przez r t = ln(p t ) ln(p t 1 ) Bank inwestuje Q jednostek Zmiana ceny funduszu wynosi P t P t 1 = P t 1 [exp(r t ) 1]

75 VaR dla WIG Stopa zwrotu jest dana przez r t = ln(p t ) ln(p t 1 ) Bank inwestuje Q jednostek Zmiana ceny funduszu wynosi P t P t 1 = P t 1 [exp(r t ) 1] Zatem wynik inwestycji netto jest równy L t = Q P t = QP t 1 [exp(r t ) 1]

76 VaR dla WIG VaR wynosi Pr(L j < J t ) = Pr(QP t 1 [exp(r t ) 1] < J t ) Pr(L j < J t ) = Pr(r t < ln(1 + )) QP }{{ t 1 } k t J t

77 VaR dla WIG VaR wynosi Pr(L j < J t ) = Pr(QP t 1 [exp(r t ) 1] < J t ) Wystarczy znaleźć k t Pr(L j < J t ) = Pr(r t < ln(1 + )) QP }{{ t 1 } k t J t Pr(r t < k t ) = Pr( r t µ t σ t < k t µ t ) = Pr(u t < k t µ t ) σ t σ t Pr(r t < k t ) = Pr(u t < k t µ t σ t ) = F ( k t µ t ) = 1 α σ t

78 VaR dla WIG VaR wynosi Pr(L j < J t ) = Pr(QP t 1 [exp(r t ) 1] < J t ) Wystarczy znaleźć k t Pr(L j < J t ) = Pr(r t < ln(1 + )) QP }{{ t 1 } k t J t Pr(r t < k t ) = Pr( r t µ t σ t < k t µ t ) = Pr(u t < k t µ t ) σ t σ t Zatem Pr(r t < k t ) = Pr(u t < k t µ t σ t k t = µ t + F 1 (1 α)σ t ) = F ( k t µ t ) = 1 α σ t

Heteroskedastyczość w szeregach czasowyh

Heteroskedastyczość w szeregach czasowyh Heteroskedastyczość w szeregach czasowyh Czesto zakłada się, że szeregi czasowe wykazuja autokorelację ae sa homoskedastyczne W rzeczywistości jednak często wariancja zmienia się w czasie Dobrym przykładem

Bardziej szczegółowo

1 Modele ADL - interpretacja współczynników

1 Modele ADL - interpretacja współczynników 1 Modele ADL - interpretacja współczynników ZADANIE 1.1 Dany jest proces DL następującej postaci: y t = µ + β 0 x t + β 1 x t 1 + ε t. 1. Wyjaśnić, jaka jest intepretacja współczynników β 0 i β 1. 2. Pokazać

Bardziej szczegółowo

Przyczynowość Kointegracja. Kointegracja. Kointegracja

Przyczynowość Kointegracja. Kointegracja. Kointegracja korelacja a związek o charakterze przyczynowo-skutkowym korelacja a związek o charakterze przyczynowo-skutkowym Przyczynowość w sensie Grangera Zmienna x jest przyczyną w sensie Grangera zmiennej y jeżeli

Bardziej szczegółowo

Wprowadzenie Model ARMA Sezonowość Prognozowanie Model regresji z błędami ARMA. Modele ARMA

Wprowadzenie Model ARMA Sezonowość Prognozowanie Model regresji z błędami ARMA. Modele ARMA Ważną klasę modeli dynamicznych stanowią modele ARMA(p, q) Ważną klasę modeli dynamicznych stanowią modele ARMA(p, q) Modele tej klasy są modelami ateoretycznymi Ważną klasę modeli dynamicznych stanowią

Bardziej szczegółowo

Jednowskaźnikowy model Sharpe`a

Jednowskaźnikowy model Sharpe`a Uniwersytet Warszawski Wydział Nauk Ekonomicznych Milena Jamroziak i Paweł Androszczuk Model ekonometryczny Jednowskaźnikowy model Sharpe`a dla akcji Amici Praca zaliczeniowa napisana pod kierunkiem mgr

Bardziej szczegółowo

O sezonowości mówimy wtedy, gdy zmienna zmienia się w pewnym cyklu zwykle zwiazanym z cyklem rocznym

O sezonowości mówimy wtedy, gdy zmienna zmienia się w pewnym cyklu zwykle zwiazanym z cyklem rocznym Sezonowość O sezonowości mówimy wtedy, gdy zmienna zmienia się w pewnym cyklu zwykle zwiazanym z cyklem rocznym Na przykład zmienne kwartalne charakteryzuja się zwykle sezonowościa kwartalna a zmienne

Bardziej szczegółowo

Testy własności składnika losowego Testy formy funkcyjnej. Diagnostyka modelu. Część 2. Diagnostyka modelu

Testy własności składnika losowego Testy formy funkcyjnej. Diagnostyka modelu. Część 2. Diagnostyka modelu Część 2 Test Durbina-Watsona Test Durbina-Watsona Weryfikowana hipoteza H 0 : cov(ε t, ε t 1 ) = 0 H 1 : cov(ε t, ε t 1 ) 0 Test Durbina-Watsona Weryfikowana hipoteza H 0 : cov(ε t, ε t 1 ) = 0 H 1 : cov(ε

Bardziej szczegółowo

Ekonometria egzamin 02/02/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora.

Ekonometria egzamin 02/02/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora. imię, nazwisko, nr indeksu: Ekonometria egzamin 0/0/0. Egzamin trwa 90 minut.. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu. Złamanie

Bardziej szczegółowo

Analiza szeregów czasowych bezrobocia i inflacji w Danii

Analiza szeregów czasowych bezrobocia i inflacji w Danii Uniwersytet Warszawski Wydział Nauk Ekonomicznych Mateusz Błażej Nr albumu: 308521 Analiza szeregów czasowych bezrobocia i inflacji w Danii Projekt zaliczeniowy z przedmiotu: Analiza Szeregów Czasowych

Bardziej szczegółowo

Diagnostyka w Pakiecie Stata

Diagnostyka w Pakiecie Stata Karol Kuhl Zgodnie z twierdzeniem Gaussa-Markowa, estymator MNK w KMRL jest liniowym estymatorem efektywnym i nieobciążonym, co po angielsku opisuje się za pomocą wyrażenia BLUE Best Linear Unbiased Estimator.

Bardziej szczegółowo

Natalia Nehrebecka Stanisław Cichocki. Wykład 10

Natalia Nehrebecka Stanisław Cichocki. Wykład 10 Natalia Nehrebecka Stanisław Cichocki Wykład 10 1 1. Testy diagnostyczne 2. Testowanie prawidłowości formy funkcyjnej modelu 3. Testowanie normalności składników losowych 4. Testowanie stabilności parametrów

Bardziej szczegółowo

Egzamin z ekonometrii wersja IiE, MSEMAT

Egzamin z ekonometrii wersja IiE, MSEMAT Egzamin z ekonometrii wersja IiE, MSEMAT 04-02-2016 Pytania teoretyczne 1. Za pomocą jakiego testu weryfikowana jest normalność składnika losowego? Jakiemu założeniu KMRL odpowiada w tym teście? Jakie

Bardziej szczegółowo

Ekonometria egzamin 02/02/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora.

Ekonometria egzamin 02/02/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora. imię, nazwisko, nr indeksu: Ekonometria egzamin 02/02/2011 1. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu.

Bardziej szczegółowo

Ekonometria. Modelowanie szeregów czasowych. Stacjonarność. Testy pierwiastka jednostkowego. Modele ARDL. Kointegracja. Jakub Mućk

Ekonometria. Modelowanie szeregów czasowych. Stacjonarność. Testy pierwiastka jednostkowego. Modele ARDL. Kointegracja. Jakub Mućk Ekonometria Modelowanie szeregów czasowych. Stacjonarność. Testy pierwiastka jednostkowego. Modele ARDL. Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Ćwiczenia 5 & 6 Szaeregi czasowe 1

Bardziej szczegółowo

1.8 Diagnostyka modelu

1.8 Diagnostyka modelu 1.8 Diagnostyka modelu Dotychczas zajmowaliśmy się własnościami estymatorów przy spełnionych założeniach KMRL. W praktyce nie zawsze spełnione są wszystkie założenia modelu. Jeżeli któreś z nich nie jest

Bardziej szczegółowo

Ekonometria dla IiE i MSEMat Z7

Ekonometria dla IiE i MSEMat Z7 Ekonometria dla IiE i MSEMat Z7 Rafał Woźniak Faculty of Economic Sciences, University of Warsaw Warszawa, 21-11-2016 Na podstawie zbioru danych cps_small.dat z książki Principles of Econometrics oszacowany

Bardziej szczegółowo

Ekonometria egzamin wersja Informatyka i Ekonometria 26/06/08

Ekonometria egzamin wersja Informatyka i Ekonometria 26/06/08 imię, nazwisko, nr indeksu: Ekonometria egzamin wersja Informatyka i Ekonometria 26/06/08 1. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz

Bardziej szczegółowo

1.9 Czasowy wymiar danych

1.9 Czasowy wymiar danych 1.9 Czasowy wymiar danych Do tej pory rozpatrywaliśmy jedynie modele tworzone na podstawie danych empirycznych pochodzących z prób przekrojowych. Teraz zajmiemy się zagadnieniem budowy modeli regresji,

Bardziej szczegółowo

Egzamin z ekonometrii wersja IiE, MSEMAT

Egzamin z ekonometrii wersja IiE, MSEMAT Pytania teoretyczne Egzamin z ekonometrii wersja IiE, MSEMAT 08-02-2017 1. W jaki sposób przeprowadzamy test Chowa? 2. Pokazać, że jest nieobciążonym estymatorem. 3. Udowodnić, że w modelu ze stałą TSSESS+RSS.

Bardziej szczegółowo

2.2 Autokorelacja Wprowadzenie

2.2 Autokorelacja Wprowadzenie 2.2 Autokorelacja 2.2.1 Wprowadzenie Przy wyprowadzaniu estymatorów Klasycznego Modelu Regresji Liniowej (KMRL) zakładaliśmy, że są spełnione założenia Gaussa-Markowa, tzn. składniki losowe są homoscedastyczne

Bardziej szczegółowo

Egzamin z Ekonometrii

Egzamin z Ekonometrii Pytania teoretyczne Egzamin z Ekonometrii 18.06.2015 1. Opisać procedurę od ogólnego do szczegółowego na przykładzie doboru liczby opóźnień w modelu. 2. Na czym polega najważniejsza różnica między testowaniem

Bardziej szczegółowo

Egzamin z ekonometrii wersja ogolna

Egzamin z ekonometrii wersja ogolna Egzamin z ekonometrii wersja ogolna 04-02-2016 Pytania teoretyczne 1. Wymienić założenia Klasycznego Modelu Regresji Liniowej (KMRL). 2. Wyprowadzić estymator MNK dla modelu z wieloma zmiennymi objaśniającymi.

Bardziej szczegółowo

Ekonometria egzamin wersja Informatyka i Ekonometria 29/01/08

Ekonometria egzamin wersja Informatyka i Ekonometria 29/01/08 imię, nazwisko, nr indeksu: Ekonometria egzamin wersja Informatyka i Ekonometria 29/0/08. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Wykład 1

Stanisław Cichocki Natalia Nehrebecka. Wykład 1 Stanisław Cichocki Natalia Nehrebecka Wykład 1 1 1. Sprawy organizacyjne Zasady zaliczenia Ćwiczenia Literatura 2. Obciążenie Lovella 3. Metoda od ogólnego do szczególnego 4. Kryteria informacyjne 2 1.

Bardziej szczegółowo

Ekonometria. Metodologia budowy modelu. Jerzy Mycielski. Luty, 2011 WNE, UW. Jerzy Mycielski (WNE, UW) Ekonometria Luty, / 18

Ekonometria. Metodologia budowy modelu. Jerzy Mycielski. Luty, 2011 WNE, UW. Jerzy Mycielski (WNE, UW) Ekonometria Luty, / 18 Ekonometria Metodologia budowy modelu Jerzy Mycielski WNE, UW Luty, 2011 Jerzy Mycielski (WNE, UW) Ekonometria Luty, 2011 1 / 18 Sprawy organizacyjne Dyżur: środa godz. 14-15 w sali 302. Strona internetowa

Bardziej szczegółowo

Ekonometria Wykład 5. Procesy stochastyczne, stacjonarność, integracja. Dr Michał Gradzewicz Katedra Ekonomii I KAE

Ekonometria Wykład 5. Procesy stochastyczne, stacjonarność, integracja. Dr Michał Gradzewicz Katedra Ekonomii I KAE Ekonometria Wykład 5. Procesy stochastyczne, stacjonarność, integracja Dr Michał Gradzewicz Katedra Ekonomii I KAE Ekonometria szeregów czasowych Procesy stochastyczne Stacjonarność i biały szum Niestacjonarność:

Bardziej szczegółowo

Ekonometria. Modelowanie szeregów czasowych. Stacjonarność. Testy pierwiastka jednostkowego. Modele ARDL. Kointegracja. Jakub Mućk

Ekonometria. Modelowanie szeregów czasowych. Stacjonarność. Testy pierwiastka jednostkowego. Modele ARDL. Kointegracja. Jakub Mućk Ekonometria Modelowanie szeregów czasowych. Stacjonarność. Testy pierwiastka jednostkowego. Modele ARDL. Kointegracja Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Wykład 5 & 6 Szaeregi

Bardziej szczegółowo

Metoda największej wiarogodności

Metoda największej wiarogodności Wprowadzenie Założenia Logarytm funkcji wiarogodności Metoda Największej Wiarogodności (MNW) jest bardziej uniwersalną niż MNK metodą szacowania wartości nieznanych parametrów Wprowadzenie Założenia Logarytm

Bardziej szczegółowo

1 Metoda Najmniejszych Kwadratów (MNK) 2 Interpretacja parametrów modelu. 3 Klasyczny Model Regresji Liniowej (KMRL)

1 Metoda Najmniejszych Kwadratów (MNK) 2 Interpretacja parametrów modelu. 3 Klasyczny Model Regresji Liniowej (KMRL) 1 Metoda Najmniejszych Kwadratów (MNK) 1. Co to jest zmienna endogeniczna, a co to zmienne egzogeniczna? 2. Podaj postać macierzy obserwacji dla modelu y t = a + bt + ε t 3. Co to jest wartość dopasowana,

Bardziej szczegółowo

2.3 Modele nieliniowe

2.3 Modele nieliniowe 2.3 Modele nieliniowe Do tej pory zajmowaliśmy się modelami liniowymi lub o liniowej formie funkcyjnej i musieliśmy akceptować ich ograniczenia. Metoda Największej Wiarogodności pozwala również na efektywną

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Zajęcia 15-16

Stanisław Cichocki. Natalia Nehrebecka. Zajęcia 15-16 Stanisław Cichocki Natalia Nehrebecka Zajęcia 15-16 1 1. Sezonowość 2. Zmienne stacjonarne 3. Zmienne zintegrowane 4. Test Dickey-Fullera 5. Rozszerzony test Dickey-Fullera 6. Test KPSS 7. Regresja pozorna

Bardziej szczegółowo

1.7 Ograniczenia nakładane na równanie regresji

1.7 Ograniczenia nakładane na równanie regresji 1.7 Ograniczenia nakładane na równanie regresji Często teoria ekonomiczna wskazuje dobór zmiennych do modelu. Jednak nie w każdym przypadku oceny wartości parametrów są statystycznie istotne. Zastanowimy

Bardziej szczegółowo

Ekonometria egzamin wersja ogólna 29/01/08

Ekonometria egzamin wersja ogólna 29/01/08 imię, nazwisko, nr indeksu: Ekonometria egzamin wersja ogólna 29/0/08. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca

Bardziej szczegółowo

Ekonometria egzamin wersja ogólna 17/06/08

Ekonometria egzamin wersja ogólna 17/06/08 imię, nazwisko, nr indeksu: Ekonometria egzamin wersja ogólna 17/06/08 1. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca

Bardziej szczegółowo

2 Rozszerzenia MNK. 2.1 Heteroscedastyczność

2 Rozszerzenia MNK. 2.1 Heteroscedastyczność 2 Rozszerzenia MNK 2.1 Heteroscedastyczność 2.1.1 Wprowadzenie Przy wyprowadzaniu estymatorów Klasycznego Modelu Regresji Liniowej (KMRL) zakładaliśmy, że są spełnione założenia Gaussa-Markowa, tzn. składniki

Bardziej szczegółowo

Definicja danych panelowych Typy danych panelowych Modele dla danych panelowych. Dane panelowe. Część 1. Dane panelowe

Definicja danych panelowych Typy danych panelowych Modele dla danych panelowych. Dane panelowe. Część 1. Dane panelowe Część 1 to dane, które jednocześnie posiadają cechy danych przekrojowych i szeregów czasowych to dane, które jednocześnie posiadają cechy danych przekrojowych i szeregów czasowych Czyli obserwujemy te

Bardziej szczegółowo

EKONOMIA XL NAUKI HUMANISTYCZNO-SPOŁECZNE ZESZYT 391 TORUŃ Joanna Górka WŁASNOŚCI PROGNOSTYCZNE MODELI KLASY RCA *

EKONOMIA XL NAUKI HUMANISTYCZNO-SPOŁECZNE ZESZYT 391 TORUŃ Joanna Górka WŁASNOŚCI PROGNOSTYCZNE MODELI KLASY RCA * ACTA UNIVERSITATIS NICOLAI COPERNICI EKONOMIA XL NAUKI HUMANISTYCZNO-SPOŁECZNE ZESZYT 391 TORUŃ 2009 Uniwersytet Mikołaja Kopernika w Toruniu Katedra Ekonometrii i Statystyki Joanna Górka WŁASNOŚCI PROGNOSTYCZNE

Bardziej szczegółowo

Szeregi czasowe, analiza zależności krótkoi długozasięgowych

Szeregi czasowe, analiza zależności krótkoi długozasięgowych Szeregi czasowe, analiza zależności krótkoi długozasięgowych Rafał Weron rweron@im.pwr.wroc.pl Definicje Mając dany proces {X t } autokowariancję definiujemy jako : γ(t, t ) = cov(x t, X t ) = = E[(X t

Bardziej szczegółowo

Modelowanie zachowania kursu EURUSD po ogłoszeniu odczytu US Nonfarm Payrolls z wykorzystaniem modeli ARIMA-GARCH

Modelowanie zachowania kursu EURUSD po ogłoszeniu odczytu US Nonfarm Payrolls z wykorzystaniem modeli ARIMA-GARCH Raport 10/2015 Modelowanie zachowania kursu EURUSD po ogłoszeniu odczytu US Nonfarm Payrolls z wykorzystaniem modeli ARIMA-GARCH autor: Michał Osmoła INIME Instytut nauk informatycznych i matematycznych

Bardziej szczegółowo

Ćwiczenia IV

Ćwiczenia IV Ćwiczenia IV - 17.10.2007 1. Spośród podanych macierzy X wskaż te, których nie można wykorzystać do estymacji MNK parametrów modelu ekonometrycznego postaci y = β 0 + β 1 x 1 + β 2 x 2 + ε 2. Na podstawie

Bardziej szczegółowo

Finansowe szeregi czasowe

Finansowe szeregi czasowe 24 kwietnia 2009 Modelem szeregu czasowego jest proces stochastyczny (X t ) t Z, czyli rodzina zmiennych losowych, indeksowanych liczbami całkowitymi i zdefiniowanych na pewnej przestrzeni probabilistycznej

Bardziej szczegółowo

1.3 Własności statystyczne estymatorów MNK

1.3 Własności statystyczne estymatorów MNK 1.3 Własności statystyczne estymatorów MNK 1. Estymator nazywamy estymatorem nieobciążonym, jeżeli jego wartość oczekiwana jest równa wartości szacowanego parametru. Udowodnimy, że estymator MNK wektora

Bardziej szczegółowo

Uogolnione modele liniowe

Uogolnione modele liniowe Uogolnione modele liniowe Jerzy Mycielski Uniwersytet Warszawski grudzien 2013 Jerzy Mycielski (Uniwersytet Warszawski) Uogolnione modele liniowe grudzien 2013 1 / 17 (generalized linear model - glm) Zakładamy,

Bardziej szczegółowo

Materiał dla studentów Wprowadzenie do modeli ARMA/ARIMA (na przykładzie zwrotów z instrumentów finansowych)

Materiał dla studentów Wprowadzenie do modeli ARMA/ARIMA (na przykładzie zwrotów z instrumentów finansowych) Materiał dla studentów Wprowadzenie do modeli ARMA/ARIMA (na przykładzie zwrotów z instrumentów finansowych) (studium przypadku) Nazwa przedmiotu: ekonometria finansowa I (22204), analiza szeregów czasowych

Bardziej szczegółowo

Metoda najmniejszych kwadratów

Metoda najmniejszych kwadratów Metoda najmniejszych kwadratów Przykład wstępny. W ekonomicznej teorii produkcji rozważa się funkcję produkcji Cobba Douglasa: z = AL α K β gdzie z oznacza wielkość produkcji, L jest nakładem pracy, K

Bardziej szczegółowo

2.6 Zmienne stacjonarne i niestacjonarne 2.6. ZMIENNE STACJONARNE I NIESTACJONARNE 33. RYSUNEK 2.6: PKB w wyrażeniu realnym

2.6 Zmienne stacjonarne i niestacjonarne 2.6. ZMIENNE STACJONARNE I NIESTACJONARNE 33. RYSUNEK 2.6: PKB w wyrażeniu realnym 2.6. ZMIENNE STACJONARNE I NIESTACJONARNE 33 tale. Rysunek 2.6 ilustruje sezonowość w logarytmie PKB w wyrażeniu realnym. Realny PKB został uzyskany poprzez zdeflowanie nominalnego PKB przez indeks cen

Bardziej szczegółowo

Elementy statystyki STA - Wykład 5

Elementy statystyki STA - Wykład 5 STA - Wykład 5 Wydział Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza 1 ANOVA 2 Model jednoczynnikowej analizy wariancji Na model jednoczynnikowej analizy wariancji możemy traktować jako uogólnienie

Bardziej szczegółowo

Podczas zajęć będziemy zajmować się głownie procesami ergodycznymi zdefiniowanymi na przestrzeniach ciągłych.

Podczas zajęć będziemy zajmować się głownie procesami ergodycznymi zdefiniowanymi na przestrzeniach ciągłych. Trochę teorii W celu przeprowadzenia rygorystycznej ekonometrycznej analizy szeregu finansowego będziemy traktowali obserwowany ciąg danych (x 1, x 2,..., x T ) jako realizację pewnego procesu stochastycznego.

Bardziej szczegółowo

Magdalena Gańko Rafał Janaczek. Model ekonometryczny. Zastosowanie mechanizmu korekty błędem w modelowaniu kursu walutowego

Magdalena Gańko Rafał Janaczek. Model ekonometryczny. Zastosowanie mechanizmu korekty błędem w modelowaniu kursu walutowego Magdalena Gańko Rafał Janaczek Model ekonometryczny Zastosowanie mechanizmu korekty błędem w modelowaniu kursu walutowego Warszawa 2006 Spis treści Wstęp...3 Rozdział I Podstawowe informacje teoretyczne...4

Bardziej szczegółowo

(LMP-Liniowy model prawdopodobieństwa)

(LMP-Liniowy model prawdopodobieństwa) OGÓLNY MODEL REGRESJI BINARNEJ (LMP-Liniowy model prawdopodobieństwa) Dla k3 y α α α α + x + x + x 2 2 3 3 + α x x α x x + α x x + α x x + ε + x 4 2 5 3 6 2 3 7 2 3 Zał.: Wszystkie zmienne interakcyjne

Bardziej szczegółowo

Przykład 2. Stopa bezrobocia

Przykład 2. Stopa bezrobocia Przykład 2 Stopa bezrobocia Stopa bezrobocia. Komentarz: model ekonometryczny stopy bezrobocia w Polsce jest modelem nieliniowym autoregresyjnym. Podobnie jak model podaŝy pieniądza zbudowany został w

Bardziej szczegółowo

Statystyka w przykładach

Statystyka w przykładach w przykładach Tomasz Mostowski Zajęcia 10.04.2008 Plan Estymatory 1 Estymatory 2 Plan Estymatory 1 Estymatory 2 Własności estymatorów Zazwyczaj w badaniach potrzebujemy oszacować pewne parametry na podstawie

Bardziej szczegółowo

Zmienne Binarne w Pakiecie Stata

Zmienne Binarne w Pakiecie Stata Karol Kuhl Zbiór (hipotetyczny) dummy.dta zawiera dane, na podstawie których prowadzono analizy opisane poniżej. Nazwy zmiennych oznaczają: doch dochód w jednostkach pieniężnych; plec płeć: kobieta (0),

Bardziej szczegółowo

Piotr Fiszeder Uniwersytet Mikołaja Kopernika w Toruniu. Modelowanie procesów finansowych z długą pamięcią w średniej i wariancji

Piotr Fiszeder Uniwersytet Mikołaja Kopernika w Toruniu. Modelowanie procesów finansowych z długą pamięcią w średniej i wariancji DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnopolskie Seminarium Naukowe, 6 8 września 2005 w Toruniu Katedra Ekonometrii i Statystyki, Uniwersytet Mikołaja Kopernika w Toruniu Piotr Fiszeder Uniwersytet Mikołaja

Bardziej szczegółowo

Ekonometria. Prognozowanie ekonometryczne, ocena stabilności oszacowań parametrów strukturalnych. Jakub Mućk. Katedra Ekonomii Ilościowej

Ekonometria. Prognozowanie ekonometryczne, ocena stabilności oszacowań parametrów strukturalnych. Jakub Mućk. Katedra Ekonomii Ilościowej Ekonometria Prognozowanie ekonometryczne, ocena stabilności oszacowań parametrów strukturalnych Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Wykład 4 Prognozowanie, stabilność 1 / 17 Agenda

Bardziej szczegółowo

Estymacja parametrów rozkładu cechy

Estymacja parametrów rozkładu cechy Estymacja parametrów rozkładu cechy Estymujemy parametr θ rozkładu cechy X Próba: X 1, X 2,..., X n Estymator punktowy jest funkcją próby ˆθ = ˆθX 1, X 2,..., X n przybliżającą wartość parametru θ Przedział

Bardziej szczegółowo

Prognozowanie i Symulacje. Wykład VI. Niestacjonarne szeregi czasowe

Prognozowanie i Symulacje. Wykład VI. Niestacjonarne szeregi czasowe Prognozowanie i Symulacje. Wykład VI. e-mail:e.kozlovski@pollub.pl Spis treści Analiza stacjonarności szeregów czasowych 1 Analiza stacjonarności szeregów czasowych Modele niestacjonarne Szeregi TS i DS

Bardziej szczegółowo

Ekonometria. Modelowanie zmiennej jakościowej. Jakub Mućk. Katedra Ekonomii Ilościowej

Ekonometria. Modelowanie zmiennej jakościowej. Jakub Mućk. Katedra Ekonomii Ilościowej Ekonometria Modelowanie zmiennej jakościowej Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Ćwiczenia 8 Zmienna jakościowa 1 / 25 Zmienna jakościowa Zmienna ilościowa może zostać zmierzona

Bardziej szczegółowo

1. Obserwacje nietypowe

1. Obserwacje nietypowe 1. Obserwacje nietypowe Przeanalizujemy następujący eksperyment: 1) Generujemy zmienną x z rozkładu N (,1) (37 obserwacji). ) Generujemy zmienną y w następujący sposób: y = 1+ x + ε, gdzie ε ~ N(0,1).

Bardziej szczegółowo

Stanisław Cichocki. Natalia Neherbecka. Zajęcia 13

Stanisław Cichocki. Natalia Neherbecka. Zajęcia 13 Stanisław Cichocki Natalia Neherbecka Zajęcia 13 1 1. Kryteria informacyjne 2. Testowanie autokorelacji 3. Modele dynamiczne: modele o rozłożonych opóźnieniach (DL) modele autoregresyjne o rozłożonych

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 8

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 8 Stanisław Cichocki Natalia Nehrebecka Zajęcia 8 1. Testy diagnostyczne 2. Testowanie prawidłowości formy funkcyjnej modelu 3. Testowanie normalności składników losowych 4. Testowanie stabilności parametrów

Bardziej szczegółowo

TEST STATYSTYCZNY. Jeżeli hipotezę zerową odrzucimy na danym poziomie istotności, to odrzucimy ją na każdym większym poziomie istotności.

TEST STATYSTYCZNY. Jeżeli hipotezę zerową odrzucimy na danym poziomie istotności, to odrzucimy ją na każdym większym poziomie istotności. TEST STATYSTYCZNY Testem statystycznym nazywamy regułę postępowania rozstrzygająca, przy jakich wynikach z próby hipotezę sprawdzaną H 0 należy odrzucić, a przy jakich nie ma podstaw do jej odrzucenia.

Bardziej szczegółowo

[121060-0610] Ekonometria Praca domowa nr 2 rozwiązania zadań Data oddania: 9 listopada 2012

[121060-0610] Ekonometria Praca domowa nr 2 rozwiązania zadań Data oddania: 9 listopada 2012 [121060-0610] Ekonometria Praca domowa nr 2 rozwiązania zadań Data oddania: 9 listopada 2012 Zadanie 1. W pliku nbasal.gdt znajdują się dane o płacach i statystykach koszykarzy ligi NBA. Wykonaj następujące

Bardziej szczegółowo

Modele dla zmiennej binarnej w pakiecie STATA materiały na ćwiczenia z ekonometrii 18.03.2005 r. Piotr Wójcik, KTRG WNE UW

Modele dla zmiennej binarnej w pakiecie STATA materiały na ćwiczenia z ekonometrii 18.03.2005 r. Piotr Wójcik, KTRG WNE UW Modele dla zmiennej binarnej w pakiecie STATA materiały na ćwiczenia z ekonometrii 18.03.2005 r. Piotr Wójcik, KTRG WNE UW Dane Dane wykorzystane w przykładzie pochodzą z pracy McCall, B.P., 1995, The

Bardziej szczegółowo

Rachunek Prawdopodobieństwa Anna Janicka

Rachunek Prawdopodobieństwa Anna Janicka Rachunek Prawdopodobieństwa Anna Janicka wykład XIV, 24.01.2017 ŁAŃCUCHYMARKOWA CD. KRÓTKIE INFO O RÓŻNYCH WAŻNYCH ROZKŁADACH Plan na dzisiaj Łańcuchy Markowa cd. Różne ważne rozkłady prawdopodobieństwa,

Bardziej szczegółowo

Analiza wariancji w analizie regresji - weryfikacja prawdziwości przyjętego układu ograniczeń Problem Przykłady

Analiza wariancji w analizie regresji - weryfikacja prawdziwości przyjętego układu ograniczeń Problem Przykłady Analiza wariancji w analizie regresji - weryfikacja prawdziwości przyjętego układu ograniczeń 1. Problem ozwaŝamy zjawisko (model): Y = β 1 X 1 X +...+ β k X k +Z Ηβ = w r Hipoteza alternatywna: Ηβ w r

Bardziej szczegółowo

2. Założenie niezależności zakłóceń modelu - autokorelacja składnika losowego - test Durbina - Watsona

2. Założenie niezależności zakłóceń modelu - autokorelacja składnika losowego - test Durbina - Watsona Sprawdzanie założeń przyjętych o modelu (etap IIIC przyjętego schematu modelowania regresyjnego) 1. Szum 2. Założenie niezależności zakłóceń modelu - autokorelacja składnika losowego - test Durbina - Watsona

Bardziej szczegółowo

Weryfikacja hipotez statystycznych za pomocą testów statystycznych

Weryfikacja hipotez statystycznych za pomocą testów statystycznych Weryfikacja hipotez statystycznych za pomocą testów statystycznych Weryfikacja hipotez statystycznych za pomocą testów stat. Hipoteza statystyczna Dowolne przypuszczenie co do rozkładu populacji generalnej

Bardziej szczegółowo

MODELOWANIE POLSKIEJ GOSPODARKI Z PAKIETEM R Michał Rubaszek

MODELOWANIE POLSKIEJ GOSPODARKI Z PAKIETEM R Michał Rubaszek Tytuł: Autor: MODELOWANIE POLSKIEJ GOSPODARKI Z PAKIETEM R Michał Rubaszek Wstęp Książka "Modelowanie polskiej gospodarki z pakietem R" powstała na bazie materiałów, które wykorzystywałem przez ostatnie

Bardziej szczegółowo

Ekonometria. Ćwiczenia nr 3. Jakub Mućk. Katedra Ekonomii Ilościowej

Ekonometria. Ćwiczenia nr 3. Jakub Mućk. Katedra Ekonomii Ilościowej Ekonometria Ćwiczenia nr 3 Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Ćwiczenia 3 Własności składnika losowego 1 / 18 Agenda KMNK przypomnienie 1 KMNK przypomnienie 2 3 4 Jakub Mućk

Bardziej szczegółowo

Monte Carlo, bootstrap, jacknife

Monte Carlo, bootstrap, jacknife Monte Carlo, bootstrap, jacknife Literatura Bruce Hansen (2012 +) Econometrics, ze strony internetowej: http://www.ssc.wisc.edu/~bhansen/econometrics/ Monte Carlo: rozdział 8.8, 8.9 Bootstrap: rozdział

Bardziej szczegółowo

Testowanie hipotez dla frakcji. Wrocław, 29 marca 2017

Testowanie hipotez dla frakcji. Wrocław, 29 marca 2017 Testowanie hipotez dla frakcji Wrocław, 29 marca 2017 Powtórzenie z rachunku prawdopodobieństwa Centralne Twierdzenie Graniczne Niech X = (X 1, X 2,..., X n ) oznacza próbę z rozkładu o średniej µ i skończonej

Bardziej szczegółowo

Właściwości testu Jarque-Bera gdy w danych występuje obserwacja nietypowa.

Właściwości testu Jarque-Bera gdy w danych występuje obserwacja nietypowa. Właściwości testu Jarque-Bera gdy w danych występuje obserwacja nietypowa. Paweł Strawiński Uniwersytet Warszawski Wydział Nauk Ekonomicznych 16 stycznia 2006 Streszczenie W artykule analizowane są właściwości

Bardziej szczegółowo

Analiza zależności cech ilościowych regresja liniowa (Wykład 13)

Analiza zależności cech ilościowych regresja liniowa (Wykład 13) Analiza zależności cech ilościowych regresja liniowa (Wykład 13) dr Mariusz Grządziel semestr letni 2012 Przykład wprowadzajacy W zbiorze danych homedata (z pakietu R-owskiego UsingR) można znaleźć ceny

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA WYKŁAD października 2009

STATYSTYKA MATEMATYCZNA WYKŁAD października 2009 STATYSTYKA MATEMATYCZNA WYKŁAD 4 26 października 2009 Rozkład N(µ, σ). Estymacja σ σ 2 = 1 σ 2π + = E µ,σ (X µ) 2 { (x µ) 2 exp 1 ( ) } x µ 2 dx 2 σ Rozkład N(µ, σ). Estymacja σ σ 2 = 1 σ 2π + = E µ,σ

Bardziej szczegółowo

1. Stacjonarnośd i niestacjonarnośd szeregów czasowych 2. Test ADF i test KPSS 3. Budowa modeli ARMA dla zmiennych niestacjonarnych 4.

1. Stacjonarnośd i niestacjonarnośd szeregów czasowych 2. Test ADF i test KPSS 3. Budowa modeli ARMA dla zmiennych niestacjonarnych 4. 1. Stacjonarnośd i niestacjonarnośd szeregów czasowych 2. Test ADF i test KPSS 3. Budowa modeli ARMA dla zmiennych niestacjonarnych 4. Prognozowanie stóp zwrotu na podstawie modeli ARMA 5. Relacje kointegrujące

Bardziej szczegółowo

Ekonometria ćwiczenia Kolokwium 2 semestr 22/05/05. / 4 pkt. / 4 pkt. / 3 pkt. / 4 pkt. /22 pkt. Regulamin i informacje dodatkowe

Ekonometria ćwiczenia Kolokwium 2 semestr 22/05/05. / 4 pkt. / 4 pkt. / 3 pkt. / 4 pkt. /22 pkt. Regulamin i informacje dodatkowe imię, nazwisko, nr indeksu: Ekonometria ćwiczenia Kolokwium 2 semestr 22/05/05 Zadanie 1 Zadanie 2 Zadanie 3 / 4 pkt / 4 pkt / 3 pkt Zadanie 4 / 7 pkt [1/1/1/2/2] Zadanie 5 Razem / 4 pkt /22 pkt Skala

Bardziej szczegółowo

Błędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa

Błędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa Weryfikacja hipotez statystycznych Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy populacji, o prawdziwości lub fałszywości którego wnioskuje się na podstawie

Bardziej szczegółowo

Ekonometria. Własności składnika losowego. Jakub Mućk. Katedra Ekonomii Ilościowej

Ekonometria. Własności składnika losowego. Jakub Mućk. Katedra Ekonomii Ilościowej Ekonometria Własności składnika losowego Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Wykład 3 Własności składnika losowego 1 / 31 Agenda KMNK przypomnienie 1 KMNK przypomnienie 2 3 4

Bardziej szczegółowo

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR NNN FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR FF 2013

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR NNN FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR FF 2013 ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR NNN FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR FF 2013 Ryszard Węgrzyn Zastosowanie wybranych modeli zmienności w analizie ryzyka cen akcji Słowa kluczowe:...

Bardziej szczegółowo

Definicja 1 Statystyką nazywamy (mierzalną) funkcję obserwowalnego wektora losowego

Definicja 1 Statystyką nazywamy (mierzalną) funkcję obserwowalnego wektora losowego Rozdział 1 Statystyki Definicja 1 Statystyką nazywamy (mierzalną) funkcję obserwowalnego wektora losowego X = (X 1,..., X n ). Uwaga 1 Statystyka jako funkcja wektora zmiennych losowych jest zmienną losową

Bardziej szczegółowo

Stosowana Analiza Regresji

Stosowana Analiza Regresji prostej Stosowana Wykład I 5 Października 2011 1 / 29 prostej Przykład Dane trees - wyniki pomiarów objętości (Volume), średnicy (Girth) i wysokości (Height) pni drzew. Interesuje nas zależność (o ile

Bardziej szczegółowo

3. Analiza własności szeregu czasowego i wybór typu modelu

3. Analiza własności szeregu czasowego i wybór typu modelu 3. Analiza własności szeregu czasowego i wybór typu modelu 1. Metody analizy własności szeregu czasowego obserwacji 1.1. Analiza wykresu szeregu czasowego 1.2. Analiza statystyk opisowych zmiennej prognozowanej

Bardziej szczegółowo

ANALIZA ZALEŻNOŚCI MIĘDZY INDEKSAMI RYNKÓW AKCJI NA GIEŁDZIE POLSKIEJ I AMERYKAŃSKIEJ. Indeksy giełdowe

ANALIZA ZALEŻNOŚCI MIĘDZY INDEKSAMI RYNKÓW AKCJI NA GIEŁDZIE POLSKIEJ I AMERYKAŃSKIEJ. Indeksy giełdowe B A D A N I A O P E R A C Y J N E I D E C Y Z J E Nr 3 4 2007 Grzegorz PRZEKOTA* ANALIZA ZALEŻNOŚCI MIĘDZY INDEKSAMI RYNKÓW AKCJI NA GIEŁDZIE POLSKIEJ I AMERYKAŃSKIEJ W artykule skonstruowano dwa modele

Bardziej szczegółowo

Statystyka matematyczna. Wykład VI. Zesty zgodności

Statystyka matematyczna. Wykład VI. Zesty zgodności Statystyka matematyczna. Wykład VI. e-mail:e.kozlovski@pollub.pl Spis treści 1 Testy zgodności 2 Test Shapiro-Wilka Test Kołmogorowa - Smirnowa Test Lillieforsa Test Jarque-Bera Testy zgodności Niech x

Bardziej szczegółowo

Analiza finansowych szeregów czasowych w pakiecie R modele i metody

Analiza finansowych szeregów czasowych w pakiecie R modele i metody Analiza finansowych szeregów czasowych w pakiecie R modele i metody Monika Sikorska, Krzysztof Boczkowski Opracowanie firmy QuantUp 2013-02-23 Spis treści 1 Opis danych 1 2 Cechy charakterystyczne finansowych

Bardziej szczegółowo

Ekonometria / G. S. Maddala ; red. nauk. przekł. Marek Gruszczyński. wyd. 2, dodr. 1. Warszawa, Spis treści

Ekonometria / G. S. Maddala ; red. nauk. przekł. Marek Gruszczyński. wyd. 2, dodr. 1. Warszawa, Spis treści Ekonometria / G. S. Maddala ; red. nauk. przekł. Marek Gruszczyński. wyd. 2, dodr. 1. Warszawa, 2013 Spis treści Przedsłowie 15 Przedmowa do drugiego wydania 17 Przedmowa do trzeciego wydania 21 Nekrolog

Bardziej szczegółowo

Model regresji wielokrotnej Wykład 14 ( ) Przykład ceny domów w Chicago

Model regresji wielokrotnej Wykład 14 ( ) Przykład ceny domów w Chicago Model regresji wielokrotnej Wykład 14 (4.06.2007) Przykład ceny domów w Chicago Poniżej są przedstawione dane dotyczące cen domów w Chicago (źródło: Sen, A., Srivastava, M., Regression Analysis, Springer,

Bardziej szczegółowo

1.1 Klasyczny Model Regresji Liniowej

1.1 Klasyczny Model Regresji Liniowej 1.1 Klasyczny Model Regresji Liniowej Klasyczny model Regresji Liniowej jest bardzo użytecznym narzędziem służącym do analizy danych empirycznych. Analiza regresji zajmuje się opisem zależności między

Bardziej szczegółowo

Testowanie hipotez statystycznych.

Testowanie hipotez statystycznych. Statystyka Wykład 10 Wrocław, 22 grudnia 2011 Testowanie hipotez statystycznych Definicja. Hipotezą statystyczną nazywamy stwierdzenie dotyczące parametrów populacji. Definicja. Dwie komplementarne w problemie

Bardziej szczegółowo

Zadanie 1. a) Przeprowadzono test RESET. Czy model ma poprawną formę funkcyjną? 1

Zadanie 1. a) Przeprowadzono test RESET. Czy model ma poprawną formę funkcyjną? 1 Zadanie 1 a) Przeprowadzono test RESET. Czy model ma poprawną formę funkcyjną? 1 b) W naszym przypadku populacja są inżynierowie w Tajlandii. Czy można jednak przypuszczać, że na zarobki kobiet-inżynierów

Bardziej szczegółowo

Estymacja modeli ARIMA przy uŝyciu Staty oraz Integracja i kointegracja. Grzegorz Ogonek KSiE WNE UW

Estymacja modeli ARIMA przy uŝyciu Staty oraz Integracja i kointegracja. Grzegorz Ogonek KSiE WNE UW Estymacja modeli ARIMA przy uŝyciu Staty oraz Integracja i kointegracja Grzegorz Ogonek KSiE WNE UW 26.02.2005 Budowa modelu ARIMA dla szeregu czasowego PPI (Producer Price Index) dla Polski dla okresu

Bardziej szczegółowo

Wykład 12 ( ): Testy dla dwóch prób w rodzinie rozkładów normalnych

Wykład 12 ( ): Testy dla dwóch prób w rodzinie rozkładów normalnych Wykład 12 (21.05.07): Testy dla dwóch prób w rodzinie rozkładów normalnych Przykład Rozważamy dane wygenerowane losowo; ( podobne do danych z przykładu 7.2 z książki A. Łomnickiego) n 1 = 9 poletek w dąbrowie,

Bardziej szczegółowo

Modelowanie wielopoziomowe model z losowym nachyleniem

Modelowanie wielopoziomowe model z losowym nachyleniem Modelowanie wielopoziomowe model z losowym nachyleniem Maciej Jakubowski Artur Pokropek październik 2008 Plan dzisiejszych zajęć 1) modelowanie edukacyjnej wartości dodanej 2) model EWD z losową stałą

Bardziej szczegółowo

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA Powtórka Powtórki Kowiariancja cov xy lub c xy - kierunek zależności Współczynnik korelacji liniowej Pearsona r siła liniowej zależności Istotność

Bardziej szczegółowo

Prognozowanie i Symulacje. Wykład I. Matematyczne metody prognozowania

Prognozowanie i Symulacje. Wykład I. Matematyczne metody prognozowania Prognozowanie i Symulacje. Wykład I. e-mail:e.kozlovski@pollub.pl Spis treści Szeregi czasowe 1 Szeregi czasowe 2 3 Szeregi czasowe Definicja 1 Szereg czasowy jest to proces stochastyczny z czasem dyskretnym

Bardziej szczegółowo

Statystyka matematyczna. Wykład III. Estymacja przedziałowa

Statystyka matematyczna. Wykład III. Estymacja przedziałowa Statystyka matematyczna. Wykład III. e-mail:e.kozlovski@pollub.pl Spis treści Rozkłady zmiennych losowych 1 Rozkłady zmiennych losowych Rozkład χ 2 Rozkład t-studenta Rozkład Fischera 2 Przedziały ufności

Bardziej szczegółowo

Ekonometria ćwiczenia 3. Prowadzący: Sebastian Czarnota

Ekonometria ćwiczenia 3. Prowadzący: Sebastian Czarnota Ekonometria ćwiczenia 3 Prowadzący: Sebastian Czarnota Strona - niezbędnik http://sebastianczarnota.com/sgh/ Normalność rozkładu składnika losowego Brak normalności rozkładu nie odbija się na jakości otrzymywanych

Bardziej szczegółowo

Modele dynamiczne. Rozdział 2

Modele dynamiczne. Rozdział 2 Rozdział 2 Modele dynamiczne Modele dynamiczne są to modele, których celem jest opisanie procesu dostosowań do stanu równowagi. Modele takie szacowane są na szeregach czasowych. Własności dynamiczne systemu

Bardziej szczegółowo

Testowanie hipotez. Hipoteza prosta zawiera jeden element, np. H 0 : θ = 2, hipoteza złożona zawiera więcej niż jeden element, np. H 0 : θ > 4.

Testowanie hipotez. Hipoteza prosta zawiera jeden element, np. H 0 : θ = 2, hipoteza złożona zawiera więcej niż jeden element, np. H 0 : θ > 4. Testowanie hipotez Niech X = (X 1... X n ) będzie próbą losową na przestrzeni X zaś P = {P θ θ Θ} rodziną rozkładów prawdopodobieństwa określonych na przestrzeni próby X. Definicja 1. Hipotezą zerową Θ

Bardziej szczegółowo