Wprowadzenie Model ARMA Sezonowość Prognozowanie Model regresji z błędami ARMA. Modele ARMA

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wprowadzenie Model ARMA Sezonowość Prognozowanie Model regresji z błędami ARMA. Modele ARMA"

Transkrypt

1

2 Ważną klasę modeli dynamicznych stanowią modele ARMA(p, q)

3 Ważną klasę modeli dynamicznych stanowią modele ARMA(p, q) Modele tej klasy są modelami ateoretycznymi

4 Ważną klasę modeli dynamicznych stanowią modele ARMA(p, q) Modele tej klasy są modelami ateoretycznymi Model zjawiska budowany jest w oparciu o statystyczne właściwości danych

5 Ważną klasę modeli dynamicznych stanowią modele ARMA(p, q) Modele tej klasy są modelami ateoretycznymi Model zjawiska budowany jest w oparciu o statystyczne właściwości danych są użytecznym narzędziem prognostycznym

6 składa się z dwóch części: y t = α 1 y t α p y t p + µ + ε t + θ 1 ε t θ q ε t q }{{}}{{} AR MA

7 model autoregresyjny y t = µ + α 1 y t 1 + α 2 y t α p y t p

8 model autoregresyjny y t = µ + α 1 y t 1 + α 2 y t α p y t p model średniej ruchomej y t = ε t + θ 1 ε t 1 + θ 2 ε t θ q ε t q E(ε t ) = 0 var(ε t ) = σ 2 E(ε t, ε s ) = 0 t s

9 składniki ε t nazywa się innowacjami

10 składniki ε t nazywa się innowacjami cześć MA można traktować jako składnik losowy o rozbudowanej strukturze u t = ε t + θ 1 ε t 1 + θ 2 ε t θ q ε t q

11 składniki ε t nazywa się innowacjami cześć MA można traktować jako składnik losowy o rozbudowanej strukturze u t = ε t + θ 1 ε t 1 + θ 2 ε t θ q ε t q w takim przypadku podlega on zjawisku autokorelacji

12 składniki ε t nazywa się innowacjami cześć MA można traktować jako składnik losowy o rozbudowanej strukturze u t = ε t + θ 1 ε t 1 + θ 2 ε t θ q ε t q w takim przypadku podlega on zjawisku autokorelacji model ARMA można wówczas przedstawić jako y t = µ + α 1 y t 1 + α 2 y t α p y t p + u t (1)

13 Jeśli model nie ma części autoregresyjnej to można jego parametry oszacować MNK

14 Jeśli model nie ma części autoregresyjnej to można jego parametry oszacować MNK Model (1) nie spełnia założeń KRML

15 Jeśli model nie ma części autoregresyjnej to można jego parametry oszacować MNK Model (1) nie spełnia założeń KRML Estymatory MNK nie są zgodne

16 Jeśli model nie ma części autoregresyjnej to można jego parametry oszacować MNK Model (1) nie spełnia założeń KRML Estymatory MNK nie są zgodne Oszacowania uzyskuje się wykorzystując MNW lub Nieliniową MNK

17 Jeśli model nie ma części autoregresyjnej to można jego parametry oszacować MNK Model (1) nie spełnia założeń KRML Estymatory MNK nie są zgodne Oszacowania uzyskuje się wykorzystując MNW lub Nieliniową MNK W przypadku rozbudowanej postaci modelu obliczenia są czasochłonne i źle numerycznie uwarunkowane

18 Jeśli model nie ma części autoregresyjnej to można jego parametry oszacować MNK Model (1) nie spełnia założeń KRML Estymatory MNK nie są zgodne Oszacowania uzyskuje się wykorzystując MNW lub Nieliniową MNK W przypadku rozbudowanej postaci modelu obliczenia są czasochłonne i źle numerycznie uwarunkowane Jest to szczególnie duży problem dla krótkich szeregów

19 Jeśli model nie ma części autoregresyjnej to można jego parametry oszacować MNK Model (1) nie spełnia założeń KRML Estymatory MNK nie są zgodne Oszacowania uzyskuje się wykorzystując MNW lub Nieliniową MNK W przypadku rozbudowanej postaci modelu obliczenia są czasochłonne i źle numerycznie uwarunkowane Jest to szczególnie duży problem dla krótkich szeregów Do testowania hipotez można użyć testów W,LR,LM

20 Przed estymacją parametrów należy ustalić rząd procesów

21 Przed estymacją parametrów należy ustalić rząd procesów Metoda Boxa-Jenkinsa

22 Przed estymacją parametrów należy ustalić rząd procesów Metoda Boxa-Jenkinsa Metoda od ogólnego do szczegółowego

23 Przed estymacją parametrów należy ustalić rząd procesów Metoda Boxa-Jenkinsa Metoda od ogólnego do szczegółowego Kryteria informacyjne

24 Jeżeli procesy są prawidłowo ustalone to reszty są białym szumem

25 Jeżeli procesy są prawidłowo ustalone to reszty są białym szumem testem niezależności reszt jest statystyka Ljunga-Boxa Q = n(n + 2) m k=1 ˆρ k T k D χ 2 m p q gdzie ˆρ k = (T k) (y ȳ) (y t k ȳ) T 1 (y ȳ) 2

26 Funkcja autokowariancji pokazuje zależność między y t a poprzednimi wartościami

27 Funkcja autokowariancji pokazuje zależność między y t a poprzednimi wartościami Dla szeregu stacjonarnego wartości zależą wyłącznie od odległości między obserwacjami E(y t E(y t ))(y t k E(y t k )) = γ k k = 0, 1, 2,...

28 Funkcja autokowariancji pokazuje zależność między y t a poprzednimi wartościami Dla szeregu stacjonarnego wartości zależą wyłącznie od odległości między obserwacjami E(y t E(y t ))(y t k E(y t k )) = γ k k = 0, 1, 2,... autkowariancje są nieunormowane

29 Funkcja autokowariancji pokazuje zależność między y t a poprzednimi wartościami Dla szeregu stacjonarnego wartości zależą wyłącznie od odległości między obserwacjami E(y t E(y t ))(y t k E(y t k )) = γ k k = 0, 1, 2,... autkowariancje są nieunormowane Funkcja autokorelacji (ACF) (Autocorrelation Function) ρ k = cov(y t, y t k ) var(y t )

30 Funkcja autokowariancji pokazuje zależność między y t a poprzednimi wartościami Dla szeregu stacjonarnego wartości zależą wyłącznie od odległości między obserwacjami E(y t E(y t ))(y t k E(y t k )) = γ k k = 0, 1, 2,... autkowariancje są nieunormowane Funkcja autokorelacji (ACF) (Autocorrelation Function) ρ k [ 1, 1] ρ k = cov(y t, y t k ) var(y t )

31 Funkcja autokowariancji pokazuje zależność między y t a poprzednimi wartościami Dla szeregu stacjonarnego wartości zależą wyłącznie od odległości między obserwacjami E(y t E(y t ))(y t k E(y t k )) = γ k k = 0, 1, 2,... autkowariancje są nieunormowane Funkcja autokorelacji (ACF) (Autocorrelation Function) ρ k [ 1, 1] ρ k = ρ k ρ k = cov(y t, y t k ) var(y t )

32 Autocorrelations of inflacja Lag Bartlett s formula for MA(q) 95% confidence bands

33 Funkcja cząstkowej autokorelacji (Partial Autocorrelation Function) pokazuje zależność między y t a poprzednimi wartościami, pomijając wpływ pośrednich opóźnień

34 Funkcja cząstkowej autokorelacji (Partial Autocorrelation Function) pokazuje zależność między y t a poprzednimi wartościami, pomijając wpływ pośrednich opóźnień Liczbowo jest równa oszacowaniu współczynnika ρ k w modelu: y t = µ + ρ 1 y t ρ k y t k + ε t

35 Partial autocorrelations of inflacja Lag 95% Confidence bands [se = 1/sqrt(n)]

36 LAG AC PAC Q Prob>Q [Autocorrelation] [Partial Autocor]

37 Polega na graficznej analizie przebiegu funkcji ACF i PACF

38 Polega na graficznej analizie przebiegu funkcji ACF i PACF Wielkość p oraz q można oszacować na podstawie przebiegu funkcji ACF i PACF

39 Polega na graficznej analizie przebiegu funkcji ACF i PACF Wielkość p oraz q można oszacować na podstawie przebiegu funkcji ACF i PACF Urywająca się funkcja ACF wskazuje na rząd procesu MA

40 Polega na graficznej analizie przebiegu funkcji ACF i PACF Wielkość p oraz q można oszacować na podstawie przebiegu funkcji ACF i PACF Urywająca się funkcja ACF wskazuje na rząd procesu MA Urywająca się funkcja PACF wskazuje na rząd procesu AR

41 Polega na graficznej analizie przebiegu funkcji ACF i PACF Wielkość p oraz q można oszacować na podstawie przebiegu funkcji ACF i PACF Urywająca się funkcja ACF wskazuje na rząd procesu MA Urywająca się funkcja PACF wskazuje na rząd procesu AR Jeżeli obie funkcję maleją bardzo powoli należy szereg zróżnicować

42 Polega na graficznej analizie przebiegu funkcji ACF i PACF Wielkość p oraz q można oszacować na podstawie przebiegu funkcji ACF i PACF Urywająca się funkcja ACF wskazuje na rząd procesu MA Urywająca się funkcja PACF wskazuje na rząd procesu AR Jeżeli obie funkcję maleją bardzo powoli należy szereg zróżnicować Regularne skoki mogą wskazywać na obecność sezonowości

43 Autocorrelations of inflacja Lag Partial autocorrelations of inflacja Lag Bartlett s formula for MA(q) 95% confidence bands 95% Confidence bands [se = 1/sqrt(n)]

44 W praktyce wykresy są trudne do jednoznacznej interpretacji

45 W praktyce wykresy są trudne do jednoznacznej interpretacji Dodatkowy problemem jest brak zgodności oszacowań PACF

46 W praktyce wykresy są trudne do jednoznacznej interpretacji Dodatkowy problemem jest brak zgodności oszacowań PACF Wskazane jest posłużenie się formalnymi metodami

47 W praktyce wykresy są trudne do jednoznacznej interpretacji Dodatkowy problemem jest brak zgodności oszacowań PACF Wskazane jest posłużenie się formalnymi metodami Celem jest wybór modelu o małej liczbie parametrów

48 Przykład Wprowadzenie Porównanie statystyk różnych modeli Kryterium ARMA(2,0) ARMA(2,1) ARMA(1,1) ARMA(2,2) AIC BIC LL

49 Powszechność sezonowości

50 Powszechność sezonowości Brak jej uwzględnienia może powodować autokorelację

51 Powszechność sezonowości Brak jej uwzględnienia może powodować autokorelację Zmienne zero-jedynkowe

52 Powszechność sezonowości Brak jej uwzględnienia może powodować autokorelację Zmienne zero-jedynkowe Sezonowe wyrównywanie szeregów (X11, TRAMO-SEATS)

53 Powszechność sezonowości Brak jej uwzględnienia może powodować autokorelację Zmienne zero-jedynkowe Sezonowe wyrównywanie szeregów (X11, TRAMO-SEATS) Różnicowanie sezownowe

54 Przykład Wprowadzenie Porównanie statystyk różnych modeli Kryterium SARMA(2,0) SARMA(1,1) SARMA(1,0) AIC BIC LL

55 może być wykorzystany jako narzędzie prognostyczne

56 może być wykorzystany jako narzędzie prognostyczne Wartość w kolejnym okresie zależy wyłącznie od znanych wartości y T +1 = µ+α 1 y T +...+α p y T p+1 +ε T +1 +θ 1 ε T +...+θ q ε T q+1 gdzie T oznacza ostatnią obserwację w próbie

57 może być wykorzystany jako narzędzie prognostyczne Wartość w kolejnym okresie zależy wyłącznie od znanych wartości y T +1 = µ+α 1 y T +...+α p y T p+1 +ε T +1 +θ 1 ε T +...+θ q ε T q+1 gdzie T oznacza ostatnią obserwację w próbie Zakłada się że reszty dla przyszłych okresów są równe 0

58 może być wykorzystany jako narzędzie prognostyczne Wartość w kolejnym okresie zależy wyłącznie od znanych wartości y T +1 = µ+α 1 y T +...+α p y T p+1 +ε T +1 +θ 1 ε T +...+θ q ε T q+1 gdzie T oznacza ostatnią obserwację w próbie Zakłada się że reszty dla przyszłych okresów są równe 0 Prognoza y T +1 jest równa y T ˆ +1 = ˆµ + α 1 yˆ T α p y T p+1 ˆ + θ 1 e T θ q e T q+1

59 może być wykorzystany jako narzędzie prognostyczne Wartość w kolejnym okresie zależy wyłącznie od znanych wartości y T +1 = µ+α 1 y T +...+α p y T p+1 +ε T +1 +θ 1 ε T +...+θ q ε T q+1 gdzie T oznacza ostatnią obserwację w próbie Zakłada się że reszty dla przyszłych okresów są równe 0 Prognoza y T +1 jest równa y T ˆ +1 = ˆµ + α 1 yˆ T α p y T p+1 ˆ + θ 1 e T θ q e T q+1 prognozy oblicza się rekurencyjnie

60 sensowne prognozy z modelu ARMA najwyżej na max{p, q} okresów

61 sensowne prognozy z modelu ARMA najwyżej na max{p, q} okresów dla kolejnych okresów przyjmują wartość y µ = 1 α i

62 ARIMA regression Sample: 1998m1-2008m12 Number of obs = 132 Wald chi2(2) = Log likelihood = Prob > chi2 = OPG inflacja Coef. Std. Err. z P> z [95% Conf. Interval] inflacja _cons ARMA ar L L /sigma

63 Prognoza na 1 okres naprzód y T +1 = α 1 y T + α 2 y T 1 = = 4.47

64 Prognoza na 1 okres naprzód y T +1 = α 1 y T + α 2 y T 1 = = 4.47 Prognoza na 2 okresy naprzód y T +2 = α 1 y T ˆ +1 + α 2 y T = = 4.45

65 Prognoza na 1 okres naprzód y T +1 = α 1 y T + α 2 y T 1 = = 4.47 Prognoza na 2 okresy naprzód y T +2 = α 1 y T ˆ +1 + α 2 y T = = 4.45 Prognoza na 3 okresy naprzód y T +3 = α 1 y T ˆ +2 + α 2 y T ˆ +1 = = 4.44

66 m1 2000m1 2002m1 2004m1 2006m1 2008m1 2010m1 miesiac badania inflacja netto xb prediction, dyn(tm(2009q1))

67 Ze względu na ateoretyczną naturę procesu ARMA, czasem wykorzystuje się go w połączeniu z innym modelem

68 Ze względu na ateoretyczną naturę procesu ARMA, czasem wykorzystuje się go w połączeniu z innym modelem Wówczas ma on postać y t = X t β + u u t ARMA(p, q)

69 ARIMA regression Number of obs = 131 Sample: 1998m2-2008m12 Wald chi2(4) = Log likelihood = Prob > chi2 = OPG inflacja Coef. Std. Err. z P> z [95% Conf. Interval] stopa L _cons ARMA ar L L /sigma ======================================================================= Model Obs ll(null) ll(model) df AIC BIC ARMA Note: N=Obs used in calculating BIC; see [R] BIC note

1 Modele ADL - interpretacja współczynników

1 Modele ADL - interpretacja współczynników 1 Modele ADL - interpretacja współczynników ZADANIE 1.1 Dany jest proces DL następującej postaci: y t = µ + β 0 x t + β 1 x t 1 + ε t. 1. Wyjaśnić, jaka jest intepretacja współczynników β 0 i β 1. 2. Pokazać

Bardziej szczegółowo

Stacjonarność Integracja. Integracja. Integracja

Stacjonarność Integracja. Integracja. Integracja Biały szum AR(1) Słaba stacjonarność Szereg czasowy nazywamy słabo (wariancyjnie) stacjonarnym jeżeli: Biały szum AR(1) Słaba stacjonarność Szereg czasowy nazywamy słabo (wariancyjnie) stacjonarnym jeżeli:

Bardziej szczegółowo

Modele warunkowej heteroscedastyczności

Modele warunkowej heteroscedastyczności Teoria Przykład - zwroty z WIG Niskie koszty transakcyjne Teoria Przykład - zwroty z WIG Niskie koszty transakcyjne Racjonalne oczekiwania inwestorów P t = E(P t+1 I t ) 1 + R (1) Teoria Przykład - zwroty

Bardziej szczegółowo

Analiza Szeregów Czasowych. Egzamin

Analiza Szeregów Czasowych. Egzamin Analiza Szeregów Czasowych Egzamin 12-06-2018 Zadanie 1: Zadanie 2: Zadanie 3: Zadanie 4: / 12 pkt. / 12 pkt. / 12 pkt. / 14 pkt. Projekt zaliczeniowy: Razem: / 100 pkt. / 50 pkt. Regulamin egzaminu 1.

Bardziej szczegółowo

Wprowadzenie Modele o opóźnieniach rozłożonych Modele autoregresyjne o opóźnieniach rozłożonych. Modele dynamiczne.

Wprowadzenie Modele o opóźnieniach rozłożonych Modele autoregresyjne o opóźnieniach rozłożonych. Modele dynamiczne. opisują kształtowanie się zjawiska w czasie opisują kształtowanie się zjawiska w czasie Najważniejszymi zastosowaniami modeli dynamicznych są opisują kształtowanie się zjawiska w czasie Najważniejszymi

Bardziej szczegółowo

Czasowy wymiar danych

Czasowy wymiar danych Problem autokorelacji Model regresji dla szeregów czasowych Model regresji dla szeregów czasowych y t = X t β + ε t Zasadnicze różnice 1 Budowa prognoz 2 Problem stabilności parametrów 3 Problem autokorelacji

Bardziej szczegółowo

Analiza szeregów czasowych bezrobocia i inflacji w Danii

Analiza szeregów czasowych bezrobocia i inflacji w Danii Uniwersytet Warszawski Wydział Nauk Ekonomicznych Mateusz Błażej Nr albumu: 308521 Analiza szeregów czasowych bezrobocia i inflacji w Danii Projekt zaliczeniowy z przedmiotu: Analiza Szeregów Czasowych

Bardziej szczegółowo

1.1 Opis danych Dekompozycja szeregu ARIMA Prognoza Podsumowanie Opis danych...

1.1 Opis danych Dekompozycja szeregu ARIMA Prognoza Podsumowanie Opis danych... 1 Szereg niesezonowy... 3 1.1 Opis danych... 3 1.2 Dekompozycja szeregu... 3 1.3... 3 1.4 ARIMA... 10 1.5 Prognoza... 12 1.6 Podsumowanie... 15 2 Szereg sezonowy... 15 2.1 Opis danych... 15 2.2 Dekompozycja

Bardziej szczegółowo

Przyczynowość Kointegracja. Kointegracja. Kointegracja

Przyczynowość Kointegracja. Kointegracja. Kointegracja korelacja a związek o charakterze przyczynowo-skutkowym korelacja a związek o charakterze przyczynowo-skutkowym Przyczynowość w sensie Grangera Zmienna x jest przyczyną w sensie Grangera zmiennej y jeżeli

Bardziej szczegółowo

Budowa modelu i testowanie hipotez

Budowa modelu i testowanie hipotez Problemy metodologiczne Gdzie jest problem? Obciążenie Lovella Dysponujemy oszacowaniami parametrów następującego modelu y t = β 0 + β 1 x 1 +... + β k x k + ε t Gdzie jest problem? Obciążenie Lovella

Bardziej szczegółowo

1. Pokaż, że estymator MNW parametru β ma postać β = nieobciążony. Znajdź estymator parametru σ 2.

1. Pokaż, że estymator MNW parametru β ma postać β = nieobciążony. Znajdź estymator parametru σ 2. Zadanie 1 Niech y t ma rozkład logarytmiczno normalny o funkcji gęstości postaci [ ] 1 f (y t ) = y exp (ln y t β ln x t ) 2 t 2πσ 2 2σ 2 Zakładamy, że x t jest nielosowe a y t są nieskorelowane w czasie.

Bardziej szczegółowo

Testy własności składnika losowego Testy formy funkcyjnej. Diagnostyka modelu. Część 2. Diagnostyka modelu

Testy własności składnika losowego Testy formy funkcyjnej. Diagnostyka modelu. Część 2. Diagnostyka modelu Część 2 Test Durbina-Watsona Test Durbina-Watsona Weryfikowana hipoteza H 0 : cov(ε t, ε t 1 ) = 0 H 1 : cov(ε t, ε t 1 ) 0 Test Durbina-Watsona Weryfikowana hipoteza H 0 : cov(ε t, ε t 1 ) = 0 H 1 : cov(ε

Bardziej szczegółowo

Rozdziaª 4. Jednowymiarowe modele szeregów czasowych

Rozdziaª 4. Jednowymiarowe modele szeregów czasowych Rozdziaª 4. Jednowymiarowe modele szeregów czasowych MODELOWANIE POLSKIEJ GOSPODARKI z R MPGzR (rozdz. 4) Modele ARMA 1 / 24 Jednowymiarowe modele szeregów czasowych Jednowymiarowe modele szeregów czasowych:

Bardziej szczegółowo

I. Szereg niesezonowy

I. Szereg niesezonowy Spis I. Szereg niesezonowy 1.1. Opis danych 1.2. Dekompozycja szeregu w programie Demetra 1.3. Analiza szeregu w STATA 1.4. Model ekstrapolacyjny 1.5. Model ARIMA 1.6. P II Szereg sezonowy 2.1. Opis danych

Bardziej szczegółowo

Ekonometria Ćwiczenia 19/01/05

Ekonometria Ćwiczenia 19/01/05 Oszacowano regresję stopy bezrobocia (unemp) na wzroście realnego PKB (pkb) i stopie inflacji (cpi) oraz na zmiennych zero-jedynkowych związanymi z kwartałami (season). Regresję przeprowadzono na danych

Bardziej szczegółowo

Heteroskedastyczość w szeregach czasowyh

Heteroskedastyczość w szeregach czasowyh Heteroskedastyczość w szeregach czasowyh Czesto zakłada się, że szeregi czasowe wykazuja autokorelację ae sa homoskedastyczne W rzeczywistości jednak często wariancja zmienia się w czasie Dobrym przykładem

Bardziej szczegółowo

WYKŁAD: Szeregi czasowe I. Zaawansowane Metody Uczenia Maszynowego

WYKŁAD: Szeregi czasowe I. Zaawansowane Metody Uczenia Maszynowego WYKŁAD: Szeregi czasowe I Zaawansowane Metody Uczenia Maszynowego Szereg czasowy (X t ) - ciąg zmiennych losowych indeksowany parametrem t (czas). Z reguły t N lub t Z. Dotąd rozpatrywaliśmy: (X t )- ciąg

Bardziej szczegółowo

Testowanie hipotez statystycznych

Testowanie hipotez statystycznych Część 2 Hipoteza złożona Testowanie hipotez łącznych Zapis matematyczny Rozkład statystyki testowej Hipoteza łączna H 0 : Rβ = q Hipoteza złożona Testowanie hipotez łącznych Zapis matematyczny Rozkład

Bardziej szczegółowo

Metoda najmniejszych kwadratów

Metoda najmniejszych kwadratów Własności algebraiczne Model liniowy Zapis modelu zarobki = β 0 + β 1 plec + β 2 wiek + ε Oszacowania wartości współczynników zarobki = b 0 + b 1 plec + b 2 wiek + e Model liniowy Tabela: Oszacowania współczynników

Bardziej szczegółowo

Ekonometria egzamin 01/02/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora.

Ekonometria egzamin 01/02/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora. imię, nazwisko, nr indeksu: Ekonometria egzamin 01/02/2019 1. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu.

Bardziej szczegółowo

Rozdział 2: Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów

Rozdział 2: Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów Rozdział : Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów W tym rozdziale omówione zostaną dwie najpopularniejsze metody estymacji parametrów w ekonometrycznych modelach nieliniowych,

Bardziej szczegółowo

O sezonowości mówimy wtedy, gdy zmienna zmienia się w pewnym cyklu zwykle zwiazanym z cyklem rocznym

O sezonowości mówimy wtedy, gdy zmienna zmienia się w pewnym cyklu zwykle zwiazanym z cyklem rocznym Sezonowość O sezonowości mówimy wtedy, gdy zmienna zmienia się w pewnym cyklu zwykle zwiazanym z cyklem rocznym Na przykład zmienne kwartalne charakteryzuja się zwykle sezonowościa kwartalna a zmienne

Bardziej szczegółowo

3. Analiza własności szeregu czasowego i wybór typu modelu

3. Analiza własności szeregu czasowego i wybór typu modelu 3. Analiza własności szeregu czasowego i wybór typu modelu 1. Metody analizy własności szeregu czasowego obserwacji 1.1. Analiza wykresu szeregu czasowego 1.2. Analiza statystyk opisowych zmiennej prognozowanej

Bardziej szczegółowo

Heteroscedastyczność. Zjawisko heteroscedastyczności Uogólniona Metoda Najmniejszych Kwadratów Stosowalna Metoda Najmniejszych Kwadratów

Heteroscedastyczność. Zjawisko heteroscedastyczności Uogólniona Metoda Najmniejszych Kwadratów Stosowalna Metoda Najmniejszych Kwadratów Formy heteroscedastyczności Własności estymatorów MNK wydatki konsumpcyjne 0 10000 20000 30000 40000 14.4 31786.08 dochód rozporz¹dzalny Zródlo: Obliczenia wlasne, dane BBGD 2004 Formy heteroscedastyczności

Bardziej szczegółowo

Ekonometria dla IiE i MSEMat Z12

Ekonometria dla IiE i MSEMat Z12 Ekonometria dla IiE i MSEMat Z12 Rafał Woźniak Faculty of Economic Sciences, University of Warsaw Warszawa, 09-01-2017 Test RESET Ramsey a W pierwszym etapie estymujemy współczynniki regresji w modelu:

Bardziej szczegółowo

Szeregi czasowe, analiza zależności krótkoi długozasięgowych

Szeregi czasowe, analiza zależności krótkoi długozasięgowych Szeregi czasowe, analiza zależności krótkoi długozasięgowych Rafał Weron rweron@im.pwr.wroc.pl Definicje Mając dany proces {X t } autokowariancję definiujemy jako : γ(t, t ) = cov(x t, X t ) = = E[(X t

Bardziej szczegółowo

Ekonometria. Modelowanie szeregów czasowych. Stacjonarność. Testy pierwiastka jednostkowego. Modele ARDL. Kointegracja. Jakub Mućk

Ekonometria. Modelowanie szeregów czasowych. Stacjonarność. Testy pierwiastka jednostkowego. Modele ARDL. Kointegracja. Jakub Mućk Ekonometria Modelowanie szeregów czasowych. Stacjonarność. Testy pierwiastka jednostkowego. Modele ARDL. Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Ćwiczenia 5 & 6 Szaeregi czasowe 1

Bardziej szczegółowo

Ekonometria egzamin 02/02/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora.

Ekonometria egzamin 02/02/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora. imię, nazwisko, nr indeksu: Ekonometria egzamin 02/02/2011 1. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu.

Bardziej szczegółowo

Modele ARIMA prognoza, specykacja

Modele ARIMA prognoza, specykacja Modele ARIMA prognoza, specykacja Wst p do ekonometrii szeregów czasowych wiczenia 3 5 marca 2010 Plan prezentacji 1 Specykacja modelu ARIMA 2 3 Plan prezentacji 1 Specykacja modelu ARIMA 2 3 Funkcja autokorelacji

Bardziej szczegółowo

1.9 Czasowy wymiar danych

1.9 Czasowy wymiar danych 1.9 Czasowy wymiar danych Do tej pory rozpatrywaliśmy jedynie modele tworzone na podstawie danych empirycznych pochodzących z prób przekrojowych. Teraz zajmiemy się zagadnieniem budowy modeli regresji,

Bardziej szczegółowo

Ekonometria egzamin 02/02/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora.

Ekonometria egzamin 02/02/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora. imię, nazwisko, nr indeksu: Ekonometria egzamin 0/0/0. Egzamin trwa 90 minut.. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu. Złamanie

Bardziej szczegółowo

Metody matematyczne w analizie danych eksperymentalnych - sygnały, cz. 2

Metody matematyczne w analizie danych eksperymentalnych - sygnały, cz. 2 Metody matematyczne w analizie danych eksperymentalnych - sygnały, cz. 2 Dr hab. inż. Agnieszka Wyłomańska Faculty of Pure and Applied Mathematics Hugo Steinhaus Center Wrocław University of Science and

Bardziej szczegółowo

Ekonometria egzamin 31/01/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora.

Ekonometria egzamin 31/01/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora. imię, nazwisko, nr indeksu: Ekonometria egzamin 31/01/2018 1. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu.

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka

Stanisław Cichocki. Natalia Nehrebecka Stanisław Cichocki Natalia Nehrebecka 1 1. Wstęp a) Binarne zmienne zależne b) Interpretacja ekonomiczna c) Interpretacja współczynników 2. Liniowy model prawdopodobieństwa a) Interpretacja współczynników

Bardziej szczegółowo

Problem równoczesności w MNK

Problem równoczesności w MNK Problem równoczesności w MNK O problemie równoczesności mówimy, gdy występuje korelacja między wartościa oczekiwana ε i i równoczesnym x i Model liniowy y = Xβ + ε, E (u) = 0 Powiedzmy, że występuje w

Bardziej szczegółowo

5. Model sezonowości i autoregresji zmiennej prognozowanej

5. Model sezonowości i autoregresji zmiennej prognozowanej 5. Model sezonowości i autoregresji zmiennej prognozowanej 1. Model Sezonowości kwartalnej i autoregresji zmiennej prognozowanej (rząd istotnej autokorelacji K = 1) Szacowana postać: y = c Q + ρ y, t =

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka

Stanisław Cichocki. Natalia Nehrebecka Stanisław Cichocki Natalia Nehrebecka 1 1. Wstęp a) Binarne zmienne zależne b) Interpretacja ekonomiczna c) Interpretacja współczynników 2. Liniowy model prawdopodobieństwa a) Interpretacja współczynników

Bardziej szczegółowo

Stanisław Cichocki Natalia Neherbecka

Stanisław Cichocki Natalia Neherbecka Stanisław Cichocki Natalia Neherbecka 13 marca 2010 1 1. Kryteria informacyjne 2. Modele dynamiczne: modele o rozłożonych opóźnieniach (DL) modele autoregresyjne o rozłożonych opóźnieniach (ADL) 3. Analiza

Bardziej szczegółowo

2.2 Autokorelacja Wprowadzenie

2.2 Autokorelacja Wprowadzenie 2.2 Autokorelacja 2.2.1 Wprowadzenie Przy wyprowadzaniu estymatorów Klasycznego Modelu Regresji Liniowej (KMRL) zakładaliśmy, że są spełnione założenia Gaussa-Markowa, tzn. składniki losowe są homoscedastyczne

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Zajęcia 15-16

Stanisław Cichocki. Natalia Nehrebecka. Zajęcia 15-16 Stanisław Cichocki Natalia Nehrebecka Zajęcia 15-16 1 1. Sezonowość 2. Zmienne stacjonarne 3. Zmienne zintegrowane 4. Test Dickey-Fullera 5. Rozszerzony test Dickey-Fullera 6. Test KPSS 7. Regresja pozorna

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 12

Stanisław Cichocki. Natalia Nehrebecka. Wykład 12 Stanisław Cichocki Natalia Nehrebecka Wykład 12 1 1.Problemy z danymi Zmienne pominięte Zmienne nieistotne 2. Autokorelacja o Testowanie autokorelacji 1.Problemy z danymi Zmienne pominięte Zmienne nieistotne

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka

Stanisław Cichocki. Natalia Nehrebecka Stanisław Cichocki Natalia Nehrebecka 1 1. Wstęp a) Binarne zmienne zależne b) Interpretacja ekonomiczna c) Interpretacja współczynników 2. Liniowy model prawdopodobieństwa a) Interpretacja współczynników

Bardziej szczegółowo

0.1 Modele Dynamiczne

0.1 Modele Dynamiczne 0.1 Modele Dynamiczne 0.1.1 Wprowadzenie Często konkretne działanie czy zjawisko ekonomiczne nie tylko zależy od bieżących wartości pewnych wskaźników - zmiennych objaśniających modelu, ale również od

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka

Stanisław Cichocki. Natalia Nehrebecka Stanisław Cichocki Natalia Nehrebecka 1 1. Wstęp a) Binarne zmienne zależne b) Interpretacja ekonomiczna c) Interpretacja współczynników 2. Liniowy model prawdopodobieństwa a) Interpretacja współczynników

Bardziej szczegółowo

Ekonometria. Modelowanie szeregów czasowych. Stacjonarność. Testy pierwiastka jednostkowego. Modele ARDL. Kointegracja. Jakub Mućk

Ekonometria. Modelowanie szeregów czasowych. Stacjonarność. Testy pierwiastka jednostkowego. Modele ARDL. Kointegracja. Jakub Mućk Ekonometria Modelowanie szeregów czasowych. Stacjonarność. Testy pierwiastka jednostkowego. Modele ARDL. Kointegracja Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Wykład 5 & 6 Szaeregi

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 12

Stanisław Cichocki. Natalia Nehrebecka. Wykład 12 Stanisław Cichocki Natalia Nehrebecka Wykład 1 1 1. Testy diagnostyczne Testowanie stabilności parametrów modelu: test Chowa. Heteroskedastyczność Konsekwencje Testowanie heteroskedastyczności 1. Testy

Bardziej szczegółowo

Modele dynamiczne. Rozdział 2

Modele dynamiczne. Rozdział 2 Rozdział 2 Modele dynamiczne Modele dynamiczne są to modele, których celem jest opisanie procesu dostosowań do stanu równowagi. Modele takie szacowane są na szeregach czasowych. Własności dynamiczne systemu

Bardziej szczegółowo

Ekonometria. Metodologia budowy modelu. Jerzy Mycielski. Luty, 2011 WNE, UW. Jerzy Mycielski (WNE, UW) Ekonometria Luty, / 18

Ekonometria. Metodologia budowy modelu. Jerzy Mycielski. Luty, 2011 WNE, UW. Jerzy Mycielski (WNE, UW) Ekonometria Luty, / 18 Ekonometria Metodologia budowy modelu Jerzy Mycielski WNE, UW Luty, 2011 Jerzy Mycielski (WNE, UW) Ekonometria Luty, 2011 1 / 18 Sprawy organizacyjne Dyżur: środa godz. 14-15 w sali 302. Strona internetowa

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka

Stanisław Cichocki. Natalia Nehrebecka Stanisław Cichocki Natalia Nehrebecka 1 Diagnostyka a) Test RESET b) Test Jarque-Bera c) Testowanie heteroskedastyczności a) groupwise heteroscedasticity b) cross-sectional correlation d) Testowanie autokorelacji

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka

Stanisław Cichocki. Natalia Nehrebecka Stanisław Cichocki Natalia Nehrebecka 1 1. Wprowadzenie do danych panelowych a) Charakterystyka danych panelowych b) Zalety i ograniczenia 2. Modele ekonometryczne danych panelowych a) Model efektów nieobserwowalnych

Bardziej szczegółowo

Ekonometria egzamin wersja Informatyka i Ekonometria 26/06/08

Ekonometria egzamin wersja Informatyka i Ekonometria 26/06/08 imię, nazwisko, nr indeksu: Ekonometria egzamin wersja Informatyka i Ekonometria 26/06/08 1. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz

Bardziej szczegółowo

Egzamin z ekonometrii wersja IiE, MSEMAT

Egzamin z ekonometrii wersja IiE, MSEMAT Egzamin z ekonometrii wersja IiE, MSEMAT 04-02-2016 Pytania teoretyczne 1. Za pomocą jakiego testu weryfikowana jest normalność składnika losowego? Jakiemu założeniu KMRL odpowiada w tym teście? Jakie

Bardziej szczegółowo

Natalia Nehrebecka Stanisław Cichocki. Wykład 10

Natalia Nehrebecka Stanisław Cichocki. Wykład 10 Natalia Nehrebecka Stanisław Cichocki Wykład 10 1 1. Testy diagnostyczne 2. Testowanie prawidłowości formy funkcyjnej modelu 3. Testowanie normalności składników losowych 4. Testowanie stabilności parametrów

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 9

Stanisław Cichocki. Natalia Nehrebecka. Wykład 9 Stanisław Cichocki Natalia Nehrebecka Wykład 9 1 1. Dodatkowe założenie KMRL 2. Testowanie hipotez prostych Rozkład estymatora b Testowanie hipotez prostych przy użyciu statystyki t 3. Przedziały ufności

Bardziej szczegółowo

Testowanie hipotez statystycznych

Testowanie hipotez statystycznych Testowanie hipotez statystycznych Wyk lad 8 Natalia Nehrebecka Stanis law Cichocki 29 listopada 2015 Plan zajeć 1 Rozk lad estymatora b Rozk lad sumy kwadratów reszt 2 Hipotezy proste - test t Badanie

Bardziej szczegółowo

Metody Ekonometryczne

Metody Ekonometryczne Metody Ekonometryczne Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Metody Ekonometyczne Wykład 4 Uogólniona Metoda Najmniejszych Kwadratów (GLS) 1 / 19 Outline 1 2 3 Jakub Mućk Metody Ekonometyczne

Bardziej szczegółowo

Dr Łukasz Goczek. Uniwersytet Warszawski

Dr Łukasz Goczek. Uniwersytet Warszawski Dr Łukasz Goczek Uniwersytet Warszawski Dane krótko i długookresowe stopy procentowe Co wiemy z teorii? Krótkookresowe stopy powodują stopami długookresowymi (toteż taka jest idea bezpośredniego celu

Bardziej szczegółowo

0.1 Modele Dynamiczne

0.1 Modele Dynamiczne 0.1 Modele Dynamiczne 0.1.1 Wprowadzenie Często konkretne działanie czy zjawisko ekonomiczne nie tylko zależy od bieżących wartości pewnych wskaźników - zmiennych objaśniających modelu, ale również od

Bardziej szczegółowo

Prognozowanie cen surowców w rolnych na podstawie szeregów w czasowych - uwarunkowania i metody. Sylwia Grudkowska NBP Mariusz Hamulczuk IERIGś-PIB

Prognozowanie cen surowców w rolnych na podstawie szeregów w czasowych - uwarunkowania i metody. Sylwia Grudkowska NBP Mariusz Hamulczuk IERIGś-PIB Prognozowanie cen surowców w rolnych na podstawie szeregów w czasowych - uwarunkowania i metody Sylwia Grudkowska NBP Mariusz Hamulczuk IERIGś-PIB Plan prezentacji Wprowadzenie do prognozowania Metody

Bardziej szczegółowo

Definicja danych panelowych Typy danych panelowych Modele dla danych panelowych. Dane panelowe. Część 1. Dane panelowe

Definicja danych panelowych Typy danych panelowych Modele dla danych panelowych. Dane panelowe. Część 1. Dane panelowe Część 1 to dane, które jednocześnie posiadają cechy danych przekrojowych i szeregów czasowych to dane, które jednocześnie posiadają cechy danych przekrojowych i szeregów czasowych Czyli obserwujemy te

Bardziej szczegółowo

Testowanie hipotez statystycznych

Testowanie hipotez statystycznych round Testowanie hipotez statystycznych Wyk lad 9 Natalia Nehrebecka Stanis law Cichocki 13 grudnia 2014 Plan zajeć 1 Rozk lad estymatora b Rozk lad sumy kwadratów reszt 2 Hipotezy proste - test t Badanie

Bardziej szczegółowo

Ćwiczenia IV

Ćwiczenia IV Ćwiczenia IV - 17.10.2007 1. Spośród podanych macierzy X wskaż te, których nie można wykorzystać do estymacji MNK parametrów modelu ekonometrycznego postaci y = β 0 + β 1 x 1 + β 2 x 2 + ε 2. Na podstawie

Bardziej szczegółowo

Prognozowanie cen surowców w rolnych na podstawie szeregów w czasowych

Prognozowanie cen surowców w rolnych na podstawie szeregów w czasowych Prognozowanie cen surowców w rolnych na podstawie szeregów w czasowych Mariusz Hamulczuk Pułtusk 06.12.1011 Wprowadzenie Przewidywanie a prognozowanie Metoda prognozowania rodzaje metod i prognoz Czy moŝna

Bardziej szczegółowo

Testowanie hipotez statystycznych

Testowanie hipotez statystycznych Testowanie hipotez statystycznych Wyk lad 9 Natalia Nehrebecka Stanis law Cichocki 28 listopada 2018 Plan zaj eć 1 Rozk lad estymatora b 2 3 dla parametrów 4 Hipotezy l aczne - test F 5 Dodatkowe za lożenie

Bardziej szczegółowo

Egzamin z ekonometrii - wersja ogólna

Egzamin z ekonometrii - wersja ogólna Egzamin z ekonometrii - wersja ogólna 06-02-2019 Regulamin egzaminu 1. Egzamin trwa 90 min. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu.

Bardziej szczegółowo

2.3 Modele nieliniowe

2.3 Modele nieliniowe 2.3 Modele nieliniowe Do tej pory zajmowaliśmy się modelami liniowymi lub o liniowej formie funkcyjnej i musieliśmy akceptować ich ograniczenia. Metoda Największej Wiarogodności pozwala również na efektywną

Bardziej szczegółowo

Wprowadzenie Testy własności składnika losowego. Diagnostyka modelu. Część 1. Diagnostyka modelu

Wprowadzenie Testy własności składnika losowego. Diagnostyka modelu. Część 1. Diagnostyka modelu Część 1 Testy i ich rodzaje Statystyka NR 2 Cel testowania Testy i ich rodzaje Statystyka NR 2 Cel testowania Testy małej próby Testy i ich rodzaje Statystyka NR 2 Cel testowania Testy małej próby Testy

Bardziej szczegółowo

1 Metoda Najmniejszych Kwadratów (MNK) 2 Interpretacja parametrów modelu. 3 Klasyczny Model Regresji Liniowej (KMRL)

1 Metoda Najmniejszych Kwadratów (MNK) 2 Interpretacja parametrów modelu. 3 Klasyczny Model Regresji Liniowej (KMRL) 1 Metoda Najmniejszych Kwadratów (MNK) 1. Co to jest zmienna endogeniczna, a co to zmienne egzogeniczna? 2. Podaj postać macierzy obserwacji dla modelu y t = a + bt + ε t 3. Co to jest wartość dopasowana,

Bardziej szczegółowo

1.8 Diagnostyka modelu

1.8 Diagnostyka modelu 1.8 Diagnostyka modelu Dotychczas zajmowaliśmy się własnościami estymatorów przy spełnionych założeniach KMRL. W praktyce nie zawsze spełnione są wszystkie założenia modelu. Jeżeli któreś z nich nie jest

Bardziej szczegółowo

Przykład 2. Stopa bezrobocia

Przykład 2. Stopa bezrobocia Przykład 2 Stopa bezrobocia Stopa bezrobocia. Komentarz: model ekonometryczny stopy bezrobocia w Polsce jest modelem nieliniowym autoregresyjnym. Podobnie jak model podaŝy pieniądza zbudowany został w

Bardziej szczegółowo

Autokorelacja i heteroskedastyczność

Autokorelacja i heteroskedastyczność Autokorelacja i heteroskedastyczność Założenie o braku autokorelacji Cov (ε i, ε j ) = E (ε i ε j ) = 0 dla i j Oczekiwana wielkość elementu losowego nie zależy od wielkości elementu losowego dla innych

Bardziej szczegółowo

Ekonometria. Prognozowanie ekonometryczne, ocena stabilności oszacowań parametrów strukturalnych. Jakub Mućk. Katedra Ekonomii Ilościowej

Ekonometria. Prognozowanie ekonometryczne, ocena stabilności oszacowań parametrów strukturalnych. Jakub Mućk. Katedra Ekonomii Ilościowej Ekonometria Prognozowanie ekonometryczne, ocena stabilności oszacowań parametrów strukturalnych Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Wykład 4 Prognozowanie, stabilność 1 / 17 Agenda

Bardziej szczegółowo

Ekonometria egzamin 07/03/2018

Ekonometria egzamin 07/03/2018 imię, nazwisko, nr indeksu: Ekonometria egzamin 07/03/2018 1. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu.

Bardziej szczegółowo

Analiza metod prognozowania kursów akcji

Analiza metod prognozowania kursów akcji Analiza metod prognozowania kursów akcji Izabela Łabuś Wydział InŜynierii Mechanicznej i Informatyki Kierunek informatyka, Rok V Specjalność informatyka ekonomiczna Politechnika Częstochowska izulka184@o2.pl

Bardziej szczegółowo

Ekonometria Wykład 5. Procesy stochastyczne, stacjonarność, integracja. Dr Michał Gradzewicz Katedra Ekonomii I KAE

Ekonometria Wykład 5. Procesy stochastyczne, stacjonarność, integracja. Dr Michał Gradzewicz Katedra Ekonomii I KAE Ekonometria Wykład 5. Procesy stochastyczne, stacjonarność, integracja Dr Michał Gradzewicz Katedra Ekonomii I KAE Ekonometria szeregów czasowych Procesy stochastyczne Stacjonarność i biały szum Niestacjonarność:

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 10

Stanisław Cichocki. Natalia Nehrebecka. Wykład 10 Stanisław Cichocki Natalia Nehrebecka Wykład 10 1 1. Testy diagnostyczne Testowanie prawidłowości formy funkcyjnej: test RESET Testowanie normalności składników losowych: test Jarque-Berra Testowanie stabilności

Bardziej szczegółowo

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 3 - model statystyczny, podstawowe zadania statystyki matematycznej

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 3 - model statystyczny, podstawowe zadania statystyki matematycznej WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 3 - model statystyczny, podstawowe zadania statystyki matematycznej Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 3 1 / 8 ZADANIE z rachunku

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 14

Stanisław Cichocki. Natalia Nehrebecka. Wykład 14 Stanisław Cichocki Natalia Nehrebecka Wykład 14 1 1.Problemy z danymi Współliniowość 2. Heteroskedastyczność i autokorelacja Konsekwencje heteroskedastyczności i autokorelacji Metody radzenia sobie z heteroskedastycznością

Bardziej szczegółowo

7.4 Automatyczne stawianie prognoz

7.4 Automatyczne stawianie prognoz szeregów czasowych za pomocą pakietu SPSS Następnie korzystamy z menu DANE WYBIERZ OBSERWACJE i wybieramy opcję WSZYSTKIE OBSERWACJE (wówczas wszystkie obserwacje są aktywne). Wreszcie wybieramy z menu

Bardziej szczegółowo

Ekonometria egzamin wersja Informatyka i Ekonometria 29/01/08

Ekonometria egzamin wersja Informatyka i Ekonometria 29/01/08 imię, nazwisko, nr indeksu: Ekonometria egzamin wersja Informatyka i Ekonometria 29/0/08. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz

Bardziej szczegółowo

Stanisław Cihcocki. Natalia Nehrebecka

Stanisław Cihcocki. Natalia Nehrebecka Stanisław Cihcocki Natalia Nehrebecka 1 1. Kryteria informacyjne 2. Testowanie autokorelacji w modelu 3. Modele dynamiczne: modele o rozłożonych opóźnieniach (DL) modele autoregresyjne o rozłożonych opóźnieniach

Bardziej szczegółowo

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA Powtórka Powtórki Kowiariancja cov xy lub c xy - kierunek zależności Współczynnik korelacji liniowej Pearsona r siła liniowej zależności Istotność

Bardziej szczegółowo

Natalia Neherbecka. 11 czerwca 2010

Natalia Neherbecka. 11 czerwca 2010 Natalia Neherbecka 11 czerwca 2010 1 1. Konsekwencje heteroskedastyczności i autokorelacji 2. Uogólniona MNK 3. Stosowalna Uogólniona MNK 4. Odporne macierze wariancji i kowariancji b 2 1. Konsekwencje

Bardziej szczegółowo

Materiał dla studentów Wprowadzenie do modeli ARMA/ARIMA (na przykładzie zwrotów z instrumentów finansowych)

Materiał dla studentów Wprowadzenie do modeli ARMA/ARIMA (na przykładzie zwrotów z instrumentów finansowych) Materiał dla studentów Wprowadzenie do modeli ARMA/ARIMA (na przykładzie zwrotów z instrumentów finansowych) (studium przypadku) Nazwa przedmiotu: ekonometria finansowa I (22204), analiza szeregów czasowych

Bardziej szczegółowo

, a reszta dla pominiętej obserwacji wynosi 0, RSS jest stałe, T SS rośnie, więc zarówno R 2 jak i R2 rosną. R 2 = 1 n 1 n. rosnie. n 2 (1 R2 ) = 1 59

, a reszta dla pominiętej obserwacji wynosi 0, RSS jest stałe, T SS rośnie, więc zarówno R 2 jak i R2 rosną. R 2 = 1 n 1 n. rosnie. n 2 (1 R2 ) = 1 59 Zadanie 1. Ekonometryk szacując funkcję konsumpcji przeprowadził estymację osobno dla tzw. Polski A oraz Polski B. Dla Polski A posiadał n 1 = 40 obserwacji i uzyskał współczynnik dopasowania RA 2 = 0.4,

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA WYKŁAD listopada 2009

STATYSTYKA MATEMATYCZNA WYKŁAD listopada 2009 STATYSTYKA MATEMATYCZNA WYKŁAD 7 23 listopada 2009 Wykład 6 (16.XI.2009) zakończył się zdefiniowaniem współczynnika korelacji: E X µ x σ x Y µ y σ y = T WSPÓŁCZYNNIK KORELACJI ρ X,Y = ρ Y,X (!) WSPÓŁCZYNNIK

Bardziej szczegółowo

4. Średnia i autoregresja zmiennej prognozowanej

4. Średnia i autoregresja zmiennej prognozowanej 4. Średnia i autoregresja zmiennej prognozowanej 1. Średnia w próbie uczącej Własności: y = y = 1 N y = y t = 1, 2, T s = s = 1 N 1 y y R = 0 v = s 1 +, 2. Przykład. Miesięczna sprzedaż żelazek (szt.)

Bardziej szczegółowo

Ekonometria. Zajęcia

Ekonometria. Zajęcia Ekonometria Zajęcia 16.05.2018 Wstęp hipoteza itp. Model gęstości zaludnienia ( model gradientu gęstości ) zakłada, że gęstość zaludnienia zależy od odległości od okręgu centralnego: y t = Ae βx t (1)

Bardziej szczegółowo

Sylabus Formularz opisu przedmiotu (formularz sylabusa) dla studiów I i II stopnia 1 wypełnia koordynator przedmiotu

Sylabus Formularz opisu przedmiotu (formularz sylabusa) dla studiów I i II stopnia 1 wypełnia koordynator przedmiotu Sylabus Formularz opisu przedmiotu (formularz sylabusa) dla studiów I i II stopnia 1 wypełnia koordynator przedmiotu A. Informacje ogólne Nazwa pola Nazwa przedmiotu Treść Analiza Szeregów Czasowych Jednostka

Bardziej szczegółowo

1. Szereg niesezonowy 1.1. Opis szeregu

1. Szereg niesezonowy 1.1. Opis szeregu kwaralnych z la 2000-217 z la 2010-2017.. Szereg sezonowy ma charaker danych model z klasy ARIMA/SARIMA i model eksrapolacyjny oraz d prognoz z ych modeli. 1. Szereg niesezonowy 1.1. Opis szeregu Analizowany

Bardziej szczegółowo

Natalia Nehrebecka Stanisław Cichocki. Wykład 10

Natalia Nehrebecka Stanisław Cichocki. Wykład 10 Natalia Nehrebecka Stanisław Cichocki Wykład 10 1 1. Testy diagnostyczne 2. Testowanie prawidłowości formy funkcyjnej modelu 3. Testowanie normalności składników losowych 4. Testowanie stabilności parametrów

Bardziej szczegółowo

Stosowana Analiza Regresji

Stosowana Analiza Regresji prostej Stosowana Wykład I 5 Października 2011 1 / 29 prostej Przykład Dane trees - wyniki pomiarów objętości (Volume), średnicy (Girth) i wysokości (Height) pni drzew. Interesuje nas zależność (o ile

Bardziej szczegółowo

TEST STATYSTYCZNY. Jeżeli hipotezę zerową odrzucimy na danym poziomie istotności, to odrzucimy ją na każdym większym poziomie istotności.

TEST STATYSTYCZNY. Jeżeli hipotezę zerową odrzucimy na danym poziomie istotności, to odrzucimy ją na każdym większym poziomie istotności. TEST STATYSTYCZNY Testem statystycznym nazywamy regułę postępowania rozstrzygająca, przy jakich wynikach z próby hipotezę sprawdzaną H 0 należy odrzucić, a przy jakich nie ma podstaw do jej odrzucenia.

Bardziej szczegółowo

Metoda najmniejszych kwadratów

Metoda najmniejszych kwadratów Metoda najmniejszych kwadratów Przykład wstępny. W ekonomicznej teorii produkcji rozważa się funkcję produkcji Cobba Douglasa: z = AL α K β gdzie z oznacza wielkość produkcji, L jest nakładem pracy, K

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Wykład 5

Stanisław Cichocki Natalia Nehrebecka. Wykład 5 Sanisław Cichocki Naalia Nehrebecka Wkład 5 . Proces AR 2. Proces MA 3. Modele ARMA 4. Prognozowanie za pomocą modelu ARMA 2 . Proces AR 2. Proces MA 3. Modele ARMA 4. Prognozowanie za pomocą modelu ARMA

Bardziej szczegółowo

Egzamin z ekonometrii

Egzamin z ekonometrii Pytania teoretyczne Egzamin z ekonometrii 22.06.2012 1. Podaj ogólną postać modeli DL i ADL 2. Wyjaśnij jak należy rozumieć przyczynowość w sensie Grangera i jak jest testowana. 3. Jakie są wady liniowego

Bardziej szczegółowo

Egzamin z Ekonometrii

Egzamin z Ekonometrii Pytania teoretyczne Egzamin z Ekonometrii 18.06.2015 1. Opisać procedurę od ogólnego do szczegółowego na przykładzie doboru liczby opóźnień w modelu. 2. Na czym polega najważniejsza różnica między testowaniem

Bardziej szczegółowo

Egzamin z ekonometrii wersja IiE, MSEMat Pytania teoretyczne

Egzamin z ekonometrii wersja IiE, MSEMat Pytania teoretyczne Egzamin z ekonometrii wersja IiE, MSEMat 31-01-2014 Pytania teoretyczne 1. Podać postać przekształcenia Boxa-Coxa i wyjaśnić, do czego jest stosowane w ekonometrii. 2. Wyjaśnić, jakie korzyści i niebezpieczeństwa

Bardziej szczegółowo

Stanisław Cichocki. Natalia Neherbecka. Zajęcia 13

Stanisław Cichocki. Natalia Neherbecka. Zajęcia 13 Stanisław Cichocki Natalia Neherbecka Zajęcia 13 1 1. Kryteria informacyjne 2. Testowanie autokorelacji 3. Modele dynamiczne: modele o rozłożonych opóźnieniach (DL) modele autoregresyjne o rozłożonych

Bardziej szczegółowo

Analiza autokorelacji

Analiza autokorelacji Analiza autokorelacji Oblicza się wartości współczynników korelacji między y t oraz y t-i (dla i=1,2,...,k), czyli współczynniki autokorelacji różnych rzędów. Bada się statystyczną istotność tych współczynników.

Bardziej szczegółowo