Testy własności składnika losowego Testy formy funkcyjnej. Diagnostyka modelu. Część 2. Diagnostyka modelu

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Testy własności składnika losowego Testy formy funkcyjnej. Diagnostyka modelu. Część 2. Diagnostyka modelu"

Transkrypt

1 Część 2

2 Test Durbina-Watsona

3 Test Durbina-Watsona Weryfikowana hipoteza H 0 : cov(ε t, ε t 1 ) = 0 H 1 : cov(ε t, ε t 1 ) 0

4 Test Durbina-Watsona Weryfikowana hipoteza H 0 : cov(ε t, ε t 1 ) = 0 H 1 : cov(ε t, ε t 1 ) 0 Statystyka testowa DW = T i=2 (e t e t 1 ) 2 T i=1 e2 t

5 Test Durbina-Watsona Weryfikowana hipoteza H 0 : cov(ε t, ε t 1 ) = 0 H 1 : cov(ε t, ε t 1 ) 0 Statystyka testowa DW = T i=2 (e t e t 1 ) 2 T i=1 e2 t DW = 2(1 ρ εtε t 1 ) e2 1 + e2 T 2e 1e 0 T i=1 e2 t

6 Test Durbina-Watsona Dla dużej próby DW p 2(1 ρ εtε t 1 )

7 Test Durbina-Watsona Dla dużej próby Rozkład statystyki testowej DW p 2(1 ρ εtε t 1 )

8 Test Durbina-Watsona Dla dużej próby Rozkład statystyki testowej DW p 2(1 ρ εtε t 1 ) 1 jeżeli zakładana jest dodatnia autokorelacja, wtedy DW < 2, oraz

9 Test Durbina-Watsona Dla dużej próby Rozkład statystyki testowej DW p 2(1 ρ εtε t 1 ) 1 jeżeli zakładana jest dodatnia autokorelacja, wtedy DW < 2, oraz a) DW < d L, odrzucamy hipotezę zerową,

10 Test Durbina-Watsona Dla dużej próby Rozkład statystyki testowej DW p 2(1 ρ εtε t 1 ) 1 jeżeli zakładana jest dodatnia autokorelacja, wtedy DW < 2, oraz a) DW < d L, odrzucamy hipotezę zerową, b) d L < DW < d U brak konkluzji,

11 Test Durbina-Watsona Dla dużej próby Rozkład statystyki testowej DW p 2(1 ρ εtε t 1 ) 1 jeżeli zakładana jest dodatnia autokorelacja, wtedy DW < 2, oraz a) DW < d L, odrzucamy hipotezę zerową, b) d L < DW < d U brak konkluzji, c) DW > d U nie ma podstaw do odrzucenia H 0.

12 Test Durbina-Watsona Dla dużej próby Rozkład statystyki testowej DW p 2(1 ρ εtε t 1 ) 1 jeżeli zakładana jest dodatnia autokorelacja, wtedy DW < 2, oraz a) DW < d L, odrzucamy hipotezę zerową, b) d L < DW < d U brak konkluzji, c) DW > d U nie ma podstaw do odrzucenia H 0. 2 jeżeli zakładana jest ujemna autokorelacja, wtedy DW > 2, oraz

13 Test Durbina-Watsona Dla dużej próby Rozkład statystyki testowej DW p 2(1 ρ εtε t 1 ) 1 jeżeli zakładana jest dodatnia autokorelacja, wtedy DW < 2, oraz a) DW < d L, odrzucamy hipotezę zerową, b) d L < DW < d U brak konkluzji, c) DW > d U nie ma podstaw do odrzucenia H 0. 2 jeżeli zakładana jest ujemna autokorelacja, wtedy DW > 2, oraz a) DW > 4 d L, odrzucamy hipotezę zerową,

14 Test Durbina-Watsona Dla dużej próby Rozkład statystyki testowej DW p 2(1 ρ εtε t 1 ) 1 jeżeli zakładana jest dodatnia autokorelacja, wtedy DW < 2, oraz a) DW < d L, odrzucamy hipotezę zerową, b) d L < DW < d U brak konkluzji, c) DW > d U nie ma podstaw do odrzucenia H 0. 2 jeżeli zakładana jest ujemna autokorelacja, wtedy DW > 2, oraz a) DW > 4 d L, odrzucamy hipotezę zerową, b) 4 d U < DW < 4 d L brak konkluzji,

15 Test Durbina-Watsona Dla dużej próby Rozkład statystyki testowej DW p 2(1 ρ εtε t 1 ) 1 jeżeli zakładana jest dodatnia autokorelacja, wtedy DW < 2, oraz a) DW < d L, odrzucamy hipotezę zerową, b) d L < DW < d U brak konkluzji, c) DW > d U nie ma podstaw do odrzucenia H 0. 2 jeżeli zakładana jest ujemna autokorelacja, wtedy DW > 2, oraz a) DW > 4 d L, odrzucamy hipotezę zerową, b) 4 d U < DW < 4 d L brak konkluzji, c) DW < 4 d U nie ma podstaw do odrzucenia H 0.

16 Test Durbina-Watsona Dla dużej próby Rozkład statystyki testowej DW p 2(1 ρ εtε t 1 ) 1 jeżeli zakładana jest dodatnia autokorelacja, wtedy DW < 2, oraz a) DW < d L, odrzucamy hipotezę zerową, b) d L < DW < d U brak konkluzji, c) DW > d U nie ma podstaw do odrzucenia H 0. 2 jeżeli zakładana jest ujemna autokorelacja, wtedy DW > 2, oraz a) DW > 4 d L, odrzucamy hipotezę zerową, b) 4 d U < DW < 4 d L brak konkluzji, c) DW < 4 d U nie ma podstaw do odrzucenia H 0. 3 jeżeli DW = 2 to brak jest autokorelacji.

17 Test Durbina-Watsona Wady testu

18 Test Durbina-Watsona Wady testu 1 wykrywa jedynie autokorelację pierwszego rzędu

19 Test Durbina-Watsona Wady testu 1 wykrywa jedynie autokorelację pierwszego rzędu 2 wartości krytycznych nie można uzyskać analitycznie

20 Test Durbina-Watsona Wady testu 1 wykrywa jedynie autokorelację pierwszego rzędu 2 wartości krytycznych nie można uzyskać analitycznie 3 obszar braku konkluzji

21 Test Durbina-Watsona Wady testu 1 wykrywa jedynie autokorelację pierwszego rzędu 2 wartości krytycznych nie można uzyskać analitycznie 3 obszar braku konkluzji 4 niska moc testu

22 Test Durbina - Watsona - przykład. reg gnp armed_forces employment Source SS df MS Number of obs = F( 2, 13) = Model e e+10 Prob > F = Residual e R-squared = Adj R-squared = Total e e+09 Root MSE = gnp Coef. Std. Err. t P> t [95% Conf. Interval] armed_forces employment _cons estat dwatson Durbin-Watson d-statistic( 3, 16) =

23 Test Breuscha-Godfreya Test oparty o mnożniki Lagrange a.

24 Test Breuscha-Godfreya Test oparty o mnożniki Lagrange a. Jest w stanie wykryć obecność autokorelacji wyższych rzędów.

25 Test Breuscha-Godfreya Test oparty o mnożniki Lagrange a. Jest w stanie wykryć obecność autokorelacji wyższych rzędów. Weryfikowana hipoteza H 0 : brak autokorelacji H 1 : ε i = AR(p) ε i = MA(p)

26 Test Breuscha-Godfreya Test oparty o mnożniki Lagrange a. Jest w stanie wykryć obecność autokorelacji wyższych rzędów. Weryfikowana hipoteza H 0 : brak autokorelacji H 1 : ε i = AR(p) ε i = MA(p) W obu przypadkach taka sama statystyka testowa LM = TR 2 0 (1)

27 Test Breuscha-Godfreya Można jej wartość obliczyć dwoma metodami:

28 Test Breuscha-Godfreya Można jej wartość obliczyć dwoma metodami: 1 Sposób 1. szacujemy wartości parametrów równania regresji

29 Test Breuscha-Godfreya Można jej wartość obliczyć dwoma metodami: 1 Sposób 1. szacujemy wartości parametrów równania regresji bierzemy wektor reszt i przeprowadzamy regresję pomocniczą e t = γ 0 + γ 1e t 1 + γ 2e t γ pe t p + ξ t

30 Test Breuscha-Godfreya Można jej wartość obliczyć dwoma metodami: 1 Sposób 1. szacujemy wartości parametrów równania regresji bierzemy wektor reszt i przeprowadzamy regresję pomocniczą e t = γ 0 + γ 1e t 1 + γ 2e t γ pe t p + ξ t następnie obliczamy współczynnik LM = TR 2 0. Statystyka testowa ma rozkład χ 2 (p)

31 Test Breuscha-Godfreya Można jej wartość obliczyć dwoma metodami: 1 Sposób 1. szacujemy wartości parametrów równania regresji bierzemy wektor reszt i przeprowadzamy regresję pomocniczą e t = γ 0 + γ 1e t 1 + γ 2e t γ pe t p + ξ t następnie obliczamy współczynnik LM = TR 2 0. Statystyka testowa ma rozkład χ 2 (p) 2 Sposób 2. Zaczynamy od wyjściowego modelu

32 Test Breuscha-Godfreya Można jej wartość obliczyć dwoma metodami: 1 Sposób 1. szacujemy wartości parametrów równania regresji bierzemy wektor reszt i przeprowadzamy regresję pomocniczą e t = γ 0 + γ 1e t 1 + γ 2e t γ pe t p + ξ t następnie obliczamy współczynnik LM = TR 2 0. Statystyka testowa ma rozkład χ 2 (p) 2 Sposób 2. Zaczynamy od wyjściowego modelu do oryginalnego równania regresji dodajemy p kolumn, zawierających opóźnione reszty y t = X tβ + γ 1e t 1 + γ 2e t γ pe t p + ψ t

33 Test Breuscha-Godfreya Można jej wartość obliczyć dwoma metodami: 1 Sposób 1. szacujemy wartości parametrów równania regresji bierzemy wektor reszt i przeprowadzamy regresję pomocniczą e t = γ 0 + γ 1e t 1 + γ 2e t γ pe t p + ξ t następnie obliczamy współczynnik LM = TR 2 0. Statystyka testowa ma rozkład χ 2 (p) 2 Sposób 2. Zaczynamy od wyjściowego modelu do oryginalnego równania regresji dodajemy p kolumn, zawierających opóźnione reszty y t = X tβ + γ 1e t 1 + γ 2e t γ pe t p + ψ t sprawdzamy łączną istotność opóźnionych reszt za pomocą statystyki LM = TR 2 0. Ma ona rozkład χ 2 (p)

34 Test Breuscha - Godfreya - przykład. estat bgodfrey, lags(1 2 3) Breusch-Godfrey LM test for autocorrelation lags(p) chi2 df Prob > chi H0: no serial correlation. estat bgodfrey, lags(1 2 3) small Breusch-Godfrey LM test for autocorrelation lags(p) F df Prob > F ( 1, 12 ) ( 2, 11 ) ( 3, 10 )

35 Test RESET Testy własności składnika losowego Diagnostyka Poszukiwanie formy modelu Test poprawności specyfikacji formy funkcyjnej modelu

36 Test RESET Testy własności składnika losowego Diagnostyka Poszukiwanie formy modelu Test poprawności specyfikacji formy funkcyjnej modelu Regression Equation Specification Error Test

37 Test RESET Testy własności składnika losowego Diagnostyka Poszukiwanie formy modelu Test poprawności specyfikacji formy funkcyjnej modelu Regression Equation Specification Error Test Do modelu regresji liniowej y = X β + ε

38 Test RESET Testy własności składnika losowego Diagnostyka Poszukiwanie formy modelu Test poprawności specyfikacji formy funkcyjnej modelu Regression Equation Specification Error Test Do modelu regresji liniowej y = X β + ε Dodajemy macierz dodatkowych regresorów Z y = X β + Zγ + ε

39 Test RESET Testy własności składnika losowego Diagnostyka Poszukiwanie formy modelu Test poprawności specyfikacji formy funkcyjnej modelu Regression Equation Specification Error Test Do modelu regresji liniowej y = X β + ε Dodajemy macierz dodatkowych regresorów Z y = X β + Zγ + ε Weryfikujemy hipotezę H 0 : γ = 0

40 Test RESET Testy własności składnika losowego Diagnostyka Poszukiwanie formy modelu Procedura testowa jest analogiczna do testu łącznej istotności

41 Test RESET Testy własności składnika losowego Diagnostyka Poszukiwanie formy modelu Procedura testowa jest analogiczna do testu łącznej istotności Statystyka testowa ma rozkład F (r(z), N k)

42 Test RESET Testy własności składnika losowego Diagnostyka Poszukiwanie formy modelu Procedura testowa jest analogiczna do testu łącznej istotności Statystyka testowa ma rozkład F (r(z), N k) Alternatywna postać testu wykorzystuje rozwinięcie w szereg Taylora y = γ 0 + γ 1 X β + γ 2 (X β) γ p (X β) p + ε

43 Test RESET Testy własności składnika losowego Diagnostyka Poszukiwanie formy modelu Procedura testowa jest analogiczna do testu łącznej istotności Statystyka testowa ma rozkład F (r(z), N k) Alternatywna postać testu wykorzystuje rozwinięcie w szereg Taylora y = γ 0 + γ 1 X β + γ 2 (X β) γ p (X β) p + ε Podstawiając wartość dopasowaną uzyskujemy y = γ 0 + γ 1 ŷ + γ 2 ŷ γ p ŷ p + ε

44 Test RESET Testy własności składnika losowego Diagnostyka Poszukiwanie formy modelu Procedura testowa jest analogiczna do testu łącznej istotności Statystyka testowa ma rozkład F (r(z), N k) Alternatywna postać testu wykorzystuje rozwinięcie w szereg Taylora y = γ 0 + γ 1 X β + γ 2 (X β) γ p (X β) p + ε Podstawiając wartość dopasowaną uzyskujemy Test łącznej istotności y = γ 0 + γ 1 ŷ + γ 2 ŷ γ p ŷ p + ε LM = nr 2 a χ 2 (p)

45 Test RESET - przykład duża próba Diagnostyka Poszukiwanie formy modelu. estat ovtest, rhs (note: wiek2 dropped because of collinearity) (note: wiek2^2 dropped because of collinearity) Ramsey RESET test using powers of the independent variables Ho: model has no omitted variables F(5, 16141) = Prob > F = estat ovtest Ramsey RESET test using powers of the fitted values of lzarobki Ho: model has no omitted variables F(3, 16142) = Prob > F =

46 Test RESET - przykład mała próba Diagnostyka Poszukiwanie formy modelu. estat ovtest, rhs (note: wiek2 dropped because of collinearity) (note: wiek2^2 dropped because of collinearity) Ramsey RESET test using powers of the independent variables Ho: model has no omitted variables F(5, 158) = 0.87 Prob > F = estat ovtest Ramsey RESET test using powers of the fitted values of lzarobki Ho: model has no omitted variables F(3, 159) = 0.25 Prob > F =

47 Przekształcenie Boxa-Coxa Diagnostyka Poszukiwanie formy modelu Forma przekształcenia g(x, λ) = x λ 1 λ

48 Diagnostyka Poszukiwanie formy modelu Przekształcenie Boxa-Coxa - przykład Number of obs = LR chi2(16) = Log likelihood = Prob > chi2 = zarobki Coef. Std. Err. z P> z [95% Conf. Interval] /theta Estimates of scale-variant parameters Coef Notrans _Iplec_ wiek wiek _Iwyksztal~ _Iwyksztal~ _Iwyksztal~ _Iwyksztal~ _Iwyksztal~ _Iwyksztal~ _Iklm_12_ _Iklm_12_ _Iklm_12_ _Iklm_12_ _Iklm_12_ _Iklm_12_ _Iklm_12_ _cons /sigma

49 Diagnostyka Poszukiwanie formy modelu Przekształcenie Boxa-Coxa - przykład Test Restricted LR statistic P-value H0: log likelihood chi2 Prob > chi theta = theta = theta =

50 Rozszerzenia regresji Diagnostyka Poszukiwanie formy modelu 1 modele wielomianowe

51 Rozszerzenia regresji Diagnostyka Poszukiwanie formy modelu 1 modele wielomianowe 2 modele schodkowe

52 Rozszerzenia regresji Diagnostyka Poszukiwanie formy modelu 1 modele wielomianowe 2 modele schodkowe 3 modele krzywej łamanej

1.8 Diagnostyka modelu

1.8 Diagnostyka modelu 1.8 Diagnostyka modelu Dotychczas zajmowaliśmy się własnościami estymatorów przy spełnionych założeniach KMRL. W praktyce nie zawsze spełnione są wszystkie założenia modelu. Jeżeli któreś z nich nie jest

Bardziej szczegółowo

Diagnostyka w Pakiecie Stata

Diagnostyka w Pakiecie Stata Karol Kuhl Zgodnie z twierdzeniem Gaussa-Markowa, estymator MNK w KMRL jest liniowym estymatorem efektywnym i nieobciążonym, co po angielsku opisuje się za pomocą wyrażenia BLUE Best Linear Unbiased Estimator.

Bardziej szczegółowo

Ekonometria egzamin 02/02/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora.

Ekonometria egzamin 02/02/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora. imię, nazwisko, nr indeksu: Ekonometria egzamin 0/0/0. Egzamin trwa 90 minut.. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu. Złamanie

Bardziej szczegółowo

1 Modele ADL - interpretacja współczynników

1 Modele ADL - interpretacja współczynników 1 Modele ADL - interpretacja współczynników ZADANIE 1.1 Dany jest proces DL następującej postaci: y t = µ + β 0 x t + β 1 x t 1 + ε t. 1. Wyjaśnić, jaka jest intepretacja współczynników β 0 i β 1. 2. Pokazać

Bardziej szczegółowo

TEST STATYSTYCZNY. Jeżeli hipotezę zerową odrzucimy na danym poziomie istotności, to odrzucimy ją na każdym większym poziomie istotności.

TEST STATYSTYCZNY. Jeżeli hipotezę zerową odrzucimy na danym poziomie istotności, to odrzucimy ją na każdym większym poziomie istotności. TEST STATYSTYCZNY Testem statystycznym nazywamy regułę postępowania rozstrzygająca, przy jakich wynikach z próby hipotezę sprawdzaną H 0 należy odrzucić, a przy jakich nie ma podstaw do jej odrzucenia.

Bardziej szczegółowo

Egzamin z ekonometrii wersja IiE, MSEMAT

Egzamin z ekonometrii wersja IiE, MSEMAT Pytania teoretyczne Egzamin z ekonometrii wersja IiE, MSEMAT 08-02-2017 1. W jaki sposób przeprowadzamy test Chowa? 2. Pokazać, że jest nieobciążonym estymatorem. 3. Udowodnić, że w modelu ze stałą TSSESS+RSS.

Bardziej szczegółowo

Ekonometria egzamin 02/02/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora.

Ekonometria egzamin 02/02/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora. imię, nazwisko, nr indeksu: Ekonometria egzamin 02/02/2011 1. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu.

Bardziej szczegółowo

Przyczynowość Kointegracja. Kointegracja. Kointegracja

Przyczynowość Kointegracja. Kointegracja. Kointegracja korelacja a związek o charakterze przyczynowo-skutkowym korelacja a związek o charakterze przyczynowo-skutkowym Przyczynowość w sensie Grangera Zmienna x jest przyczyną w sensie Grangera zmiennej y jeżeli

Bardziej szczegółowo

Egzamin z ekonometrii wersja IiE, MSEMAT

Egzamin z ekonometrii wersja IiE, MSEMAT Egzamin z ekonometrii wersja IiE, MSEMAT 04-02-2016 Pytania teoretyczne 1. Za pomocą jakiego testu weryfikowana jest normalność składnika losowego? Jakiemu założeniu KMRL odpowiada w tym teście? Jakie

Bardziej szczegółowo

Natalia Nehrebecka Stanisław Cichocki. Wykład 10

Natalia Nehrebecka Stanisław Cichocki. Wykład 10 Natalia Nehrebecka Stanisław Cichocki Wykład 10 1 1. Testy diagnostyczne 2. Testowanie prawidłowości formy funkcyjnej modelu 3. Testowanie normalności składników losowych 4. Testowanie stabilności parametrów

Bardziej szczegółowo

Ekonometria egzamin wersja Informatyka i Ekonometria 26/06/08

Ekonometria egzamin wersja Informatyka i Ekonometria 26/06/08 imię, nazwisko, nr indeksu: Ekonometria egzamin wersja Informatyka i Ekonometria 26/06/08 1. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz

Bardziej szczegółowo

Ekonometria egzamin wersja Informatyka i Ekonometria 29/01/08

Ekonometria egzamin wersja Informatyka i Ekonometria 29/01/08 imię, nazwisko, nr indeksu: Ekonometria egzamin wersja Informatyka i Ekonometria 29/0/08. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz

Bardziej szczegółowo

1 Metoda Najmniejszych Kwadratów (MNK) 2 Interpretacja parametrów modelu. 3 Klasyczny Model Regresji Liniowej (KMRL)

1 Metoda Najmniejszych Kwadratów (MNK) 2 Interpretacja parametrów modelu. 3 Klasyczny Model Regresji Liniowej (KMRL) 1 Metoda Najmniejszych Kwadratów (MNK) 1. Co to jest zmienna endogeniczna, a co to zmienne egzogeniczna? 2. Podaj postać macierzy obserwacji dla modelu y t = a + bt + ε t 3. Co to jest wartość dopasowana,

Bardziej szczegółowo

2.2 Autokorelacja Wprowadzenie

2.2 Autokorelacja Wprowadzenie 2.2 Autokorelacja 2.2.1 Wprowadzenie Przy wyprowadzaniu estymatorów Klasycznego Modelu Regresji Liniowej (KMRL) zakładaliśmy, że są spełnione założenia Gaussa-Markowa, tzn. składniki losowe są homoscedastyczne

Bardziej szczegółowo

Egzamin z ekonometrii wersja ogolna

Egzamin z ekonometrii wersja ogolna Egzamin z ekonometrii wersja ogolna 04-02-2016 Pytania teoretyczne 1. Wymienić założenia Klasycznego Modelu Regresji Liniowej (KMRL). 2. Wyprowadzić estymator MNK dla modelu z wieloma zmiennymi objaśniającymi.

Bardziej szczegółowo

Heteroskedastyczość w szeregach czasowyh

Heteroskedastyczość w szeregach czasowyh Heteroskedastyczość w szeregach czasowyh Czesto zakłada się, że szeregi czasowe wykazuja autokorelację ae sa homoskedastyczne W rzeczywistości jednak często wariancja zmienia się w czasie Dobrym przykładem

Bardziej szczegółowo

Modele warunkowej heteroscedastyczności

Modele warunkowej heteroscedastyczności Teoria Przykład - zwroty z WIG Niskie koszty transakcyjne Teoria Przykład - zwroty z WIG Niskie koszty transakcyjne Racjonalne oczekiwania inwestorów P t = E(P t+1 I t ) 1 + R (1) Teoria Przykład - zwroty

Bardziej szczegółowo

Ekonometria. Ćwiczenia nr 3. Jakub Mućk. Katedra Ekonomii Ilościowej

Ekonometria. Ćwiczenia nr 3. Jakub Mućk. Katedra Ekonomii Ilościowej Ekonometria Ćwiczenia nr 3 Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Ćwiczenia 3 Własności składnika losowego 1 / 18 Agenda KMNK przypomnienie 1 KMNK przypomnienie 2 3 4 Jakub Mućk

Bardziej szczegółowo

Ekonometria egzamin wersja ogólna 17/06/08

Ekonometria egzamin wersja ogólna 17/06/08 imię, nazwisko, nr indeksu: Ekonometria egzamin wersja ogólna 17/06/08 1. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca

Bardziej szczegółowo

Wprowadzenie Model ARMA Sezonowość Prognozowanie Model regresji z błędami ARMA. Modele ARMA

Wprowadzenie Model ARMA Sezonowość Prognozowanie Model regresji z błędami ARMA. Modele ARMA Ważną klasę modeli dynamicznych stanowią modele ARMA(p, q) Ważną klasę modeli dynamicznych stanowią modele ARMA(p, q) Modele tej klasy są modelami ateoretycznymi Ważną klasę modeli dynamicznych stanowią

Bardziej szczegółowo

1.9 Czasowy wymiar danych

1.9 Czasowy wymiar danych 1.9 Czasowy wymiar danych Do tej pory rozpatrywaliśmy jedynie modele tworzone na podstawie danych empirycznych pochodzących z prób przekrojowych. Teraz zajmiemy się zagadnieniem budowy modeli regresji,

Bardziej szczegółowo

Ekonometria. Metodologia budowy modelu. Jerzy Mycielski. Luty, 2011 WNE, UW. Jerzy Mycielski (WNE, UW) Ekonometria Luty, / 18

Ekonometria. Metodologia budowy modelu. Jerzy Mycielski. Luty, 2011 WNE, UW. Jerzy Mycielski (WNE, UW) Ekonometria Luty, / 18 Ekonometria Metodologia budowy modelu Jerzy Mycielski WNE, UW Luty, 2011 Jerzy Mycielski (WNE, UW) Ekonometria Luty, 2011 1 / 18 Sprawy organizacyjne Dyżur: środa godz. 14-15 w sali 302. Strona internetowa

Bardziej szczegółowo

Jednowskaźnikowy model Sharpe`a

Jednowskaźnikowy model Sharpe`a Uniwersytet Warszawski Wydział Nauk Ekonomicznych Milena Jamroziak i Paweł Androszczuk Model ekonometryczny Jednowskaźnikowy model Sharpe`a dla akcji Amici Praca zaliczeniowa napisana pod kierunkiem mgr

Bardziej szczegółowo

Ekonometria. Własności składnika losowego. Jakub Mućk. Katedra Ekonomii Ilościowej

Ekonometria. Własności składnika losowego. Jakub Mućk. Katedra Ekonomii Ilościowej Ekonometria Własności składnika losowego Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Wykład 3 Własności składnika losowego 1 / 31 Agenda KMNK przypomnienie 1 KMNK przypomnienie 2 3 4

Bardziej szczegółowo

1.7 Ograniczenia nakładane na równanie regresji

1.7 Ograniczenia nakładane na równanie regresji 1.7 Ograniczenia nakładane na równanie regresji Często teoria ekonomiczna wskazuje dobór zmiennych do modelu. Jednak nie w każdym przypadku oceny wartości parametrów są statystycznie istotne. Zastanowimy

Bardziej szczegółowo

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1.

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1. tel. 44 683 1 55 tel. kom. 64 566 811 e-mail: biuro@wszechwiedza.pl Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: gdzie: y t X t y t = 1 X 1

Bardziej szczegółowo

1. Obserwacje nietypowe

1. Obserwacje nietypowe 1. Obserwacje nietypowe Przeanalizujemy następujący eksperyment: 1) Generujemy zmienną x z rozkładu N (,1) (37 obserwacji). ) Generujemy zmienną y w następujący sposób: y = 1+ x + ε, gdzie ε ~ N(0,1).

Bardziej szczegółowo

Ekonometria egzamin wersja ogólna 29/01/08

Ekonometria egzamin wersja ogólna 29/01/08 imię, nazwisko, nr indeksu: Ekonometria egzamin wersja ogólna 29/0/08. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca

Bardziej szczegółowo

Stanisław Cichocki. Natalia Neherbecka. Zajęcia 13

Stanisław Cichocki. Natalia Neherbecka. Zajęcia 13 Stanisław Cichocki Natalia Neherbecka Zajęcia 13 1 1. Kryteria informacyjne 2. Testowanie autokorelacji 3. Modele dynamiczne: modele o rozłożonych opóźnieniach (DL) modele autoregresyjne o rozłożonych

Bardziej szczegółowo

Przykład 2. Stopa bezrobocia

Przykład 2. Stopa bezrobocia Przykład 2 Stopa bezrobocia Stopa bezrobocia. Komentarz: model ekonometryczny stopy bezrobocia w Polsce jest modelem nieliniowym autoregresyjnym. Podobnie jak model podaŝy pieniądza zbudowany został w

Bardziej szczegółowo

Projekt zaliczeniowy z Ekonometrii i prognozowania Wyższa Szkoła Bankowa w Toruniu 2014/2015

Projekt zaliczeniowy z Ekonometrii i prognozowania Wyższa Szkoła Bankowa w Toruniu 2014/2015 Projekt zaliczeniowy z Ekonometrii i prognozowania Wyższa Szkoła Bankowa w Toruniu 2014/2015 Nr indeksu... Imię i Nazwisko... Nr grupy ćwiczeniowej... Imię i Nazwisko prowadzącego... 1. Specyfikacja modelu

Bardziej szczegółowo

Ekonometria. Weryfikacja modelu. Paweł Cibis 12 maja 2007

Ekonometria. Weryfikacja modelu. Paweł Cibis 12 maja 2007 Weryfikacja modelu Paweł Cibis pawel@cibis.pl 12 maja 2007 1 Badanie normalności rozkładu elementu losowego Test Hellwiga dla małej próby Test Kołmogorowa dla dużej próby 2 Testy Pakiet Analiza Danych

Bardziej szczegółowo

Ekonometria dla IiE i MSEMat Z7

Ekonometria dla IiE i MSEMat Z7 Ekonometria dla IiE i MSEMat Z7 Rafał Woźniak Faculty of Economic Sciences, University of Warsaw Warszawa, 21-11-2016 Na podstawie zbioru danych cps_small.dat z książki Principles of Econometrics oszacowany

Bardziej szczegółowo

Egzamin z Ekonometrii

Egzamin z Ekonometrii Pytania teoretyczne Egzamin z Ekonometrii 18.06.2015 1. Opisać procedurę od ogólnego do szczegółowego na przykładzie doboru liczby opóźnień w modelu. 2. Na czym polega najważniejsza różnica między testowaniem

Bardziej szczegółowo

O sezonowości mówimy wtedy, gdy zmienna zmienia się w pewnym cyklu zwykle zwiazanym z cyklem rocznym

O sezonowości mówimy wtedy, gdy zmienna zmienia się w pewnym cyklu zwykle zwiazanym z cyklem rocznym Sezonowość O sezonowości mówimy wtedy, gdy zmienna zmienia się w pewnym cyklu zwykle zwiazanym z cyklem rocznym Na przykład zmienne kwartalne charakteryzuja się zwykle sezonowościa kwartalna a zmienne

Bardziej szczegółowo

2. Założenie niezależności zakłóceń modelu - autokorelacja składnika losowego - test Durbina - Watsona

2. Założenie niezależności zakłóceń modelu - autokorelacja składnika losowego - test Durbina - Watsona Sprawdzanie założeń przyjętych o modelu (etap IIIC przyjętego schematu modelowania regresyjnego) 1. Szum 2. Założenie niezależności zakłóceń modelu - autokorelacja składnika losowego - test Durbina - Watsona

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 8

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 8 Stanisław Cichocki Natalia Nehrebecka Zajęcia 8 1. Testy diagnostyczne 2. Testowanie prawidłowości formy funkcyjnej modelu 3. Testowanie normalności składników losowych 4. Testowanie stabilności parametrów

Bardziej szczegółowo

Zmienne Binarne w Pakiecie Stata

Zmienne Binarne w Pakiecie Stata Karol Kuhl Zbiór (hipotetyczny) dummy.dta zawiera dane, na podstawie których prowadzono analizy opisane poniżej. Nazwy zmiennych oznaczają: doch dochód w jednostkach pieniężnych; plec płeć: kobieta (0),

Bardziej szczegółowo

Analiza szeregów czasowych bezrobocia i inflacji w Danii

Analiza szeregów czasowych bezrobocia i inflacji w Danii Uniwersytet Warszawski Wydział Nauk Ekonomicznych Mateusz Błażej Nr albumu: 308521 Analiza szeregów czasowych bezrobocia i inflacji w Danii Projekt zaliczeniowy z przedmiotu: Analiza Szeregów Czasowych

Bardziej szczegółowo

2.3 Modele nieliniowe

2.3 Modele nieliniowe 2.3 Modele nieliniowe Do tej pory zajmowaliśmy się modelami liniowymi lub o liniowej formie funkcyjnej i musieliśmy akceptować ich ograniczenia. Metoda Największej Wiarogodności pozwala również na efektywną

Bardziej szczegółowo

Ćwiczenia IV

Ćwiczenia IV Ćwiczenia IV - 17.10.2007 1. Spośród podanych macierzy X wskaż te, których nie można wykorzystać do estymacji MNK parametrów modelu ekonometrycznego postaci y = β 0 + β 1 x 1 + β 2 x 2 + ε 2. Na podstawie

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Zajęcia 15-16

Stanisław Cichocki. Natalia Nehrebecka. Zajęcia 15-16 Stanisław Cichocki Natalia Nehrebecka Zajęcia 15-16 1 1. Sezonowość 2. Zmienne stacjonarne 3. Zmienne zintegrowane 4. Test Dickey-Fullera 5. Rozszerzony test Dickey-Fullera 6. Test KPSS 7. Regresja pozorna

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Wykład 1

Stanisław Cichocki Natalia Nehrebecka. Wykład 1 Stanisław Cichocki Natalia Nehrebecka Wykład 1 1 1. Sprawy organizacyjne Zasady zaliczenia Ćwiczenia Literatura 2. Obciążenie Lovella 3. Metoda od ogólnego do szczególnego 4. Kryteria informacyjne 2 1.

Bardziej szczegółowo

EKONOMETRIA STOSOWANA PRZYKŁADOWE ZADANIA EGZAMINACYJNE

EKONOMETRIA STOSOWANA PRZYKŁADOWE ZADANIA EGZAMINACYJNE EKONOMETRIA STOSOWANA PRZYKŁADOWE ZADANIA EGZAMINACYJNE ZADANIE 1 Oszacowano zależność między luką popytowa a stopą inflacji dla gospodarki niemieckiej. Wyniki estymacji są następujące: Estymacja KMNK,

Bardziej szczegółowo

Ekonometria. Prognozowanie ekonometryczne, ocena stabilności oszacowań parametrów strukturalnych. Jakub Mućk. Katedra Ekonomii Ilościowej

Ekonometria. Prognozowanie ekonometryczne, ocena stabilności oszacowań parametrów strukturalnych. Jakub Mućk. Katedra Ekonomii Ilościowej Ekonometria Prognozowanie ekonometryczne, ocena stabilności oszacowań parametrów strukturalnych Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Wykład 4 Prognozowanie, stabilność 1 / 17 Agenda

Bardziej szczegółowo

Testowanie hipotez. Hipoteza prosta zawiera jeden element, np. H 0 : θ = 2, hipoteza złożona zawiera więcej niż jeden element, np. H 0 : θ > 4.

Testowanie hipotez. Hipoteza prosta zawiera jeden element, np. H 0 : θ = 2, hipoteza złożona zawiera więcej niż jeden element, np. H 0 : θ > 4. Testowanie hipotez Niech X = (X 1... X n ) będzie próbą losową na przestrzeni X zaś P = {P θ θ Θ} rodziną rozkładów prawdopodobieństwa określonych na przestrzeni próby X. Definicja 1. Hipotezą zerową Θ

Bardziej szczegółowo

Zadanie 1 1. Czy wykresy zmiennych sugerują, że zmienne są stacjonarne. Czy występuje sezonowość?

Zadanie 1 1. Czy wykresy zmiennych sugerują, że zmienne są stacjonarne. Czy występuje sezonowość? Zadanie 1 1. Czy wykresy zmiennych sugerują, że zmienne są stacjonarne. Czy występuje sezonowość? Wykres stopy bezrobocia rejestrowanego w okresie 01.1998 12.2008, dane Polskie 22 20 18 16 stopa 14 12

Bardziej szczegółowo

2 Rozszerzenia MNK. 2.1 Heteroscedastyczność

2 Rozszerzenia MNK. 2.1 Heteroscedastyczność 2 Rozszerzenia MNK 2.1 Heteroscedastyczność 2.1.1 Wprowadzenie Przy wyprowadzaniu estymatorów Klasycznego Modelu Regresji Liniowej (KMRL) zakładaliśmy, że są spełnione założenia Gaussa-Markowa, tzn. składniki

Bardziej szczegółowo

Chcesz zwiększyć swój dochód? Przenieś się i pracuj w Urzędzie!

Chcesz zwiększyć swój dochód? Przenieś się i pracuj w Urzędzie! Uniwersytet Warszawski Wydział Nauk Ekonomicznych Mateusz Błażej Nr albumu: 308521 Chcesz zwiększyć swój dochód? Przenieś się i pracuj w Urzędzie! Model ekonometryczny na kierunku: Informatyka i Ekonometria

Bardziej szczegółowo

Analiza czynników wpływających na poziom wykształcenia.

Analiza czynników wpływających na poziom wykształcenia. Analiza czynników wpływających na poziom wykształcenia. Celem tej pracy jest potwierdzenie lub odrzucenie opinii, którą większość społeczeństwa uznaje za oczywistą, o tym ė w Polsce lepiej wykształceni

Bardziej szczegółowo

Ekonometria. Robert Pietrzykowski.

Ekonometria. Robert Pietrzykowski. Ekonometria Robert Pietrzykowski email: robert_pietrzykowski@sggw.pl www.ekonometria.info Na dziś Sprawy bieżące Prowadzący Zasady zaliczenia Konsultacje Inne 2 Sprawy ogólne czyli co nas czeka Zaliczenie

Bardziej szczegółowo

Adam Kirpsza Zastosowanie regresji logistycznej w studiach nad Unią Europejska. Anna Stankiewicz Izabela Słomska

Adam Kirpsza Zastosowanie regresji logistycznej w studiach nad Unią Europejska. Anna Stankiewicz Izabela Słomska Adam Kirpsza Zastosowanie regresji logistycznej w studiach nad Unią Europejska Anna Stankiewicz Izabela Słomska Wstęp- statystyka w politologii Rzadkie stosowanie narzędzi statystycznych Pisma Karla Poppera

Bardziej szczegółowo

Analiza wariancji w analizie regresji - weryfikacja prawdziwości przyjętego układu ograniczeń Problem Przykłady

Analiza wariancji w analizie regresji - weryfikacja prawdziwości przyjętego układu ograniczeń Problem Przykłady Analiza wariancji w analizie regresji - weryfikacja prawdziwości przyjętego układu ograniczeń 1. Problem ozwaŝamy zjawisko (model): Y = β 1 X 1 X +...+ β k X k +Z Ηβ = w r Hipoteza alternatywna: Ηβ w r

Bardziej szczegółowo

Testowanie hipotez statystycznych związanych ą z szacowaniem i oceną ą modelu ekonometrycznego

Testowanie hipotez statystycznych związanych ą z szacowaniem i oceną ą modelu ekonometrycznego Testowanie hipotez statystycznych związanych ą z szacowaniem i oceną ą modelu ekonometrycznego Ze względu na jakość uzyskiwanych ocen parametrów strukturalnych modelu oraz weryfikację modelu, metoda najmniejszych

Bardziej szczegółowo

Weryfikacja hipotez statystycznych za pomocą testów statystycznych

Weryfikacja hipotez statystycznych za pomocą testów statystycznych Weryfikacja hipotez statystycznych za pomocą testów statystycznych Weryfikacja hipotez statystycznych za pomocą testów stat. Hipoteza statystyczna Dowolne przypuszczenie co do rozkładu populacji generalnej

Bardziej szczegółowo

Kolokwium ze statystyki matematycznej

Kolokwium ze statystyki matematycznej Kolokwium ze statystyki matematycznej 28.05.2011 Zadanie 1 Niech X będzie zmienną losową z rozkładu o gęstości dla, gdzie 0 jest nieznanym parametrem. Na podstawie pojedynczej obserwacji weryfikujemy hipotezę

Bardziej szczegółowo

Jak zarabiają najbardziej wpływowi - determinanty zarobków CEO

Jak zarabiają najbardziej wpływowi - determinanty zarobków CEO Uniwersytet Warszawski Wydział Nauk Ekonomicznych Cyryl Kasperski Nr albumu: 276885 Jak zarabiają najbardziej wpływowi - determinanty zarobków CEO Praca na kierunku: Informatyka i Ekonometria Praca wykonana

Bardziej szczegółowo

Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r

Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r Statystyka matematyczna Testowanie hipotez i estymacja parametrów Wrocław, 18.03.2016r Plan wykładu: 1. Testowanie hipotez 2. Etapy testowania hipotez 3. Błędy 4. Testowanie wielokrotne 5. Estymacja parametrów

Bardziej szczegółowo

Statystyka matematyczna. Wykład VI. Zesty zgodności

Statystyka matematyczna. Wykład VI. Zesty zgodności Statystyka matematyczna. Wykład VI. e-mail:e.kozlovski@pollub.pl Spis treści 1 Testy zgodności 2 Test Shapiro-Wilka Test Kołmogorowa - Smirnowa Test Lillieforsa Test Jarque-Bera Testy zgodności Niech x

Bardziej szczegółowo

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA Powtórka Powtórki Kowiariancja cov xy lub c xy - kierunek zależności Współczynnik korelacji liniowej Pearsona r siła liniowej zależności Istotność

Bardziej szczegółowo

1.3 Własności statystyczne estymatorów MNK

1.3 Własności statystyczne estymatorów MNK 1.3 Własności statystyczne estymatorów MNK 1. Estymator nazywamy estymatorem nieobciążonym, jeżeli jego wartość oczekiwana jest równa wartości szacowanego parametru. Udowodnimy, że estymator MNK wektora

Bardziej szczegółowo

Współczynnik korelacji. Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ

Współczynnik korelacji. Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ Współczynnik korelacji Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ Własności współczynnika korelacji 1. Współczynnik korelacji jest liczbą niemianowaną 2. ϱ 1,

Bardziej szczegółowo

Ekonometria. Modelowanie szeregów czasowych. Stacjonarność. Testy pierwiastka jednostkowego. Modele ARDL. Kointegracja. Jakub Mućk

Ekonometria. Modelowanie szeregów czasowych. Stacjonarność. Testy pierwiastka jednostkowego. Modele ARDL. Kointegracja. Jakub Mućk Ekonometria Modelowanie szeregów czasowych. Stacjonarność. Testy pierwiastka jednostkowego. Modele ARDL. Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Ćwiczenia 5 & 6 Szaeregi czasowe 1

Bardziej szczegółowo

Szymon Bargłowski, sb39345 MODEL. 1. Równania rozpatrywanego modelu: 1 PKB t = a 1 a 2 E t a 3 Invest t 1

Szymon Bargłowski, sb39345 MODEL. 1. Równania rozpatrywanego modelu: 1 PKB t = a 1 a 2 E t a 3 Invest t 1 Szymon Bargłowski, sb39345 MODEL 1. Równania rozpatrywanego modelu: 1 PKB t = a 1 a 2 E t a 3 Invest t 1 2 C t = b 1 b 2 PKB t b 3 Invest t 1 b 4 G t 2 3 Invest t = d 1 d 2 C t d 3 R t 3 gdzie: G - wydatki

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 7

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 7 STATYSTYKA I DOŚWIADCZALNICTWO Wykład 7 Analiza korelacji - współczynnik korelacji Pearsona Cel: ocena współzależności między dwiema zmiennymi ilościowymi Ocenia jedynie zależność liniową. r = cov(x,y

Bardziej szczegółowo

Magdalena Gańko Rafał Janaczek. Model ekonometryczny. Zastosowanie mechanizmu korekty błędem w modelowaniu kursu walutowego

Magdalena Gańko Rafał Janaczek. Model ekonometryczny. Zastosowanie mechanizmu korekty błędem w modelowaniu kursu walutowego Magdalena Gańko Rafał Janaczek Model ekonometryczny Zastosowanie mechanizmu korekty błędem w modelowaniu kursu walutowego Warszawa 2006 Spis treści Wstęp...3 Rozdział I Podstawowe informacje teoretyczne...4

Bardziej szczegółowo

1.1 Klasyczny Model Regresji Liniowej

1.1 Klasyczny Model Regresji Liniowej 1.1 Klasyczny Model Regresji Liniowej Klasyczny model Regresji Liniowej jest bardzo użytecznym narzędziem służącym do analizy danych empirycznych. Analiza regresji zajmuje się opisem zależności między

Bardziej szczegółowo

Definicja danych panelowych Typy danych panelowych Modele dla danych panelowych. Dane panelowe. Część 1. Dane panelowe

Definicja danych panelowych Typy danych panelowych Modele dla danych panelowych. Dane panelowe. Część 1. Dane panelowe Część 1 to dane, które jednocześnie posiadają cechy danych przekrojowych i szeregów czasowych to dane, które jednocześnie posiadają cechy danych przekrojowych i szeregów czasowych Czyli obserwujemy te

Bardziej szczegółowo

Problem dwóch prób: porównywanie średnich i wariancji z populacji o rozkładach normalnych. Wrocław, 23 marca 2015

Problem dwóch prób: porównywanie średnich i wariancji z populacji o rozkładach normalnych. Wrocław, 23 marca 2015 Problem dwóch prób: porównywanie średnich i wariancji z populacji o rozkładach normalnych. Wrocław, 23 marca 2015 Problem dwóch prób X = (X 1, X 2,..., X n ) - próba z rozkładu normalnego N (µ, σ 2 X ),

Bardziej szczegółowo

Błędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa

Błędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa Weryfikacja hipotez statystycznych Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy populacji, o prawdziwości lub fałszywości którego wnioskuje się na podstawie

Bardziej szczegółowo

MODEL EKONOMETRYCZNY. Marcin Michalski, Konrad Rotuski, gr. 303, WNE UW

MODEL EKONOMETRYCZNY. Marcin Michalski, Konrad Rotuski, gr. 303, WNE UW MODEL EKONOMETRYCZNY Marcin Michalski, Konrad Rotuski, gr. 303, WNE UW 1. Problem ekonometryczny Bardzo waŝnym problemem w duŝych firmach i korporacjach jest ustalanie wysokości wynagrodzenia głównych

Bardziej szczegółowo

Właściwości testu Jarque-Bera gdy w danych występuje obserwacja nietypowa.

Właściwości testu Jarque-Bera gdy w danych występuje obserwacja nietypowa. Właściwości testu Jarque-Bera gdy w danych występuje obserwacja nietypowa. Paweł Strawiński Uniwersytet Warszawski Wydział Nauk Ekonomicznych 16 stycznia 2006 Streszczenie W artykule analizowane są właściwości

Bardziej szczegółowo

[121060-0610] Ekonometria Praca domowa nr 2 rozwiązania zadań Data oddania: 9 listopada 2012

[121060-0610] Ekonometria Praca domowa nr 2 rozwiązania zadań Data oddania: 9 listopada 2012 [121060-0610] Ekonometria Praca domowa nr 2 rozwiązania zadań Data oddania: 9 listopada 2012 Zadanie 1. W pliku nbasal.gdt znajdują się dane o płacach i statystykach koszykarzy ligi NBA. Wykonaj następujące

Bardziej szczegółowo

Wnioskowanie statystyczne i weryfikacja hipotez statystycznych

Wnioskowanie statystyczne i weryfikacja hipotez statystycznych Wnioskowanie statystyczne i weryfikacja hipotez statystycznych Wnioskowanie statystyczne Wnioskowanie statystyczne obejmuje następujące czynności: Sformułowanie hipotezy zerowej i hipotezy alternatywnej.

Bardziej szczegółowo

Wykład 10 (12.05.08). Testowanie hipotez w rodzinie rozkładów normalnych przypadek nieznanego odchylenia standardowego

Wykład 10 (12.05.08). Testowanie hipotez w rodzinie rozkładów normalnych przypadek nieznanego odchylenia standardowego Wykład 10 (12.05.08). Testowanie hipotez w rodzinie rozkładów normalnych przypadek nieznanego odchylenia standardowego Przykład Cena metra kwadratowego (w tys. zł) z dla 14 losowo wybranych mieszkań w

Bardziej szczegółowo

Wydział Nauk Ekonomicznych Uniwersytet Warszawski

Wydział Nauk Ekonomicznych Uniwersytet Warszawski Wydział Nauk Ekonomicznych Uniwersytet Warszawski Model ekonometryczny ADL: Wpływ czynników ekonomicznych i pozaekonomicznych na liczbę popełnianych zabójstw z użyciem broni palnej w Australii Warszawa,

Bardziej szczegółowo

Przykład 1 ceny mieszkań

Przykład 1 ceny mieszkań Przykład ceny mieszkań Przykład ceny mieszkań Model ekonometryczny zaleŝności ceny mieszkań od metraŝu - naleŝy do klasy modeli nieliniowych. - weryfikację empiryczną modelu przeprowadzono na przykładzie

Bardziej szczegółowo

TESTOWANIE HIPOTEZ STATYSTYCZNYCH

TESTOWANIE HIPOTEZ STATYSTYCZNYCH TETOWANIE HIPOTEZ TATYTYCZNYCH HIPOTEZA TATYTYCZNA przypuszczenie co do rozkładu populacji generalnej (jego postaci funkcyjnej lub wartości parametrów). Prawdziwość tego przypuszczenia jest oceniana na

Bardziej szczegółowo

Wykład 2 Hipoteza statystyczna, test statystyczny, poziom istotn. istotności, p-wartość i moc testu

Wykład 2 Hipoteza statystyczna, test statystyczny, poziom istotn. istotności, p-wartość i moc testu Wykład 2 Hipoteza statystyczna, test statystyczny, poziom istotności, p-wartość i moc testu Wrocław, 01.03.2017r Przykład 2.1 Właściciel firmy produkującej telefony komórkowe twierdzi, że wśród jego produktów

Bardziej szczegółowo

Ekonometria. Weryfikacja modelu. Paweł Cibis pcibis@o2.pl. 6 kwietnia 2006

Ekonometria. Weryfikacja modelu. Paweł Cibis pcibis@o2.pl. 6 kwietnia 2006 Weryfikacja modelu Paweł Cibis pcibis@o2.pl 6 kwietnia 2006 1 Badanie istotności parametrów strukturalnych modelu Testy Pakiet Analiza Danych Uwagi 2 Test dla małej próby Test dla dużej próby 3 Test Durbina-Watsona

Bardziej szczegółowo

Analiza zależności cech ilościowych regresja liniowa (Wykład 13)

Analiza zależności cech ilościowych regresja liniowa (Wykład 13) Analiza zależności cech ilościowych regresja liniowa (Wykład 13) dr Mariusz Grządziel semestr letni 2012 Przykład wprowadzajacy W zbiorze danych homedata (z pakietu R-owskiego UsingR) można znaleźć ceny

Bardziej szczegółowo

Statystyka Matematyczna Anna Janicka

Statystyka Matematyczna Anna Janicka Statystyka Matematyczna Anna Janicka wykład X, 9.05.206 TESTOWANIE HIPOTEZ STATYSTYCZNYCH II: PORÓWNYWANIE TESTÓW Plan na dzisiaj 0. Przypomnienie potrzebnych definicji. Porównywanie testów 2. Test jednostajnie

Bardziej szczegółowo

Wykład 5 Problem dwóch prób - testowanie hipotez dla równości średnich

Wykład 5 Problem dwóch prób - testowanie hipotez dla równości średnich Wykład 5 Problem dwóch prób - testowanie hipotez dla równości średnich Magdalena Frąszczak Wrocław, 22.03.2017r Problem Behrensa Fishera Niech X = (X 1, X 2,..., X n ) oznacza próbę z rozkładu normalnego

Bardziej szczegółowo

4. Średnia i autoregresja zmiennej prognozowanej

4. Średnia i autoregresja zmiennej prognozowanej 4. Średnia i autoregresja zmiennej prognozowanej 1. Średnia w próbie uczącej Własności: y = y = 1 N y = y t = 1, 2, T s = s = 1 N 1 y y R = 0 v = s 1 +, 2. Przykład. Miesięczna sprzedaż żelazek (szt.)

Bardziej szczegółowo

Outsourcing a produktywność pracy w polskich przedsiębiorstwach. Anna Grześ Zakład Zarządzania Uniwersytet w Białymstoku

Outsourcing a produktywność pracy w polskich przedsiębiorstwach. Anna Grześ Zakład Zarządzania Uniwersytet w Białymstoku Outsourcing a produktywność pracy w polskich przedsiębiorstwach Anna Grześ Zakład Zarządzania Uniwersytet w Białymstoku Cele : pomiar produktywności pracy w polskich przedsiębiorstwach na poziomie sekcji

Bardziej szczegółowo

Model regresji wielokrotnej Wykład 14 ( ) Przykład ceny domów w Chicago

Model regresji wielokrotnej Wykład 14 ( ) Przykład ceny domów w Chicago Model regresji wielokrotnej Wykład 14 (4.06.2007) Przykład ceny domów w Chicago Poniżej są przedstawione dane dotyczące cen domów w Chicago (źródło: Sen, A., Srivastava, M., Regression Analysis, Springer,

Bardziej szczegółowo

Analiza autokorelacji

Analiza autokorelacji Analiza autokorelacji Oblicza się wartości współczynników korelacji między y t oraz y t-i (dla i=1,2,...,k), czyli współczynniki autokorelacji różnych rzędów. Bada się statystyczną istotność tych współczynników.

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA, LISTA 3

STATYSTYKA MATEMATYCZNA, LISTA 3 STATYSTYKA MATEMATYCZNA, LISTA 3 1. Aby zweryfikować hipotezę o symetryczności monety; H: p = 0.5 przeciwko K: p 0.5 wykonano nią n = 100 rzutów. Wyznaczyć obszar krytyczny i zweryfikować hipotezę H gdy

Bardziej szczegółowo

Ekonometria. Model nieliniowe i funkcja produkcji. Jakub Mućk. Katedra Ekonomii Ilościowej. Modele nieliniowe Funkcja produkcji

Ekonometria. Model nieliniowe i funkcja produkcji. Jakub Mućk. Katedra Ekonomii Ilościowej. Modele nieliniowe Funkcja produkcji Ekonometria Model nieliniowe i funkcja produkcji Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Ćwiczenia 7 Modele nieliniowe i funkcja produkcji 1 / 19 Agenda Modele nieliniowe 1 Modele

Bardziej szczegółowo

Weryfikacja hipotez statystycznych za pomocą testów statystycznych

Weryfikacja hipotez statystycznych za pomocą testów statystycznych Weryfikacja hipotez statystycznych za pomocą testów statystycznych Weryfikacja hipotez statystycznych za pomocą testów stat. Hipoteza statystyczna Dowolne przypuszczenie co do rozkładu populacji generalnej

Bardziej szczegółowo

Statystyka matematyczna Testowanie hipotez dla średnich w rozkładzie normalnym. Wrocław, r

Statystyka matematyczna Testowanie hipotez dla średnich w rozkładzie normalnym. Wrocław, r Statystyka matematyczna Testowanie hipotez dla średnich w rozkładzie normalnym Wrocław, 18.03.2016r Testowanie hipotez dla średniej w rozkładzie normalnym dla jednej próby Model 1 Testowanie hipotez dla

Bardziej szczegółowo

Statystyka i opracowanie danych- W 8 Wnioskowanie statystyczne. Testy statystyczne. Weryfikacja hipotez statystycznych.

Statystyka i opracowanie danych- W 8 Wnioskowanie statystyczne. Testy statystyczne. Weryfikacja hipotez statystycznych. Statystyka i opracowanie danych- W 8 Wnioskowanie statystyczne. Testy statystyczne. Weryfikacja hipotez statystycznych. Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Hipotezy i Testy statystyczne Każde

Bardziej szczegółowo

Ekonometria. Modelowanie szeregów czasowych. Stacjonarność. Testy pierwiastka jednostkowego. Modele ARDL. Kointegracja. Jakub Mućk

Ekonometria. Modelowanie szeregów czasowych. Stacjonarność. Testy pierwiastka jednostkowego. Modele ARDL. Kointegracja. Jakub Mućk Ekonometria Modelowanie szeregów czasowych. Stacjonarność. Testy pierwiastka jednostkowego. Modele ARDL. Kointegracja Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Wykład 5 & 6 Szaeregi

Bardziej szczegółowo

Szacowanie modeli dla nielosowej selekcji w pakiecie STATA

Szacowanie modeli dla nielosowej selekcji w pakiecie STATA Szacowanie modeli dla nielosowej selekcji w pakiecie STATA Paweł Strawiński Uniwersytet Warszawski Wydział Nauk Ekonomicznych 17 kwietnia 2005 1 Dane Przedmiotem badania jest oszacowanie funkcji płacy

Bardziej szczegółowo

Niestacjonarne zmienne czasowe własności i testowanie

Niestacjonarne zmienne czasowe własności i testowanie Materiał dla studentów Niestacjonarne zmienne czasowe własności i testowanie (studium przypadku) Część 3: Przykłady testowania niestacjonarności Nazwa przedmiotu: ekonometria finansowa I (22204), analiza

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 6

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 6 STATYSTYKA I DOŚWIADCZALNICTWO Wykład 6 Metody sprawdzania założeń w analizie wariancji: -Sprawdzanie równości (jednorodności) wariancji testy: - Cochrana - Hartleya - Bartletta -Sprawdzanie zgodności

Bardziej szczegółowo

Wykład 12 ( ): Testy dla dwóch prób w rodzinie rozkładów normalnych

Wykład 12 ( ): Testy dla dwóch prób w rodzinie rozkładów normalnych Wykład 12 (21.05.07): Testy dla dwóch prób w rodzinie rozkładów normalnych Przykład Rozważamy dane wygenerowane losowo; ( podobne do danych z przykładu 7.2 z książki A. Łomnickiego) n 1 = 9 poletek w dąbrowie,

Bardziej szczegółowo

Modele dla zmiennej binarnej w pakiecie STATA materiały na ćwiczenia z ekonometrii 18.03.2005 r. Piotr Wójcik, KTRG WNE UW

Modele dla zmiennej binarnej w pakiecie STATA materiały na ćwiczenia z ekonometrii 18.03.2005 r. Piotr Wójcik, KTRG WNE UW Modele dla zmiennej binarnej w pakiecie STATA materiały na ćwiczenia z ekonometrii 18.03.2005 r. Piotr Wójcik, KTRG WNE UW Dane Dane wykorzystane w przykładzie pochodzą z pracy McCall, B.P., 1995, The

Bardziej szczegółowo

Zadanie 1. a) Przeprowadzono test RESET. Czy model ma poprawną formę funkcyjną? 1

Zadanie 1. a) Przeprowadzono test RESET. Czy model ma poprawną formę funkcyjną? 1 Zadanie 1 a) Przeprowadzono test RESET. Czy model ma poprawną formę funkcyjną? 1 b) W naszym przypadku populacja są inżynierowie w Tajlandii. Czy można jednak przypuszczać, że na zarobki kobiet-inżynierów

Bardziej szczegółowo

Ekonometria ćwiczenia Kolokwium 2 semestr 22/05/05. / 4 pkt. / 4 pkt. / 3 pkt. / 4 pkt. /22 pkt. Regulamin i informacje dodatkowe

Ekonometria ćwiczenia Kolokwium 2 semestr 22/05/05. / 4 pkt. / 4 pkt. / 3 pkt. / 4 pkt. /22 pkt. Regulamin i informacje dodatkowe imię, nazwisko, nr indeksu: Ekonometria ćwiczenia Kolokwium 2 semestr 22/05/05 Zadanie 1 Zadanie 2 Zadanie 3 / 4 pkt / 4 pkt / 3 pkt Zadanie 4 / 7 pkt [1/1/1/2/2] Zadanie 5 Razem / 4 pkt /22 pkt Skala

Bardziej szczegółowo