1. Stacjonarnośd i niestacjonarnośd szeregów czasowych 2. Test ADF i test KPSS 3. Budowa modeli ARMA dla zmiennych niestacjonarnych 4.

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "1. Stacjonarnośd i niestacjonarnośd szeregów czasowych 2. Test ADF i test KPSS 3. Budowa modeli ARMA dla zmiennych niestacjonarnych 4."

Transkrypt

1 1. Stacjonarnośd i niestacjonarnośd szeregów czasowych 2. Test ADF i test KPSS 3. Budowa modeli ARMA dla zmiennych niestacjonarnych 4. Prognozowanie stóp zwrotu na podstawie modeli ARMA 5. Relacje kointegrujące finansowych szeregów czasowych oraz metody ich modelowania 6. Testy pierwiastka jednostkowego w przypadku zmian strukturalnych. Przykłady.

2 Test Dickeya-Fullera dla zwrotów logarytmicznych Przypomnijmy konstrukcję regresji i statystyki testu ADF: Tę regresję szacujemy metodą najmniejszych kwadratów. Suma opóźnionych składników po prawej stronie jest potrzebna po to, aby usunąd autokorelację składnika losowego. Statystyka testu ma postad: tzn. ma konstrukcję taką jak statystyka testu t Studenta, ale uwaga! To jest regresja zmiennej stacjonarnej względem zmiennych niestacjonarnych, dlatego rozkład statystyki ADF bardzo się różni od rozkładu t, mianowicie jest asymetryczny i przesunięty w lewo. Trzeba więc stosowad wartości krytyczne z odpowiednio przygotowanych tablic. Hipotezy, sposób wnioskowania: Hipotezy zerowa i alternatywna dla testu ADF są następujące: H0: Szereg jest niestacjonarny z powodu występowania pierwiastka jednostkowego, H1: Szereg jest stacjonarny. Jeśli obliczona wartośd statystyki testu jest większa niż wartośd krytyczna odczytana z tablic dla odpowiedniej liczby obserwacji i dla przyjętego poziomu istotności, nie ma podstaw do odrzucenia hipotezy zerowej o niestacjonarności badanej zmiennej. Jeśli obliczona wartośd statystyki testu ADF jest mniejsza niż wartośd krytyczna, hipotezę zerową odrzucamy na rzecz stacjonarności zmiennej. Badanie stacjonarności przyrostów: W przypadku, gdy nie odrzucamy hipotezy o braku stacjonarności, należy sprawdzid, czy pierwsze przyrosty zmiennej są stacjonarne. Budujemy regresję: Wyznaczamy wartośd statystyki testu, przeprowadzamy wnioskowanie jak poprzednio. H0 oznacza, że przyrosty zmiennej są niestacjonarne, H1 że są stacjonarne. Na ogół, chod nie zawsze, okazuje się, że przyrosty zmiennej są stacjonarne. Oznacza to, że zmienna jest zintegrowana stopnia 1 tzn. jest niestacjonarna, ale pierwsze przyrosty wystarczają do uzyskania stacjonarności. Ogólnie, zmienna jest zintegrowana stopnia d,, jeśli jest niestacjonarna, ale można dla niej otrzymad zmienną stacjonarną poprzez wyznaczanie przyrostów, przy czym d jest najmniejszą całkowitą liczbą przyrostów wystarczającą do uzyskania stacjonarności.

3 Przykład przeprowadzenia testu w gretl: Z menu Zmienna wybieramy polecenie Test ADF, wybieramy liczbę opóźnieo, na ogół wersję ze stałą oraz wersję ze stałą i z trendem, a także zaznaczamy, że test ma byd wykonany dla zmiennej, a nie dla przyrostów. Wyniki dla WIG20 są następujące: Rozszerzony test Dickeya-Fullera dla rzędu opóźnienia 8, dla zmiennej lnwig20 liczebnośd próby 2330 Hipoteza zerowa: występuje pierwiastek jednostkowy a = 1; proces I(1) test z wyrazem wolnym (const) model: (1 - L)y = b0 + (a-1)*y(-1) e Autokorelacja reszt rzędu pierwszego: -0,000 estymowana wartośd (a-1) wynosi: -0, Statystyka testu: tau_c(1) = -1,12533 asymptotyczna wartośd p = 0,7081 z wyrazem wolnym i trendem liniowym model: (1 - L)y = b0 + b1*t + (a-1)*y(-1) e Autokorelacja reszt rzędu pierwszego: -0,000 estymowana wartośd (a-1) wynosi: -0, Statystyka testu: tau_ct(1) = -1,611 asymptotyczna wartośd p = 0,7891 Empiryczny poziom istotności, czyli prawdopodobieostwo uzyskania podanej wartości statystyki ADF przy założeniu prawdziwości hipotezy zerowej, jest wysokie około 78%. Nie ma zatem podstaw do odrzucenia hipotezy, że badany szereg jest niestacjonarny. Dla zwrotów logarytmicznych WIG20: zaznaczamy myszką tę samą zmienną w bazie, wybieramy test ADF, ale tym razem w wersji bez trendu, i zaznaczamy, że test ma byd przeprowadzony dla przyrostów zmiennej. Wyniki są następujące: Rozszerzony test Dickeya-Fullera dla rzędu opóźnienia 8, dla zmiennej d_lnwig20 liczebnośd próby 2329 Hipoteza zerowa: występuje pierwiastek jednostkowy a = 1; proces I(1) test z wyrazem wolnym (const) model: (1 - L)y = b0 + (a-1)*y(-1) e Autokorelacja reszt rzędu pierwszego: -0,000 estymowana wartośd (a-1) wynosi: -0, Statystyka testu: tau_c(1) = -16,1479 asymptotyczna wartośd p = 1,807e-038 Prawdopodobieostwo uzyskania takiej wartości statystyki testu przy założeniu prawdziwości hipotezy zerowej jest znikomo małe. Hipotezę o braku stacjonarności zwrotów logarytmicznych z WIG20 należy odrzucid.

4 Test Kwiatkowskiego, Phillipsa, Schmidta i Shina Jest to test przeznaczony do badania stacjonarności szeregu. Hipotezy zerowa i alternatywna mają układ odwrotny niż w teście Dickeya-Fullera. Dla testu KPSS: H0: Szereg czasowy jest stacjonarny, H1: Szereg czasowy jest niestacjonarny. Konstrukcja testu: gdzie jest stacjonarnym składnikiem losowym. Jeśli wariancja składnika losowego jest równa zeru, wartości tzn. są stałe dla każdego t. Wtedy proces jest sumą stałej lub stałej i trendu deterministycznego oraz stacjonarnego składnika czysto losowego. Jeśli wariancja składnika losowego w drugim równaniu jest niezerowa, równanie to określa proces błądzenia losowego. Wtedy proces jest sumą procesu (i ewentualnie trendu deterministycznego ) oraz stacjonarnego składnika czysto losowego, zatem jest niestacjonarny. Statystyka testu KPSS ma złożoną konstrukcję i bardzo skomplikowany rozkład prawdopodobieostwa. Sposób przeprowadzenia testu w gretl Zastosujemy test do szeregu notowao zamknięcia WIG20 oraz do zwrotów logarytmicznych. 1) Wybieramy Zmienna Test KPSS i zaznaczamy wersję z trendem. Oto wyniki: Hipoteza zerowa: proces stacjonarny; test KPSS dla zm. lnwig20 (z trendem) Parametr rzędu opóźnienia (lag truncation) = 8 Statystyka testu = 2, % 5% 2,5% 1% Krytyczna wart.: 0,119 0,146 0,176 0,216 Jak widad, obliczona wartośd statystyki jest większa niż wartości krytyczne. Zatem hipotezę zerową o stacjonarności WIG20 należy odrzucid. 2) Teraz wybieramy: Zmienna Test KPSS i ponieważ chcemy przeprowadzid testowanie dla przyrostów zmiennej, wybieramy Przyrosty zmiennej ale nie zaznaczamy trendu (dla przyrostów wystarczy sprawdzid, czy są stacjonarne względem stałej, trend tu nie występuje, co widad na wykresie). Oto wyniki: Hipoteza zerowa: proces stacjonarny; test KPSS dla zm. d_lnwig20 (bez trendu) Parametr rzędu opóźnienia (lag truncation) = 8 Statystyka testu = 0, % 5% 2,5% 1% Krytyczna wart.: 0,347 0,463 0,574 0,739 Obliczona wartośd statystyki testu jest mniejsza niż wartośd krytyczna przy poziomie 0,05 (a nawet 0,10), więc nie ma podstaw do odrzucenia hipotezy zerowej o stacjonarności zwrotów logarytmicznych.

5 Model ARMA dla zwrotów logarytmicznych Wiemy już, że zwroty logarytmiczne są stacjonarne. Sprawdźmy jak wygląda wykres funkcji ACF i PACF: ACF dla zmiennej ld_wig20zam ,96/T^0, opónienia PACF dla zmiennej ld_wig20zam ,96/T^0, opónienia Funkcja autokorelacji (ACF) i autokorelacji cząstkowej (PACF), test autokorelacji Ljunga-Boxa (Q) dla procesu: ld_wig20zam Opóźnienia ACF PACF Ljung-Box Q *wartośd p+ 1 0,0392 * 0,0392 * 3,5938 [0,058] 2-0,0112-0,0127 3,8868 [0,143] 3 0,0116 0,0125 4,2003 [0,241] 4 0,0279 0,0268 6,0246 [0,197] 5-0,0131-0,0150 6,4257 [0,267] 6-0,0321-0,0306 8,8494 [0,182] 7-0,0246-0, ,2704 [0,174] 8 0,0028 0, ,2886 [0,245] 9 0,0192 0, ,1563 [0,265] 10 0,0179 0, ,9106 [0,291] 11-0,0015-0, ,9162 [0,370] 12-0,0135-0, ,3447 [0,418] 13 0,0332 0, ,9361 [0,311] 14 0,0199 0, ,8695 [0,321] Według metodologii Boxa i Jenkinsa, liczba statystycznie istotnych parametrów funkcji PACF sugeruje wybór liczby opóźnieo w części MA modelu ARMA, liczba istotnych statystycznie parametrów funkcji ACF sugeruje wybór liczby opóźnieo części AR modelu ARMA.

6 Sposób postępowania w praktyce jest taki: wybieramy maksymalną możliwą liczbę opóźnieo modelu ARMA, P i Q, szacujemy modele dla wszystkich kombinacji (p,q), w których p<=p i q<=q, w celu ostatecznego wyboru modelu porównujemy wartości kryteriów informacyjnych dla poszczególnych modeli. Wybieramy tę wersję modelu, dla której kryterium informacyjne przyjmuje wartośd minimalną. Sprawdźmy zatem jakie są wyniki estymacji modelu i jaki model wybierzemy dla zwrotów logarytmicznych WIG20. Model Modele szeregów czasowych Model ARIMA Pierwszy model to model ARMA(1,1): Model 1: Estymacja ARMA z wykorzystaniem 2338 obserwacji Estymacja z wykorzystaniem filtru Kalmana (właściwa ML) Zmienna zależna: ld_wig20zam Zmienna Współczynnik Błąd stand. Statystyka t Wartość p const 7,39103E-05 0, ,198 0,84301 phi_1-0, , ,637 0,52430 theta_1 0, , ,754 0,45100 Średnia arytmetyczna zmiennej zależnej = 7,43238e-00 Odchylenie standardowe zmiennej zależnej = 0, Średnia z zaburzeń losowych = 2,1327e-007 wariancja z zaburzeń losowych = 0, Logarytm wiarygodności = 6144,169 Kryterium informacyjne Akaike'a (AIC) = ,3 Kryterium bayesowskie Schwarza (BIC) = ,3 Kryterium infor. Hannana-Quinna (HQC) = ,9 część Rzeczywista Urojona Moduł Częstość AR Pierwiastek 1-4,2320 0,0000 4,2320 0,5000 MA Pierwiastek 1-3,6164 0,0000 3,6164 0, Drugi model to ARMA(1,0): Model 2: Estymacja ARMA z wykorzystaniem 2338 obserwacji Estymacja z wykorzystaniem filtru Kalmana (właściwa ML) Zmienna zależna: ld_wig20zam Zmienna Współczynnik Błąd stand. Statystyka t Wartość p const 7,41093E-05 0, ,197 0,84383 phi_1 0, , ,899 0,05752 *

7 Średnia arytmetyczna zmiennej zależnej = 7,43238e-005 Odchylenie standardowe zmiennej zależnej = 0, Średnia z zaburzeń losowych = 1,21954e-005 wariancja z zaburzeń losowych = 0, Logarytm wiarygodności = 6143,9618 Kryterium informacyjne Akaike'a (AIC) = ,9 Kryterium bayesowskie Schwarza (BIC) = ,7 Kryterium infor. Hannana-Quinna (HQC) = ,6 część Rzeczywista Urojona Moduł Częstość AR Pierwiastek 1 25,5289 0, ,5289 0, Trzeci model to ARMA(0,1): Model 3: Estymacja ARMA z wykorzystaniem 2338 obserwacji Estymacja z wykorzystaniem filtru Kalmana (właściwa ML) Zmienna zależna: ld_wig20zam Zmienna Współczynnik Błąd stand. Statystyka t Wartość p const 7,40597E-05 0, ,197 0,84385 theta_1 0, , ,926 0,05416 * Średnia arytmetyczna zmiennej zależnej = 7,43238e-005 Odchylenie standardowe zmiennej zależnej = 0, Średnia z zaburzeń losowych = 1,22184e-005 wariancja z zaburzeń losowych = 0, Logarytm wiarygodności = 6144,0075 Kryterium informacyjne Akaike'a (AIC) = Kryterium bayesowskie Schwarza (BIC) = ,7 Kryterium infor. Hannana-Quinna (HQC) = ,7 część Rzeczywista Urojona Moduł Częstość MA Pierwiastek 1-24,8850 0, ,8850 0, Kryterium / Model ARMA(1,1) ARMA(1,0) ARMA(0,1) AIC , , BIC , , ,7 HQC , , ,7 Wartośd kryterium jest najmniejsza dla trzeciego modelu, więc według tak przyjętej zasady należałoby wybrad ten właśnie model.

8 Jeśli chcemy prognozowad wartości zmiennej, musimy sprawdzid m.in. stabilnośd modelu, stabilnośd parametrów, oczywiście przeprowadzid pełną weryfikację modelu, ale również sprawdzid dokładnośd prognoz. W tym celu wyznacza się prognozy wewnątrz próby, tzn. dla pewnej liczby ostatnich obserwacji na podstawie modelu oszacowanego na podstawie początkowej części zbioru obserwacji. Mamy dzięki temu wartości zmiennej objaśnianej dla tego okresu i możemy wyznaczyd błędy prognoz ex post. Błąd MAPE względny absolutny błąd procentowy jest wielkością unormowaną i na jej podstawie można porównywad jakośd prognoz dla kilku modeli. Drugą wielkością unormowaną, umożliwiającą porównywanie modeli, jest współczynnik rozbieżności Theila. Błędy prognoz: Dla modelu wyznacza się następujące błędy prognoz i mierniki dokładności dla horyzontu prognozy h: 1) Pierwiastek błędu średniokwadratowego RMSE = T h ( yˆ t T t y 2 h 1 2 ) / 2) Średni błąd absolutny T h yˆ t MAE = t T 1 yt / h 3) Średni absolutny błąd procentowy T h 100 MAPE = t T 1 yˆ t yt yt / h 4) Współczynnik rozbieżności Theila T h ( yˆ t t T 1 T h yˆ 2 t / h t T 1 yt ) 2 / h T h y 2 t / h t T 1 jest miernikiem unormowanym, przyjmującym wartości z przedziału 0, 1. Niskie wartości współczynnika oznaczają dużą dokładnośd prognoz. Można wyróżnid trzy składowe współczynnika rozbieżności, odpowiadające przyczynom błędów prognozy: 1) obciążenie prognozy gdy wartośd oczekiwana prognozy odbiega od wartości zmiennej prognozowanej; 2) wariancja na ile model dobrze odwzorowuje wariancję zmiennej prognozowanej; 3) kowariancja błędy prognoz spowodowane innymi przyczynami niż obciążenie i błędy wariancji.

9 Prognozy z modelu ARMA(1,1): ld_wig20zam prognoza 95 procentowy przedzia³ ufnoci Prognozy z modelu ARMA(1,0): ld_wig20zam prognoza 95 procentowy przedzia³ ufnoci

10 Prognozy z modelu ARMA(0,1): ld_wig20zam prognoza 95 procentowy przedzia³ ufnoci Porównanie mierników błędów ex post dla trzech wersji modeli ARMA: Błąd\Model ARMA(1,1) ARMA(1,0) ARMA(0,1) MAE 0, , , MAPE 0, , , RMSE 0, , ,

11 Kointegracja szeregów czasowych Definicja: Zmienna y jest zintegrowana stopnia 1, jeśli jest niestacjonarna, ale można ją sprowadzid do zmiennej stacjonarnej poprzez wyznaczanie przyrostów. Definicja: Zmienna y jest zintegrowana stopnia d, y ~I(d), jeśli jest niestacjonarna, ale można ją sprowadzid do zmiennej stacjonarnej poprzez wyznaczanie przyrostów, a d jest najmniejszą całkowitą liczbą przyrostów wystarczającą do uzyskania stacjonarności. Definicja: Zmienne x1, x2,,xk są skointegrowane, jeśli są niestacjonarne (np. I(1)), ale istnieje ich kombinacja liniowa o niższym stopniu integracji Uwaga: większośd zmiennych finansowych jest zintegrowanych stopnia 1, więc obniżenie stopnia integracji oznacza uzyskanie stacjonarnej kombinacji liniowej. Jednak zdarzają się zmienne zintegrowane stopnia 2 (np. wskaźnik cen w warunkach hiperinflacji), wtedy obniżenie stopnia integracji do 1 wymaga, aby kombinacja liniowa zawierała drugą zmienną o tym samym najwyższym stopniu integracji. Sprawdzanie, czy występuje kointegracja: 1. Metoda Engle a-grangera: polega na sprawdzeniu, czy dana kombinacja zmiennych jest stacjonarna (jeśli znamy współczynniki tej kombinacji liniowej) lub na oszacowaniu regresji jednej ze zmiennych względem pozostałych metodą najmniejszych kwadratów, 2. Metoda Johansena otrzymujemy informację o wszystkich możliwych wektorach kointegrujących dla danego zestawu zmiennych. Metoda Engle a-grangera: 1) Szacujemy MNK regresję jednej ze zmiennych względem pozostałych: Otrzymujemy oszacowania: 2) Stosujemy test ADF do reszt modelu: Hipoteza zerowa: reszty są niestacjonarne, co oznacza, że wektor ocen parametrów MNK nie jest wektorem kointegrującym dla badanych zmiennych, Hipoteza alternatywna: reszty są stacjonarne, co oznacza, że wektor ocen MNK powyższej regresji jest wektorem kointegrującym.

12 Model z mechanizmem korekty błędu: Jeśli zmienne są skointegrowane, to można dla nich skonstruowad tzw. model z mechanizmem korekty błędu (ECM, ang. error correction mechanism): Mechanizm korekty błędu funkcjonuje, jeśli ocena parametru jest ujemna.

Niestacjonarne zmienne czasowe własności i testowanie

Niestacjonarne zmienne czasowe własności i testowanie Materiał dla studentów Niestacjonarne zmienne czasowe własności i testowanie (studium przypadku) Część 3: Przykłady testowania niestacjonarności Nazwa przedmiotu: ekonometria finansowa I (22204), analiza

Bardziej szczegółowo

Zadanie 1 1. Czy wykresy zmiennych sugerują, że zmienne są stacjonarne. Czy występuje sezonowość?

Zadanie 1 1. Czy wykresy zmiennych sugerują, że zmienne są stacjonarne. Czy występuje sezonowość? Zadanie 1 1. Czy wykresy zmiennych sugerują, że zmienne są stacjonarne. Czy występuje sezonowość? Wykres stopy bezrobocia rejestrowanego w okresie 01.1998 12.2008, dane Polskie 22 20 18 16 stopa 14 12

Bardziej szczegółowo

Metoda Johansena objaśnienia i przykłady

Metoda Johansena objaśnienia i przykłady Metoda Johansena objaśnienia i przykłady Model wektorowej autoregresji rzędu p, VAR(p), ma postad gdzie oznacza wektor zmiennych endogenicznych modelu. Model VAR jest stabilny, jeżeli dla, tzn. wielomian

Bardziej szczegółowo

Niestacjonarne zmienne czasowe własności i testowanie

Niestacjonarne zmienne czasowe własności i testowanie Materiał dla studentów Niestacjonarne zmienne czasowe własności i testowanie (studium przypadku) Część 1: Opis ogólny i plan pracy Nazwa przedmiotu: ekonometria finansowa I (22204), analiza szeregów czasowych

Bardziej szczegółowo

4. Średnia i autoregresja zmiennej prognozowanej

4. Średnia i autoregresja zmiennej prognozowanej 4. Średnia i autoregresja zmiennej prognozowanej 1. Średnia w próbie uczącej Własności: y = y = 1 N y = y t = 1, 2, T s = s = 1 N 1 y y R = 0 v = s 1 +, 2. Przykład. Miesięczna sprzedaż żelazek (szt.)

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Zajęcia 15-16

Stanisław Cichocki. Natalia Nehrebecka. Zajęcia 15-16 Stanisław Cichocki Natalia Nehrebecka Zajęcia 15-16 1 1. Sezonowość 2. Zmienne stacjonarne 3. Zmienne zintegrowane 4. Test Dickey-Fullera 5. Rozszerzony test Dickey-Fullera 6. Test KPSS 7. Regresja pozorna

Bardziej szczegółowo

Model 1: Estymacja KMNK z wykorzystaniem 32 obserwacji 1964-1995 Zmienna zależna: st_g

Model 1: Estymacja KMNK z wykorzystaniem 32 obserwacji 1964-1995 Zmienna zależna: st_g Zadanie 1 Dla modelu DL dla zależności stopy wzrostu konsumpcji benzyny od stopy wzrostu dochodu oraz od stopy wzrostu cen benzyny w latach 1960 i 1995 otrzymaliśmy następujące oszacowanie parametrów.

Bardziej szczegółowo

3. Analiza własności szeregu czasowego i wybór typu modelu

3. Analiza własności szeregu czasowego i wybór typu modelu 3. Analiza własności szeregu czasowego i wybór typu modelu 1. Metody analizy własności szeregu czasowego obserwacji 1.1. Analiza wykresu szeregu czasowego 1.2. Analiza statystyk opisowych zmiennej prognozowanej

Bardziej szczegółowo

STUDIA I STOPNIA EGZAMIN Z EKONOMETRII

STUDIA I STOPNIA EGZAMIN Z EKONOMETRII NAZWISKO IMIĘ Nr albumu Nr zestawu Zadanie 1. Dana jest macierz Leontiefa pewnego zamkniętego trzygałęziowego układu gospodarczego: 0,64 0,3 0,3 0,6 0,88 0,. 0,4 0,8 0,85 W okresie t stosunek zuŝycia środków

Bardziej szczegółowo

Stanisław Cichocki. Natalia Neherbecka. Zajęcia 13

Stanisław Cichocki. Natalia Neherbecka. Zajęcia 13 Stanisław Cichocki Natalia Neherbecka Zajęcia 13 1 1. Kryteria informacyjne 2. Testowanie autokorelacji 3. Modele dynamiczne: modele o rozłożonych opóźnieniach (DL) modele autoregresyjne o rozłożonych

Bardziej szczegółowo

7.4 Automatyczne stawianie prognoz

7.4 Automatyczne stawianie prognoz szeregów czasowych za pomocą pakietu SPSS Następnie korzystamy z menu DANE WYBIERZ OBSERWACJE i wybieramy opcję WSZYSTKIE OBSERWACJE (wówczas wszystkie obserwacje są aktywne). Wreszcie wybieramy z menu

Bardziej szczegółowo

Ekonometria ćwiczenia 3. Prowadzący: Sebastian Czarnota

Ekonometria ćwiczenia 3. Prowadzący: Sebastian Czarnota Ekonometria ćwiczenia 3 Prowadzący: Sebastian Czarnota Strona - niezbędnik http://sebastianczarnota.com/sgh/ Normalność rozkładu składnika losowego Brak normalności rozkładu nie odbija się na jakości otrzymywanych

Bardziej szczegółowo

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1.

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1. tel. 44 683 1 55 tel. kom. 64 566 811 e-mail: biuro@wszechwiedza.pl Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: gdzie: y t X t y t = 1 X 1

Bardziej szczegółowo

Projekt z Ekonometrii Dynamicznej

Projekt z Ekonometrii Dynamicznej Projekt z Ekonometrii Dynamicznej Tomasz Tymecki L.p. Nazwa 1 KGHM 2 ORBIS 3 FERRUM 4 VISTULA 5 BORYSZEW 6 MOSTOSTALZAB 7 BYTOM 8 FORTE 9 PRÓCHNIK 1 ŻYWIEC 11 Indeks WIG 12 Indeks WIG2 Spis treści I. Analiza

Bardziej szczegółowo

Podczas zajęć będziemy zajmować się głownie procesami ergodycznymi zdefiniowanymi na przestrzeniach ciągłych.

Podczas zajęć będziemy zajmować się głownie procesami ergodycznymi zdefiniowanymi na przestrzeniach ciągłych. Trochę teorii W celu przeprowadzenia rygorystycznej ekonometrycznej analizy szeregu finansowego będziemy traktowali obserwowany ciąg danych (x 1, x 2,..., x T ) jako realizację pewnego procesu stochastycznego.

Bardziej szczegółowo

K wartość kapitału zaangażowanego w proces produkcji, w tys. jp.

K wartość kapitału zaangażowanego w proces produkcji, w tys. jp. Sprawdzian 2. Zadanie 1. Za pomocą KMNK oszacowano następującą funkcję produkcji: Gdzie: P wartość produkcji, w tys. jp (jednostek pieniężnych) K wartość kapitału zaangażowanego w proces produkcji, w tys.

Bardziej szczegółowo

2. Założenie niezależności zakłóceń modelu - autokorelacja składnika losowego - test Durbina - Watsona

2. Założenie niezależności zakłóceń modelu - autokorelacja składnika losowego - test Durbina - Watsona Sprawdzanie założeń przyjętych o modelu (etap IIIC przyjętego schematu modelowania regresyjnego) 1. Szum 2. Założenie niezależności zakłóceń modelu - autokorelacja składnika losowego - test Durbina - Watsona

Bardziej szczegółowo

1 Modele ADL - interpretacja współczynników

1 Modele ADL - interpretacja współczynników 1 Modele ADL - interpretacja współczynników ZADANIE 1.1 Dany jest proces DL następującej postaci: y t = µ + β 0 x t + β 1 x t 1 + ε t. 1. Wyjaśnić, jaka jest intepretacja współczynników β 0 i β 1. 2. Pokazać

Bardziej szczegółowo

Ekonometria. Modelowanie szeregów czasowych. Stacjonarność. Testy pierwiastka jednostkowego. Modele ARDL. Kointegracja. Jakub Mućk

Ekonometria. Modelowanie szeregów czasowych. Stacjonarność. Testy pierwiastka jednostkowego. Modele ARDL. Kointegracja. Jakub Mućk Ekonometria Modelowanie szeregów czasowych. Stacjonarność. Testy pierwiastka jednostkowego. Modele ARDL. Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Ćwiczenia 5 & 6 Szaeregi czasowe 1

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący

Bardziej szczegółowo

EKONOMETRIA STOSOWANA PRZYKŁADOWE ZADANIA EGZAMINACYJNE

EKONOMETRIA STOSOWANA PRZYKŁADOWE ZADANIA EGZAMINACYJNE EKONOMETRIA STOSOWANA PRZYKŁADOWE ZADANIA EGZAMINACYJNE ZADANIE 1 Oszacowano zależność między luką popytowa a stopą inflacji dla gospodarki niemieckiej. Wyniki estymacji są następujące: Estymacja KMNK,

Bardziej szczegółowo

3. Modele tendencji czasowej w prognozowaniu

3. Modele tendencji czasowej w prognozowaniu II Modele tendencji czasowej w prognozowaniu 1 Składniki szeregu czasowego W teorii szeregów czasowych wyróżnia się zwykle następujące składowe szeregu czasowego: a) składowa systematyczna; b) składowa

Bardziej szczegółowo

Przyczynowość Kointegracja. Kointegracja. Kointegracja

Przyczynowość Kointegracja. Kointegracja. Kointegracja korelacja a związek o charakterze przyczynowo-skutkowym korelacja a związek o charakterze przyczynowo-skutkowym Przyczynowość w sensie Grangera Zmienna x jest przyczyną w sensie Grangera zmiennej y jeżeli

Bardziej szczegółowo

Ekonometria. Prognozowanie ekonometryczne, ocena stabilności oszacowań parametrów strukturalnych. Jakub Mućk. Katedra Ekonomii Ilościowej

Ekonometria. Prognozowanie ekonometryczne, ocena stabilności oszacowań parametrów strukturalnych. Jakub Mućk. Katedra Ekonomii Ilościowej Ekonometria Prognozowanie ekonometryczne, ocena stabilności oszacowań parametrów strukturalnych Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Wykład 4 Prognozowanie, stabilność 1 / 17 Agenda

Bardziej szczegółowo

Ćwiczenia IV

Ćwiczenia IV Ćwiczenia IV - 17.10.2007 1. Spośród podanych macierzy X wskaż te, których nie można wykorzystać do estymacji MNK parametrów modelu ekonometrycznego postaci y = β 0 + β 1 x 1 + β 2 x 2 + ε 2. Na podstawie

Bardziej szczegółowo

Plan wykładu: 1) Pojęcie stacjonarności i niestacjonarności zmiennych 2) Testowanie integracji 3) Pojęcie kointegracji metoda Engle a-grangera.

Plan wykładu: 1) Pojęcie stacjonarności i niestacjonarności zmiennych 2) Testowanie integracji 3) Pojęcie kointegracji metoda Engle a-grangera. 1 Plan wykładu: 1) Pojęcie stacjonarności i niestacjonarności zmiennych 2) Testowanie integracji 3) Pojęcie kointegracji metoda Engle a-grangera. Pojęcie stacjonarności i niestacjonarności zmiennych Szereg

Bardziej szczegółowo

Materiał dla studentów Wprowadzenie do modeli ARMA/ARIMA (na przykładzie zwrotów z instrumentów finansowych)

Materiał dla studentów Wprowadzenie do modeli ARMA/ARIMA (na przykładzie zwrotów z instrumentów finansowych) Materiał dla studentów Wprowadzenie do modeli ARMA/ARIMA (na przykładzie zwrotów z instrumentów finansowych) (studium przypadku) Nazwa przedmiotu: ekonometria finansowa I (22204), analiza szeregów czasowych

Bardziej szczegółowo

Testowanie hipotez statystycznych związanych ą z szacowaniem i oceną ą modelu ekonometrycznego

Testowanie hipotez statystycznych związanych ą z szacowaniem i oceną ą modelu ekonometrycznego Testowanie hipotez statystycznych związanych ą z szacowaniem i oceną ą modelu ekonometrycznego Ze względu na jakość uzyskiwanych ocen parametrów strukturalnych modelu oraz weryfikację modelu, metoda najmniejszych

Bardziej szczegółowo

parametrów strukturalnych modelu = Y zmienna objaśniana, X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających,

parametrów strukturalnych modelu = Y zmienna objaśniana, X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających, 诲 瞴瞶 瞶 ƭ0 ƭ 瞰 parametrów strukturalnych modelu Y zmienna objaśniana, = + + + + + X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających, α 0, α 1, α 2,,α k parametry strukturalne modelu, k+1 parametrów

Bardziej szczegółowo

Szymon Bargłowski, sb39345 MODEL. 1. Równania rozpatrywanego modelu: 1 PKB t = a 1 a 2 E t a 3 Invest t 1

Szymon Bargłowski, sb39345 MODEL. 1. Równania rozpatrywanego modelu: 1 PKB t = a 1 a 2 E t a 3 Invest t 1 Szymon Bargłowski, sb39345 MODEL 1. Równania rozpatrywanego modelu: 1 PKB t = a 1 a 2 E t a 3 Invest t 1 2 C t = b 1 b 2 PKB t b 3 Invest t 1 b 4 G t 2 3 Invest t = d 1 d 2 C t d 3 R t 3 gdzie: G - wydatki

Bardziej szczegółowo

Statystyka matematyczna dla leśników

Statystyka matematyczna dla leśników Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 03/04 Wykład 5 Testy statystyczne Ogólne zasady testowania hipotez statystycznych, rodzaje

Bardziej szczegółowo

Przykład 2. Stopa bezrobocia

Przykład 2. Stopa bezrobocia Przykład 2 Stopa bezrobocia Stopa bezrobocia. Komentarz: model ekonometryczny stopy bezrobocia w Polsce jest modelem nieliniowym autoregresyjnym. Podobnie jak model podaŝy pieniądza zbudowany został w

Bardziej szczegółowo

Projekt zaliczeniowy z Ekonometrii i prognozowania Wyższa Szkoła Bankowa w Toruniu 2014/2015

Projekt zaliczeniowy z Ekonometrii i prognozowania Wyższa Szkoła Bankowa w Toruniu 2014/2015 Projekt zaliczeniowy z Ekonometrii i prognozowania Wyższa Szkoła Bankowa w Toruniu 2014/2015 Nr indeksu... Imię i Nazwisko... Nr grupy ćwiczeniowej... Imię i Nazwisko prowadzącego... 1. Specyfikacja modelu

Bardziej szczegółowo

Proces modelowania zjawiska handlu zagranicznego towarami

Proces modelowania zjawiska handlu zagranicznego towarami Załącznik nr 1 do raportu końcowego z wykonania pracy badawczej pt. Handel zagraniczny w województwach (NTS2) realizowanej przez Centrum Badań i Edukacji Statystycznej z siedzibą w Jachrance na podstawie

Bardziej szczegółowo

gdzie. Dla funkcja ma własności:

gdzie. Dla funkcja ma własności: Ekonometria, 21 listopada 2011 r. Modele ściśle nieliniowe Funkcja logistyczna należy do modeli ściśle nieliniowych względem parametrów. Jest to funkcja jednej zmiennej, zwykle czasu (t). Dla t>0 wartośd

Bardziej szczegółowo

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego

Bardziej szczegółowo

TEST STATYSTYCZNY. Jeżeli hipotezę zerową odrzucimy na danym poziomie istotności, to odrzucimy ją na każdym większym poziomie istotności.

TEST STATYSTYCZNY. Jeżeli hipotezę zerową odrzucimy na danym poziomie istotności, to odrzucimy ją na każdym większym poziomie istotności. TEST STATYSTYCZNY Testem statystycznym nazywamy regułę postępowania rozstrzygająca, przy jakich wynikach z próby hipotezę sprawdzaną H 0 należy odrzucić, a przy jakich nie ma podstaw do jej odrzucenia.

Bardziej szczegółowo

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

Ekonometria. Modelowanie szeregów czasowych. Stacjonarność. Testy pierwiastka jednostkowego. Modele ARDL. Kointegracja. Jakub Mućk

Ekonometria. Modelowanie szeregów czasowych. Stacjonarność. Testy pierwiastka jednostkowego. Modele ARDL. Kointegracja. Jakub Mućk Ekonometria Modelowanie szeregów czasowych. Stacjonarność. Testy pierwiastka jednostkowego. Modele ARDL. Kointegracja Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Wykład 5 & 6 Szaeregi

Bardziej szczegółowo

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16 Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego

Bardziej szczegółowo

Wprowadzenie do analizy korelacji i regresji

Wprowadzenie do analizy korelacji i regresji Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących

Bardziej szczegółowo

MODELE AUTOREGRESYJNE W PROGNOZOWANIU CEN ZBÓŻ W POLSCE

MODELE AUTOREGRESYJNE W PROGNOZOWANIU CEN ZBÓŻ W POLSCE METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XI/2, 2010, str. 254 263 MODELE AUTOREGRESYJNE W PROGNOZOWANIU CEN ZBÓŻ W POLSCE Agnieszka Tłuczak Zakład Ekonometrii i Metod Ilościowych, Wydział Ekonomiczny

Bardziej szczegółowo

Analiza szeregów czasowych bezrobocia i inflacji w Danii

Analiza szeregów czasowych bezrobocia i inflacji w Danii Uniwersytet Warszawski Wydział Nauk Ekonomicznych Mateusz Błażej Nr albumu: 308521 Analiza szeregów czasowych bezrobocia i inflacji w Danii Projekt zaliczeniowy z przedmiotu: Analiza Szeregów Czasowych

Bardziej szczegółowo

Estymacja parametrów modeli liniowych oraz ocena jakości dopasowania modeli do danych empirycznych

Estymacja parametrów modeli liniowych oraz ocena jakości dopasowania modeli do danych empirycznych Estymacja parametrów modeli liniowych oraz ocena jakości dopasowania modeli do danych empirycznych 3.1. Estymacja parametrów i ocena dopasowania modeli z jedną zmienną 23. Właściciel komisu w celu zbadania

Bardziej szczegółowo

Adam Kirpsza Zastosowanie regresji logistycznej w studiach nad Unią Europejska. Anna Stankiewicz Izabela Słomska

Adam Kirpsza Zastosowanie regresji logistycznej w studiach nad Unią Europejska. Anna Stankiewicz Izabela Słomska Adam Kirpsza Zastosowanie regresji logistycznej w studiach nad Unią Europejska Anna Stankiewicz Izabela Słomska Wstęp- statystyka w politologii Rzadkie stosowanie narzędzi statystycznych Pisma Karla Poppera

Bardziej szczegółowo

Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki

Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Spis treści I. Wzory ogólne... 2 1. Średnia arytmetyczna:... 2 2. Rozstęp:... 2 3. Kwantyle:... 2 4. Wariancja:... 2 5. Odchylenie standardowe:...

Bardziej szczegółowo

Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r

Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r Statystyka matematyczna Testowanie hipotez i estymacja parametrów Wrocław, 18.03.2016r Plan wykładu: 1. Testowanie hipotez 2. Etapy testowania hipotez 3. Błędy 4. Testowanie wielokrotne 5. Estymacja parametrów

Bardziej szczegółowo

Błędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa

Błędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa Weryfikacja hipotez statystycznych Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy populacji, o prawdziwości lub fałszywości którego wnioskuje się na podstawie

Bardziej szczegółowo

Egzamin z ekonometrii wersja IiE, MSEMAT

Egzamin z ekonometrii wersja IiE, MSEMAT Egzamin z ekonometrii wersja IiE, MSEMAT 04-02-2016 Pytania teoretyczne 1. Za pomocą jakiego testu weryfikowana jest normalność składnika losowego? Jakiemu założeniu KMRL odpowiada w tym teście? Jakie

Bardziej szczegółowo

Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski

Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Książka jest nowoczesnym podręcznikiem przeznaczonym dla studentów uczelni i wydziałów ekonomicznych. Wykład podzielono na cztery części. W pierwszej

Bardziej szczegółowo

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com Analiza korelacji i regresji KORELACJA zależność liniowa Obserwujemy parę cech ilościowych (X,Y). Doświadczenie jest tak pomyślane, aby obserwowane pary cech X i Y (tzn i ta para x i i y i dla różnych

Bardziej szczegółowo

Zadanie 1. a) Przeprowadzono test RESET. Czy model ma poprawną formę funkcyjną? 1

Zadanie 1. a) Przeprowadzono test RESET. Czy model ma poprawną formę funkcyjną? 1 Zadanie 1 a) Przeprowadzono test RESET. Czy model ma poprawną formę funkcyjną? 1 b) W naszym przypadku populacja są inżynierowie w Tajlandii. Czy można jednak przypuszczać, że na zarobki kobiet-inżynierów

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 8

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 8 Stanisław Cichocki Natalia Nehrebecka Zajęcia 8 1. Testy diagnostyczne 2. Testowanie prawidłowości formy funkcyjnej modelu 3. Testowanie normalności składników losowych 4. Testowanie stabilności parametrów

Bardziej szczegółowo

Wprowadzenie do teorii prognozowania

Wprowadzenie do teorii prognozowania Wprowadzenie do teorii prognozowania I Pojęcia: 1. Prognoza i zmienna prognozowana (przedmiot prognozy). Prognoza punktowa i przedziałowa. 2. Okres prognozy i horyzont prognozy. Prognozy krótkoterminowe

Bardziej szczegółowo

Statystyka. #5 Testowanie hipotez statystycznych. Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik. rok akademicki 2016/ / 28

Statystyka. #5 Testowanie hipotez statystycznych. Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik. rok akademicki 2016/ / 28 Statystyka #5 Testowanie hipotez statystycznych Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik rok akademicki 2016/2017 1 / 28 Testowanie hipotez statystycznych 2 / 28 Testowanie hipotez statystycznych

Bardziej szczegółowo

Wnioskowanie statystyczne i weryfikacja hipotez statystycznych

Wnioskowanie statystyczne i weryfikacja hipotez statystycznych Wnioskowanie statystyczne i weryfikacja hipotez statystycznych Wnioskowanie statystyczne Wnioskowanie statystyczne obejmuje następujące czynności: Sformułowanie hipotezy zerowej i hipotezy alternatywnej.

Bardziej szczegółowo

Co trzeba wiedzieć korzystając z modelu ARIMA i które parametry są kluczowe?

Co trzeba wiedzieć korzystając z modelu ARIMA i które parametry są kluczowe? Prognozowanie Co trzeba wiedzieć korzystając z modelu ARIMA Marta Płonka Predictive Solutions W trzecim już artykule dotyczącym szeregów czasowych przyjrzymy się modelom ARIMA. Dzisiaj skupimy się na metodzie

Bardziej szczegółowo

Narzędzia statystyczne i ekonometryczne. Wykład 1. dr Paweł Baranowski

Narzędzia statystyczne i ekonometryczne. Wykład 1. dr Paweł Baranowski Narzędzia statystyczne i ekonometryczne Wykład 1 dr Paweł Baranowski Informacje organizacyjne Wydział Ek-Soc, pok. B-109 pawel@baranowski.edu.pl Strona: baranowski.edu.pl (w tym materiały) Konsultacje:

Bardziej szczegółowo

Ekonometria Wykład 5. Procesy stochastyczne, stacjonarność, integracja. Dr Michał Gradzewicz Katedra Ekonomii I KAE

Ekonometria Wykład 5. Procesy stochastyczne, stacjonarność, integracja. Dr Michał Gradzewicz Katedra Ekonomii I KAE Ekonometria Wykład 5. Procesy stochastyczne, stacjonarność, integracja Dr Michał Gradzewicz Katedra Ekonomii I KAE Ekonometria szeregów czasowych Procesy stochastyczne Stacjonarność i biały szum Niestacjonarność:

Bardziej szczegółowo

Wykład 3 Hipotezy statystyczne

Wykład 3 Hipotezy statystyczne Wykład 3 Hipotezy statystyczne Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu obserwowanej zmiennej losowej (cechy populacji generalnej) Hipoteza zerowa (H 0 ) jest hipoteza

Bardziej szczegółowo

Analiza Danych Sprawozdanie regresja Marek Lewandowski Inf 59817

Analiza Danych Sprawozdanie regresja Marek Lewandowski Inf 59817 Analiza Danych Sprawozdanie regresja Marek Lewandowski Inf 59817 Zadanie 1: wiek 7 8 9 1 11 11,5 12 13 14 14 15 16 17 18 18,5 19 wzrost 12 122 125 131 135 14 142 145 15 1 154 159 162 164 168 17 Wykres

Bardziej szczegółowo

Prognozowanie na podstawie modelu ekonometrycznego

Prognozowanie na podstawie modelu ekonometrycznego Prognozowanie na podstawie modelu ekonometrycznego Przykład. Firma usługowa świadcząca usługi doradcze w ostatnich kwartałach (t) odnotowała wynik finansowy (yt - tys. zł), obsługując liczbę klientów (x1t)

Bardziej szczegółowo

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie:

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie: ma postać y = ax + b Równanie regresji liniowej By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : xy b = a = b lub x Gdzie: xy = też a = x = ( b ) i to dane empiryczne, a ilość

Bardziej szczegółowo

Testowanie hipotez statystycznych. Wnioskowanie statystyczne

Testowanie hipotez statystycznych. Wnioskowanie statystyczne Testowanie hipotez statystycznych Wnioskowanie statystyczne Hipoteza statystyczna to dowolne przypuszczenie co do rozkładu populacji generalnej (jego postaci funkcyjnej lub wartości parametrów). Hipotezy

Bardziej szczegółowo

KORELACJE I REGRESJA LINIOWA

KORELACJE I REGRESJA LINIOWA KORELACJE I REGRESJA LINIOWA Korelacje i regresja liniowa Analiza korelacji: Badanie, czy pomiędzy dwoma zmiennymi istnieje zależność Obie analizy się wzajemnie przeplatają Analiza regresji: Opisanie modelem

Bardziej szczegółowo

Ekonometria. Ćwiczenia nr 3. Jakub Mućk. Katedra Ekonomii Ilościowej

Ekonometria. Ćwiczenia nr 3. Jakub Mućk. Katedra Ekonomii Ilościowej Ekonometria Ćwiczenia nr 3 Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Ćwiczenia 3 Własności składnika losowego 1 / 18 Agenda KMNK przypomnienie 1 KMNK przypomnienie 2 3 4 Jakub Mućk

Bardziej szczegółowo

Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych

Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych dla studentów Biologii A i B dr hab. Paweł Korecki e-mail: pawel.korecki@uj.edu.pl http://www.if.uj.edu.pl/pl/edukacja/pracownia_i/

Bardziej szczegółowo

2.6 Zmienne stacjonarne i niestacjonarne 2.6. ZMIENNE STACJONARNE I NIESTACJONARNE 33. RYSUNEK 2.6: PKB w wyrażeniu realnym

2.6 Zmienne stacjonarne i niestacjonarne 2.6. ZMIENNE STACJONARNE I NIESTACJONARNE 33. RYSUNEK 2.6: PKB w wyrażeniu realnym 2.6. ZMIENNE STACJONARNE I NIESTACJONARNE 33 tale. Rysunek 2.6 ilustruje sezonowość w logarytmie PKB w wyrażeniu realnym. Realny PKB został uzyskany poprzez zdeflowanie nominalnego PKB przez indeks cen

Bardziej szczegółowo

Testowanie hipotez. Marcin Zajenkowski. Marcin Zajenkowski () Testowanie hipotez 1 / 25

Testowanie hipotez. Marcin Zajenkowski. Marcin Zajenkowski () Testowanie hipotez 1 / 25 Testowanie hipotez Marcin Zajenkowski Marcin Zajenkowski () Testowanie hipotez 1 / 25 Testowanie hipotez Aby porównać ze sobą dwie statystyki z próby stosuje się testy istotności. Mówią one o tym czy uzyskane

Bardziej szczegółowo

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA Powtórka Powtórki Kowiariancja cov xy lub c xy - kierunek zależności Współczynnik korelacji liniowej Pearsona r siła liniowej zależności Istotność

Bardziej szczegółowo

ANALIZA KOINTEGRACJI STÓP PROCENTOWYCH W POLSCE

ANALIZA KOINTEGRACJI STÓP PROCENTOWYCH W POLSCE Aneta KŁODZIŃSKA ZESZYTY NAUKOWE INSTYTUTU EKONOMII I ZARZĄDZANIA ANALIZA KOINTEGRACJI STÓP PROCENTOWYCH W POLSCE Zarys treści: Celem artykułu jest określenie czy między stopami procentowymi w Polsce występuje

Bardziej szczegółowo

LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI

LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI WERYFIKACJA HIPOTEZ Hipoteza statystyczna jakiekolwiek przypuszczenie dotyczące populacji generalnej- jej poszczególnych

Bardziej szczegółowo

Kolokwium ze statystyki matematycznej

Kolokwium ze statystyki matematycznej Kolokwium ze statystyki matematycznej 28.05.2011 Zadanie 1 Niech X będzie zmienną losową z rozkładu o gęstości dla, gdzie 0 jest nieznanym parametrem. Na podstawie pojedynczej obserwacji weryfikujemy hipotezę

Bardziej szczegółowo

Spis treści 3 SPIS TREŚCI

Spis treści 3 SPIS TREŚCI Spis treści 3 SPIS TREŚCI PRZEDMOWA... 1. WNIOSKOWANIE STATYSTYCZNE JAKO DYSCYPLINA MATEMATYCZNA... Metody statystyczne w analizie i prognozowaniu zjawisk ekonomicznych... Badania statystyczne podstawowe

Bardziej szczegółowo

Wykład z Nowej ekonometrii, 7 marca 2006:

Wykład z Nowej ekonometrii, 7 marca 2006: Wykład z Nowej ekonometrii, 7 marca 2006: Na mojej stronie internetowej podane są pliki z danymi: http://akson.sgh.waw.pl/~ewams/mills.zip http://akson.sgh.waw.pl/~ewams/mills_obligacje.xls dane z pierwszego

Bardziej szczegółowo

Prognozowanie i Symulacje. Wykład VI. Niestacjonarne szeregi czasowe

Prognozowanie i Symulacje. Wykład VI. Niestacjonarne szeregi czasowe Prognozowanie i Symulacje. Wykład VI. e-mail:e.kozlovski@pollub.pl Spis treści Analiza stacjonarności szeregów czasowych 1 Analiza stacjonarności szeregów czasowych Modele niestacjonarne Szeregi TS i DS

Bardziej szczegółowo

WNIOSKOWANIE STATYSTYCZNE

WNIOSKOWANIE STATYSTYCZNE STATYSTYKA WNIOSKOWANIE STATYSTYCZNE ESTYMACJA oszacowanie z pewną dokładnością wartości opisującej rozkład badanej cechy statystycznej. WERYFIKACJA HIPOTEZ sprawdzanie słuszności przypuszczeń dotyczących

Bardziej szczegółowo

Szeregi czasowe, analiza zależności krótkoi długozasięgowych

Szeregi czasowe, analiza zależności krótkoi długozasięgowych Szeregi czasowe, analiza zależności krótkoi długozasięgowych Rafał Weron rweron@im.pwr.wroc.pl Definicje Mając dany proces {X t } autokowariancję definiujemy jako : γ(t, t ) = cov(x t, X t ) = = E[(X t

Bardziej szczegółowo

Ekonometria / G. S. Maddala ; red. nauk. przekł. Marek Gruszczyński. wyd. 2, dodr. 1. Warszawa, Spis treści

Ekonometria / G. S. Maddala ; red. nauk. przekł. Marek Gruszczyński. wyd. 2, dodr. 1. Warszawa, Spis treści Ekonometria / G. S. Maddala ; red. nauk. przekł. Marek Gruszczyński. wyd. 2, dodr. 1. Warszawa, 2013 Spis treści Przedsłowie 15 Przedmowa do drugiego wydania 17 Przedmowa do trzeciego wydania 21 Nekrolog

Bardziej szczegółowo

Ekonometria. Dobór postaci analitycznej, transformacja liniowa i estymacja modelu KMNK. Paweł Cibis 9 marca 2007

Ekonometria. Dobór postaci analitycznej, transformacja liniowa i estymacja modelu KMNK. Paweł Cibis 9 marca 2007 , transformacja liniowa i estymacja modelu KMNK Paweł Cibis pawel@cibis.pl 9 marca 2007 1 Miary dopasowania modelu do danych empirycznych Współczynnik determinacji Współczynnik zbieżności Skorygowany R

Bardziej szczegółowo

Motto. Czy to nie zabawne, że ci sami ludzie, którzy śmieją się z science fiction, słuchają prognoz pogody oraz ekonomistów? (K.

Motto. Czy to nie zabawne, że ci sami ludzie, którzy śmieją się z science fiction, słuchają prognoz pogody oraz ekonomistów? (K. Motto Cz to nie zabawne, że ci sami ludzie, którz śmieją się z science fiction, słuchają prognoz pogod oraz ekonomistów? (K. Throop III) 1 Specfika szeregów czasowch Modele szeregów czasowch są alternatwą

Bardziej szczegółowo

Przykład 1 ceny mieszkań

Przykład 1 ceny mieszkań Przykład ceny mieszkań Przykład ceny mieszkań Model ekonometryczny zaleŝności ceny mieszkań od metraŝu - naleŝy do klasy modeli nieliniowych. - weryfikację empiryczną modelu przeprowadzono na przykładzie

Bardziej szczegółowo

Analiza wariancji w analizie regresji - weryfikacja prawdziwości przyjętego układu ograniczeń Problem Przykłady

Analiza wariancji w analizie regresji - weryfikacja prawdziwości przyjętego układu ograniczeń Problem Przykłady Analiza wariancji w analizie regresji - weryfikacja prawdziwości przyjętego układu ograniczeń 1. Problem ozwaŝamy zjawisko (model): Y = β 1 X 1 X +...+ β k X k +Z Ηβ = w r Hipoteza alternatywna: Ηβ w r

Bardziej szczegółowo

Weryfikacja hipotez statystycznych

Weryfikacja hipotez statystycznych Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta

Bardziej szczegółowo

Regresja wielokrotna. PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com

Regresja wielokrotna. PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com Regresja wielokrotna Model dla zależności liniowej: Y=a+b 1 X 1 +b 2 X 2 +...+b n X n Cząstkowe współczynniki regresji wielokrotnej: b 1,..., b n Zmienne niezależne (przyczynowe): X 1,..., X n Zmienna

Bardziej szczegółowo

Wprowadzenie Model ARMA Sezonowość Prognozowanie Model regresji z błędami ARMA. Modele ARMA

Wprowadzenie Model ARMA Sezonowość Prognozowanie Model regresji z błędami ARMA. Modele ARMA Ważną klasę modeli dynamicznych stanowią modele ARMA(p, q) Ważną klasę modeli dynamicznych stanowią modele ARMA(p, q) Modele tej klasy są modelami ateoretycznymi Ważną klasę modeli dynamicznych stanowią

Bardziej szczegółowo

Przyjazdy turystów zagranicznych do Polski miesięcznie od 2005 roku do 2009 roku modelowanie ekonometryczne

Przyjazdy turystów zagranicznych do Polski miesięcznie od 2005 roku do 2009 roku modelowanie ekonometryczne Dawid Twardowski Wrocław, dnia 6 czerwca 2010 Przyjazdy turystów zagranicznych do Polski miesięcznie od 2005 roku do 2009 roku modelowanie ekonometryczne Spis treści Spis treści... 1 Struktura projektu...

Bardziej szczegółowo

Statystyka i opracowanie danych- W 8 Wnioskowanie statystyczne. Testy statystyczne. Weryfikacja hipotez statystycznych.

Statystyka i opracowanie danych- W 8 Wnioskowanie statystyczne. Testy statystyczne. Weryfikacja hipotez statystycznych. Statystyka i opracowanie danych- W 8 Wnioskowanie statystyczne. Testy statystyczne. Weryfikacja hipotez statystycznych. Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Hipotezy i Testy statystyczne Każde

Bardziej szczegółowo

Ekonometria. Modele regresji wielorakiej - dobór zmiennych, szacowanie. Paweł Cibis pawel@cibis.pl. 1 kwietnia 2007

Ekonometria. Modele regresji wielorakiej - dobór zmiennych, szacowanie. Paweł Cibis pawel@cibis.pl. 1 kwietnia 2007 Modele regresji wielorakiej - dobór zmiennych, szacowanie Paweł Cibis pawel@cibis.pl 1 kwietnia 2007 1 Współczynnik zmienności Współczynnik zmienności wzory Współczynnik zmienności funkcje 2 Korelacja

Bardziej szczegółowo

Statystyka Matematyczna Anna Janicka

Statystyka Matematyczna Anna Janicka Statystyka Matematyczna Anna Janicka wykład IX, 25.04.2016 TESTOWANIE HIPOTEZ STATYSTYCZNYCH Plan na dzisiaj 1. Hipoteza statystyczna 2. Test statystyczny 3. Błędy I-go i II-go rodzaju 4. Poziom istotności,

Bardziej szczegółowo

PROGNOZOWANIE PRZYCHODÓW ZE SPRZEDAŻY

PROGNOZOWANIE PRZYCHODÓW ZE SPRZEDAŻY Joanna Chrabołowska Joanicjusz Nazarko PROGNOZOWANIE PRZYCHODÓW ZE SPRZEDAŻY NA PRZYKŁADZIE PRZEDSIĘBIORSTWA HANDLOWEGO TYPU CASH & CARRY Wprowadzenie Wśród wielu prognoz szczególną rolę w zarządzaniu

Bardziej szczegółowo

RÓWNOWAŻNOŚĆ METOD BADAWCZYCH

RÓWNOWAŻNOŚĆ METOD BADAWCZYCH RÓWNOWAŻNOŚĆ METOD BADAWCZYCH Piotr Konieczka Katedra Chemii Analitycznej Wydział Chemiczny Politechnika Gdańska Równoważność metod??? 2 Zgodność wyników analitycznych otrzymanych z wykorzystaniem porównywanych

Bardziej szczegółowo

Wykład Centralne twierdzenie graniczne. Statystyka matematyczna: Estymacja parametrów rozkładu

Wykład Centralne twierdzenie graniczne. Statystyka matematyczna: Estymacja parametrów rozkładu Wykład 11-12 Centralne twierdzenie graniczne Statystyka matematyczna: Estymacja parametrów rozkładu Centralne twierdzenie graniczne (CTG) (Central Limit Theorem - CLT) Centralne twierdzenie graniczne (Lindenberga-Levy'ego)

Bardziej szczegółowo

Weryfikacja przypuszczeń odnoszących się do określonego poziomu cechy w zbiorowości (grupach) lub jej rozkładu w populacji generalnej,

Weryfikacja przypuszczeń odnoszących się do określonego poziomu cechy w zbiorowości (grupach) lub jej rozkładu w populacji generalnej, Szacownie nieznanych wartości parametrów (średniej arytmetycznej, odchylenia standardowego, itd.) w populacji generalnej na postawie wartości tych miar otrzymanych w próbie (punktowa, przedziałowa) Weryfikacja

Bardziej szczegółowo

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl

Bardziej szczegółowo

Ekonometria. Dobór postaci analitycznej, transformacja liniowa i estymacja modelu KMNK. Paweł Cibis 23 marca 2006

Ekonometria. Dobór postaci analitycznej, transformacja liniowa i estymacja modelu KMNK. Paweł Cibis 23 marca 2006 , transformacja liniowa i estymacja modelu KMNK Paweł Cibis pcibis@o2.pl 23 marca 2006 1 Miary dopasowania modelu do danych empirycznych Współczynnik determinacji Współczynnik zbieżności 2 3 Etapy transformacji

Bardziej szczegółowo

MODELE LINIOWE. Dr Wioleta Drobik

MODELE LINIOWE. Dr Wioleta Drobik MODELE LINIOWE Dr Wioleta Drobik MODELE LINIOWE Jedna z najstarszych i najpopularniejszych metod modelowania Zależność między zbiorem zmiennych objaśniających, a zmienną ilościową nazywaną zmienną objaśnianą

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 7

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 7 STATYSTYKA I DOŚWIADCZALNICTWO Wykład 7 Analiza korelacji - współczynnik korelacji Pearsona Cel: ocena współzależności między dwiema zmiennymi ilościowymi Ocenia jedynie zależność liniową. r = cov(x,y

Bardziej szczegółowo

Testowanie hipotez statystycznych.

Testowanie hipotez statystycznych. Bioinformatyka Wykład 9 Wrocław, 5 grudnia 2011 Temat. Test zgodności χ 2 Pearsona. Statystyka χ 2 Pearsona Rozpatrzmy ciąg niezależnych zmiennych losowych X 1,..., X n o jednakowym dyskretnym rozkładzie

Bardziej szczegółowo

Zadanie 3 Na podstawie danych kwartalnych z lat oszacowano następujący model (w nawiasie podano błąd standardowy oszacowania):

Zadanie 3 Na podstawie danych kwartalnych z lat oszacowano następujący model (w nawiasie podano błąd standardowy oszacowania): Zadanie 1 Fabryka Dolce Vita do produkcji czekolady potrzebuje nakładów kapitału i siły roboczej. Na podstawie historycznych danych o wielkości produkcji oraz nakładów czynników produkcji w tej fabryce

Bardziej szczegółowo