Modelowanie zachowania kursu EURUSD po ogłoszeniu odczytu US Nonfarm Payrolls z wykorzystaniem modeli ARIMA-GARCH

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Modelowanie zachowania kursu EURUSD po ogłoszeniu odczytu US Nonfarm Payrolls z wykorzystaniem modeli ARIMA-GARCH"

Transkrypt

1 Raport 10/2015 Modelowanie zachowania kursu EURUSD po ogłoszeniu odczytu US Nonfarm Payrolls z wykorzystaniem modeli ARIMA-GARCH autor: Michał Osmoła INIME Instytut nauk informatycznych i matematycznych z zastosowaniem w ekonomii ul. Cystersów 13A/ Kraków NIP: Regon: tel. +48 (12)

2 Spis treści I. Wprowadzenie 5 1. Publikacje makroekonomiczne i wskaźnik US Nonfarm Payrolls Modele ARIMA i GARCH Charakterystyka danych II. Metodologia badań 7 III. Wyniki 8 1. Stopień integracji procesu Dobór modeli ARMA Odczyt z dnia Odczyt z dnia Odczyt z dnia Odczyt z dnia Odczyt z dnia Odczyt z dnia Odczyt z dnia Odczyt z dnia Odczyt z dnia Odczyt z dnia Odczyt z dnia Estymacja modeli ARMA-GARCH z warunkowym rozkładem normalnym Odczyt z dnia Odczyt z dnia Odczyt z dnia Odczyt z dnia Odczyt z dnia Odczyt z dnia Odczyt z dnia Odczyt z dnia Odczyt z dnia Odczyt z dnia Odczyt z dnia Estymacja modeli ARMA-GARCH z warunkowym rozkładem t-studenta Odczyt z dnia str. 2

3 4.2. Odczyt z dnia Odczyt z dnia Odczyt z dnia Odczyt z dnia Odczyt z dnia Odczyt z dnia Odczyt z dnia Odczyt z dnia Odczyt z dnia Odczyt z dnia IV. Wnioski 86 str. 3

4 Streszczenie Publikacja wskaźnika US Nonfarm Payrolls, informującego o zmianie w liczbie zatrudnionych w przemyśle i usługach Stanów Zjednoczonych jest jedną z najbardziej wpływowych informacji makroekonomicznych. Ogłoszenie tego odczytu powoduje zazwyczaj gwałtowny skok kursów walutowych powiązanych z Dolarem amerykańskim i jest przyczyną znacznego pobudzenia rynku, rozpoczynającego się kilka minut przed planowaną datą publikacji i utrzymującego się przez kilkadziesiąt minut po niej. Niniejszy raport skupia się na próbie modelowania zachowania kursu EURUSD bezpośrednio po wystąpieniu pierwszego skoku wynikłego z opublikowania wskaźnika Nonfarm Payrolls. W próbach opisu zachowania kursu zastosowano model ARIMA-GARCH. str. 4

5 I. Wprowadzenie 1. Publikacje makroekonomiczne i wskaźnik US Nonfarm Payrolls Publikacje makroekonomiczne są ważnymi wskaźnikami informującymi o stanie gospodarek krajów, których dotyczą. Zazwyczaj tym pojęciem definiuje się istotne informacje dotyczące struktury stóp procentowych, inflacji, koniuktury gospodarczej i sytuacji społecznej. Ważną cechą odczytów makroekonomicznych jest fakt iż ich publikacja ma miejsce według z góry ustalonego i podanego do informacji publicznej harmonogramu. Ponadto posiadają one wartość liczbową, co pozwala na ich prostą interpretację. Na kilka dni przed planowanym ogłoszeniem odczytu agencje informacyjne Reuters i Bloomberg publikują prognozy wartości dla najważniejszych wskaźników makroekonomicznych istotnych gospodarek. Prognozy przygotowywane są na podstawie ankiet przeprowadzanych w grupie ekonomistów i analityków rynku. Sam fakt opublikowania odczytu wiąże się zazwyczaj z wystąpieniem znacznego i błyskawicznego skoku kursu waluty powiązanej z danym odczytem. Znaczne odbieganie wartości odczytu od prognoz wydatnie wzmacnia to zjawisko, a co więcej pozwala na przewidywanie kierunku pierwszego ruchu. W związku z tym odnotowuje się zdecydowanie zwiększoną aktywność inwestorów spekulacyjnych w okresach bezpośrednio poprzedzających i następujących tuż po ogłoszeniu ważnych odczytów makroekonomicznych. Aktywność ta powoduje znaczny wzrost zmienności kursu i wpływa na zmianę jego statystycznych charakterystyk. Wskaźnik US Nonfarm Payrolls jest jednym z najbardziej wpływowych na kurs EURUSD odczytów makroekonomicznych. Jego publikacja następuje w pierszy piątek miesiąca o 8:30 czasu wschodniego. Odczyt informuje o wzroście liczby zatrudnionych w Stanach Zjednoczonych Ameryki Północnej w stosunku do poprzedniego miesiaca z wyłączeniem osób zatrudnionych w rolnictwie, organizacjach non-profit i przy gospodarstwach domowych. Organizacją odpowiadającą za jego wyznaczenie i ogłoszenie jest Departament Pracy Stanów Zjednoczonych. 2. Modele ARIMA i GARCH Na potrzeby rozważań załóżmy, że (Ω, Σ, P) jest przestrzenią probabilistyczną, Φ n, n Z jest procesem stochastycznym określonym na zadanej przestrzeni i opisującym modelowane zjawisko, zaś y n jest zaobserwowanym szeregiem czasowym (ścieżką) tego procesu (tzn. dla każdego n y n = Φ n (ω) gdzie ω Ω). Modele klasy ARIMA (autoregressive integrated moving average) są jednymi z najpowszechniej stosowanych modeli służących do opisu i predykcji szeregów czasowych. Jeżeli proces Φ n jest słabostacjonarny (tzn. E(Φ n ) = E(Φ n+k ) dla każdego k Z oraz Cov(Φ n, Φ k ) = f( n k ), gdzie f jest pewną funkcją) to może zostać zapisany w postaci: Φ n = ν + α 1 Φ n 1 + α 2 Φ n α p Φ n p + ϵ n + β 1 ϵ n 1 + β 2 ϵ n β q ϵ n q (I.1) gdzie ν, α 1,..., α p, β 1,..., β p R, zaś (ϵ k ) k Z jest białym szumem (słabostacjonarnym procesem stochastycznym o zerowej wartości średniej, funkcji kowariancji Cov(ϵ n, ϵ k ) = 0 dla k n oraz wariancji równej σ 2. Takie przedstawienie procesu stacjonarnego oznaczane jest jako ARMA(p,q). Pierwsza część równania związana jest ze strukturą autoregresyjną procesu (AR), zaś druga odpowiada za proces średniej str. 5

6 ruchomej (MA). W przypadku, gdy proces Φ nie jest stacjonarny należy zdefiniować nowy proces przyrostów jako: Φ n = Φ n Φ n 1. Jeżeli otrzymany proces w dalszym ciągu nie jest stacjonarny należy przejść do przyrostów wyższego rzędu, tzn. Φ n = Φ n Φ n 1 itd. Ilość transformacji tego typu niezbędnych do uzyskania stacjonarności nazywana jest stopniem zintegrowania procesu. Zazwyczaj nie obserwuje się procesów o stopniu zintegrowania większym niż 2. W praktyce posiadamy informację o tylko jednej z możliwych ścieżek procesu i to na jej podstawie dokonujemy identyfikacji modelu. Modele klasy GARCH (generalized autoregressive conditional heteroskedasticity) znajdują zastosowanie w modelowaniu szeregów czasowych o niestałej zmienności (wariancji). Proces y n nazywamy procesem GARCH(p,q) gdy można zapisać go w postaci: { yn = h n ϵ n h n = α 0 + α 1 yn α 2 yn α p yn p 2 (I.2) + β 1 h n 1 + β 2 h n β q h n q przy czym zakładamy, że α 0 > 0,, α 1,...α p, β 1, β 2,..., β q 0. W zastosowaniach często spotyka się połączenie dwóch modeli, tzn zakłada się, że analizowany szereg czasowy jest realizacją procesu opisanego równanem I.1, oraz że proces ϵ k z definicji procesu ARMA spełnia równanie I.2. Tak określone modele nazywa się modelami ARIMA-GARCH. 3. Charakterystyka danych W przeprowadzonych badaniach wykorzystano dane tickowe, przedstawiające kolejne kwotowania pary walutowej EURUSD. Dane tickowe charakteryzują się dużą nieregularnością. W okresie spokoju na rynku, dla analizowanych danych, występuje od kilku do kilkunastu kwotowań w ciągu minuty zaś w czasie wzmożonej aktywności inwestorów liczba ta może wzrosnąć do kilkuset kwotowań w ciągu minuty. W związku z wymogiem posiadania regularnego szeregu czasowego niezbędne było wykonanie odpowiedniej transformacji danych. Na potrzeby badań jako minimalną różnicę czasu pomiędzy kolejnymi obserwacjami wartości kursu przyjęto t =1 sekunda. Jako wartości kursu w ustalonej chwili t przyjęto średnią wartość kursu na przestrzeni ostatniej sekundy. W przypadku braku kwotowań w danej sekundzie zastosowano interpolację liniową na podstawie najbliższych, sąsiadujących z daną sekundą wartości. Należy odnotować, że takie podejście wiąże się z utratą potencjalnie istotnych informacji (takich jak zachowanie kursu na przestrzeni ustalonej sekundy lub częstotliwość kwotowań), zastosowanie transformacji innego typu może znacznie wpłynąć na jakość otrzymanych wyników. W analizach wykorzystano dane dotyczące kursu EURUSD z dni publikacji wskaźnika US Nonfarm Payrolls z okresu od 1 stycznia 2015 do 15 listopada 2015 obejmujące pierwsze piętnaście minut po ogłoszeniu odczytu, z pominięciem pierwszych dziesięciu sekund w celu usunięcia pierwszego nagłego skoku kursu mogącego wywierać zbyt duży wpływ na proces estymacji. Modele zostały dopasowane niezależnie od siebie, dla każdego dnia ogłoszenia odczytu osobno. str. 6

7 II. Metodologia badań Pierwszym problemem pojawiającym się przy próbie dopasowania modelu do danych empirycznych jest prawidłowe określenie ilości różnicowań szeregu czasowego niezbędnych do uzyskania jego stacjonarności. W niniejszym badaniu w tym celu zastosowano rozszerzony test Dickeya-Fullera dostępny w bibliotece tseries programu R. Rozpoczynając od szeregu reprezentującego wartości kursu EURUSD w kolejnych sekundach, dla każdego dnia wykonano sekwencję testów dla kolejnych różnicowań szeregu, aż do momentu odrzucenia hipotezy zerowej przez rozszerzony test Dickeya- Fullera (na poziomie istotności 0.05). Najmniejsza ilość różnicowań wystarczająca dla przyjęcia hipotezy o stacjonarności analizowanych szeregów została przyjęta jako stopień integracji procesu kursu EURUSD. Kolejnym zadaniem jest odpowiednie dobranie struktury modelu, czyli określenie rzędów opóźnień w modelu ARMA. Określenie rzędów opóźnień zostało dokonane na podstawie kryterium informacyjnego Akaikiego. Przyjęto, że zakres parametrów w modelu ARMA(p,q) wynosi 0-5 dla parametrów p i q. Następnie, za pomocą testu Ljung-Boxa przeprowadzonego dla kwadratów reszt modelu i i testu Engle a, sprawdzono hipotezę o heteroskedastyczności zmienności i występowaniu efektu ARCH. W przypadku wystąpnienia heteroskedastyczności niezbędne jest rozszerzenie modelu ARMA o element modelujący zmiany w strukturze zmienności w czasie. W przypadkach wykrycia efektu ARCH dokonywane było rozszerzenie poprzednio przyjętego modelu poprzez zastosowanie struktury GARCH do opisu składników losowych. Za nowy, najlepiej dopasowany model przyjmowany był ten, który minimalizował kryterium Akaikego. Przyjęto, że maksymalny dopuszczalny zakres parametrów w modelu ARMA(p,q)-GARCH(1,k) wynosi 0-5 dla p i q oraz 0-1 dla k. Estymacja parametrów wyznaczonych modeli została dokonana przy pomocy metody największej wiarygodności, przy zastosowaniu funkcji dostępnych w bibliotekach astsa oraz fgarch programu R. Ostatni etap badań dotyczy sprawdzenia założeń dotyczących reszt (standaryzowanych) wyestymowanego modelu (braku autokorelacji i zgodności z założonym rozkładem). Do przetestowania założeń o niezależności wykorzystano test Ljung-Boxa oraz wyznaczono wartości funkcji autokorelacji, zestawiając je następnie z 95% przedziałami ufności dla hipotezy o zerowej wartości tych funkcji. Zgodność z założonym rozkładem mierzona była przy pomocy testu Jarque-Bera w przypadku modelu z założonym warunkowym rozkładem normalnym oraz przy pomocy testu Kołmogorowa-Smirnowa w przypadku rozkładu t-studenta. Ponadto wykonano histogramy oraz wykresy kwantylowe w celu graficznego przedstawienia odstępstw od założeń. str. 7

8 III. Wyniki 1. Stopień integracji procesu Przeprowadzone analizy wyraźnie sugerują, że proces kursu EURUSD po ogłoszeniu odczytu US Nonfarm Payrolls jest procesem zintegrowanym w stopniu 1. Dla dziewięciu spośród jedenastu obserwacji rozszerzony test Dickeya-Fullera nie odrzucił hipotezy o istnieniu pierwiastka jednostkowego dla oryginalnego procesu kursu, ale odrzucił ją dla jego pierwszych przyrostów. W pozostałych dwóch przypadkach test ADF odrzucił hipotezę zerową dla oryginalnego procesu cen. Na podstawie otrzymanych wyników podjęto decyzję o rozważaniu w dalszych badaniach jedynie pierwszych przyrostów procesu kursu Euro do Dolara Amerykańskiego (nawet dla obserwacji dla których test ADF odrzucił hipotezę o losowym błądzeniu kursu). Uzasadnieniem takiego postępowania jest realistyczne założenie o niewystępowaniu zmian w stopniu integracji procesu kursu w kolejnych obserwacjach. Poniższa tabela przedstawia wyznaczone wartości p-value dla rozszerzonego testu Dickeya-Fullera, przy ustalonym stopniu integracji procesu, w kolejnych dniach ogłoszenia odczytu. Data i godzina publikacji (w czasie UTC) stopień 0 stopień 1 stopień :30: :30: :30: :30: :30: :30: :30: :30: :30: :30: :30: Na poniższych wykresach zaprezentowano oryginalny proces kursu EURUSD oraz jego pierwsze i drugie przyrosty (przeskalowane do wartości wyrażonej w punktach) dla kolejnych dni ogłoszenia odczytu. str. 8

9 Data :30:00 Delta 91 Kurs :00 35:00 40:00 45:00 Czas (minuty) Przyrosty Przyrost (w punktach) :00 35:00 40:00 45:00 Czas (minuty) Drugie przyrosty (w punktach) Drugie przyrosty 30:00 35:00 40:00 45:00 Czas (minuty) str. 9

10 Data :30:00 Delta 33 Kurs :00 35:00 40:00 45:00 Czas (minuty) Przyrosty Przyrost (w punktach) :00 35:00 40:00 45:00 Czas (minuty) Drugie przyrosty (w punktach) Drugie przyrosty 30:00 35:00 40:00 45:00 Czas (minuty) str. 10

11 Data :30:00 Delta 24 Kurs :00 35:00 40:00 45:00 Czas (minuty) Przyrosty Przyrost (w punktach) :00 35:00 40:00 45:00 Czas (minuty) Drugie przyrosty (w punktach) Drugie przyrosty 30:00 35:00 40:00 45:00 Czas (minuty) str. 11

12 Kurs Data :30:00 Delta :00 35:00 40:00 45:00 Czas (minuty) Przyrosty Przyrost (w punktach) :00 35:00 40:00 45:00 Czas (minuty) Drugie przyrosty (w punktach) Drugie przyrosty 30:00 35:00 40:00 45:00 Czas (minuty) str. 12

13 Data :30:00 Delta 1 Kurs :00 35:00 40:00 45:00 Czas (minuty) Przyrosty Przyrost (w punktach) :00 35:00 40:00 45:00 Czas (minuty) Drugie przyrosty (w punktach) Drugie przyrosty 30:00 35:00 40:00 45:00 Czas (minuty) str. 13

14 Data :30:00 Delta 55 Kurs :00 35:00 40:00 45:00 Czas (minuty) Przyrosty Przyrost (w punktach) :00 35:00 40:00 45:00 Czas (minuty) Drugie przyrosty (w punktach) Drugie przyrosty 30:00 35:00 40:00 45:00 Czas (minuty) str. 14

15 Data :30:00 Delta 7 Kurs :00 35:00 40:00 45:00 Czas (minuty) Przyrosty Przyrost (w punktach) :00 35:00 40:00 45:00 Czas (minuty) Drugie przyrosty (w punktach) Drugie przyrosty 30:00 35:00 40:00 45:00 Czas (minuty) str. 15

16 Data :30:00 Delta 8 Kurs :00 35:00 40:00 45:00 Czas (minuty) Przyrosty Przyrost (w punktach) :00 35:00 40:00 45:00 Czas (minuty) Drugie przyrosty (w punktach) Drugie przyrosty 30:00 35:00 40:00 45:00 Czas (minuty) str. 16

17 Data :30:00 Delta 47 Kurs :00 35:00 40:00 45:00 Czas (minuty) Przyrosty Przyrost (w punktach) :00 35:00 40:00 45:00 Czas (minuty) Drugie przyrosty (w punktach) Drugie przyrosty 30:00 35:00 40:00 45:00 Czas (minuty) str. 17

18 Data :30:00 Delta 61 Kurs :00 35:00 40:00 45:00 Czas (minuty) Przyrosty Przyrost (w punktach) :00 35:00 40:00 45:00 Czas (minuty) Drugie przyrosty (w punktach) Drugie przyrosty 30:00 35:00 40:00 45:00 Czas (minuty) str. 18

19 Data :30:00 Delta 91 Kurs :00 35:00 40:00 45:00 Czas (minuty) Przyrosty Przyrost (w punktach) :00 35:00 40:00 45:00 Czas (minuty) Drugie przyrosty (w punktach) Drugie przyrosty 30:00 35:00 40:00 45:00 Czas (minuty) 2. Dobór modeli ARMA Kolejny etap badań skupiał się na próbach jak najlepszego dopadowania modeli klasy ARMA(p,q) do danych. Poniższa tabela przedstawia wyznaczone (najlepsze) wartości parametrów p i q oraz wartość kryterium AIC osiągniętą dla każdego z modeli. str. 19

20 Data i godzina publikacji (w czasie UTC) p q AIC :30: :30: :30: :30: :30: :30: :30: :30: :30: :30: :30: W kolejnych podrozdziałach przedstawiono wyniki estymacji parametrów oraz sprawdzenia założeń dla wyznaczonych modeli Odczyt z dnia W wyniku dopasowania modelu ARMA(3,0) do danych otrzymano następujące rezultaty: Coefficients: ar1 ar2 ar s.e sigma^2 estimated as 84.39: log likelihood = , aic = Standardized Residuals Time of Residuals Normal Q Q Plot of Std Residuals Sample Quantiles LAG Theoretical Quantiles s for Ljung Box statistic str. 20

21 s for Ljung Box statistic for squared residuals Test Ljung-Boxa sugeruje występowanie silnych korelacji pomiędzy kwadratami reszt z modelu. ARCH LM-test; Null hypothesis: no ARCH effects data: z$fit$residuals Chi-squared = , df = 1, p-value = 6.333e-07 Test Engle a odrzucił hipotezę o niewystępowaniu efektu ARCH, niezbędne jest rozszerzenie modelu o element modelujący heteroskedastyczność Odczyt z dnia W wyniku dopasowania modelu ARMA(3,5) do danych otrzymano następujące rezultaty: Coefficients: ar1 ar2 ar3 ma1 ma2 ma3 ma4 ma s.e sigma^2 estimated as 96.25: log likelihood = , aic = str. 21

22 Standardized Residuals Time of Residuals Normal Q Q Plot of Std Residuals Sample Quantiles LAG Theoretical Quantiles s for Ljung Box statistic s for Ljung Box statistic for squared residuals Test Ljung-Boxa sugeruje występowanie silnych korelacji pomiędzy kwadratami reszt z modelu. ARCH LM-test; Null hypothesis: no ARCH effects data: z$fit$residuals Chi-squared = , df = 1, p-value = 1.027e-13 Test Engle a odrzucił hipotezę o niewystępowaniu efektu ARCH, niezbędne jest rozszerzenie modelu o element modelujący heteroskedastyczność. str. 22

23 2.3. Odczyt z dnia W wyniku dopasowania modelu ARMA(4,4) do danych otrzymano następujące rezultaty: Coefficients: ar1 ar2 ar3 ar4 ma1 ma2 ma3 ma s.e sigma^2 estimated as 134.9: log likelihood = , aic = Standardized Residuals Time of Residuals Normal Q Q Plot of Std Residuals Sample Quantiles LAG Theoretical Quantiles s for Ljung Box statistic str. 23

24 s for Ljung Box statistic for squared residuals Test Ljung-Boxa sugeruje występowanie silnych korelacji pomiędzy kwadratami reszt z modelu. ARCH LM-test; Null hypothesis: no ARCH effects data: z$fit$residuals Chi-squared = , df = 1, p-value = Test Engle a odrzucił hipotezę o niewystępowaniu efektu ARCH, niezbędne jest rozszerzenie modelu o element modelujący heteroskedastyczność Odczyt z dnia W wyniku dopasowania modelu ARMA(5,5) do danych otrzymano następujące rezultaty: Coefficients: ar1 ar2 ar3 ar4 ar5 ma1 ma2 ma3 ma4 ma s.e sigma^2 estimated as 112.9: log likelihood = , aic = str. 24

25 Standardized Residuals Time of Residuals Normal Q Q Plot of Std Residuals Sample Quantiles LAG Theoretical Quantiles s for Ljung Box statistic s for Ljung Box statistic for squared residuals Test Ljung-Boxa sugeruje występowanie silnych korelacji pomiędzy kwadratami reszt z modelu. ARCH LM-test; Null hypothesis: no ARCH effects data: z$fit$residuals Chi-squared = , df = 1, p-value = 2.13e-07 Test Engle a odrzucił hipotezę o niewystępowaniu efektu ARCH, niezbędne jest rozszerzenie modelu o element modelujący heteroskedastyczność. str. 25

26 2.5. Odczyt z dnia W wyniku dopasowania modelu ARMA(1,1) do danych otrzymano następujące rezultaty: Coefficients: ar1 ma s.e sigma^2 estimated as 167.2: log likelihood = -3537, aic = 7080 Standardized Residuals Time of Residuals LAG Sample Quantiles Normal Q Q Plot of Std Residuals Theoretical Quantiles s for Ljung Box statistic str. 26

27 s for Ljung Box statistic for squared residuals Test Ljung-Boxa sugeruje występowanie silnych korelacji pomiędzy kwadratami reszt z modelu. ARCH LM-test; Null hypothesis: no ARCH effects data: z$fit$residuals Chi-squared = , df = 1, p-value < 2.2e-16 Test Engle a odrzucił hipotezę o niewystępowaniu efektu ARCH, niezbędne jest rozszerzenie modelu o element modelujący heteroskedastyczność Odczyt z dnia W wyniku dopasowania modelu ARMA(3,4) do danych otrzymano następujące rezultaty: Coefficients: ar1 ar2 ar3 ma1 ma2 ma3 ma s.e sigma^2 estimated as 123.8: log likelihood = , aic = str. 27

28 Standardized Residuals Time of Residuals Normal Q Q Plot of Std Residuals Sample Quantiles LAG Theoretical Quantiles s for Ljung Box statistic s for Ljung Box statistic for squared residuals Test Ljung-Boxa sugeruje występowanie silnych korelacji pomiędzy kwadratami reszt z modelu. ARCH LM-test; Null hypothesis: no ARCH effects data: z$fit$residuals Chi-squared = , df = 1, p-value < 2.2e-16 Test Engle a odrzucił hipotezę o niewystępowaniu efektu ARCH, niezbędne jest rozszerzenie modelu o element modelujący heteroskedastyczność. str. 28

29 2.7. Odczyt z dnia W wyniku dopasowania modelu ARMA(3,5) do danych otrzymano następujące rezultaty: Coefficients: ar1 ar2 ar3 ma1 ma2 ma3 ma4 ma s.e. NaN NaN NaN NaN sigma^2 estimated as 69.49: log likelihood = , aic = Standardized Residuals Time of Residuals LAG Sample Quantiles Normal Q Q Plot of Std Residuals Theoretical Quantiles s for Ljung Box statistic str. 29

30 s for Ljung Box statistic for squared residuals Test Ljung-Boxa sugeruje występowanie silnych korelacji pomiędzy kwadratami reszt z modelu. ARCH LM-test; Null hypothesis: no ARCH effects data: z$fit$residuals Chi-squared = , df = 1, p-value = 1.137e-05 Test Engle a odrzucił hipotezę o niewystępowaniu efektu ARCH, niezbędne jest rozszerzenie modelu o element modelujący heteroskedastyczność Odczyt z dnia W wyniku dopasowania modelu ARMA(5,3) do danych otrzymano następujące rezultaty: Coefficients: ar1 ar2 ar3 ar4 ar5 ma1 ma2 ma s.e sigma^2 estimated as 73.58: log likelihood = , aic = str. 30

31 Standardized Residuals Time of Residuals Normal Q Q Plot of Std Residuals Sample Quantiles LAG Theoretical Quantiles s for Ljung Box statistic s for Ljung Box statistic for squared residuals Test Ljung-Boxa sugeruje występowanie silnych korelacji pomiędzy kwadratami reszt z modelu. ARCH LM-test; Null hypothesis: no ARCH effects data: z$fit$residuals Chi-squared = , df = 1, p-value = Test Engle a odrzucił hipotezę o niewystępowaniu efektu ARCH, niezbędne jest rozszerzenie modelu o element modelujący heteroskedastyczność. str. 31

32 2.9. Odczyt z dnia W wyniku dopasowania modelu ARMA(5,4) do danych otrzymano następujące rezultaty: Coefficients: ar1 ar2 ar3 ar4 ar5 ma1 ma2 ma3 ma s.e sigma^2 estimated as 143: log likelihood = , aic = Standardized Residuals Time of Residuals Normal Q Q Plot of Std Residuals Sample Quantiles LAG Theoretical Quantiles s for Ljung Box statistic str. 32

33 s for Ljung Box statistic for squared residuals Test Ljung-Boxa sugeruje występowanie silnych korelacji pomiędzy kwadratami reszt z modelu. ARCH LM-test; Null hypothesis: no ARCH effects data: z$fit$residuals Chi-squared = , df = 1, p-value = 3.592e-05 Test Engle a odrzucił hipotezę o niewystępowaniu efektu ARCH, niezbędne jest rozszerzenie modelu o element modelujący heteroskedastyczność Odczyt z dnia W wyniku dopasowania modelu ARMA(4,3) do danych otrzymano następujące rezultaty: Coefficients: ar1 ar2 ar3 ar4 ma1 ma2 ma s.e sigma^2 estimated as 60.83: log likelihood = , aic = str. 33

34 Standardized Residuals Time of Residuals Normal Q Q Plot of Std Residuals Sample Quantiles LAG Theoretical Quantiles s for Ljung Box statistic s for Ljung Box statistic for squared residuals Test Ljung-Boxa sugeruje występowanie silnych korelacji pomiędzy kwadratami reszt z modelu. ARCH LM-test; Null hypothesis: no ARCH effects data: z$fit$residuals Chi-squared = , df = 1, p-value = ARCH LM-test; Null hypothesis: no ARCH effects str. 34

35 data: z$fit$residuals Chi-squared = , df = 2, p-value = 1.191e-10 Test Engle a odrzucił hipotezę o niewystępowaniu efektu ARCH drugiego stopnia, niezbędne jest rozszerzenie modelu o element modelujący heteroskedastyczność Odczyt z dnia W wyniku dopasowania modelu ARMA(5,5) do danych otrzymano następujące rezultaty: Coefficients: ar1 ar2 ar3 ar4 ar5 ma1 ma2 ma3 ma4 ma s.e sigma^2 estimated as 150.5: log likelihood = , aic = Standardized Residuals Time of Residuals LAG Sample Quantiles Normal Q Q Plot of Std Residuals Theoretical Quantiles s for Ljung Box statistic str. 35

36 s for Ljung Box statistic for squared residuals Test Ljung-Boxa sugeruje występowanie silnych korelacji pomiędzy kwadratami reszt z modelu. ARCH LM-test; Null hypothesis: no ARCH effects data: z$fit$residuals Chi-squared = , df = 2, p-value = 2.15e-10 Test Engle a odrzucił hipotezę o niewystępowaniu efektu ARCH, niezbędne jest rozszerzenie modelu o element modelujący heteroskedastyczność. 3. Estymacja modeli ARMA-GARCH z warunkowym rozkładem normalnym Przeprowadzone analizy dobitnie pokazują, że do poprawnego opisania modelowanego zjawiska niezbędne jest uwzględnienie w modelu zmian wariancji w czasie. Z tego powodu rozważone zostały modele klasy ARMA-GARCH pozwalające nie tylko na uwzględnienie heteroskedastyczności błędów losowych, ale również umożliwiające modelowanie grupowania się zmienności (które to zjawisko można zaobserwować na wykresach reszt z modeli przedstawionych w poprzedniej sekcji). Poniższa tabela prezentuje wyniki doboru rzędów opóźnień w modelu ARMA(p,q)-GARCH(1,r) z warunkowym rozkładem normalnym. str. 36

37 Data i godzina publikacji (w czasie UTC) p q r AIC :30: :30: :30: :30: :30: :30: :30: :30: :30: :30: :30: Warto zauważyć, że w każdym modelu proces klasy GARCH(1,1) opisywał zachowanie błędów losowych istotnie lepiej niż proces ARCH(1) (GARCH(1,0)). Co więcej dodanie do modelu efektu GARCH znacznie poprawiło (biorąc pod uwagę kryterium informacyjne Akaikiego) dopasowanie modelu do danych. Poniżej przedstawione zostały wyniki estymacji parametrów modelu oraz wykonana diagnostyka założeń modelu Odczyt z dnia W wyniku dopasowania modelu ARMA(4,5)-GARCH(1,1) do danych otrzymano następujące rezultaty: Coefficient(s): ar1 ar2 ar3 ar4 ma1 ma2 ma3 ma4 ma omega alpha1 beta Std. Errors: based on Hessian Error Analysis: Estimate Std. Error t value Pr(> t ) ar e e <2e-16 *** ar e e <2e-16 *** ar e e <2e-16 *** ar e e <2e-16 *** ma e e <2e-16 *** ma e e <2e-16 *** ma e e <2e-16 *** ma e e <2e-16 *** ma e e <2e-16 *** omega 3.640e e alpha e e ** beta e e <2e-16 *** str. 37

38 --- Signif. codes: 0 *** ** 0.01 * Log Likelihood: normalized: of Standardized Residuals Lags of Squared Standardized Residuals Lags s for Ljung Box statistic for residuals s for Ljung Box statistic for squared residuals Test Ljung-Boxa dla reszt z modelu sugeruje, że nadal mamy do czynienia z korelacją pomiędzy błędami modelu. Wykres funkcji autokorelacji potwierdza występowanie istotnych statystycznie autokorelacji dla opóźnień rzędu 12 i 18. Test Ljung-Boxa i wykres funkcji autokorelacji reszt sugerują możliwość występowania niewielkich zależności w strukturze zmienności, nie wyjaśnionych przez model. str. 38

39 Jarque Bera Test data: X-squared = , df = 2, p-value < 2.2e-16 qnorm QQ Plot Sample Quantiles Theoretical Quantiles Wynik testu Jarque-Bera i wykres kwantylowy dla reszt pokazują wyraźne odstępstwa od założenia o normalności zaburzeń losowych. Niezbędne jest poprawienie modelu poprzez założenie innego rodzaju rozkładu dla reszt (wykres kwantylowy sugeruje zastosowanie rozkładu o grubszych ogonach) Odczyt z dnia W wyniku dopasowania modelu ARMA(5,5)-GARCH(1,1) do danych otrzymano następujące rezultaty: Coefficient(s): mu ar1 ar2 ar3 ar4 ar5 ma1 ma2 ma ma4 ma5 omega alpha1 beta Std. Errors: based on Hessian Error Analysis: Estimate Std. Error t value Pr(> t ) mu e e < 2e-16 *** ar e e < 2e-16 *** ar e e < 2e-16 *** str. 39

40 ar e e < 2e-16 *** ar e e < 2e-16 *** ar e e < 2e-16 *** ma e e < 2e-16 *** ma e e < 2e-16 *** ma e e < 2e-16 *** ma e e < 2e-16 *** ma e e < 2e-16 *** omega 6.462e e ** alpha e e e-05 *** beta e e < 2e-16 *** --- Signif. codes: 0 *** ** 0.01 * Log Likelihood: normalized: of Standardized Residuals Lags of Squared Standardized Residuals Lags str. 40

41 s for Ljung Box statistic for residuals s for Ljung Box statistic for squared residuals Test Ljung-Boxa wskazuje na występowanie korelacji między kwadratami błędów. Wykres funkcji autokorelacji wskazuje na występowanie istotnych statystycznie zależności dla opóźnień rzędu 20 i 26 Jarque Bera Test data: X-squared = , df = 2, p-value < 2.2e-16 qnorm QQ Plot Sample Quantiles Theoretical Quantiles Test Jarque-Bera i wykres kwantylowy sugerują wyraźne odstępstwa od zakładanego rozkładu normalnego dla błędów losowych. str. 41

42 3.3. Odczyt z dnia W wyniku dopasowania modelu ARMA(4,5)-GARCH(1,1) do danych otrzymano następujące rezultaty: Coefficient(s): mu ar1 ar2 ar3 ar4 ma1 ma2 ma3 ma ma5 omega alpha1 beta Std. Errors: based on Hessian Error Analysis: Estimate Std. Error t value Pr(> t ) mu e e < 2e-16 *** ar e e < 2e-16 *** ar e e < 2e-16 *** ar e e < 2e-16 *** ar e e < 2e-16 *** ma e e < 2e-16 *** ma e e < 2e-16 *** ma e e < 2e-16 *** ma e e < 2e-16 *** ma e e < 2e-16 *** omega 1.833e e * alpha e e e-05 *** beta e e < 2e-16 *** --- Signif. codes: 0 *** ** 0.01 * Log Likelihood: normalized: str. 42

43 of Standardized Residuals Lags of Squared Standardized Residuals Lags s for Ljung Box statistic for residuals s for Ljung Box statistic for squared residuals Test Ljung-Boxa wskazuje na występowanie korelacji między resztami i kwadratami modelu. Wykres funkcji autokorelacji wskazuje na występowanie istotnych statystycznie zależności dla opóźnień rzędu 25. Jarque Bera Test data: X-squared = , df = 2, p-value < 2.2e-16 str. 43

44 qnorm QQ Plot Sample Quantiles Theoretical Quantiles Test Jarque-Bera i wykres kwantylowy wskazują na wyraźne odstępstwa od normalności standaryzowanych błędów modelu Odczyt z dnia W wyniku dopasowania modelu ARMA(3,5)-GARCH(1,1) do danych otrzymano następujące rezultaty: Coefficient(s): mu ar1 ar2 ar3 ma1 ma2 ma3 ma ma5 omega alpha1 beta Std. Errors: based on Hessian Error Analysis: Estimate Std. Error t value Pr(> t ) mu ar ar ar ma ma ma * ma ma omega ** alpha e-05 *** str. 44

45 beta e-11 *** --- Signif. codes: 0 *** ** 0.01 * Log Likelihood: normalized: of Standardized Residuals Lags of Squared Standardized Residuals Lags s for Ljung Box statistic for residuals s for Ljung Box statistic for squared residuals Wyniki wskazują na nieistotność statystyczną parametrów stojących przy elementach AR i MA o największym rzędzie opóźnień, model można poddać uproszczeniu. Redukcja do modelu ARMA(3,4)-GARCH(1,1) powoduje jedynie nieznaczne pogorszenie kryterium AIC, jednocześnie parametry stojące przy trzecim opóźnieniu autoregresyjnym i czwartym opóźnieniem procesu średniej ruchomej są istotne statystycznie. Poniżej przedstawione zostały wyniki dopasowania modelu ARMA(3,4)-GARCH(1,1) str. 45

46 Coefficient(s): mu ar1 ar2 ar3 ma1 ma2 ma3 ma omega alpha1 beta Std. Errors: based on Hessian Error Analysis: Estimate Std. Error t value Pr(> t ) mu ar ** ar ** ar < 2e-16 *** ma ma ma < 2e-16 *** ma e-09 *** omega ** alpha e-05 *** beta e-10 *** --- Signif. codes: 0 *** ** 0.01 * Log Likelihood: normalized: W dalszych rozważaniach przyjęty został model ARMA(3,5)-GARCH(1,1) Test Ljung-Boxa wskazuje na występowanie silnej korelacji między resztami modelu. Wykres funkcji autokorelacji wskazuje na występowanie istotnych statystycznie zależności dla opóźnień rzędu 14. Jarque Bera Test data: X-squared = , df = 2, p-value < 2.2e-16 str. 46

47 qnorm QQ Plot Sample Quantiles Theoretical Quantiles Test Jarque-Bera i wykres kwantylowy wskazują na wyraźne odstępstwa od normalności standaryzowanych błędów modelu Odczyt z dnia W wyniku dopasowania modelu ARMA(4,4)-GARCH(1,1) do danych otrzymano następujące rezultaty: Coefficient(s): mu ar1 ar2 ar3 ar4 ma1 ma2 ma3 ma omega alpha1 beta Std. Errors: based on Hessian Error Analysis: Estimate Std. Error t value Pr(> t ) mu 6.838e e < 2e-16 *** ar e e < 2e-16 *** ar e e < 2e-16 *** ar e e < 2e-16 *** ar e e < 2e-16 *** ma e e < 2e-16 *** ma e e < 2e-16 *** ma e e < 2e-16 *** ma e e < 2e-16 *** omega 2.334e e *** alpha e e e-08 *** str. 47

48 beta e e e-15 *** --- Signif. codes: 0 *** ** 0.01 * Log Likelihood: normalized: of Standardized Residuals Lags of Squared Standardized Residuals Lags s for Ljung Box statistic for residuals s for Ljung Box statistic for squared residuals Test Ljung-Boxa wskazuje na występowanie silnej korelacji między resztami modelu. Wykres funkcji autokorelacji wskazuje na występowanie istotnych statystycznie zależności dla opóźnień rzędu 4. str. 48

49 Jarque Bera Test data: X-squared = , df = 2, p-value < 2.2e-16 qnorm QQ Plot Sample Quantiles Theoretical Quantiles Test Jarque-Bera i wykres kwantylowy wskazują na wyraźne odstępstwa od normalności standaryzowanych błędów modelu Odczyt z dnia W wyniku dopasowania modelu ARMA(3,5)-GARCH(1,1) do danych otrzymano następujące rezultaty: Coefficient(s): mu ar1 ar2 ar3 ma1 ma2 ma3 ma ma5 omega alpha1 beta Std. Errors: based on Hessian Error Analysis: Estimate Std. Error t value Pr(> t ) mu e e < 2e-16 *** ar e e < 2e-16 *** ar e e < 2e-16 *** ar e e < 2e-16 *** str. 49

50 ma e e < 2e-16 *** ma e e < 2e-16 *** ma e e < 2e-16 *** ma e e < 2e-16 *** ma e e < 2e-16 *** omega 5.731e e alpha e e *** beta e e < 2e-16 *** --- Signif. codes: 0 *** ** 0.01 * Log Likelihood: normalized: of Standardized Residuals Lags of Squared Standardized Residuals Lags s for Ljung Box statistic for residuals s for Ljung Box statistic for squared residuals str. 50

51 Test Ljung-Boxa wskazuje na występowanie korelacji między resztami oraz kwadratami reszt modelu. Wykres funkcji autokorelacji dla kwadratów reszt wskazuje na występowanie istotnych statystycznie zależności dla opóźnień rzędu 24. Jarque Bera Test data: X-squared = , df = 2, p-value < 2.2e-16 qnorm QQ Plot Sample Quantiles Theoretical Quantiles Test Jarque-Bera i wykres kwantylowy wskazują na wyraźne odstępstwa od normalności standaryzowanych błędów modelu Odczyt z dnia W wyniku dopasowania modelu ARMA(3,3)-GARCH(1,1) do danych otrzymano następujące rezultaty: Coefficient(s): mu ar1 ar2 ar3 ma1 ma2 ma3 omega alpha beta Std. Errors: based on Hessian str. 51

52 Error Analysis: Estimate Std. Error t value Pr(> t ) mu e e < 2e-16 *** ar e e < 2e-16 *** ar e e < 2e-16 *** ar e e < 2e-16 *** ma e e < 2e-16 *** ma e e < 2e-16 *** ma e e < 2e-16 *** omega 1.639e e alpha e e e-05 *** beta e e < 2e-16 *** --- Signif. codes: 0 *** ** 0.01 * Log Likelihood: normalized: of Standardized Residuals Lags of Squared Standardized Residuals Lags str. 52

53 s for Ljung Box statistic for residuals s for Ljung Box statistic for squared residuals Test Ljung-Boxa wskazuje na występowanie korelacji między resztami. Jarque Bera Test data: X-squared = , df = 2, p-value < 2.2e-16 qnorm QQ Plot Sample Quantiles Theoretical Quantiles Test Jarque-Bera i wykres kwantylowy wskazują na wyraźne odstępstwa od normalności standaryzowanych błędów modelu. str. 53

54 3.8. Odczyt z dnia W wyniku dopasowania modelu ARMA(5,4)-GARCH(1,1) do danych otrzymano następujące rezultaty: Coefficient(s): mu ar1 ar2 ar3 ar4 ar5 ma1 ma ma3 ma4 omega alpha1 beta Std. Errors: based on Hessian Error Analysis: Estimate Std. Error t value Pr(> t ) mu e e <2e-16 *** ar e e <2e-16 *** ar e e <2e-16 *** ar e e <2e-16 *** ar e e <2e-16 *** ar e e <2e-16 *** ma e e <2e-16 *** ma e e <2e-16 *** ma e e <2e-16 *** ma e e <2e-16 *** omega 1.043e e alpha e e * beta e e <2e-16 *** --- Signif. codes: 0 *** ** 0.01 * Log Likelihood: normalized: str. 54

55 of Standardized Residuals Lags of Squared Standardized Residuals Lags s for Ljung Box statistic for residuals s for Ljung Box statistic for squared residuals Test Ljung-Boxa wskazuje na występowanie bardzo silnej korelacji między resztami. Jarque Bera Test data: X-squared = , df = 2, p-value < 2.2e-16 str. 55

56 qnorm QQ Plot Sample Quantiles Theoretical Quantiles Test Jarque-Bera i wykres kwantylowy wskazują na wyraźne odstępstwa od normalności standaryzowanych błędów modelu Odczyt z dnia W wyniku dopasowania modelu ARMA(5,4)-GARCH(1,1) do danych otrzymano następujące rezultaty: Coefficient(s): mu ar1 ar2 ar3 ar4 ar5 ma1 ma2 ma ma4 omega alpha1 beta Std. Errors: based on Hessian Error Analysis: Estimate Std. Error t value Pr(> t ) mu ar e-13 *** ar *** ar ar e-10 *** ar e-05 *** ma e-07 *** ma * ma ma e-09 *** omega str. 56

57 alpha e-05 *** beta < 2e-16 *** --- Signif. codes: 0 *** ** 0.01 * Log Likelihood: normalized: of Standardized Residuals Lags of Squared Standardized Residuals Lags s for Ljung Box statistic for residuals s for Ljung Box statistic for squared residuals Test Ljung-Boxa wskazuje na występowanie korelacji między kwadratami reszt modelu. str. 57

58 Jarque Bera Test data: X-squared = , df = 2, p-value < 2.2e-16 qnorm QQ Plot Sample Quantiles Theoretical Quantiles Test Jarque-Bera i wykres kwantylowy wskazują na wyraźne odstępstwa od normalności standaryzowanych błędów modelu Odczyt z dnia W wyniku dopasowania modelu ARMA(5,4)-GARCH(1,1) do danych otrzymano następujące rezultaty: Coefficient(s): mu ar1 ar2 ar3 ar4 ar5 ma1 ma2 ma ma4 omega alpha1 beta Std. Errors: based on Hessian Error Analysis: Estimate Std. Error t value Pr(> t ) mu 1.425e e < 2e-16 *** ar e e < 2e-16 *** ar e e < 2e-16 *** ar e e < 2e-16 *** str. 58

59 ar e e < 2e-16 *** ar e e < 2e-16 *** ma e e < 2e-16 *** ma e e < 2e-16 *** ma e e < 2e-16 *** ma e e < 2e-16 *** omega 4.811e e alpha e e e-05 *** beta e e < 2e-16 *** --- Signif. codes: 0 *** ** 0.01 * Log Likelihood: normalized: of Standardized Residuals Lags of Squared Standardized Residuals Lags str. 59

Heteroskedastyczość w szeregach czasowyh

Heteroskedastyczość w szeregach czasowyh Heteroskedastyczość w szeregach czasowyh Czesto zakłada się, że szeregi czasowe wykazuja autokorelację ae sa homoskedastyczne W rzeczywistości jednak często wariancja zmienia się w czasie Dobrym przykładem

Bardziej szczegółowo

Podczas zajęć będziemy zajmować się głownie procesami ergodycznymi zdefiniowanymi na przestrzeniach ciągłych.

Podczas zajęć będziemy zajmować się głownie procesami ergodycznymi zdefiniowanymi na przestrzeniach ciągłych. Trochę teorii W celu przeprowadzenia rygorystycznej ekonometrycznej analizy szeregu finansowego będziemy traktowali obserwowany ciąg danych (x 1, x 2,..., x T ) jako realizację pewnego procesu stochastycznego.

Bardziej szczegółowo

Analiza szeregów czasowych bezrobocia i inflacji w Danii

Analiza szeregów czasowych bezrobocia i inflacji w Danii Uniwersytet Warszawski Wydział Nauk Ekonomicznych Mateusz Błażej Nr albumu: 308521 Analiza szeregów czasowych bezrobocia i inflacji w Danii Projekt zaliczeniowy z przedmiotu: Analiza Szeregów Czasowych

Bardziej szczegółowo

Szeregi czasowe, analiza zależności krótkoi długozasięgowych

Szeregi czasowe, analiza zależności krótkoi długozasięgowych Szeregi czasowe, analiza zależności krótkoi długozasięgowych Rafał Weron rweron@im.pwr.wroc.pl Definicje Mając dany proces {X t } autokowariancję definiujemy jako : γ(t, t ) = cov(x t, X t ) = = E[(X t

Bardziej szczegółowo

Projekt Nowa oferta edukacyjna Uniwersytetu Wrocławskiego odpowiedzią na współczesne potrzeby rynku pracy i gospodarki opartej na wiedzy

Projekt Nowa oferta edukacyjna Uniwersytetu Wrocławskiego odpowiedzią na współczesne potrzeby rynku pracy i gospodarki opartej na wiedzy Projekt Nowa oferta edukacyjna Uniwersytetu Wrocławskiego odpowiedzią na współczesne potrzeby rynku pracy i gospodarki opartej na wiedzy Dane: Eksploracja (mining) Problemy: Jedna zmienna 2000 najwi ększych

Bardziej szczegółowo

Modele warunkowej heteroscedastyczności

Modele warunkowej heteroscedastyczności Teoria Przykład - zwroty z WIG Niskie koszty transakcyjne Teoria Przykład - zwroty z WIG Niskie koszty transakcyjne Racjonalne oczekiwania inwestorów P t = E(P t+1 I t ) 1 + R (1) Teoria Przykład - zwroty

Bardziej szczegółowo

MODELOWANIE POLSKIEJ GOSPODARKI Z PAKIETEM R Michał Rubaszek

MODELOWANIE POLSKIEJ GOSPODARKI Z PAKIETEM R Michał Rubaszek Tytuł: Autor: MODELOWANIE POLSKIEJ GOSPODARKI Z PAKIETEM R Michał Rubaszek Wstęp Książka "Modelowanie polskiej gospodarki z pakietem R" powstała na bazie materiałów, które wykorzystywałem przez ostatnie

Bardziej szczegółowo

7.4 Automatyczne stawianie prognoz

7.4 Automatyczne stawianie prognoz szeregów czasowych za pomocą pakietu SPSS Następnie korzystamy z menu DANE WYBIERZ OBSERWACJE i wybieramy opcję WSZYSTKIE OBSERWACJE (wówczas wszystkie obserwacje są aktywne). Wreszcie wybieramy z menu

Bardziej szczegółowo

Optymalizacja parametrów w strategiach inwestycyjnych dla event-driven tradingu dla odczytu Australia Employment Change

Optymalizacja parametrów w strategiach inwestycyjnych dla event-driven tradingu dla odczytu Australia Employment Change Raport 4/2015 Optymalizacja parametrów w strategiach inwestycyjnych dla event-driven tradingu dla odczytu Australia Employment Change autor: Michał Osmoła INIME Instytut nauk informatycznych i matematycznych

Bardziej szczegółowo

Analiza wpływu długości trwania strategii na proces optymalizacji parametrów dla strategii inwestycyjnych w handlu event-driven

Analiza wpływu długości trwania strategii na proces optymalizacji parametrów dla strategii inwestycyjnych w handlu event-driven Raport 8/2015 Analiza wpływu długości trwania strategii na proces optymalizacji parametrów dla strategii inwestycyjnych w handlu event-driven autor: Michał Osmoła INIME Instytut nauk informatycznych i

Bardziej szczegółowo

MODELE LINIOWE. Dr Wioleta Drobik

MODELE LINIOWE. Dr Wioleta Drobik MODELE LINIOWE Dr Wioleta Drobik MODELE LINIOWE Jedna z najstarszych i najpopularniejszych metod modelowania Zależność między zbiorem zmiennych objaśniających, a zmienną ilościową nazywaną zmienną objaśnianą

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Zajęcia 15-16

Stanisław Cichocki. Natalia Nehrebecka. Zajęcia 15-16 Stanisław Cichocki Natalia Nehrebecka Zajęcia 15-16 1 1. Sezonowość 2. Zmienne stacjonarne 3. Zmienne zintegrowane 4. Test Dickey-Fullera 5. Rozszerzony test Dickey-Fullera 6. Test KPSS 7. Regresja pozorna

Bardziej szczegółowo

Środowisko R Założenie normalności metody nieparametryczne Wykład R4; 4.06.07 Weryfikacja założenia o normalności rozkładu populacji

Środowisko R Założenie normalności metody nieparametryczne Wykład R4; 4.06.07 Weryfikacja założenia o normalności rozkładu populacji Środowisko R Założenie normalności metody nieparametryczne Wykład R4; 4.06.07 Weryfikacja założenia o normalności rozkładu populacji Dane są obserwacje x 1, x 2,..., x n. Czy można założyć, że x 1, x 2,...,

Bardziej szczegółowo

Event Driven Trading. Badania Numeryczne.

Event Driven Trading. Badania Numeryczne. INIME 21.10.2014 Publikacja makroekonimczna Publikacja makroekonomiczna (w niniejszym opracowaniu, definicja zawężona) - publikacja danych makroekonomicznych przez agencję prasową posiadających następującą

Bardziej szczegółowo

1. Stacjonarnośd i niestacjonarnośd szeregów czasowych 2. Test ADF i test KPSS 3. Budowa modeli ARMA dla zmiennych niestacjonarnych 4.

1. Stacjonarnośd i niestacjonarnośd szeregów czasowych 2. Test ADF i test KPSS 3. Budowa modeli ARMA dla zmiennych niestacjonarnych 4. 1. Stacjonarnośd i niestacjonarnośd szeregów czasowych 2. Test ADF i test KPSS 3. Budowa modeli ARMA dla zmiennych niestacjonarnych 4. Prognozowanie stóp zwrotu na podstawie modeli ARMA 5. Relacje kointegrujące

Bardziej szczegółowo

Regresja wielokrotna. PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com

Regresja wielokrotna. PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com Regresja wielokrotna Model dla zależności liniowej: Y=a+b 1 X 1 +b 2 X 2 +...+b n X n Cząstkowe współczynniki regresji wielokrotnej: b 1,..., b n Zmienne niezależne (przyczynowe): X 1,..., X n Zmienna

Bardziej szczegółowo

Wprowadzenie Model ARMA Sezonowość Prognozowanie Model regresji z błędami ARMA. Modele ARMA

Wprowadzenie Model ARMA Sezonowość Prognozowanie Model regresji z błędami ARMA. Modele ARMA Ważną klasę modeli dynamicznych stanowią modele ARMA(p, q) Ważną klasę modeli dynamicznych stanowią modele ARMA(p, q) Modele tej klasy są modelami ateoretycznymi Ważną klasę modeli dynamicznych stanowią

Bardziej szczegółowo

Wykład 10 (12.05.08). Testowanie hipotez w rodzinie rozkładów normalnych przypadek nieznanego odchylenia standardowego

Wykład 10 (12.05.08). Testowanie hipotez w rodzinie rozkładów normalnych przypadek nieznanego odchylenia standardowego Wykład 10 (12.05.08). Testowanie hipotez w rodzinie rozkładów normalnych przypadek nieznanego odchylenia standardowego Przykład Cena metra kwadratowego (w tys. zł) z dla 14 losowo wybranych mieszkań w

Bardziej szczegółowo

Zadanie 1 1. Czy wykresy zmiennych sugerują, że zmienne są stacjonarne. Czy występuje sezonowość?

Zadanie 1 1. Czy wykresy zmiennych sugerują, że zmienne są stacjonarne. Czy występuje sezonowość? Zadanie 1 1. Czy wykresy zmiennych sugerują, że zmienne są stacjonarne. Czy występuje sezonowość? Wykres stopy bezrobocia rejestrowanego w okresie 01.1998 12.2008, dane Polskie 22 20 18 16 stopa 14 12

Bardziej szczegółowo

3. Analiza własności szeregu czasowego i wybór typu modelu

3. Analiza własności szeregu czasowego i wybór typu modelu 3. Analiza własności szeregu czasowego i wybór typu modelu 1. Metody analizy własności szeregu czasowego obserwacji 1.1. Analiza wykresu szeregu czasowego 1.2. Analiza statystyk opisowych zmiennej prognozowanej

Bardziej szczegółowo

Optymalizacja parametrów w strategiach inwestycyjnych dla event-driven tradingu - metodologia badań

Optymalizacja parametrów w strategiach inwestycyjnych dla event-driven tradingu - metodologia badań Raport 1/2015 Optymalizacja parametrów w strategiach inwestycyjnych dla event-driven tradingu - metodologia badań autor: Michał Osmoła INIME Instytut nauk informatycznych i matematycznych z zastosowaniem

Bardziej szczegółowo

Wprowadzenie do analizy korelacji i regresji

Wprowadzenie do analizy korelacji i regresji Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących

Bardziej szczegółowo

Testowanie hipotez. 1 Testowanie hipotez na temat średniej

Testowanie hipotez. 1 Testowanie hipotez na temat średniej Testowanie hipotez Poziom p Poziom p jest to najmniejszy poziom istotności α, przy którym możemy odrzucić hipotezę zerową dysponując otrzymaną wartością statystyki testowej. 1 Testowanie hipotez na temat

Bardziej szczegółowo

1 Modele ADL - interpretacja współczynników

1 Modele ADL - interpretacja współczynników 1 Modele ADL - interpretacja współczynników ZADANIE 1.1 Dany jest proces DL następującej postaci: y t = µ + β 0 x t + β 1 x t 1 + ε t. 1. Wyjaśnić, jaka jest intepretacja współczynników β 0 i β 1. 2. Pokazać

Bardziej szczegółowo

OBLICZENIE PRZEPŁYWÓW MAKSYMALNYCH ROCZNYCH O OKREŚLONYM PRAWDOPODOBIEŃSTWIE PRZEWYŻSZENIA. z wykorzystaniem programu obliczeniowego Q maxp

OBLICZENIE PRZEPŁYWÓW MAKSYMALNYCH ROCZNYCH O OKREŚLONYM PRAWDOPODOBIEŃSTWIE PRZEWYŻSZENIA. z wykorzystaniem programu obliczeniowego Q maxp tel.: +48 662 635 712 Liczba stron: 15 Data: 20.07.2010r OBLICZENIE PRZEPŁYWÓW MAKSYMALNYCH ROCZNYCH O OKREŚLONYM PRAWDOPODOBIEŃSTWIE PRZEWYŻSZENIA z wykorzystaniem programu obliczeniowego Q maxp DŁUGIE

Bardziej szczegółowo

2. Założenie niezależności zakłóceń modelu - autokorelacja składnika losowego - test Durbina - Watsona

2. Założenie niezależności zakłóceń modelu - autokorelacja składnika losowego - test Durbina - Watsona Sprawdzanie założeń przyjętych o modelu (etap IIIC przyjętego schematu modelowania regresyjnego) 1. Szum 2. Założenie niezależności zakłóceń modelu - autokorelacja składnika losowego - test Durbina - Watsona

Bardziej szczegółowo

Pytanie: Kiedy do testowania hipotezy stosujemy test F (Fishera-Snedecora)?

Pytanie: Kiedy do testowania hipotezy stosujemy test F (Fishera-Snedecora)? Pytanie: Kiedy do testowania hipotezy stosujemy test F (Fishera-Snedecora)? Gdy: badana cecha jest mierzalna (ewentualnie policzalna); dysponujemy dwoma próbami; chcemy porównać, czy wariancje w tych próbach

Bardziej szczegółowo

Stanisław Cichocki. Natalia Neherbecka. Zajęcia 13

Stanisław Cichocki. Natalia Neherbecka. Zajęcia 13 Stanisław Cichocki Natalia Neherbecka Zajęcia 13 1 1. Kryteria informacyjne 2. Testowanie autokorelacji 3. Modele dynamiczne: modele o rozłożonych opóźnieniach (DL) modele autoregresyjne o rozłożonych

Bardziej szczegółowo

Ekonometria ćwiczenia 3. Prowadzący: Sebastian Czarnota

Ekonometria ćwiczenia 3. Prowadzący: Sebastian Czarnota Ekonometria ćwiczenia 3 Prowadzący: Sebastian Czarnota Strona - niezbędnik http://sebastianczarnota.com/sgh/ Normalność rozkładu składnika losowego Brak normalności rozkładu nie odbija się na jakości otrzymywanych

Bardziej szczegółowo

Analiza regresji - weryfikacja założeń

Analiza regresji - weryfikacja założeń Medycyna Praktyczna - portal dla lekarzy Analiza regresji - weryfikacja założeń mgr Andrzej Stanisz z Zakładu Biostatystyki i Informatyki Medycznej Collegium Medicum UJ w Krakowie (Kierownik Zakładu: prof.

Bardziej szczegółowo

Regresja wieloraka Ogólny problem obliczeniowy: dopasowanie linii prostej do zbioru punktów. Najprostszy przypadek - jedna zmienna zależna i jedna

Regresja wieloraka Ogólny problem obliczeniowy: dopasowanie linii prostej do zbioru punktów. Najprostszy przypadek - jedna zmienna zależna i jedna Regresja wieloraka Regresja wieloraka Ogólny problem obliczeniowy: dopasowanie linii prostej do zbioru punktów. Najprostszy przypadek - jedna zmienna zależna i jedna zmienna niezależna (można zobrazować

Bardziej szczegółowo

Analiza zależności cech ilościowych regresja liniowa (Wykład 13)

Analiza zależności cech ilościowych regresja liniowa (Wykład 13) Analiza zależności cech ilościowych regresja liniowa (Wykład 13) dr Mariusz Grządziel semestr letni 2012 Przykład wprowadzajacy W zbiorze danych homedata (z pakietu R-owskiego UsingR) można znaleźć ceny

Bardziej szczegółowo

Event-driven trading. Reaktywność rynku i potencjał inwestycyjny zjawiska

Event-driven trading. Reaktywność rynku i potencjał inwestycyjny zjawiska Working paper 1/2014 Event-driven trading. Reaktywność rynku i potencjał inwestycyjny zjawiska autorzy: Dawid Tarłowski Patryk Pagacz Sławomir Śmiarowski INIME Instytut nauk informatycznych i matematycznych

Bardziej szczegółowo

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1 WYDZIAŁ MATEMATYKI KARTA PRZEDMIOTU Nazwa w języku polskim ANALIZA SZEREGÓW CZASOWYCH Nazwa w języku angielskim ANALYSIS OF TIME SERIES Kierunek studiów (jeśli dotyczy): Matematyka Specjalność (jeśli

Bardziej szczegółowo

Niestacjonarne zmienne czasowe własności i testowanie

Niestacjonarne zmienne czasowe własności i testowanie Materiał dla studentów Niestacjonarne zmienne czasowe własności i testowanie (studium przypadku) Część 3: Przykłady testowania niestacjonarności Nazwa przedmiotu: ekonometria finansowa I (22204), analiza

Bardziej szczegółowo

KORELACJE I REGRESJA LINIOWA

KORELACJE I REGRESJA LINIOWA KORELACJE I REGRESJA LINIOWA Korelacje i regresja liniowa Analiza korelacji: Badanie, czy pomiędzy dwoma zmiennymi istnieje zależność Obie analizy się wzajemnie przeplatają Analiza regresji: Opisanie modelem

Bardziej szczegółowo

MODELOWANIE ZMIENNOŚCI I RYZYKA INWESTYCJI W ZŁOTO. Celina Otolińska

MODELOWANIE ZMIENNOŚCI I RYZYKA INWESTYCJI W ZŁOTO. Celina Otolińska MODELOWANIE ZMIENNOŚCI I RYZYKA INWESTYCJI W ZŁOTO Celina Otolińska PLAN: 1. Rynek złota-krótka informacja. 2. Wartość zagrożona i dlaczego ona. 3. Badany szereg czasowy oraz jego własności. 4. Modele

Bardziej szczegółowo

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1 Zał. nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim ANALIZA SZEREGÓW CZASOWYCH Nazwa w języku angielskim ANALYSIS OF TIME SERIES Kierunek studiów (jeśli dotyczy):

Bardziej szczegółowo

Przykład 1 ceny mieszkań

Przykład 1 ceny mieszkań Przykład ceny mieszkań Przykład ceny mieszkań Model ekonometryczny zaleŝności ceny mieszkań od metraŝu - naleŝy do klasy modeli nieliniowych. - weryfikację empiryczną modelu przeprowadzono na przykładzie

Bardziej szczegółowo

TEST STATYSTYCZNY. Jeżeli hipotezę zerową odrzucimy na danym poziomie istotności, to odrzucimy ją na każdym większym poziomie istotności.

TEST STATYSTYCZNY. Jeżeli hipotezę zerową odrzucimy na danym poziomie istotności, to odrzucimy ją na każdym większym poziomie istotności. TEST STATYSTYCZNY Testem statystycznym nazywamy regułę postępowania rozstrzygająca, przy jakich wynikach z próby hipotezę sprawdzaną H 0 należy odrzucić, a przy jakich nie ma podstaw do jej odrzucenia.

Bardziej szczegółowo

Jednowskaźnikowy model Sharpe`a

Jednowskaźnikowy model Sharpe`a Uniwersytet Warszawski Wydział Nauk Ekonomicznych Milena Jamroziak i Paweł Androszczuk Model ekonometryczny Jednowskaźnikowy model Sharpe`a dla akcji Amici Praca zaliczeniowa napisana pod kierunkiem mgr

Bardziej szczegółowo

Materiał dla studentów Wprowadzenie do modeli ARMA/ARIMA (na przykładzie zwrotów z instrumentów finansowych)

Materiał dla studentów Wprowadzenie do modeli ARMA/ARIMA (na przykładzie zwrotów z instrumentów finansowych) Materiał dla studentów Wprowadzenie do modeli ARMA/ARIMA (na przykładzie zwrotów z instrumentów finansowych) (studium przypadku) Nazwa przedmiotu: ekonometria finansowa I (22204), analiza szeregów czasowych

Bardziej szczegółowo

Ćwiczenia IV

Ćwiczenia IV Ćwiczenia IV - 17.10.2007 1. Spośród podanych macierzy X wskaż te, których nie można wykorzystać do estymacji MNK parametrów modelu ekonometrycznego postaci y = β 0 + β 1 x 1 + β 2 x 2 + ε 2. Na podstawie

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący

Bardziej szczegółowo

S t a t y s t y k a, część 3. Michał Żmihorski

S t a t y s t y k a, część 3. Michał Żmihorski S t a t y s t y k a, część 3 Michał Żmihorski Porównanie średnich -test T Założenia: Zmienne ciągłe (masa, temperatura) Dwie grupy (populacje) Rozkład normalny* Równe wariancje (homoscedasticity) w grupach

Bardziej szczegółowo

EKONOMIA XL NAUKI HUMANISTYCZNO-SPOŁECZNE ZESZYT 391 TORUŃ Joanna Górka WŁASNOŚCI PROGNOSTYCZNE MODELI KLASY RCA *

EKONOMIA XL NAUKI HUMANISTYCZNO-SPOŁECZNE ZESZYT 391 TORUŃ Joanna Górka WŁASNOŚCI PROGNOSTYCZNE MODELI KLASY RCA * ACTA UNIVERSITATIS NICOLAI COPERNICI EKONOMIA XL NAUKI HUMANISTYCZNO-SPOŁECZNE ZESZYT 391 TORUŃ 2009 Uniwersytet Mikołaja Kopernika w Toruniu Katedra Ekonometrii i Statystyki Joanna Górka WŁASNOŚCI PROGNOSTYCZNE

Bardziej szczegółowo

Finansowe szeregi czasowe

Finansowe szeregi czasowe 24 kwietnia 2009 Modelem szeregu czasowego jest proces stochastyczny (X t ) t Z, czyli rodzina zmiennych losowych, indeksowanych liczbami całkowitymi i zdefiniowanych na pewnej przestrzeni probabilistycznej

Bardziej szczegółowo

Przyczynowość Kointegracja. Kointegracja. Kointegracja

Przyczynowość Kointegracja. Kointegracja. Kointegracja korelacja a związek o charakterze przyczynowo-skutkowym korelacja a związek o charakterze przyczynowo-skutkowym Przyczynowość w sensie Grangera Zmienna x jest przyczyną w sensie Grangera zmiennej y jeżeli

Bardziej szczegółowo

Regresja liniowa wprowadzenie

Regresja liniowa wprowadzenie Regresja liniowa wprowadzenie a) Model regresji liniowej ma postać: gdzie jest zmienną objaśnianą (zależną); są zmiennymi objaśniającymi (niezależnymi); natomiast są parametrami modelu. jest składnikiem

Bardziej szczegółowo

Proces modelowania zjawiska handlu zagranicznego towarami

Proces modelowania zjawiska handlu zagranicznego towarami Załącznik nr 1 do raportu końcowego z wykonania pracy badawczej pt. Handel zagraniczny w województwach (NTS2) realizowanej przez Centrum Badań i Edukacji Statystycznej z siedzibą w Jachrance na podstawie

Bardziej szczegółowo

Analiza finansowych szeregów czasowych w pakiecie R modele i metody

Analiza finansowych szeregów czasowych w pakiecie R modele i metody Analiza finansowych szeregów czasowych w pakiecie R modele i metody Monika Sikorska, Krzysztof Boczkowski Opracowanie firmy QuantUp 2013-02-23 Spis treści 1 Opis danych 1 2 Cechy charakterystyczne finansowych

Bardziej szczegółowo

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1.

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1. tel. 44 683 1 55 tel. kom. 64 566 811 e-mail: biuro@wszechwiedza.pl Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: gdzie: y t X t y t = 1 X 1

Bardziej szczegółowo

Na podstawie danych dotyczacych rocznych wydatków na pizze oszacowano parametry poniższego modelu:

Na podstawie danych dotyczacych rocznych wydatków na pizze oszacowano parametry poniższego modelu: Zadanie 1. Oszacowano model ekonometryczny liczby narodzin dzieci (w tys.) w Polsce w latach 2000 2010 w zależnosci od średniego rocznego wynagrodzenia (w ujęciu realnym, PLN), stopy bezrobocia (w punktach

Bardziej szczegółowo

Projekt zaliczeniowy z Ekonometrii i prognozowania Wyższa Szkoła Bankowa w Toruniu 2014/2015

Projekt zaliczeniowy z Ekonometrii i prognozowania Wyższa Szkoła Bankowa w Toruniu 2014/2015 Projekt zaliczeniowy z Ekonometrii i prognozowania Wyższa Szkoła Bankowa w Toruniu 2014/2015 Nr indeksu... Imię i Nazwisko... Nr grupy ćwiczeniowej... Imię i Nazwisko prowadzącego... 1. Specyfikacja modelu

Bardziej szczegółowo

Ekonometria. Prognozowanie ekonometryczne, ocena stabilności oszacowań parametrów strukturalnych. Jakub Mućk. Katedra Ekonomii Ilościowej

Ekonometria. Prognozowanie ekonometryczne, ocena stabilności oszacowań parametrów strukturalnych. Jakub Mućk. Katedra Ekonomii Ilościowej Ekonometria Prognozowanie ekonometryczne, ocena stabilności oszacowań parametrów strukturalnych Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Wykład 4 Prognozowanie, stabilność 1 / 17 Agenda

Bardziej szczegółowo

Co trzeba wiedzieć korzystając z modelu ARIMA i które parametry są kluczowe?

Co trzeba wiedzieć korzystając z modelu ARIMA i które parametry są kluczowe? Prognozowanie Co trzeba wiedzieć korzystając z modelu ARIMA Marta Płonka Predictive Solutions W trzecim już artykule dotyczącym szeregów czasowych przyjrzymy się modelom ARIMA. Dzisiaj skupimy się na metodzie

Bardziej szczegółowo

Przykład 2. Stopa bezrobocia

Przykład 2. Stopa bezrobocia Przykład 2 Stopa bezrobocia Stopa bezrobocia. Komentarz: model ekonometryczny stopy bezrobocia w Polsce jest modelem nieliniowym autoregresyjnym. Podobnie jak model podaŝy pieniądza zbudowany został w

Bardziej szczegółowo

4. Średnia i autoregresja zmiennej prognozowanej

4. Średnia i autoregresja zmiennej prognozowanej 4. Średnia i autoregresja zmiennej prognozowanej 1. Średnia w próbie uczącej Własności: y = y = 1 N y = y t = 1, 2, T s = s = 1 N 1 y y R = 0 v = s 1 +, 2. Przykład. Miesięczna sprzedaż żelazek (szt.)

Bardziej szczegółowo

STUDIA I STOPNIA EGZAMIN Z EKONOMETRII

STUDIA I STOPNIA EGZAMIN Z EKONOMETRII NAZWISKO IMIĘ Nr albumu Nr zestawu Zadanie 1. Dana jest macierz Leontiefa pewnego zamkniętego trzygałęziowego układu gospodarczego: 0,64 0,3 0,3 0,6 0,88 0,. 0,4 0,8 0,85 W okresie t stosunek zuŝycia środków

Bardziej szczegółowo

Ekonometria dynamiczna i finansowa Kod przedmiotu

Ekonometria dynamiczna i finansowa Kod przedmiotu Ekonometria dynamiczna i finansowa - opis przedmiotu Informacje ogólne Nazwa przedmiotu Ekonometria dynamiczna i finansowa Kod przedmiotu 11.5-WK-IiED-EDF-W-S14_pNadGenMOT56 Wydział Kierunek Wydział Matematyki,

Bardziej szczegółowo

Analiza szeregów czasowych: 6. Liniowe modele niestacjonarne

Analiza szeregów czasowych: 6. Liniowe modele niestacjonarne Analiza szeregów czasowych: 6. Liniowe modele niestacjonarne P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2007/08 Warunki stacjonarności modelu AR(p) y n = β 1 y n 1 + β 2 y n 2 + + β

Bardziej szczegółowo

Brunon R. Górecki. Ekonometria. podstawy teorii i praktyki. Wydawnictwo Key Text

Brunon R. Górecki. Ekonometria. podstawy teorii i praktyki. Wydawnictwo Key Text Brunon R. Górecki Ekonometria podstawy teorii i praktyki Wydawnictwo Key Text Darmowy fragment Darmowy fragment Darmowy fragment Wydawnictwo Key Text Recenzent prof. dr hab. Jan B. Gajda Opracowanie graficzne

Bardziej szczegółowo

Model regresji wielokrotnej Wykład 14 ( ) Przykład ceny domów w Chicago

Model regresji wielokrotnej Wykład 14 ( ) Przykład ceny domów w Chicago Model regresji wielokrotnej Wykład 14 (4.06.2007) Przykład ceny domów w Chicago Poniżej są przedstawione dane dotyczące cen domów w Chicago (źródło: Sen, A., Srivastava, M., Regression Analysis, Springer,

Bardziej szczegółowo

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej 7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej Definicja 1 n-elementowa losowa próba prosta nazywamy ciag n niezależnych zmiennych losowych o jednakowych rozkładach

Bardziej szczegółowo

Metody Ilościowe w Socjologii

Metody Ilościowe w Socjologii Metody Ilościowe w Socjologii wykład 2 i 3 EKONOMETRIA dr inż. Maciej Wolny AGENDA I. Ekonometria podstawowe definicje II. Etapy budowy modelu ekonometrycznego III. Wybrane metody doboru zmiennych do modelu

Bardziej szczegółowo

Analiza szeregów czasowych: 5. Liniowe modele stochastyczne

Analiza szeregów czasowych: 5. Liniowe modele stochastyczne Analiza szeregów czasowych: 5. Liniowe modele stochastyczne P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2006/07 Dwa rodzaje modelowania 1. Modelowanie z pierwszych zasad. Znamy prawa

Bardziej szczegółowo

Prognozowanie i Symulacje. Wykład I. Matematyczne metody prognozowania

Prognozowanie i Symulacje. Wykład I. Matematyczne metody prognozowania Prognozowanie i Symulacje. Wykład I. e-mail:e.kozlovski@pollub.pl Spis treści Szeregi czasowe 1 Szeregi czasowe 2 3 Szeregi czasowe Definicja 1 Szereg czasowy jest to proces stochastyczny z czasem dyskretnym

Bardziej szczegółowo

EKONOMETRIA STOSOWANA PRZYKŁADOWE ZADANIA EGZAMINACYJNE

EKONOMETRIA STOSOWANA PRZYKŁADOWE ZADANIA EGZAMINACYJNE EKONOMETRIA STOSOWANA PRZYKŁADOWE ZADANIA EGZAMINACYJNE ZADANIE 1 Oszacowano zależność między luką popytowa a stopą inflacji dla gospodarki niemieckiej. Wyniki estymacji są następujące: Estymacja KMNK,

Bardziej szczegółowo

Estymacja parametrów w modelu normalnym

Estymacja parametrów w modelu normalnym Estymacja parametrów w modelu normalnym dr Mariusz Grządziel 6 kwietnia 2009 Model normalny Przez model normalny będziemy rozumieć rodzine rozkładów normalnych N(µ, σ), µ R, σ > 0. Z Centralnego Twierdzenia

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 8

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 8 Stanisław Cichocki Natalia Nehrebecka Zajęcia 8 1. Testy diagnostyczne 2. Testowanie prawidłowości formy funkcyjnej modelu 3. Testowanie normalności składników losowych 4. Testowanie stabilności parametrów

Bardziej szczegółowo

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16 Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego

Bardziej szczegółowo

Wprowadzenie do teorii ekonometrii. Wykład 1 Warunkowa wartość oczekiwana i odwzorowanie liniowe

Wprowadzenie do teorii ekonometrii. Wykład 1 Warunkowa wartość oczekiwana i odwzorowanie liniowe Wprowadzenie do teorii ekonometrii Wykład 1 Warunkowa wartość oczekiwana i odwzorowanie liniowe Zajęcia Wykład Laboratorium komputerowe 2 Zaliczenie EGZAMIN (50%) Na egzaminie obowiązują wszystkie informacje

Bardziej szczegółowo

Analiza wariancji - ANOVA

Analiza wariancji - ANOVA Analiza wariancji - ANOVA Analiza wariancji jest metodą pozwalającą na podział zmienności zaobserwowanej wśród wyników eksperymentalnych na oddzielne części. Każdą z tych części możemy przypisać oddzielnemu

Bardziej szczegółowo

Analiza autokorelacji

Analiza autokorelacji Analiza autokorelacji Oblicza się wartości współczynników korelacji między y t oraz y t-i (dla i=1,2,...,k), czyli współczynniki autokorelacji różnych rzędów. Bada się statystyczną istotność tych współczynników.

Bardziej szczegółowo

EKONOMETRYCZNE MODELE KURSÓW WALUTOWYCH

EKONOMETRYCZNE MODELE KURSÓW WALUTOWYCH Monografie i Opracowania 547 Ewa Marta Syczewska EKONOMETRYCZNE MODELE KURSÓW WALUTOWYCH Warszawa 2007 Szkoła Główna Handlowa w Warszawie Wprowadzenie 15 Przegląd funkcjonowania kursów walutowych... 15

Bardziej szczegółowo

Kolokwium ze statystyki matematycznej

Kolokwium ze statystyki matematycznej Kolokwium ze statystyki matematycznej 28.05.2011 Zadanie 1 Niech X będzie zmienną losową z rozkładu o gęstości dla, gdzie 0 jest nieznanym parametrem. Na podstawie pojedynczej obserwacji weryfikujemy hipotezę

Bardziej szczegółowo

MODELE AUTOREGRESYJNE W PROGNOZOWANIU CEN ZBÓŻ W POLSCE

MODELE AUTOREGRESYJNE W PROGNOZOWANIU CEN ZBÓŻ W POLSCE METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XI/2, 2010, str. 254 263 MODELE AUTOREGRESYJNE W PROGNOZOWANIU CEN ZBÓŻ W POLSCE Agnieszka Tłuczak Zakład Ekonometrii i Metod Ilościowych, Wydział Ekonomiczny

Bardziej szczegółowo

Metoda Johansena objaśnienia i przykłady

Metoda Johansena objaśnienia i przykłady Metoda Johansena objaśnienia i przykłady Model wektorowej autoregresji rzędu p, VAR(p), ma postad gdzie oznacza wektor zmiennych endogenicznych modelu. Model VAR jest stabilny, jeżeli dla, tzn. wielomian

Bardziej szczegółowo

Analizy wariancji ANOVA (analysis of variance)

Analizy wariancji ANOVA (analysis of variance) ANOVA Analizy wariancji ANOVA (analysis of variance) jest to metoda równoczesnego badania istotności różnic między wieloma średnimi z prób pochodzących z wielu populacji (grup). Model jednoczynnikowy analiza

Bardziej szczegółowo

Event Driven Trading - Optymalizacja strategii

Event Driven Trading - Optymalizacja strategii INIME 17.03.2015 Wprowadzenie Motywacja: Delta = 1, Delta2 = 71 EURUSD 1.3630 1.3635 1.3640 1.3645 29:00 30:00 31:00 32:00 33:00 2014 06 06 Delta = 78, Delta2 = 96 EURUSD 1.382 1.383 1.384 1.385 1.386

Bardziej szczegółowo

Krzysztof Piontek MODELOWANIE I PROGNOZOWANIE ZMIENNOŚCI INSTRUMENTÓW FINANSOWYCH

Krzysztof Piontek MODELOWANIE I PROGNOZOWANIE ZMIENNOŚCI INSTRUMENTÓW FINANSOWYCH Akademia Ekonomiczna im. Oskara Langego we Wrocławiu Wydział Zarządzania i Informatyki Krzysztof Piontek MODELOWANIE I PROGNOZOWANIE ZMIENNOŚCI INSTRUMENTÓW FINANSOWYCH rozprawa doktorska Promotor: prof.

Bardziej szczegółowo

KROK 6 ANALIZA FUNDAMENTALNA

KROK 6 ANALIZA FUNDAMENTALNA KROK 6 ANALIZA FUNDAMENTALNA Do tej pory skupialiśmy się na technicznej stronie procesu inwestycyjnego. Wiedza ta to jednak za mało, aby podejmować trafne decyzje inwestycyjne. Musimy zatem zmierzyć się

Bardziej szczegółowo

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com Analiza korelacji i regresji KORELACJA zależność liniowa Obserwujemy parę cech ilościowych (X,Y). Doświadczenie jest tak pomyślane, aby obserwowane pary cech X i Y (tzn i ta para x i i y i dla różnych

Bardziej szczegółowo

Projekt z Ekonometrii Dynamicznej

Projekt z Ekonometrii Dynamicznej Projekt z Ekonometrii Dynamicznej Tomasz Tymecki L.p. Nazwa 1 KGHM 2 ORBIS 3 FERRUM 4 VISTULA 5 BORYSZEW 6 MOSTOSTALZAB 7 BYTOM 8 FORTE 9 PRÓCHNIK 1 ŻYWIEC 11 Indeks WIG 12 Indeks WIG2 Spis treści I. Analiza

Bardziej szczegółowo

166 Wstęp do statystyki matematycznej

166 Wstęp do statystyki matematycznej 166 Wstęp do statystyki matematycznej Etap trzeci realizacji procesu analizy danych statystycznych w zasadzie powinien rozwiązać nasz zasadniczy problem związany z identyfikacją cechy populacji generalnej

Bardziej szczegółowo

Zaawansowana eksploracja danych - sprawozdanie nr 1 Rafał Kwiatkowski 89777, Poznań

Zaawansowana eksploracja danych - sprawozdanie nr 1 Rafał Kwiatkowski 89777, Poznań Zaawansowana eksploracja danych - sprawozdanie nr 1 Rafał Kwiatkowski 89777, Poznań 6.11.1 1 Badanie współzależności atrybutów jakościowych w wielowymiarowych tabelach danych. 1.1 Analiza współzależności

Bardziej szczegółowo

Ekonometria. Modelowanie szeregów czasowych. Stacjonarność. Testy pierwiastka jednostkowego. Modele ARDL. Kointegracja. Jakub Mućk

Ekonometria. Modelowanie szeregów czasowych. Stacjonarność. Testy pierwiastka jednostkowego. Modele ARDL. Kointegracja. Jakub Mućk Ekonometria Modelowanie szeregów czasowych. Stacjonarność. Testy pierwiastka jednostkowego. Modele ARDL. Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Ćwiczenia 5 & 6 Szaeregi czasowe 1

Bardziej szczegółowo

Ekonometria Wykład 5. Procesy stochastyczne, stacjonarność, integracja. Dr Michał Gradzewicz Katedra Ekonomii I KAE

Ekonometria Wykład 5. Procesy stochastyczne, stacjonarność, integracja. Dr Michał Gradzewicz Katedra Ekonomii I KAE Ekonometria Wykład 5. Procesy stochastyczne, stacjonarność, integracja Dr Michał Gradzewicz Katedra Ekonomii I KAE Ekonometria szeregów czasowych Procesy stochastyczne Stacjonarność i biały szum Niestacjonarność:

Bardziej szczegółowo

Regresja linearyzowalna

Regresja linearyzowalna 1 z 5 2007-05-09 23:22 Medycyna Praktyczna - portal dla lekarzy Regresja linearyzowalna mgr Andrzej Stanisz z Zakładu Biostatystyki i Informatyki Medycznej Collegium Medicum UJ w Krakowie Data utworzenia:

Bardziej szczegółowo

Wykorzystanie funkcji powiązań do pomiaru ryzyka rynkowego. Katarzyna Kuziak

Wykorzystanie funkcji powiązań do pomiaru ryzyka rynkowego. Katarzyna Kuziak Wykorzystanie funkcji powiązań do pomiaru ryzyka rynkowego Katarzyna Kuziak Cel: łączenie różnych rodzajów ryzyka rynkowego za pomocą wielowymiarowej funkcji powiązań 2 Ryzyko rynkowe W pomiarze ryzyka

Bardziej szczegółowo

Diagnostyka w Pakiecie Stata

Diagnostyka w Pakiecie Stata Karol Kuhl Zgodnie z twierdzeniem Gaussa-Markowa, estymator MNK w KMRL jest liniowym estymatorem efektywnym i nieobciążonym, co po angielsku opisuje się za pomocą wyrażenia BLUE Best Linear Unbiased Estimator.

Bardziej szczegółowo

Lepiej zapobiegać niż leczyć Diagnostyka regresji

Lepiej zapobiegać niż leczyć Diagnostyka regresji Anceps remedium melius quam nullum Lepiej zapobiegać niż leczyć Diagnostyka regresji Na tych zajęciach nauczymy się identyfikować zagrożenia dla naszej analizy regresji. Jednym elementem jest oczywiście

Bardziej szczegółowo

Etapy modelowania ekonometrycznego

Etapy modelowania ekonometrycznego Etapy modelowania ekonometrycznego jest podstawowym narzędziem badawczym, jakim posługuje się ekonometria. Stanowi on matematyczno-statystyczną formę zapisu prawidłowości statystycznej w zakresie rozkładu,

Bardziej szczegółowo

Testy nieparametryczne

Testy nieparametryczne Testy nieparametryczne Testy nieparametryczne możemy stosować, gdy nie są spełnione założenia wymagane dla testów parametrycznych. Stosujemy je również, gdy dane można uporządkować według określonych kryteriów

Bardziej szczegółowo

R ozkład norm alny Bardzo często używany do modelowania symetrycznych rozkładów zmiennych losowych ciągłych

R ozkład norm alny Bardzo często używany do modelowania symetrycznych rozkładów zmiennych losowych ciągłych R ozkład norm alny Bardzo często używany do modelowania symetrycznych rozkładów zmiennych losowych ciągłych Przykłady: Błąd pomiarowy Wzrost, wydajność Temperatura ciała Zawartość różnych składników we

Bardziej szczegółowo

ANALIZA REGRESJI SPSS

ANALIZA REGRESJI SPSS NLIZ REGRESJI SPSS Metody badań geografii społeczno-ekonomicznej KORELCJ REGRESJ O ile celem korelacji jest zmierzenie siły związku liniowego między (najczęściej dwoma) zmiennymi, o tyle w regresji związek

Bardziej szczegółowo

Współczynnik korelacji. Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ

Współczynnik korelacji. Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ Współczynnik korelacji Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ Własności współczynnika korelacji 1. Współczynnik korelacji jest liczbą niemianowaną 2. ϱ 1,

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Prawdopodobieństwo i statystyka 9.06.999 r. Zadanie. Rzucamy pięcioma kośćmi do gry. Następnie rzucamy ponownie tymi kośćmi, na których nie wypadły szóstki. W trzeciej rundzie rzucamy tymi kośćmi, na których

Bardziej szczegółowo

Właściwości testu Jarque-Bera gdy w danych występuje obserwacja nietypowa.

Właściwości testu Jarque-Bera gdy w danych występuje obserwacja nietypowa. Właściwości testu Jarque-Bera gdy w danych występuje obserwacja nietypowa. Paweł Strawiński Uniwersytet Warszawski Wydział Nauk Ekonomicznych 16 stycznia 2006 Streszczenie W artykule analizowane są właściwości

Bardziej szczegółowo

Zyskowność i statystyczna istotność reguł analizy technicznej

Zyskowność i statystyczna istotność reguł analizy technicznej Katarzyna Sagan nr albumu: 240006 Robert Chyliński nr albumu: 239779 Zyskowność i statystyczna istotność reguł analizy technicznej White's Reality Check Praca zaliczeniowa wykonana w ramach przedmiotu:

Bardziej szczegółowo