Wstęp do Optyki i Fizyki Materii SkondensowanejI

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wstęp do Optyki i Fizyki Materii SkondensowanejI"

Transkrypt

1 Wstęp do Optyki i Fizyki Materii SkondensowanejI Ciało stałe 2 Wydział Fizyki UW Jacek.Szczytko@fuw.edu.pl Piotr.Fita@fuw.edu.pl

2 Struktura krystaliczna Crystals B n t 1 A B A = CD = nt 1 = t cos φ j -j cos φ = n C A t 1 B D 2

3 Struktura krystaliczna Sieci Bravais Regularna Istnieje 14 możliwych sieci wypełniających przestrzeń. Sieci te noszą nazwę sieci Bravais. a b c 90 Tworzą one 7 układów krystalograficznych a b c 90 Tetragonalna Heksagonalna a b c Rombowa a b c 90 Romboedryczna a b c Jednoskośna a b c a b c Trójskośna 3

4 Struktura krystaliczna Sieć Bravais (Bravais lattice) 4

5 Struktura krystaliczna Bravais lattice Example: close packed structure hexagonal close-packed (HCP) Hexagonal lattice with basis fcc lattice 5

6 Funkcja korelacji Operator gęstości (number density operator) czyli ilości cząstek w jednostkowej objętości w miejscu x = x, y, z : n(x) δ x x α α Gęstość średnia to n x. W przypadku cieczy izotropowych i jednorodnych n x nie zależy od x. n(x) δ x x α α Jednak sam operator średnej gęstości nie odróżni np. cieczy i ciała stałego, potrzebna jest inna wielkość P.M. Chaikin, T.C. Lubensky - Principles of condensed matter physics 6

7 Funkcja korelacji Funkcja korelacji gęstości (correlation function of the density) można spotkać wiele definicji. Najażniejsza jest korelacja dwucząstkowa gęstości: C nn x 1, x 2 = n x 1 n x 2 = δ x 1 x α δ x 2 x α α,α (suma po wszystkich parach) funkcja dystrybucji par (pair distribution function) g x 1, x 2 g x 1, x 2 = C nn x 1, x 2 n x 1 n x 2 = = α α δ x 1 x α δ x 2 x α (suma po parach rozłącznych) P.M. Chaikin, T.C. Lubensky - Principles of condensed matter physics 7

8 Funkcja korelacji Należy wybrać zadaną konfigurację cząsteczek (rys. obok). Wybieramy środek osi (0,0,0) Całka n g x po elemencie objętości d n x w odległości x od środka układu współrzędnych jest ilością cząsteczek w tym elemencie objętości. Stąd g x można wyznaczyć licząc ilość cząsteczek w odległości x. Średnia tej ilości po (wielu) cząsteczkach umieszczonych w środku (przesuwamy środek!) podzielona przez n d n x daje g x Dla układów nieskorelowanych g x nie zależy od x, czyli : bo P.M. Chaikin, T.C. Lubensky - Principles of condensed matter physics 8

9 Funkcja korelacji W przypadku cieczy i gazów dla każdego R Model gazu doskonałego twardych rdzeni P.M. Chaikin, T.C. Lubensky - Principles of condensed matter physics 9

10 Funkcja korelacji W przypadku cieczy i gazów dla każdego R Argon Argon i model gazu doskonałego twardych rdzeni: P.M. Chaikin, T.C. Lubensky - Principles of condensed matter physics 10

11 Materia skondensowana Woda P.M. Chaikin, T.C. Lubensky - Principles of condensed matter physics 11

12 Materia skondensowana Aby jednoznacznie odpowiedzieć na pytanie, czy materia jest kryształem czy cieczą należy wprowadzić funkcję strukturalną, która reprezentowałaby średnią pozycję cząsteczek w przestrzeni - funkcję korelacji gęstości elektronowej G(R). G R = ρ x 0 ρ(x 0 + R) ρ 0 2 gdzie ρ 0 jest średnią gęstością elektronową materii W cieczy (jednowymiarowej), w której występuje tylko krótkozasięgowe uporządkowanie pozycyjne cząsteczek, wartość funkcji korelacji gęstości elektronowej zanika w przestrzeni wykładniczo: G R ~ cos q 0 R e R/ξ 12

13 Materia skondensowana W krysztale funkcję korelacji gęstości elektronowej można przedstawić jako sumę funkcji typu delta, odpowiadających odległościom obiektów w strukturze krystalicznej: G R jest funkcją o stałej amplitudzie (z i (R)) G R = z i (R)δ(R R i ) i 13

14 Materia skondensowana Dyfraktogram jest transformatą Fouriera funkcji G R i obrazuje on zależność intensywności sygnału od częstości przestrzennych q. Transformatą Fouriera funkcji korelacji krótkozasięgowej jest funkcja Lorentza: 1 I(q)~ 1 + (ξ(q q 0 )) 2 Szerokość sygnału Lorentza jest zależna od szybkości tłumienia x. Im mniejszy zakres korelacji x, tym szersze są uzyskiwane refleksy dyfrakcyjne. Ze względu na swą szerokość, obserwowane dla cieczy sygnały rentgenowskie, określane są jako dyfuzyjne. 14

15 Quasicrystals and non-crystalline mater Theoretical description of liquids, amorphous solids, glasses, quasicrystals - very complicated - no translational symmetry. Condensation: Short-range order (liquid, solid amorphous, glass) Long-range order (crystalline matter) Penrose tiling five-fold symmetry 15

16 Quasicrystals and non-crystalline mater Theoretical description of liquids, amorphous solids, glasses, quasicrystals - very complicated - no translational symmetry. Michal Krížek, Jakub Šolc, and Alena Šolcová Penrose tiling five-fold symmetry 16

17 Quasicrystals and non-crystalline mater Theoretical description of liquids, amorphous solids, glasses, quasicrystals - very complicated - no translational symmetry. 17

18 Quasicrystals and non-crystalline mater Theoretical description of liquids, amorphous solids, glasses, quasicrystals - very complicated - no translational symmetry. Condensation: Short-range order (liquid, solid amorphous, glass) Long-range order (crystalline matter) seven-fold symmetry Michal Krížek, Jakub Šolc, and Alena Šolcová 18

19 Quasicrystals and non-crystalline mater Theoretical description of liquids, amorphous solids, glasses, quasicrystals - very complicated - no translational symmetry. molten mixture of aluminium and manganese under an electron microscope 19

20 Quasicrystals and non-crystalline mater Opis teoretyczny cieczy, ciał amorficznych, szkieł, kwazikryształów bardzo skomplikowany brak symetrii translacyjnej. The Madrasa al-mustansiriyya in Baghdad, Iraq (1233) 20

21 Dov Levine, J. Steinhardt PRB 34, 596 (1986) Quasicrystals and non-crystalline mater Theoretical description of liquids, amorphous solids, glasses, quasicrystals - very complicated - no translational symmetry. als-although-chemists-initially An alloy of aluminum, copper, and iron showed clear evidence of naturally occurring quasicrystals. 21

22 Kondensacja Theoretical description of liquids, amorphous solids, glasses, quasicrystals - very complicated - no translational symmetry. Condensation: Short-range order (liquid, solid amorphous, glass) Long-range order (crystalline matter) 22

23 Wskaźniki płaszczyzn The crystalline structure is studied by means of the diffraction of photons, neutrons, electrons or other light particles 23

24 Dyfrakcja 1912 Max von Laue zauważył, że długości fali promieniowania X są porównywalne z odległościami międzyatomowymi w krysztale. Sugestia ta została szybko potwierdzona przez Waltera Friedricha i Paula Knippinga Model kryształu. Zbiór odbijających równoległych płaszczyzn o odległościach między płaszczyznowych d 2dsinθ = nλ William Lawrence Bragg (son) and William Henry Bragg (father), 1913 Max von Laue e.g. λ=1,54 Å, d = 4 Å, kryształ o symetrii regularnej, pierwszy refleks θ = 11 P. Atkins 24

25 Dyfrakcja Brehmsstrahlung promieniowanie hamowania "braking radiation" or "deceleration radiation" continuous spectrum 25

26 Dyfrakcja characteristic spectrum 26

27 methoda Lauego Kryształ oświetlony jest światłem białym. W wyniku rozproszenia fale o różnych długościach zostają rozproszone w różnych kierunkach. Otrzymujemy na kliszy różne punkty dla różnych kolorów (długości fali). Układ plamek ma symetrię taką jak kierunek w krysztale, wzdłuż którego pada fala 27

28 Quasicrystals and non-crystalline mater Theoretical description of liquids, amorphous solids, glasses, quasicrystals - very complicated - no translational symmetry. Condensation: Short-range order (liquid, solid amorphous, glass) Long-range order (crystalline matter) Penrose tiling 28

29 methoda Debaye-Scherera Peter Joseph Debye Paul Scherrer

30 methoda Debaye-Scherera Badanym ośrodkiem jest proszek z chaotyczna orientacją kryształów w przestrzeni. Oświetla się go falą monochromatyczną. Rozproszenie na różnie zorientowanych kryształach powoduje powstanie na kliszy łuków odpowiadających płaszczyznom, na których możliwe było ugięcie promienia 30

31 Atomic form factor (czynnik atomowy) NaCl KCl P. Atkins Both salts have the same crystal structure, but different diffraction, why? 31

32 Atomic form factor (czynnik atomowy) NaCl KCl P. Atkins Both salts have the same crystal structure, but different diffraction, why? 32

33 Atomic form factor (czynnik atomowy) Rozpraszanie elastyczne na gazie atomowym. Rozprasza chmura elektronowa: i.e. lokalna gęstość elektronów ρ Ԧξ k = k = k Δ 1 = ξ cos α = ξ k Ԧξ kξ = k Ԧξ k Δ 2 = ξ cos α = ξ k Ԧξ kξ = k Ԧξ k Δ = Δ 2 Δ 1 φ = 2πΔ λ = k k Ԧξ k = kδ = Δk Ԧξ = Δk Ԧξ k 33

34 Atomic form factor (czynnik atomowy) Δ = Δ 2 Δ 1 φ = 2πΔ λ = k k Ԧξ k = kδ = Δk Ԧξ = Δk Ԧξ k Ψ 0 = A r exp i k Ԧr ωt ρ e Ԧ ξ = 0 Gęstość ładunku w Ԧξ = 0 Ψ Ԧξ = A r exp i k Ԧr ωt Δk Ԧξ ρ e Ԧξ Fala rozproszona Ψ Ԧξ d Ԧξ = A r exp i k Ԧr ωt ρ e Ԧ ξ exp iδk Ԧξ d Ԧξ Gęstość ładunku Atomic form factor f = 1 e න ρ e Ԧ ξ exp iδk Ԧξ d Ԧξ 34

35 Atomic form factor (czynnik atomowy) Np. rozkład elektronów o symetrii kulistej f = 1 e න ρ e ξ Ԧ exp iδk Ԧξ d Ԧξ = 1 e 2π න ρ e ξ Ԧ exp iδk Ԧξ ξ 2 d cos θ dξ = 2π e න ξ2 ρ e Ԧξ exp Δkξ exp Δkξ iδkξ dξ = 4π e න ξ2 ρ e Ԧξ sin Δkξ Δkξ dξ Dla małych kątów rozproszeń Δkξ 0 oraz f = Z Atomowy czynnik rozpraszania f oznacza stosunek amplitudy promieniowania rozproszonego przez rzeczywisty rozkład elektronów w atomie do amplitudy promieniowania rozproszonego przez jeden elektron punktowy. Atomic form factor f = 1 e න ρ e Ԧ ξ exp iδk Ԧξ d 3 ξ 35

36 Atomic form factor (czynnik atomowy) For small angles of scattering ef = Q (total charge) f = 1 e න ρ e Ԧ ξ exp iδk Ԧξ d 3 ξ 36

37 Atomic form factor (czynnik atomowy) f = 1 e න ρ e Ԧ ξ exp iδk Ԧξ d 3 ξ 37

38 Fala rozproszona na jednym atomie: j Ψ = A e i k Ԧr ωt f j Fala rozproszona na wszystkich atomach (w kierunku k ): R 0j Baza R nj = R 0j + T 38

39 Fala rozproszona na jednym atomie: j Ψ = A e i k Ԧr ωt f j Fala rozproszona na wszystkich atomach (w kierunku k ): Ψ = A e i k Ԧr ωt f j e iδkr nj n j Δk = k k Period of the lattice Atoms in basis R 0j Baza R nj = R 0j + T 39

40 Fala rozproszona na jednym atomie: j Ψ = A e i k Ԧr ωt f j Fala rozproszona na wszystkich atomach (w kierunku k ): Ψ = A e i k Ԧr ωt f j e iδkr nj n j Δk = k k Atomy w bazie R 0j Baza R nj = R 0j + T 40

41 Fala rozproszona na jednym atomie: j Ψ = A e i k Ԧr ωt f j Fala rozproszona na wszystkich atomach (w kierunku k ): Ψ = A e i k Ԧr ωt f j e iδkr nj n j Δk = k k Atomy w bazie Period sieci R 0j Baza R nj = R 0j + T 41

42 Fala rozproszona na jednym atomie: j Ψ = A e i k Ԧr ωt f j Fala rozproszona na wszystkich atomach (w kierunku k ): Ψ = A e i k Ԧr ωt f j e iδk R 0j+T n j Δk = k k Atomy w bazie Period sieci R 0j Baza R nj = R 0j + T 42

43 Fala rozproszona na jednym atomie: j Ψ = A e i k Ԧr ωt f j Fala rozproszona na wszystkich atomach (w kierunku k ): Ψ = A e i k Ԧr ωt f j e iδk R0j+T = n j T = n 1 Ԧt 1 + n 2 Ԧt 2 + n 3 Ԧt 3 = Ae i k Ԧr ωt f j e iδk R 0j e iδk T = n j 43

44 Fala rozproszona na jednym atomie: j Ψ = A e i k Ԧr ωt f j Fala rozproszona na wszystkich atomach (w kierunku k ): Ψ = A e i k Ԧr ωt f j e iδk R0j+T = n j T = n 1 Ԧt 1 + n 2 Ԧt 2 + n 3 Ԧt 3 = Ae i k Ԧr ωt f j e iδk R 0j e iδk T = n j = Ae i k Ԧr ωt f j e iδk R 0j j e iδk n 1t Ԧ 1 +n 2 Ԧt 2 +n 3 Ԧt 3 = n 44

45 Fala rozproszona na jednym atomie: j Ψ = A e i k Ԧr ωt f j Fala rozproszona na wszystkich atomach (w kierunku k ): Ψ = A e i k Ԧr ωt f j e iδk R0j+T = n j T = n 1 Ԧt 1 + n 2 Ԧt 2 + n 3 Ԧt 3 = Ae i k Ԧr ωt f j e iδk R 0j e iδk T = n j = Ae i k Ԧr ωt f j e iδk R 0j j e iδk n 1t Ԧ 1 +n 2 Ԧt 2 +n 3 Ԧt 3 = n = Ae i k Ԧr ωt f j e iδk R 0j j n 1 e iδk n1 Ԧt1 n 2 e iδk n2 Ԧt2 n 3 e iδk n3 Ԧt3 45

46 Fala rozproszona na jednym atomie: j Ψ = A e i k Ԧr ωt f j Fala rozproszona na wszystkich atomach (w kierunku k ): Ψ = A e i k Ԧr ωt f j e iδk R0j+T = n j T = n 1 Ԧt 1 + n 2 Ԧt 2 + n 3 Ԧt 3 = Ae i k Ԧr ωt f j e iδk R 0j e iδk T = n j = Ae i k Ԧr ωt f j e iδk R 0j j e iδk n 1t Ԧ 1 +n 2 Ԧt 2 +n 3 Ԧt 3 = n = Ae i k Ԧr ωt f j e iδk R 0j j n 1 e iδk n1 Ԧt1 n 2 e iδk n2 Ԧt2 n 3 e iδk n3 Ԧt3 Czynnik struktury S G S G = න dvρ R e iδkr cell 46

47 Maksymalna intensywność n 1 e iδk n1 Ԧt1 Kiedy? n 2 e iδk n2 Ԧt2 n 3 e iδk n3 Ԧt3 T = n 1 Ԧt 1 + n 2 Ԧt 2 + n 3 Ԧt 3 47

48 Maksymalna intensywność n 1 e iδk n1 Ԧt1 n 2 e iδk n2 Ԧt2 n 3 e iδk n3 Ԧt3 Kiedy e iδk n 1 Ԧ t 1 = 1 ΔkԦt 1 = 2πh ΔkԦt 2 = 2πk ΔkԦt 3 = 2πl Warunki Lauego T = n 1 Ԧt 1 + n 2 Ԧt 2 + n 3 Ԧt 3 48

49 Maksymalna intensywność n 1 e iδk n1 Ԧt1 n 2 e iδk n2 Ԧt2 n 3 e iδk n3 Ԧt3 Kiedy e iδk n 1 Ԧ t 1 = 1 ΔkԦt 1 = 2πh ΔkԦt 2 = 2πk ΔkԦt 3 = 2πl Warunki Lauego T = n 1 Ԧt 1 + n 2 Ԧt 2 + n 3 Ԧt 3 Δk G = h Ԧg 1 + k Ԧg 2 + l Ԧg 3 Ԧg i Ԧt j = 2πδ ij Ԧg i = 2π a i Ԧg i = 2π Ԧt i Ԧt j Ԧt k Ԧt j Ԧt k Sieć odwrotna Structure factor S G S G = න dvρ R e i ԦGR cell 49

50 ΔkԦt 1 = 2πh ΔkԦt 2 = 2πk ΔkԦt 3 = 2πl Warunki Lauego sieć odwrotna Ԧg i Ԧt j = 2πδ ij Δk G = h Ԧg 1 + k Ԧg 2 + l Ԧg 3 T = n 1 Ԧt 1 + n 2 Ԧt 2 + n 3 Ԧt 3 Czynnik struktury S G S G = න dvρ R e i ԦGR cell Geometryczny czynnik strukturalny S G f j e iδk R 0j j = f j e i ԦG R 0j j = f j e i2π n 1h+n 2 k+n 3 l j 50

51 Geometryczny czynnik strukturalny F h, k, l = f j e i2π n 1h+n 2 k+n 3 l j Przykład: Dla kryształu Li i kryształu TlBr (sieci typu bcc regularna przestrzennie centrowana) znaleźć możliwe wartości geometrycznego czynnika strukturalnego. r 1 = 0,0,0 r 2 = 1 2, 1 2, 1 2 F Li h, k, l = f j e i2π n 1h+n 2 k+n 3 l = f Li e i2π f Li e i2π 1 2 h+1 2 k+1 2 l j odd F Li h, k, l = f Li 1 + e iπ h+k+l F TlBr h, k, l = f j e i2π n 1h+n 2 k+n 3 l = f Tl e i2π f Br e i2π 1 2 h+1 2 k+1 2 l j odd iπ h+k+l F TlBr h, k, l = f Tl + f Br e even even 51

52 Neutrons Neutrony generowane w reaktorze są spowalniane w wyniku zderzeń z moderatorem (grafitem) do V = 4 km/s, co odpowiada energii E=0.08 ev a energia ta odpowiada λ = 1 Å Neutrony oddziaływają z : jądrami (można wyznaczyć gęstość prawdopodobieństwa znalezienia jąder), wyznaczyć krzywe dyspersyjne fononów momentami magnetycznymi jąder. E 2 2 2M M=1, g 0,28 ( o ) E(eV) 1 Å for E=0,08 ev J. Ginter 52

53 Elektrony Elektrony mają ładunek elektryczny i oddziaływają silnie z materią, wnikają bardzo płytko. Zjawisko ugięcia elektronów pozwala na badania strukturalne powierzchni oraz bardzo cienkich warstw E 2 2 2M M=0, g 12 ( o ) E(eV) 1 Å for E=144 ev T. Stacewicz & A. Witowski 53

54 Elektrony 54

55 Crystalography Electrons Rafał Dunin-Borkowski Magnetic domains in a thin cobalt film The colors in the image show the different directions of the magnetic field in a layer of polycrystalline cobalt that has a thickness of only 20 nm. The field of view is approximately 200 microns 55

56 Crystalography Electrons Rafał Dunin-Borkowski Magnetic nanotubes.the nanotubes were fabricated in the University of Cambridge Engineering department by Yasuhiko Hayashi, who grew them using a Cobalt-Palladium catalyst. This alloy remains present in the ends of the nanotubes, and is magnetic. The nanotubes you see here have a nm diameter. 56

57 Crystalography Electrons Rafał Dunin-Borkowski This image won First Prize in the "Science Close-Up" category in the Daily Telegraph Visions of Science competition. The image shows a multi-walled carbon nanotube, approximately 190 nm in diameter, containing a 35-nm-diameter iron crystal encapsulated inside it. Electron holography has been used to obtain a map of the magnetic field surrounding the iron particle, at a spatial resolution of approximately 5 nm. 57

58 Crystalography Electrons Rafał Dunin-Borkowski The image shows the magnetic field lines in a single magnetosome chains in a bacterial cell. The fine white lines are the magnetic field lines in the cell, which were measured using offaxis electron holography. 58

Ciała stałe. Ciała krystaliczne. Ciała amorficzne. Bardzo często mamy do czynienia z ciałami polikrystalicznymi, rzadko monokryształami.

Ciała stałe. Ciała krystaliczne. Ciała amorficzne. Bardzo często mamy do czynienia z ciałami polikrystalicznymi, rzadko monokryształami. Ciała stałe Ciała krystaliczne Ciała amorficzne Bardzo często mamy do czynienia z ciałami polikrystalicznymi, rzadko monokryształami. r T = Kryształy rosną przez regularne powtarzanie się identycznych

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej. Mateusz Goryca

Wstęp do Optyki i Fizyki Materii Skondensowanej. Mateusz Goryca Wstęp do Optyki i Fizyki Materii Skondensowanej Mateusz Goryca mgoryca@fuw.edu.pl Uniwersytet Warszawski 2015 Materia skondensowana OC 6 H 13 H 13 C 6 O OC 6 H 13 H 17 C 8 O H 17 C 8 O N N Cu O O H 21

Bardziej szczegółowo

Natęż. ężenie refleksu dyfrakcyjnego

Natęż. ężenie refleksu dyfrakcyjnego Natęż ężenie refleksu dyfrakcyjnego Wskaźnikowanie dyfraktogramów 1. Natężenie refleksu dyfrakcyjnego - od czego i jak zależy 1. Wskaźnikowanie dyfraktogramów -metoda różnic 3. Wygaszenia systematyczne

Bardziej szczegółowo

S. Baran - Podstawy fizyki materii skondensowanej Dyfrakcja na kryształach. Dyfrakcja na kryształach

S. Baran - Podstawy fizyki materii skondensowanej Dyfrakcja na kryształach. Dyfrakcja na kryształach S. Baran - Podstawy fizyki materii skondensowanej Dyfrakcja na kryształach Dyfrakcja na kryształach Warunki dyfrakcji źródło: Ch. Kittel Wstęp do fizyki..., rozdz. 2, rys. 6, str. 49 Konstrukcja Ewalda

Bardziej szczegółowo

STRUKTURA CIAŁA STAŁEGO

STRUKTURA CIAŁA STAŁEGO STRUKTURA CIAŁA STAŁEGO Podział ciał stałych Ciała - bezpostaciowe (amorficzne) Szkła, żywice, tłuszcze, niektóre proszki. Nie wykazują żadnych regularnych płaszczyzn ograniczających, nie można w nich

Bardziej szczegółowo

Uniwersytet Śląski Instytut Chemii Zakład Krystalografii. Laboratorium z Krystalografii. 2 godz. Komórki Bravais go

Uniwersytet Śląski Instytut Chemii Zakład Krystalografii. Laboratorium z Krystalografii. 2 godz. Komórki Bravais go Uniwersytet Śląski Instytut Chemii Zakład Krystalografii Laboratorium z Krystalografii 2 godz. Komórki Bravais go Cel ćwiczenia: kształtowanie umiejętności: przyporządkowywania komórek translacyjnych Bravais

Bardziej szczegółowo

Dyfrakcja. Dyfrakcja to uginanie światła (albo innych fal) przez drobne obiekty (rozmiar porównywalny z długością fali) do obszaru cienia

Dyfrakcja. Dyfrakcja to uginanie światła (albo innych fal) przez drobne obiekty (rozmiar porównywalny z długością fali) do obszaru cienia Dyfrakcja 1 Dyfrakcja Dyfrakcja to uginanie światła (albo innych fal) przez drobne obiekty (rozmiar porównywalny z długością fali) do obszaru cienia uginanie na szczelinie uginanie na krawędziach przedmiotów

Bardziej szczegółowo

Elementy teorii powierzchni metali

Elementy teorii powierzchni metali Prof. dr hab. Adam Kiejna Elementy teorii powierzchni metali Wykład dla studentów fizyki Rok akademicki 2017/18 (30 godz.) Wykład 1 Plan wykładu Struktura periodyczna kryształów, sieć odwrotna Struktura

Bardziej szczegółowo

Światło ma podwójną naturę:

Światło ma podwójną naturę: Światło ma podwójną naturę: przejawia własności fal i cząstek W. C. Roentgen ( Nobel 1901) Istnieje ciągłe przejście pomiędzy tymi własnościami wzdłuż spektrum fal elektromagnetycznych Dla niskich częstości

Bardziej szczegółowo

STRUKTURA KRYSTALICZNA

STRUKTURA KRYSTALICZNA PODSTAWY KRYSTALOGRAFII Struktura krystaliczna Wektory translacji sieci Komórka elementarna Komórka elementarna Wignera-Seitza Jednostkowy element struktury Sieci Bravais go 2D Sieci przestrzenne Bravais

Bardziej szczegółowo

MATERIA. = m i liczby całkowite. ciała stałe. - kryształy - ciała bezpostaciowe (amorficzne) - ciecze KRYSZTAŁY. Periodyczność

MATERIA. = m i liczby całkowite. ciała stałe. - kryształy - ciała bezpostaciowe (amorficzne) - ciecze KRYSZTAŁY. Periodyczność MATERIA ciała stałe - kryształy - ciała bezpostaciowe (amorficzne) - ciecze - gazy KRYSZTAŁY Periodyczność Kryształ (idealny) struktura zbudowana z powtarzających się w przestrzeni periodycznie identycznych

Bardziej szczegółowo

Krystalografia. Wykład VIII

Krystalografia. Wykład VIII Krystalografia Wykład VIII Plan wykładu Otrzymywanie i właściwow ciwości promieni rentgenowskich Sieć odwrotna Warunki dyfrakcji promieniowania rentgenowskiego 2 NajwaŜniejsze daty w analizie strukturalnej

Bardziej szczegółowo

Krystalografia. Analiza wyników rentgenowskiej analizy strukturalnej i sposób ich prezentacji

Krystalografia. Analiza wyników rentgenowskiej analizy strukturalnej i sposób ich prezentacji Krystalografia Analiza wyników rentgenowskiej analizy strukturalnej i sposób ich prezentacji Opis geometrii Symetria: kryształu: grupa przestrzenna cząsteczki: grupa punktowa Parametry geometryczne współrzędne

Bardziej szczegółowo

Metody dyfrakcyjne do wyznaczania struktury krystalicznej materiałów

Metody dyfrakcyjne do wyznaczania struktury krystalicznej materiałów Metody dyfrakcyjne do wyznaczania struktury krystalicznej materiałów prowadzący : dr inŝ. Marcin Małys (malys@mech.pw.edu.pl) dr inŝ. Wojciech Wróbel (wrobel@mech.pw.edu.pl) gdzie nas szykać: pok. 333

Bardziej szczegółowo

I.4 Promieniowanie rentgenowskie. Efekt Comptona. Otrzymywanie promieniowania X Pochłanianie X przez materię Efekt Comptona

I.4 Promieniowanie rentgenowskie. Efekt Comptona. Otrzymywanie promieniowania X Pochłanianie X przez materię Efekt Comptona r. akad. 004/005 I.4 Promieniowanie rentgenowskie. Efekt Comptona Otrzymywanie promieniowania X Pochłanianie X przez materię Efekt Comptona Jan Królikowski Fizyka IVBC 1 r. akad. 004/005 0.01 nm=0.1 A

Bardziej szczegółowo

WŁASNOŚCI CIAŁ STAŁYCH I CIECZY

WŁASNOŚCI CIAŁ STAŁYCH I CIECZY WŁASNOŚCI CIAŁ STAŁYCH I CIECZY Polimery Sieć krystaliczna Napięcie powierzchniowe Dyfuzja 2 BUDOWA CIAŁ STAŁYCH Ciała krystaliczne (kryształy): monokryształy, polikryształy Ciała amorficzne (bezpostaciowe)

Bardziej szczegółowo

BUDOWA KRYSTALICZNA CIAŁ STAŁYCH. Stopień uporządkowania struktury wewnętrznej ciał stałych decyduje o ich podziale

BUDOWA KRYSTALICZNA CIAŁ STAŁYCH. Stopień uporządkowania struktury wewnętrznej ciał stałych decyduje o ich podziale BUDOWA KRYSTALICZNA CIAŁ STAŁYCH Stopień uporządkowania struktury wewnętrznej ciał stałych decyduje o ich podziale na: kryształy ciała o okresowym regularnym uporządkowaniu atomów, cząsteczek w całej swojej

Bardziej szczegółowo

Laboratorium z Krystalografii. 2 godz.

Laboratorium z Krystalografii. 2 godz. Uniwersytet Śląski - Instytut Chemii Zakład Krystalografii ul. Bankowa 14, pok. 132, 40-006 Katowice tel. 0323591627, e-mail: ewa.malicka@us.edu.pl opracowanie: dr Ewa Malicka Laboratorium z Krystalografii

Bardziej szczegółowo

10. Analiza dyfraktogramów proszkowych

10. Analiza dyfraktogramów proszkowych 10. Analiza dyfraktogramów proszkowych Celem ćwiczenia jest zapoznanie się zasadą analizy dyfraktogramów uzyskiwanych z próbek polikrystalicznych (proszków). Zwykle dyfraktometry wyposażone są w oprogramowanie

Bardziej szczegółowo

Stany skupienia materii

Stany skupienia materii Stany skupienia materii Ciała stałe - ustalony kształt i objętość - uporządkowanie dalekiego zasięgu - oddziaływania harmoniczne Ciecze -słabo ściśliwe - uporządkowanie bliskiego zasięgu -tworzą powierzchnię

Bardziej szczegółowo

Metody badań monokryształów metoda Lauego

Metody badań monokryształów metoda Lauego Uniwersytet Śląski Instytut Chemii Zakład Krystalografii ul. Bankowa 14, pok. 132, 40 006 Katowice, Tel. 0323591627 e-mail: joanna_palion@poczta.fm opracowanie: mgr Joanna Palion Gazda Laboratorium z Krystalografii

Bardziej szczegółowo

Wykład 5. Komórka elementarna. Sieci Bravais go

Wykład 5. Komórka elementarna. Sieci Bravais go Wykład 5 Komórka elementarna Sieci Bravais go Doskonały kryształ składa się z atomów jonów, cząsteczek) uporządkowanych w sieci krystalicznej opisanej przez trzy podstawowe wektory translacji a, b, c,

Bardziej szczegółowo

Wykład 12 V = 4 km/s E 0 =.08 e V e = = 1 Å

Wykład 12 V = 4 km/s E 0 =.08 e V e  = = 1 Å Wykład 12 Fale materii: elektrony, neutrony, lekkie atomy Neutrony generowane w reaktorze są spowalniane w wyniku zderzeń z moderatorem (grafitem) do V = 4 km/s, co odpowiada energii E=0.08 ev a energia

Bardziej szczegółowo

Wstęp. Krystalografia geometryczna

Wstęp. Krystalografia geometryczna Wstęp Przedmiot badań krystalografii. Wprowadzenie do opisu struktury kryształów. Definicja sieci Bravais go i bazy atomowej, komórki prymitywnej i elementarnej. Podstawowe typy komórek elementarnych.

Bardziej szczegółowo

Rozwiązanie: Zadanie 2

Rozwiązanie: Zadanie 2 Podstawowe pojęcia. Definicja kryształu. Sieć przestrzenna i sieć krystaliczna. Osie krystalograficzne i jednostki osiowe. Ściana jednostkowa i stosunek osiowy. Położenie węzłów, prostych i płaszczyzn

Bardziej szczegółowo

Rentgenografia - teorie dyfrakcji

Rentgenografia - teorie dyfrakcji Rentgenografia - teorie dyfrakcji widmo promieniowania rentgenowskiego Widmo emisyjne promieniowania rentgenowskiego: -promieniowanie charakterystyczne -promieniowanie ciągłe (białe) Efekt naświetlenia

Bardziej szczegółowo

Dyfrakcja promieniowania rentgenowskiego

Dyfrakcja promieniowania rentgenowskiego 010-04-11 Dyfrakcja promieniowania rentgenowskiego Podstawowa metoda badania struktury ciał krystalicznych. Dyfrakcja Dyfrakcja: ugięcie fali na przeszkodzie małej w porównaniu z długością fali. Fala ugięta

Bardziej szczegółowo

Aby opisać strukturę krystaliczną, konieczne jest określenie jej części składowych: sieci przestrzennej oraz bazy atomowej.

Aby opisać strukturę krystaliczną, konieczne jest określenie jej części składowych: sieci przestrzennej oraz bazy atomowej. 2. Podstawy krystalografii Podczas naszych zajęć skupimy się przede wszystkim na strukturach krystalicznych. Kryształem nazywamy (def. strukturalna) substancję stałą zbudowaną z atomów, jonów lub cząsteczek

Bardziej szczegółowo

Elementy teorii powierzchni metali

Elementy teorii powierzchni metali prof. dr hab. Adam Kiejna Elementy teorii powierzchni metali Wykład 2 v.16 Sieci płaskie i struktura powierzchni 1 Typy sieci dwuwymiarowych (płaskich) Przecinając monokryształ wzdłuż jednej z płaszczyzn

Bardziej szczegółowo

Fizyka klasyczna. - Mechanika klasyczna prawa Newtona - Elektrodynamika prawa Maxwella - Fizyka statystyczna -Hydrtodynamika -Astronomia

Fizyka klasyczna. - Mechanika klasyczna prawa Newtona - Elektrodynamika prawa Maxwella - Fizyka statystyczna -Hydrtodynamika -Astronomia Fizyka klasyczna - Mechanika klasyczna prawa Newtona - Elektrodynamika prawa Maxwella - Fizyka statystyczna -Hydrtodynamika -Astronomia Zaczniemy historię od optyki W połowie XiX wieku Maxwell wprowadził

Bardziej szczegółowo

Metody badań monokryształów metoda Lauego

Metody badań monokryształów metoda Lauego Uniwersytet Śląski Instytut Chemii Zakład Krystalografii ul. Bankowa 14, pok. 132, 40 006 Katowice, Tel. 0323591627 e-mail: joanna_palion@poczta.fm opracowanie: mgr Joanna Palion Gazda Laboratorium z Krystalografii

Bardziej szczegółowo

Monochromatyzacja promieniowania molibdenowej lampy rentgenowskiej

Monochromatyzacja promieniowania molibdenowej lampy rentgenowskiej Uniwersytet Śląski Instytut Chemii Zakładu Krystalografii ul. Bankowa 14, pok. 133, 40 006 Katowice tel. (032)359 1503, e-mail: izajen@wp.pl, opracowanie: dr Izabela Jendrzejewska Laboratorium z Krystalografii

Bardziej szczegółowo

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 2006 Instytut Fizyki Uniwersytetu Szczecińskiego Równania optyki półklasycznej Posłużymy się teraz równaniem (2.4), i Ψ t = ĤΨ ażeby wyprowadzić

Bardziej szczegółowo

FALE MATERII. De Broglie, na podstawie analogii optycznych, w roku 1924 wysunął hipotezę, że

FALE MATERII. De Broglie, na podstawie analogii optycznych, w roku 1924 wysunął hipotezę, że FAL MATRII De Broglie, na podstawie analogii optycznych, w roku 194 wysunął hipotezę, że cząstki materialne także charakteryzują się dualizmem korpuskularno-falowym. Hipoteza de Broglie a Cząstce materialnej

Bardziej szczegółowo

S. Baran - Podstawy fizyki materii skondensowanej Struktura krystaliczna. Struktura krystaliczna

S. Baran - Podstawy fizyki materii skondensowanej Struktura krystaliczna. Struktura krystaliczna S. Baran - Podstawy fizyki materii skondensowanej Struktura krystaliczna Struktura krystaliczna Kwarc (SiO2) (źródło: Wikipedia) Piryt (FeS2) (źródło: Wikipedia) Halit/Sól kamienna (NaCl) (źródło: Wikipedia)

Bardziej szczegółowo

Oddziaływanie promieniowania X z materią. Podstawowe mechanizmy

Oddziaływanie promieniowania X z materią. Podstawowe mechanizmy Oddziaływanie promieniowania X z materią Podstawowe mechanizmy Promieniowanie od oscylującego elektronu Rozpraszanie Thomsona Dyspersja podejście klasyczne Fala padająca Wymuszony, tłumiony oscylator harmoniczny

Bardziej szczegółowo

Fizyka Ciała Stałego

Fizyka Ciała Stałego Wykład III Struktura krystaliczna Fizyka Ciała Stałego Ciała stałe można podzielić na: Krystaliczne, o uporządkowanym ułożeniu atomów lub molekuł tworzącym sieć krystaliczną. Amorficzne, brak uporządkowania,

Bardziej szczegółowo

Krystalografia. Dyfrakcja na monokryształach. Analiza dyfraktogramów

Krystalografia. Dyfrakcja na monokryształach. Analiza dyfraktogramów Krystalografia Dyfrakcja na monokryształach. Analiza dyfraktogramów Wyznaczanie struktury Pomiar obrazów dyfrakcyjnych Stworzenie modelu niezdeformowanej sieci odwrotnej refleksów Wybór komórki elementarnej

Bardziej szczegółowo

Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego

Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego Ćwiczenie 6 Elektronowy mikroskop transmisyjny w badaniach struktury metali metodą elektronograficzną Cel ćwiczenia: Celem ćwiczenia jest zbadanie struktury

Bardziej szczegółowo

Rejestracja dyfraktogramów polikrystalicznych związków. Wskaźnikowanie dyfraktogramów i wyznaczanie typu komórki Bravais go.

Rejestracja dyfraktogramów polikrystalicznych związków. Wskaźnikowanie dyfraktogramów i wyznaczanie typu komórki Bravais go. Uniwersytet Śląski Instytut Chemii Zakład Krystalografii ul. Bankowa 14, pok. 133, 40006 Katowice tel. 0323591503, email: izajen@wp.pl opracowanie: dr hab. Izabela Jendrzejewska Laboratorium z Krystalografii

Bardziej szczegółowo

Krystalografia. Dyfrakcja

Krystalografia. Dyfrakcja Krystalografia Dyfrakcja Podstawowe zagadnienia Rodzaje promieniowania używane w dyfrakcyjnych metodach badań struktur krystalicznych, ich źródła Fizyczne podstawy i warunki dyfrakcji Równania dyfrakcji:

Bardziej szczegółowo

S 2, C 2h,D 2h,D 3d,D 4h, D 6h, O h

S 2, C 2h,D 2h,D 3d,D 4h, D 6h, O h Są tylko 32 grupy punktowe, które spełniają ten warunek, Można je pogrupować w 7 typów grup (spośród omówionych 12- tu), które spełniają powyższe własności S 2, C 2h,D 2h,D 3d,D 4h, D 6h, O h nazywają

Bardziej szczegółowo

Układ regularny. Układ regularny. Możliwe elementy symetrii: Możliwe elementy symetrii: 3 osie 3- krotne. m płaszczyzny przekątne.

Układ regularny. Układ regularny. Możliwe elementy symetrii: Możliwe elementy symetrii: 3 osie 3- krotne. m płaszczyzny przekątne. Układ regularny Możliwe elementy symetrii: 3 osie 3- krotne m płaszczyzny równoległe do ścian m płaszczyzny przekątne 4 osie 4- krotne 2 osie 2- krotne Układ regularny Możliwe elementy symetrii: 3 osie

Bardziej szczegółowo

Laboratorium z Krystalografii. 2 godz.

Laboratorium z Krystalografii. 2 godz. Uniwersytet Śląski Instytut Chemii Zakład Krystalografii Laboratorium z Krystalografii 2 godz. Zbadanie zależności intensywności linii Kα i Kβ promieniowania charakterystycznego X emitowanego przez anodę

Bardziej szczegółowo

Układy krystalograficzne

Układy krystalograficzne Uniwersytet Śląski Instytut Chemii Zakład Krystalografii Laboratorium z Krystalografii 2 godz. Układy krystalograficzne Cel ćwiczenia: kształtowanie umiejętności wyboru komórki elementarnej i przyporządkowywania

Bardziej szczegółowo

Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI

Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI I. Zagadnienia do opracowania. 1. Otrzymywanie promieni rentgenowskich. 2. Budowa lampy rentgenowskiej. 3. Własności

Bardziej szczegółowo

Chemia nieorganiczna. Pierwiastki. niemetale Be. 27 Co. 28 Ni. 26 Fe. 29 Cu. 45 Rh. 44 Ru. 47 Ag. 46 Pd. 78 Pt. 76 Os.

Chemia nieorganiczna. Pierwiastki. niemetale Be. 27 Co. 28 Ni. 26 Fe. 29 Cu. 45 Rh. 44 Ru. 47 Ag. 46 Pd. 78 Pt. 76 Os. Chemia nieorganiczna 1. Układ okresowy metale i niemetale 2. Oddziaływania inter- i intramolekularne 3. Ciała stałe rodzaje sieci krystalicznych 4. Przewodnictwo ciał stałych Copyright 2000 by arcourt,

Bardziej szczegółowo

DYFRAKCYJNE METODY BADANIA STRUKTURY CIAŁ STAŁYCH

DYFRAKCYJNE METODY BADANIA STRUKTURY CIAŁ STAŁYCH LABORATORIUM INŻYNIERII MATERIAŁOWEJ W ENERGETYCE Ćwiczenie 7 DYFRAKCYJNE METODY BADANIA STRUKTURY CIAŁ STAŁYCH Instrukcja zawiera: 1. Cel ćwiczenia 2. Wprowadzenie teoretyczne; definicje i wzory 3. Opis

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 6 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15

Bardziej szczegółowo

Wykład 17: Optyka falowa cz.1.

Wykład 17: Optyka falowa cz.1. Wykład 17: Optyka falowa cz.1. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Zasada Huyghensa Christian Huygens 1678 r. pierwsza

Bardziej szczegółowo

Właściwości kryształów

Właściwości kryształów Właściwości kryształów Związek pomiędzy właściwościami, strukturą, defektami struktury i wiązaniami chemicznymi Skład i struktura Skład materiału wpływa na wszystko, ale głównie na: właściwości fizyczne

Bardziej szczegółowo

Zaawansowane Metody Badań Strukturalnych. Badania strukturalne materiałów Badania właściwości materiałów

Zaawansowane Metody Badań Strukturalnych. Badania strukturalne materiałów Badania właściwości materiałów Zaawansowane Metody Badań Strukturalnych Badania strukturalne materiałów Badania właściwości materiałów Zaawansowane Metody Badań Strukturalnych 1. Struktura próbki a metoda badań strukturalnych 2. Podział

Bardziej szczegółowo

Podstawy krystalografii

Podstawy krystalografii Podstawy krystalografii Kryształy Pojęcie kryształu znane było już w starożytności. Nazywano tak ciała o regularnych kształtach i gładkich ścianach. Już wtedy podejrzewano, że te cechy związane są ze szczególną

Bardziej szczegółowo

Wyznaczanie struktury krystalicznej i molekularnej wybranego związku koordynacyjnego w oparciu o rentgenowską analizę strukturalną

Wyznaczanie struktury krystalicznej i molekularnej wybranego związku koordynacyjnego w oparciu o rentgenowską analizę strukturalną INSTRUKCJA DO ĆWICZEŃ Wyznaczanie struktury krystalicznej i molekularnej wybranego związku koordynacyjnego w oparciu o rentgenowską analizę strukturalną I. Cel ćwiczenia Wyznaczenie struktury krystalicznej

Bardziej szczegółowo

STRUKTURA MATERIAŁÓW

STRUKTURA MATERIAŁÓW STRUKTURA MATERIAŁÓW ELEMENTY STRUKTURY MATERIAŁÓW 1. Wiązania miedzy atomami 2. Układ atomów w przestrzeni 3. Mikrostruktura 4. Makrostruktura 1. WIĄZANIA MIĘDZY ATOMAMI Siły oddziaływania między atomami

Bardziej szczegółowo

POLITECHNIKA WARSZAWSKA BADANIA STRUKTURY CIAŁ STAŁYCH

POLITECHNIKA WARSZAWSKA BADANIA STRUKTURY CIAŁ STAŁYCH POLITECHNIKA WARSZAWSKA INSTYTUT FIZYKI Laboratorium IIp. Bogdan Pałosz Do użytku wewnętrznego BADANIA STRUKTURY CIAŁ STAŁYCH 1. Zasadnicze typy struktury ciał stałych Pierwiastki i związki chemiczne występować

Bardziej szczegółowo

WSTĘP DO OPTYKI FOURIEROWSKIEJ

WSTĘP DO OPTYKI FOURIEROWSKIEJ 1100-4BW1, rok akademicki 018/19 WSTĘP DO OPTYKI FOURIEROWSKIEJ dr hab. Rafał Kasztelanic Wykład 4 Przestrzeń swobodna jako filtr częstości przestrzennych Załóżmy, że znamy rozkład pola na fale monochromatyczne

Bardziej szczegółowo

VII. CZĄSTKI I FALE VII.1. POSTULAT DE BROGLIE'A (1924) De Broglie wysunął postulat fal materii tzn. małym cząstkom przypisał fale.

VII. CZĄSTKI I FALE VII.1. POSTULAT DE BROGLIE'A (1924) De Broglie wysunął postulat fal materii tzn. małym cząstkom przypisał fale. VII. CZĄSTKI I FALE VII.1. POSTULAT DE BROGLIE'A (1924) De Broglie wysunął postulat fal materii tzn. małym cząstkom przypisał fale. Światło wykazuje zjawisko dyfrakcyjne. Rys.VII.1.Światło padające na

Bardziej szczegółowo

Arkusze zadań do ćwiczeń z podstaw fizyki ciała stałego Marek Izdebski

Arkusze zadań do ćwiczeń z podstaw fizyki ciała stałego Marek Izdebski Arkusze zadań do ćwiczeń z podstaw fizyki ciała stałego Marek Izdebski Spis treści Temat 1. Ciało stałe. Sieć krystaliczna doskonała. Symetrie kryształów.... 1 Temat. Sieć odwrotna. Kryształy rzeczywiste....

Bardziej szczegółowo

Wiązania chemiczne. Związek klasyfikacji ciał krystalicznych z charakterem wiązań atomowych. 5 typów wiązań

Wiązania chemiczne. Związek klasyfikacji ciał krystalicznych z charakterem wiązań atomowych. 5 typów wiązań Wiązania chemiczne Związek klasyfikacji ciał krystalicznych z charakterem wiązań atomowych 5 typów wiązań wodorowe A - H - A, jonowe ( np. KCl ) molekularne (pomiędzy atomami gazów szlachetnych i małymi

Bardziej szczegółowo

Rejestracja dyfraktogramów polikrystalicznych związków. Wskaźnikowanie dyfraktogramów i wyznaczanie typu komórki Bravais go.

Rejestracja dyfraktogramów polikrystalicznych związków. Wskaźnikowanie dyfraktogramów i wyznaczanie typu komórki Bravais go. Uniwersytet Śląski Instytut Chemii Zakład Krystalografii ul. Bankowa 14, pok. 133, 40006 Katowice tel. 0323591503, email: izajen@wp.pl opracowanie: dr hab. Izabela Jendrzejewska Laboratorium z Krystalografii

Bardziej szczegółowo

Podstawy fizyki kwantowej i budowy materii

Podstawy fizyki kwantowej i budowy materii Podstawy fizyki kwantowej i budowy materii prof. dr hab. Aleksander Filip Żarnecki Zakład Cząstek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej Wykład 5 7 listopada 2016 A.F.Żarnecki Podstawy

Bardziej szczegółowo

Budowa ciał stałych. sieć krystaliczna układy krystalograficzne sieć realna defekty wiązania w ciałach stałych

Budowa ciał stałych. sieć krystaliczna układy krystalograficzne sieć realna defekty wiązania w ciałach stałych Budowa ciał stałych sieć krystaliczna układy krystalograficzne sieć realna defekty wiązania w ciałach stałych Ciała stałe to substancje o regularnej, przestrzennej budowie krystalicznej, czyli regularnym

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii SkondensowanejI

Wstęp do Optyki i Fizyki Materii SkondensowanejI Wstęp do Optyki i Fizyki Materii SkondensowanejI 1100-3003 Ciało stałe 1+2 Wydział Fizyki UW Jacek.Szczytko@fuw.edu.pl Potr.Fita@fuw.edu.pl Wiązania chemiczne i molekuły Przybliżenie Borna Oppenheimera

Bardziej szczegółowo

Dyfrakcja rentgenowska (XRD) w analizie fazowej Wykład 2

Dyfrakcja rentgenowska (XRD) w analizie fazowej Wykład 2 Dyfrakcja rentgenowska () w analizie fazowej Wykład 2 1. Historia odkrycie promieniowania X i pierwsze eksperymenty z jego zastosowaniem. 2. Fale elektromagnetyczne. 3. Źródła promieniowania X, promieniowanie

Bardziej szczegółowo

Dyfrakcja rentgenowska (XRD) w analizie fazowej Wykład 2 i 3

Dyfrakcja rentgenowska (XRD) w analizie fazowej Wykład 2 i 3 Dyfrakcja rentgenowska () w analizie fazowej Wykład 2 i 3 1. Historia odkrycie promieniowania X i pierwsze eksperymenty z jego zastosowaniem. 2. Fale elektromagnetyczne. 3. Źródła promieniowania X, promieniowanie

Bardziej szczegółowo

Jak badać strukturę powierzchni?

Jak badać strukturę powierzchni? Jak badać strukturę powierzchni? Wykład - 12 15 Anim - ten kod oznacza, że na stronie znajdują się animacje niewidoczne w pliku pdf. Aby oglądnąć te animacje skopiuj zbiór z pokazem PowerPoint Z. Postawa,

Bardziej szczegółowo

III.4 Gaz Fermiego. Struktura pasmowa ciał stałych

III.4 Gaz Fermiego. Struktura pasmowa ciał stałych III.4 Gaz Fermiego. Struktura pasmowa ciał stałych Jan Królikowski Fizyka IVBC 1 Gaz Fermiego Gaz Fermiego to gaz swobodnych, nie oddziałujących, identycznych fermionów w objętości V=a 3. Poszukujemy N(E)dE

Bardziej szczegółowo

Topografia rentgenowska wybranych pseudoperowskitów ABCO 4

Topografia rentgenowska wybranych pseudoperowskitów ABCO 4 Topografia rentgenowska wybranych pseudoperowskitów ABCO 4 Agnieszka Malinowska Wydział Fizyki Politechniki Warszawskiej Instytut Technologii Materiałów Elektronicznych w Warszawie Praca pod kierunkiem:

Bardziej szczegółowo

Struktura energetyczna ciał stałych. Fizyka II dla EiT oraz E, lato

Struktura energetyczna ciał stałych. Fizyka II dla EiT oraz E, lato Struktura energetyczna ciał stałych Fizyka II dla EiT oraz E, lato 016 1 Struktura kryształu Doskonały kryształ składa się z uporządkowanych atomów w sieci krystalicznej, opisanej przez trzy podstawowe

Bardziej szczegółowo

Dyfrakcja fal elektromagnetycznych na sieciach przestrzennych

Dyfrakcja fal elektromagnetycznych na sieciach przestrzennych FOTON 13, Wiosna 016 43 1nm Dyfrakcja fal elektromagnetycznych na sieciach przestrzennych Jerzy Ginter Wyział Fizyki UW Dyfrakcja fal elektromagnetycznych na przestrzennych strukturach perioycznych jest

Bardziej szczegółowo

RENTGENOWSKA ANALIZA STRUKTURALNA

RENTGENOWSKA ANALIZA STRUKTURALNA LABORATORIUM INŻYNIERII MATERIAŁOWEJ W ENERGETYCE Ćwiczenie 5 Instrukcja zawiera: RENTGENOWSKA ANALIZA STRUKTURALNA 1. Cel ćwiczenia 2. Wprowadzenie teoretyczne; definicje i wzory 3. Sposób przygotowania

Bardziej szczegółowo

ostawa. Fizyka powierzchni i nanostruktury 4

ostawa. Fizyka powierzchni i nanostruktury 4 Obrazy dyfrakcyjne elektronów Jak badać strukturę powierzchni? Własności: Dyfrakcja elektronowa cd. Dyfrakcja zachowuje symetrię. Duże odległości w obrazie dyfrakcyjnym oznaczają małe odległości na powierzchni.

Bardziej szczegółowo

Wykład 3 Zjawiska transportu Dyfuzja w gazie, przewodnictwo cieplne, lepkość gazu, przewodnictwo elektryczne

Wykład 3 Zjawiska transportu Dyfuzja w gazie, przewodnictwo cieplne, lepkość gazu, przewodnictwo elektryczne Wykład 3 Zjawiska transportu Dyfuzja w gazie, przewodnictwo cieplne, lepkość gazu, przewodnictwo elektryczne W3. Zjawiska transportu Zjawiska transportu zachodzą gdy układ dąży do stanu równowagi. W zjawiskach

Bardziej szczegółowo

Wykład 1. Symetria Budowy Kryształów

Wykład 1. Symetria Budowy Kryształów Wykład Symetria Budowy Kryształów Ciała krystaliczne i amorficzne Każda substancja ciekła (z wyjątkiem helu) podczas oziębiania traci swoje własności ciekłe i przechodzi w ciało stałe. Jednakże proces

Bardziej szczegółowo

REZONANSY : IDENTYFIKACJA WŁAŚCIWOŚCI PRZEZ ANALIZĘ FAL PARCJALNYCH, WYKRESY ARGANDA

REZONANSY : IDENTYFIKACJA WŁAŚCIWOŚCI PRZEZ ANALIZĘ FAL PARCJALNYCH, WYKRESY ARGANDA REZONANSY : IDENTYFIKACJA WŁAŚCIWOŚCI PRZEZ ANALIZĘ FAL PARCJALNYCH, WYKRESY ARGANDA Opis układu cząsteczek w mechanice kwantowej: 1. Funkcja falowa, 2. Wektora stanu ψ. TRANSFORMACJE UKŁADU CZĄSTEK: 1.

Bardziej szczegółowo

Fizyka Ciała Stałego. Struktura krystaliczna. Struktura amorficzna

Fizyka Ciała Stałego. Struktura krystaliczna. Struktura amorficzna Wykład II Struktura krystaliczna Fizyka Ciała Stałego Ciała stałe można podzielić na: Amorficzne, brak uporządkowania, np. szkła; Krystaliczne, o uporządkowanym ułożeniu atomów lub molekuł tworzącym sieć

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 6 wykład: Piotr Fita pokazy: Jacek Szczytko ćwiczenia: Aneta Drabińska, Paweł Kowalczyk, Barbara Piętka, Michał Karpiński Wydział

Bardziej szczegółowo

Promieniowanie rentgenowskie. Podstawowe pojęcia krystalograficzne

Promieniowanie rentgenowskie. Podstawowe pojęcia krystalograficzne Promieniowanie rentgenowskie Podstawowe pojęcia krystalograficzne Krystalografia - podstawowe pojęcia Komórka elementarna (zasadnicza): najmniejszy, charakterystyczny fragment sieci przestrzennej (lub

Bardziej szczegółowo

Rozpraszanie i dyfrakcja promieniowania X

Rozpraszanie i dyfrakcja promieniowania X Rozpraszanie i dyfrakcja promieniowania X Przypomnienie rozpraszanie Thomsona na swobodnym elektronie Padająca fala płaska Emitowana jest fala kulista Klasyczny promień elektronu Będziemy używać przybliżenia

Bardziej szczegółowo

Dyslokacje w kryształach. ach. Keshra Sangwal Zakład Fizyki Stosowanej, Instytut Fizyki Politechnika Lubelska

Dyslokacje w kryształach. ach. Keshra Sangwal Zakład Fizyki Stosowanej, Instytut Fizyki Politechnika Lubelska Dyslokacje w kryształach ach Keshra Sangwal Zakład Fizyki Stosowanej, Instytut Fizyki Politechnika Lubelska I. Wprowadzenie do defektów II. Dyslokacje: Podstawowe pojęcie III. Własności mechaniczne kryształów

Bardziej szczegółowo

Dyslokacje w kryształach. ach. Keshra Sangwal, Politechnika Lubelska. Literatura

Dyslokacje w kryształach. ach. Keshra Sangwal, Politechnika Lubelska. Literatura Dyslokacje w kryształach ach Keshra Sangwal, Politechnika Lubelska I. Wprowadzenie do defektów II. Dyslokacje: podstawowe pojęcie III. Własności mechaniczne kryształów IV. Źródła i rozmnażanie się dyslokacji

Bardziej szczegółowo

Położenia, kierunki, płaszczyzny

Położenia, kierunki, płaszczyzny Położenia, kierunki, płaszczyzny Dalsze pojęcia Osie krystalograficzne; Parametry komórki elementarnej; Wskaźniki punktów kierunków i płaszczyzn; Osie krystalograficzne Osie krystalograficzne: układ osi

Bardziej szczegółowo

Struktura energetyczna ciał stałych. Fizyka II, lato

Struktura energetyczna ciał stałych. Fizyka II, lato Struktura energetyczna ciał stałych Fizyka II, lato 016 1 Stany związane Studnia potencjału o nieskończończonej głębokości jest idealizacją. W praktyce realizowalna jest skończona studnia, w której energia

Bardziej szczegółowo

Laboratorium z Krystalografii. 2 godz.

Laboratorium z Krystalografii. 2 godz. Uniwersytet Śląski Instytut Chemii Zakład Krystalografii Laboratorium z Krystalografii 2 godz. Zbadanie zależności intensywności linii Ka i Kb promieniowania charakterystycznego X emitowanego przez anodę

Bardziej szczegółowo

Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach

Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach Efekt Comptona. p f Θ foton elektron p f p e 0 p e Zderzenia fotonów

Bardziej szczegółowo

Wykład 6: Reprezentacja informacji w układzie optycznym; układy liniowe w optyce; podstawy teorii dyfrakcji

Wykład 6: Reprezentacja informacji w układzie optycznym; układy liniowe w optyce; podstawy teorii dyfrakcji Fotonika Wykład 6: Reprezentacja informacji w układzie optycznym; układy liniowe w optyce; podstawy teorii dyfrakcji Plan: pojęcie sygnału w optyce układy liniowe filtry liniowe, transformata Fouriera,

Bardziej szczegółowo

S. Baran - Podstawy fizyki materii skondensowanej Fonony. Fonony

S. Baran - Podstawy fizyki materii skondensowanej Fonony. Fonony Fonony Drgania płaszczyzn sieciowych podłużne poprzeczne źródło: Ch. Kittel Wstęp do fizyki..., rozdz. 4, rys. 2, 3, str. 118 Drgania płaszczyzn sieciowych Do opisu drgań sieci krystalicznej wystarczą

Bardziej szczegółowo

Chemia nieorganiczna. Copyright 2000 by Harcourt, Inc. All rights reserved.

Chemia nieorganiczna. Copyright 2000 by Harcourt, Inc. All rights reserved. Chemia nieorganiczna 1. Układ okresowy metale i niemetale 2. Oddziaływania inter- i intramolekularne 3. Ciała stałe rodzaje sieci krystalicznych 4. Przewodnictwo ciał stałych Pierwiastki 1 1 H 3 Li 11

Bardziej szczegółowo

Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI

Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI I. Zagadnienia do opracowania. 1. Otrzymywanie promieni rentgenowskich. 2. Budowa lampy rentgenowskiej. 3. Własności

Bardziej szczegółowo

falowa natura materii

falowa natura materii 10 listopada 2016 1 Fale de Broglie a Dyfrakcja promieni X 1895 promieniowanie X dopiero w 1912 dowód na ich falowa naturę - to promieniowanie elektromagnetyczne zjawiska falowe: ugięcia, dyfrakcji - trudne:

Bardziej szczegółowo

Fizyka Ciała Stałego. Struktura krystaliczna. Struktura amorficzna

Fizyka Ciała Stałego. Struktura krystaliczna. Struktura amorficzna Wykład II Struktura krystaliczna Fizyka Ciała Stałego Ciała stałe można podzielić na: Amorficzne, brak uporządkowania, np. szkła; Krystaliczne, o uporządkowanym ułożeniu atomów lub molekuł tworzącym sieć

Bardziej szczegółowo

STRUKTURA MATERIAŁÓW. Opracowanie: Dr hab.inż. Joanna Hucińska

STRUKTURA MATERIAŁÓW. Opracowanie: Dr hab.inż. Joanna Hucińska STRUKTURA MATERIAŁÓW Opracowanie: Dr hab.inż. Joanna Hucińska ELEMENTY STRUKTURY MATERIAŁÓW 1. Wiązania miedzy atomami 2. Układ atomów w przestrzeni 3. Mikrostruktura 4. Makrostruktura 1. WIĄZANIA MIĘDZY

Bardziej szczegółowo

Rezonanse magnetyczne oraz wybrane techniki pomiarowe fizyki ciała stałego

Rezonanse magnetyczne oraz wybrane techniki pomiarowe fizyki ciała stałego Paweł Szroeder Rezonanse magnetyczne oraz wybrane techniki pomiarowe fizyki ciała stałego Wykład IX Rentgenografia strukturalna (XRD) Dyfrakcja sformułowanie Bragga Kryształ traktujemy jako układ równoodległych

Bardziej szczegółowo

Wykład VI Dalekie pole

Wykład VI Dalekie pole Wykład VI Dalekie pole Schemat przypomnienie Musimy znać rozkład fali padającej u pad (x,y) w płaszczyźnie układu optycznego Musimy znać funkcję transmitancji układu optycznego t(x,y) Określamy falę właśnie

Bardziej szczegółowo

VI.5 Zderzenia i rozpraszanie. Przekrój czynny. Wzór Rutherforda i odkrycie jądra atomowego

VI.5 Zderzenia i rozpraszanie. Przekrój czynny. Wzór Rutherforda i odkrycie jądra atomowego VI.5 Zderzenia i rozpraszanie. Przekrój czynny. Wzór Rutherforda i odkrycie jądra atomowego Jan Królikowski Fizyka IBC 1 Przekrój czynny Jan Królikowski Fizyka IBC Zderzenia Oddziaływania dwóch (lub więcej)

Bardziej szczegółowo

Część A wprowadzenie do programu

Część A wprowadzenie do programu Część A wprowadzenie do programu Nieorganiczna baza danych (Inorganic Crystal Structure Database) zawiera wszystkie struktury związków nieorganicznych, ze współrzędnymi atomów, publikowane od roku 1913.

Bardziej szczegółowo

PRACOWNIA BIOFIZYKI DLA ZAAWANSOWANYCH

PRACOWNIA BIOFIZYKI DLA ZAAWANSOWANYCH PRACOWNIA BIOFIZYKI DLA ZAAWANSOWANYCH Ćwiczenia laboratoryjne dla studentów III roku kierunku Zastosowania fizyki w biologii i medycynie Biofizyka molekularna KRYSTALOGRAFIA RENTGENOWSKA WYZNACZANIE STRUKTUR

Bardziej szczegółowo

Prawo Bragga. Różnica dróg promieni 1 i 2 wynosi: s = CB + BD: CB = BD = d sinθ

Prawo Bragga. Różnica dróg promieni 1 i 2 wynosi: s = CB + BD: CB = BD = d sinθ Prawo Bragga Prawo Bragga Prawo Bragga Różnica dróg promieni 1 i 2 wynosi: s = CB + BD: CB = BD = d sinθ d - odległość najbliższych płaszczyzn, w których są ułożone atomy, równoległych do powierzchni kryształu,

Bardziej szczegółowo