BADANIE WŁAŚCIWOŚCI DYNAMICZNYCH REZYSTANCYJNYCH CZUJNIKÓW TEMPERATURY

Wielkość: px
Rozpocząć pokaz od strony:

Download "BADANIE WŁAŚCIWOŚCI DYNAMICZNYCH REZYSTANCYJNYCH CZUJNIKÓW TEMPERATURY"

Transkrypt

1 BADANIE WŁAŚCIWOŚCI DYNAMICZNYCH REZYSANCYJNYCH CZUJNIKÓW EMPERAURY. Cel ćwiczenia Celem ćwiczenia jes eksperymenalne wyznaczenie charakerysyk dynamicznych czujników ermomerycznych w różnych ośrodkach pomiarowych. W ćwiczeniu należy wyznaczyć paramery charakerysyczne badanych czujników wysępujące w dynamicznym równaniu przewarzania. Ponado należy wyznaczyć równanie odwrone czyli relację umożliwiającą przeliczenie wskazań czujnika (rezysancji na warość mierzoną (emperaurę wraz z określeniem warości błędów dynamicznych dla wybranych czasów pomiaru. W równolegle realizowane na sanowisku są badania porównawcze, w kórych przedmioem badań jes losowo wybrana grupa czujników emperaury ego samego ypu. Badania porównawcze czujników emperaury mają na celu wyznaczenie rozrzuu paramerów saycznych (charakerysyk aproksymacyjnych przykładowej losowej grupy czujników. Opis sanowiska i badań rozpoczyna się w punkcie Wprowadzenie W czasie usalania się warunków ermicznych w czujniku ermomeru podczas pomiarów sałej emperaury ( = cons. albo szybko zmieniającej się emperaury, sygnał wyjściowy ermomeru Y zmienia się w czasie: Y = f(,. Wedy wskazanie ermomeru (warość chwilowa dla uproszczenia opisywana Y nie odpowiada rzeczywisej warości mierzonej emperaury. Rzeczywisą warość mierzonej emperaury można wyznaczyć na podsawie wskazania ermomeru ylko wedy, gdy znany jes przebieg czasowy sygnału czujnika. Przebieg en może być określony na podsawie charakerysyki saycznej i dynamicznej czujnika. Przedsawiona na rys.b srukura modelu dynamicznego jes analogiem elekrycznego liniowego układu inercyjnego III-go rzędu. W układzie ym emperaura odpowiada napięciu elekrycznemu, srumień cieplny jes analogiem prądu elekrycznego, a rezysancje ermiczne i pojemności cieplne odpowiadają rezysancjom i pojemnościom elekrycznym. Można wykazać, iż warości wspomnianego modelu dynamicznego (rezysancja cieplna, rezysancja wnikania, pojemność cieplna są doświadczalnie wyznaczalne, jednakże ich warości nie są sałe i zależą od rodzaju (paramerów ośrodka oraz sopnia zużycia czujnika i obudowy. W prakyce doświadczalne wyznaczanie paramerów dynamicznych sosuje się częściej niż obliczanie eoreyczne z paramerów maeriałowych. Podejście eoreyczne wykorzysują projekanci osłon, obudów oraz inżynierowie procesów echnologicznych ze względu na inną proporcję nakładu pracy do koszów błędnych decyzji. Zgodnie z modelem procesu ransporu ciepła przedsawionym na rys. odpowiednim modelem maemaycznym jes inercja rzeciego rzędu. W prakyce doświadczalne wyznaczanie paramerów ak złożonego modelu jes rudne i obarczone sporymi błędami. Dlaego powszechnie sosowane są modele uproszczone dopasowane do porzeb i wymagań użykownika (odbiorcy a są o modele inercyjne pierwszego i drugiego rzędu. Wyznaczanie paramerów modelu należy rozpocząć od wyboru modelu na podsawie odpowiedzi skokowej, nasępnie należy oszacować wpływ nieliniowości układu moska

2 niezrównoważonego zasosowanego do pomiarów. Jeżeli jes o udział isony należy go wyeliminować przeliczając napięcie mierzone na rezysancję czujnika (wykorzysując odpowiednie równania moska. Osanim eapem jes wyznaczenie wzmocnienia saycznego oraz sałej/sałych czasowych za pomocą meody logarymicznej. Pamięać należy o unormowaniu czasowego przebiegu zarejesrowanego podczas pomiarów. a b Osłona q o R ho q i R hi q R h l q os q i i2 C ho C hi C h q o A A-A A c q o R o q ermorezysor R Warswa izolacyjna ermorezysor C o C Rys.. Szkic fragmenu konsrukcji czujnika rezysancyjnego a, model dynamiczny procesów cieplnych w czujniku b, zredukowany model dynamiczny c. Dla skoku narasającego i modelu pierwszego rzędu oblicza się funkcję przejścia h Y ( ( τ = = e a, nasępnie przekszałca się ją do posaci: z( = ln[ h( ] = YU τ Wykresem zależności z( jes prosa o współczynniku kierunkowym τ = 0,h = 0 pokazana na rys.2. przechodząca przez począek układu współrzędnych { ( } z( 0 z( 2 z z( 2 Rys.2. Przebieg zależności h( w przypadku czujnika o inercji I-go rzędu.

3 Biorąc dwie dowolne chwile czasu i 2 (najlepiej możliwie odległe lecz jeszcze na prosoliniowym odcinku wykresu na podsawie rys.2. oblicza się sałą czasową τ z 2 zależności: τ = = z z z ( ( 2 Jeśli przekszałcenie logarymiczne przebiegu czasowego odpowiedzi skokowej czujnika jes akie jak na rys.3 o można przyjąć że, mamy do czynienia z inercją II-go rzędu. Sosuje się wówczas model drugiego rzędu lub uproszczenie do modelu pierwszego rzędu z opóźnieniem τ op (inerpreację graficzną akiego opisu przedsawiono na rys.3. Decyzja zależy od obszaru zasosowań modelu i wymaganej dokładności. z a,0 z( z( z( Rys.3. Przebieg zależności z( przy inercji II-go rzędu. Na podsawie wykresu jak na rys.3 wyznacza się paramery czasowe: 2 za τ = oraz τ op = τ z( z( 2 za Należy zauważyć, że wyznaczanie charakerysyki dynamicznej na podsawie wykresu może być obarczone znacznym błędem wynikającym zwykle z małej rozdzielczości jego skali oraz z przyjmowania niedosaecznie dużej warości dla chwili zwłaszcza przy inercji wyższego rzędu niż pierwszy. Rozwiązaniem może być aproksymowanie odpowiednich fragmenów wykresu prosą regresji i odczyanie warości z równania prosej (prosa regresji powinna być asympoą wykresu jednakże dyskreny charaker danych i logarymiczne przekszałcenie powodują dużą niejednoznaczność dla czasów bliskich usaleniu się wskazań. 3. Sanowisko laboraoryjne Na rys.4 przedsawiono schema sanowiska laboraoryjnego do badania charakerysyki dynamicznej ermorezysorów. Badany czujnik (ermorezysor R umieszcza się w sposób skokowy w ośrodku pomiarowym o określonej emperaurze. emperaura ośrodka pomiarowego jes sabilizowana za pomocą naczynia

4 kalorymerycznego. W ćwiczeniu laboraoryjnym wykorzysuje się jako ośrodek pomiarowy ooczenie (powierze o emperaurze 0 oraz kąpiele wodne 2 o różnych emperaurach. Kąpiele e znajdują się w dwóch naczyniach. emperaurę kąpieli konroluje jes ermomerem 3. Badany ermorezysor R włączony jes w układ moska 4 zasilanego sabilizowanym napięciem U Z. Mierzonym sygnałem wyjściowym Y( jes napięcie nierównowagi moska U M. Ponieważ napięcie U M jes proporcjonalne do rezysancji R s czujnika o przebieg czasowy ego napięcia jes aki sam jak przebieg czasowy zmiany rezysancji czujnika. Rezysor R N w mosku pomiarowym służy do równoważenia moska (mosek zwykle równoważy się w emperaurze począkowej 0. W chwili zanurzenia czujnika w kąpieli rozpoczyna się auomaycznie proces pomiaru i rejesracji napięcia nierównowagi moska U M za pomocą mikroprocesorowego rejesraora współpracującego z kompuerem. Bieżące warości napięcia nierównowagi moska są zapisywane w kompuerze do pliku w formacie Excela oraz przedsawiane w posaci wykresu h( na ekranie moniora R s R 2 R N R U M A/D + Rejesraor ( µp U Z Zasilacz sab. Kompuer 2 Rys.4. Schema sanowiska do wyznaczania charakerysyki dynamicznej ermorezysorów w środowisku ciekłym. Zapisane w kompuerze wyniki pomiaru mogą być kopiowane na inne dyski (dyskieki i opracowywane dalej za pomocą innych urządzeń. W ćwiczeniu laboraoryjnym dokonuje się jedynie pomiaru charakerysyk dynamicznych badanych czujników rezysancyjnych zaś czynności związane z opracowaniem wyników pomiarów dokonuje się w późniejszym czasie. Badania właściwości dynamicznych czujnika mogą być dokonywane zarówno dodanim jak i ujemnym skokiem emperaury. Dodani skok emperaury realizuje się przenosząc szybko badany czujnik z ośrodka o niższej emperaurze do ośrodka o wyższej emperaurze. Ujemnym skok emperaury realizuje się ak samo lecz przy odwronej relacji emperaur ych ośrodków. Ze względu na właściwości pomiarowe przewornika analogowo-cyfrowego w układzie rejesraora cyfrowego należy zwracać uwagę na san równowagi moska pomiarowego przed rozpoczęciem rejesracji po wymianie czujnika badanego (napięcie U M na wejściu przewornika A/D powinno mieć dodanią polaryzację, najlepiej w kąpieli chłodnej wielkość wyjściową usalić bliską 0 mv.

5 4. Pyania konrolne. Podać inerpreację sałej czasowej czujnika 2. Czy w sanie usalonym wskazania dwóch ermomerów różniących się jedynie sałymi czasowymi będą jednakowe? Uzasadnić odpowiedź. 3. Czy wyższy rząd inercji czujnika oznacza większą sałą czasową? Uzasadnić odpowiedź. 4. Czy czas usalania się odpowiedzi skokowej czujnika zależy od rzędu jego inercji? Podać uzasadnienie odpowiedzi. 5. Czy sała czasowa czujnika emperaury od rodzaju ośrodka pomiarowego? 6. Jak wpływa konsrukcja czujnika emperaury na jego inercję? 7. Omówić wpływ właściwości cieplnych isonych elemenów konsrukcji czujnika na jego charakerysykę dynamiczną. 8. Dlaczego charakerysykę dynamiczną czujnika emperaury wyznacza się z pomiarów odpowiedzi skokowej? 9. Czy można wyznaczyć charakerysykę dynamiczna czujnika przy innych niż skokowe rodzajach wymuszenia? 0. Jaki jes związek maemaycznego modelu dynamicznego z budową czujnika? Uzasadnić odpowiedź.. Jak wpływa charakerysyka dynamiczna czujnika na dokładność pomiaru emperaury? Uzasadnić odpowiedź. 2. Czy właściwości cieplne elemenów konsrukcji czujnika rezysancyjnego mają wpływ na jego charakerysykę sayczną? 5. Program ćwiczenia. Przeprowadzić idenyfikacje przyrządów pomiarowych i badanych czujników na sanowisku laboraoryjnym. 2. Przyłączyć badany czujnik do zacisków układu moskowego (rys.2.25, włączyć napięcie zasilania moska i zrównoważyć mosek za pomocą rezysora dekadowego R N. Napięcie nierównowagi moska konrolować wolomierzem lub rejesraorem. Zanoować warości rezysancji w układzie moska pomiarowego. 3. Załączyć zasilanie grzejnika w naczyniu kalorymerycznym i po usabilizowaniu się emperaury kąpieli zmierzyć emperaurę kąpieli oraz ooczenia Uruchomić kompuer i wywołać program Dynamika ermomerów. 5. Ocenić meodą oględzin konsrukcję czujnika i wybrać w programie kompuera odpowiedni dla niej czas rejesracji odpowiedzi skokowej. 6. Uruchomić proces pomiaru i rejesracji napięcia nierównowagi U M. 7. Szybkim ruchem przenieść badany czujnik z ośrodka w, kórym się doychczas znajdował do ośrodka o innej emperaurze np. z ośrodka o emperaurze 0 do ośrodka o emperaurze noując jednocześnie czas zanurzenia ermomeru w nowym ośrodku. W en sposób zmierzyć odpowiedzi dla skoku dodaniego i ujemnego badanych czujników. Dokonać pomiaru odpowiedzi skokowych dla ego samego oraz różnych rodzajów ośrodka (woda-woda, powierze-woda i wodapowierze. 8. Skopiować wyniki pomiarów zapisanych w folderze Wyniki na własny nośnik.

6 9. Na podsawie zmierzonych odpowiedzi skokowych badanych czujników obliczyć oraz sporządzić wykresy funkcji h(. 0. Na podsawie wykresów określić rząd inercji badanych czujników oraz wyznaczyć ich sałe czasowe w powierzu oraz w wodzie według opisanych sposobów (meoda logarymiczna.. Wyznaczyć błędy dynamiczne jako różnice warości zmierzonej odpowiedzi skokowej czujników i warości obliczonych ze znalezionych charakerysyk dynamicznych. 2. Porównać wyznaczone charakerysyki z charakerysykami zmierzonymi oraz przeprowadzić dyskusję ich różnic. 3. Wnioski z pomiarów.. 6. Wprowadzenie do badań porównawczych W badaniach porównawczych ermomerów bardzo ważne jes zapewnienie im jednakowej emperaury. W ćwiczeniu laboraoryjnym wykorzysuje się do ego celu ermosayczną komorę klimayczną, w kórej umieszczono badane czujniki. Do badań przyjęo ermorezysory półprzewodnikowe ypu KY0. Badane ermorezysory umieszczono w masywnym bloku aluminiowym w celu wyrównania ich emperaury. Duża pojemność cieplna bloku zmniejsza wrażliwość układu pomiarowego na gwałowne zmiany emperaury zapewniając dobre łumienie oscylacji wynikających z pracy sabilizaora emperaury. Na sanowisku laboraoryjnym bada się charakerysyki emperaurowe rezysancji ermorezysorów w układzie dzielników rezysancyjnych mierząc spadki napięć na badanych ermorezysorach. Schema elekryczny układu pomiarowego do badań porównawczych ermorezysorów pokazano na rys.5. Zasilacz sabilizowany U VC R R 2... R n Przewornik pomiarowy Kompuer R R 2 R n U n. n 8 we /0bi A / C Komora ermosayczna Rys.5. Układ elekryczny do badań porównawczych ermorezysorów półprzewodnikowych. W układzie ym ermorezysor R wchodzi w skład badanych czujników oraz jednocześnie spełnia rolę ermomeru (spadek napięcia na ym czujniku wyskalowano

7 w sopniach Celsjusza w procesie wzorcowania za pomocą ermomeru laboraoryjnego. Ponado spadek napięcia na ym czujniku wykorzysywany jes do inicjacji procesu pomiaru spadków napięć na pozosałych czujnikach za pomocą przewornika pomiarowego A/C. Inicjacja przewornika A/C nasępuje w chwilach w, kórych spadek napięcia na ermorezysorze R osiąga warości odpowiadające przyjęym emperaurom pomiaru.. Z pomiarów orzymuje się charakerysyki ermiczne badanych czujników w formie abel warości zapisanych w kompuerze jako plik danych. W układzie pomiarowym (rys.5 rezysory R,..., R n znajdujące się poza komorą ermosayczną są rezysorami o wysokiej sabilności, kórych warości spełniają relację: R R2... Rn = R. Przy założeniu nominalnie jednakowych warunków pracy badanych czujników R,..., R n zmierzone charakerysyki posaci: U i ( ; i =,... n = f ϑ można ławo przekszałcić w charakerysyki ermiczne rezysancji: R i ( ; i =,... n = f ϑ przy czym R i wyznacza się z zależności: U i Ri = R U U i gdzie U napięcie zasilające dzielniki pomiarowe ( Ri, R i. Przykładowe przebiegi charakerysyk ermicznych rezysancji dwóch czujników R j i R k dowolnie wybranych spośród grupy czujników R,..., R n przedsawiono na sposób poglądowy na rys.6. R Τ R j (ϑ 2 R k (ϑ 2 i-y czujnik k-y czujnik R i-k ( ϑ 2 R k (ϑ R j (ϑ R i-k ( ϑ ϑ ϑ 2 ϑ Rys.6. Przykładowy przebieg charakerysyk ermicznych dwóch dowolnych czujników ego samego ypu ; R i-k (ϑ, 2 różnice rezysancji czujników

8 w emperaurach ϑ i ϑ 2. Miarą rozrzuu charakerysyk saycznych badanej grupy czujników w określonym zakresie emperaur ϑ min, ϑ max może być sosunek: δ r ( ϑ, ϑ min max = ± R i ( ϑ R( ϑ R( ϑ Max n gdzie R( ϑ = R ( n i ϑ. charakerysyka nominalna badanej grupy czujników. i= - Sposób wyznaczania różnic rezysancji: należy wyznaczać różnice R i-k (ϑ dla każdego czujnika względem średniej warości rezysancji wszyskich czujników grupy w emperaurze ϑ. Można akże wyznaczać charakerysyki rozrzuu paramerów poszczególnych czujników względem średniej charakerysyki aproksymacyjnej wyznaczonej meodą regresji równaniem zalecanym przez producena (współczynniki wyznaczyć z własnych pomiarów. 7. Pyania konrolne. Porównać charakerysyki oraz podsawowe paramery ermiczne różnych elekrycznych czujników emperaury. 2. Dlaczego w układzie pomiarowym jak na rys.5 korzysniej jes badać ermorezysory półprzewodnikowe niż ermorezysory mealowe np. P-00? 3. Porównać ermorezysory półprzewodnikowe i mealowe ze względu na czułość oraz liniowość charakerysyk ermicznych. 4. Naszkicować przykładowe charakerysyki czułości ermorezysorów - mealowego, półprzewodnikowego oraz ermisora w funkcji emperaury. 5. Czy przewodność cieplna bloku, w kórym umieszczono badane czujniki może mieć wpływ na dokładność wyznaczanych charakerysyk? Uzasadnić odpowiedź. 8. Program ćwiczenia. Dokonać rozpoznania układu pomiarowego (zwrócić uwagę na konsrukcję i usyuowanie bloku mealowego w, kórym umieszczone są badane czujniki w komorze ermosaycznej. 2. Przygoować sanowisko laboraoryjne do pracy (uruchomić kompuer na sanowisku laboraoryjnym i wywołać właściwy program. 3. Sprawdzić san komory ermosaycznej (jeśli jes ona nagrzana rozpocząć pomiary w warunkach sygnięcia - przy owarej komorze. 4. Uruchomić program komunikacyjny do pomiaru i rejesracji danych, naciśnięciem przycisku RESE wprowadzić przewornik pomiarowy w san goowości, wysyłając

9 znak spacji dokonać wyboru szybkości ransmisji, wybrać i wysłać do przewornika pomiarowego odpowiedni program pomiarów, rozpocząć przechwyywanie eksu czyli nadsyłanych wyników, wysłać komendę RUN uruchamiającą pomiary, przełączyć komorę zgodnie z komunikaem. Uwaga!. Badania czujników można dokonywać w warunkach: - nagrzewania od 30 C do 30 C (opcja 3-3, - nagrzewania od 40 C do 00 C oraz sygnięcia od 00 C do 40 C (opcja Podczas auomaycznie przebiegającego procesu pomiarowego przysąpić do innego ćwiczenia zgodnie z harmonogramem lub poleceniem prowadzącego. 3. Przed opuszczeniem laboraorium należy zanoować wszyskie warości niezbędne do późniejszych obliczeń 5. Po zakończeniu się programu pomiarów auomaycznych dokonać czynności związane z zapisem danych pomiarowych, a nasępnie zamknąć program pomiaru i wyłączyć kompuer (zamknięcie programu i wyłączenie kompuera po uzgodnieniu z prowadzącym ćwiczenie. 6. Na podsawie zmierzonych spadków napięć na badanych czujnikach wyznaczyć charakerysykę nominalną (średnią dla wszyskich czujników R = f ϑ ( Przyjąć do obliczeń R = ± 6Ω. 7. Wyznaczyć błąd nieliniowości ( ϑ δ nl charakerysyki nominalnej w zakresie emperaur, w kórych badano czujniki lub podanym przez prowadzącego ćwiczenie. 8. Wyznaczyć bezwzględne i względne rozrzuy charakerysyk badanych czujników. 9. Sporządzić wykresy charakerysyk zmierzonych oraz obliczonych na podsawie podanych w ćwiczeniu zależności. 0. Wnioski z pomiarów.

BADANIE DYNAMICZNYCH WŁAŚCIWOŚCI PRZETWORNIKÓW POMIAROWYCH

BADANIE DYNAMICZNYCH WŁAŚCIWOŚCI PRZETWORNIKÓW POMIAROWYCH BADANIE DYNAMICZNYCH WŁAŚCIWOŚCI PRZETWORNIKÓW POMIAROWYCH. Cel ćwiczenia Celem ćwiczenia jes poznanie właściwości przyrządów i przeworników pomiarowych związanych ze sanami przejściowymi powsającymi po

Bardziej szczegółowo

POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA i ENERGETYKI INSTYTUT MASZYN i URZĄDZEŃ ENERGETYCZNYCH

POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA i ENERGETYKI INSTYTUT MASZYN i URZĄDZEŃ ENERGETYCZNYCH POLIECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA i ENERGEYKI INSYU MASZYN i URZĄDZEŃ ENERGEYCZNYCH IDENYFIKACJA PARAMERÓW RANSMIANCJI Laboraorium auomayki (A ) Opracował: Sprawdził: Zawierdził:

Bardziej szczegółowo

POMIAR PARAMETRÓW SYGNAŁOW NAPIĘCIOWYCH METODĄ PRÓKOWANIA I CYFROWEGO PRZETWARZANIA SYGNAŁU

POMIAR PARAMETRÓW SYGNAŁOW NAPIĘCIOWYCH METODĄ PRÓKOWANIA I CYFROWEGO PRZETWARZANIA SYGNAŁU Pomiar paramerów sygnałów napięciowych. POMIAR PARAMERÓW SYGNAŁOW NAPIĘCIOWYCH MEODĄ PRÓKOWANIA I CYFROWEGO PRZEWARZANIA SYGNAŁU Cel ćwiczenia Poznanie warunków prawidłowego wyznaczania elemenarnych paramerów

Bardziej szczegółowo

Ćw. S-II.2 CHARAKTERYSTYKI SKOKOWE ELEMENTÓW AUTOMATYKI

Ćw. S-II.2 CHARAKTERYSTYKI SKOKOWE ELEMENTÓW AUTOMATYKI Dr inż. Michał Chłędowski PODSAWY AUOMAYKI I ROBOYKI LABORAORIUM Ćw. S-II. CHARAKERYSYKI SKOKOWE ELEMENÓW AUOMAYKI Cel ćwiczenia Celem ćwiczenia jes zapoznanie się z pojęciem charakerysyki skokowej h(),

Bardziej szczegółowo

4.2. Obliczanie przewodów grzejnych metodą dopuszczalnego obciążenia powierzchniowego

4.2. Obliczanie przewodów grzejnych metodą dopuszczalnego obciążenia powierzchniowego 4.. Obliczanie przewodów grzejnych meodą dopuszczalnego obciążenia powierzchniowego Meodą częściej sosowaną w prakyce projekowej niż poprzednia, jes meoda dopuszczalnego obciążenia powierzchniowego. W

Bardziej szczegółowo

Badanie funktorów logicznych TTL - ćwiczenie 1

Badanie funktorów logicznych TTL - ćwiczenie 1 adanie funkorów logicznych TTL - ćwiczenie 1 1. Cel ćwiczenia Zapoznanie się z podsawowymi srukurami funkorów logicznych realizowanych w echnice TTL (Transisor Transisor Logic), ich podsawowymi paramerami

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki Poliechnika Gdańska Wydział Elekroechniki i Auomayki Kaedra Inżynierii Sysemów Serowania Podsawy Auomayki Repeyorium z Podsaw auomayki Zadania do ćwiczeń ermin T15 Opracowanie: Kazimierz Duzinkiewicz,

Bardziej szczegółowo

( 3 ) Kondensator o pojemności C naładowany do różnicy potencjałów U posiada ładunek: q = C U. ( 4 ) Eliminując U z równania (3) i (4) otrzymamy: =

( 3 ) Kondensator o pojemności C naładowany do różnicy potencjałów U posiada ładunek: q = C U. ( 4 ) Eliminując U z równania (3) i (4) otrzymamy: = ROZŁADOWANIE KONDENSATORA I. el ćwiczenia: wyznaczenie zależności napięcia (i/lub prądu I ) rozładowania kondensaora w funkcji czasu : = (), wyznaczanie sałej czasowej τ =. II. Przyrządy: III. Lieraura:

Bardziej szczegółowo

ĆWICZENIE 4 Badanie stanów nieustalonych w obwodach RL, RC i RLC przy wymuszeniu stałym

ĆWICZENIE 4 Badanie stanów nieustalonych w obwodach RL, RC i RLC przy wymuszeniu stałym ĆWIZENIE 4 Badanie sanów nieusalonych w obwodach, i przy wymuszeniu sałym. el ćwiczenia Zapoznanie się z rozpływem prądów, rozkładem w sanach nieusalonych w obwodach szeregowych, i Zapoznanie się ze sposobami

Bardziej szczegółowo

Laboratorium z PODSTAW AUTOMATYKI, cz.1 EAP, Lab nr 3

Laboratorium z PODSTAW AUTOMATYKI, cz.1 EAP, Lab nr 3 I. ema ćwiczenia: Dynamiczne badanie przerzuników II. Cel/cele ćwiczenia III. Wykaz użyych przyrządów IV. Przebieg ćwiczenia Eap 1: Przerzunik asabilny Przerzuniki asabilne służą jako generaory przebiegów

Bardziej szczegółowo

ĆWICZENIE NR 43 U R I (1)

ĆWICZENIE NR 43 U R I (1) ĆWCZENE N 43 POMY OPO METODĄ TECHNCZNĄ Cel ćwiczenia: wyznaczenie warości oporu oporników poprzez pomiary naężania prądu płynącego przez opornik oraz napięcia na oporniku Wsęp W celu wyznaczenia warości

Bardziej szczegółowo

LABORATORIUM PODSTAW ELEKTRONIKI PROSTOWNIKI

LABORATORIUM PODSTAW ELEKTRONIKI PROSTOWNIKI ZESPÓŁ LABORATORIÓW TELEMATYKI TRANSPORTU ZAKŁAD TELEKOMUNIKJI W TRANSPORCIE WYDZIAŁ TRANSPORTU POLITECHNIKI WARSZAWSKIEJ LABORATORIUM PODSTAW ELEKTRONIKI INSTRUKCJA DO ĆWICZENIA NR 5 PROSTOWNIKI DO UŻYTKU

Bardziej szczegółowo

Temat: Wyznaczanie charakterystyk baterii słonecznej.

Temat: Wyznaczanie charakterystyk baterii słonecznej. Ćwiczenie Nr 356 Tema: Wyznaczanie charakerysyk baerii słonecznej. I. Lieraura. W. M. Lewandowski Proekologiczne odnawialne źródła energii, WNT, 007 (www.e-link.com.pl). Ćwiczenia laboraoryjne z fizyki

Bardziej szczegółowo

4. OBLICZANIE REZYSTANCYJNYCH PRZEWODÓW I ELEMENTÓW GRZEJ- NYCH

4. OBLICZANIE REZYSTANCYJNYCH PRZEWODÓW I ELEMENTÓW GRZEJ- NYCH 4. OBLICZANIE REZYSTANCYJNYCH PRZEWODÓW I ELEMENTÓW GRZEJ- NYCH Wybór wymiarów i kszału rezysancyjnych przewodów czy elemenów grzejnych mających wchodzić w skład urządzenia elekroermicznego zależny jes,

Bardziej szczegółowo

C d u. Po podstawieniu prądu z pierwszego równania do równania drugiego i uporządkowaniu składników lewej strony uzyskuje się:

C d u. Po podstawieniu prądu z pierwszego równania do równania drugiego i uporządkowaniu składników lewej strony uzyskuje się: Zadanie. Obliczyć przebieg napięcia na pojemności C w sanie przejściowym przebiegającym przy nasępującej sekwencji działania łączników: ) łączniki Si S są oware dla < 0, ) łącznik S zamyka się w chwili

Bardziej szczegółowo

Regulatory. Zadania regulatorów. Regulator

Regulatory. Zadania regulatorów. Regulator Regulaory Regulaor Urządzenie, kórego podsawowym zadaniem jes na podsawie sygnału uchybu (odchyłki regulacji) ukszałowanie sygnału serującego umożliwiającego uzyskanie pożądanego przebiegu wielkości regulowanej

Bardziej szczegółowo

Wydział Elektryczny, Katedra Maszyn, Napędów i Pomiarów Elektrycznych Laboratorium Przetwarzania i Analizy Sygnałów Elektrycznych

Wydział Elektryczny, Katedra Maszyn, Napędów i Pomiarów Elektrycznych Laboratorium Przetwarzania i Analizy Sygnałów Elektrycznych Wydział Elekryczny, Kaedra Maszyn, Napędów i Pomiarów Elekrycznych Laboraorium Przewarzania i Analizy Sygnałów Elekrycznych (bud A5, sala 310) Insrukcja dla sudenów kierunku Auomayka i Roboyka do zajęć

Bardziej szczegółowo

TRANZYSTOROWO-REZYSTANCYJNY UKŁAD KOMPENSACJI WPŁYWU TEMPERATURY WOLNYCH KOŃCÓW TERMOPARY

TRANZYSTOROWO-REZYSTANCYJNY UKŁAD KOMPENSACJI WPŁYWU TEMPERATURY WOLNYCH KOŃCÓW TERMOPARY Oleksandra HOTRA Oksana BOYKO TRANZYSTOROWO-REZYSTANCYJNY UKŁAD KOMPENSACJI WPŁYWU TEMPERATURY WOLNYCH KOŃCÓW TERMOPARY STRESZCZENIE Przedsawiono układ kompensacji emperaury wolnych końców ermopary z wykorzysaniem

Bardziej szczegółowo

Katedra Metrologii i Systemów Diagnostycznych Laboratorium Metrologii II. 2013/14. Grupa: Nr. Ćwicz.

Katedra Metrologii i Systemów Diagnostycznych Laboratorium Metrologii II. 2013/14. Grupa: Nr. Ćwicz. Politechnika Rzeszowska Katedra Metrologii i Systemów Diagnostycznych Laboratorium Metrologii II WYZNACZANIE WŁAŚCIWOŚCI STATYCZNYCH I DYNAMICZNYCH PRZETWORNIKÓW Grupa: Nr. Ćwicz. 9 1... kierownik 2...

Bardziej szczegółowo

Wykład 5 Elementy teorii układów liniowych stacjonarnych odpowiedź na dowolne wymuszenie

Wykład 5 Elementy teorii układów liniowych stacjonarnych odpowiedź na dowolne wymuszenie Wykład 5 Elemeny eorii układów liniowych sacjonarnych odpowiedź na dowolne wymuszenie Prowadzący: dr inż. Tomasz Sikorski Insyu Podsaw Elekroechniki i Elekroechnologii Wydział Elekryczny Poliechnika Wrocławska

Bardziej szczegółowo

20. Wyznaczanie ciepła właściwego lodu c pl i ciepła topnienia lodu L

20. Wyznaczanie ciepła właściwego lodu c pl i ciepła topnienia lodu L 20. Wyznaczanie ciepła właściwego lodu c pl i ciepła opnienia lodu L I. Wprowadzenie 1. Ciepło właściwe lodu i ciepło opnienia lodu wyznaczymy meodą kalorymeryczną sporządzając odpowiedni bilans cieplny.

Bardziej szczegółowo

Laboratorium Podstaw Pomiarów

Laboratorium Podstaw Pomiarów Laboratorium Podstaw Pomiarów Ćwiczenie 5 Pomiary rezystancji Instrukcja Opracował: dr hab. inż. Grzegorz Pankanin, prof. PW Instytut Systemów Elektronicznych Wydział Elektroniki i Technik Informacyjnych

Bardziej szczegółowo

Ćwiczenie 6 WŁASNOŚCI DYNAMICZNE DIOD

Ćwiczenie 6 WŁASNOŚCI DYNAMICZNE DIOD 1. Cel ćwiczenia Ćwiczenie 6 WŁASNOŚCI DYNAMICZNE DIOD Celem ćwiczenia jes poznanie własności dynamicznych diod półprzewodnikowych. Obejmuje ono zbadanie sanów przejściowych podczas procesu przełączania

Bardziej szczegółowo

DYNAMIKA KONSTRUKCJI

DYNAMIKA KONSTRUKCJI 10. DYNAMIKA KONSTRUKCJI 1 10. 10. DYNAMIKA KONSTRUKCJI 10.1. Wprowadzenie Ogólne równanie dynamiki zapisujemy w posaci: M d C d Kd =P (10.1) Zapis powyższy oznacza, że równanie musi być spełnione w każdej

Bardziej szczegółowo

LABORATORIUM PODSTAW OPTOELEKTRONIKI WYZNACZANIE CHARAKTERYSTYK STATYCZNYCH I DYNAMICZNYCH TRANSOPTORA PC817

LABORATORIUM PODSTAW OPTOELEKTRONIKI WYZNACZANIE CHARAKTERYSTYK STATYCZNYCH I DYNAMICZNYCH TRANSOPTORA PC817 LABORATORIUM PODSTAW OPTOELEKTRONIKI WYZNACZANIE CHARAKTERYSTYK STATYCZNYCH I DYNAMICZNYCH TRANSOPTORA PC87 Ceem badań jes ocena właściwości saycznych i dynamicznych ransopora PC 87. Badany ransopor o

Bardziej szczegółowo

WSTĘP DO ELEKTRONIKI

WSTĘP DO ELEKTRONIKI WSTĘP DO ELEKTRONIKI Część I Napięcie, naężenie i moc prądu elekrycznego Sygnały elekryczne i ich klasyfikacja Rodzaje układów elekronicznych Janusz Brzychczyk IF UJ Elekronika Dziedzina nauki i echniki

Bardziej szczegółowo

Uwaga. Łącząc układ pomiarowy należy pamiętać o zachowaniu zgodności biegunów napięcia z generatora i zacisków na makiecie przetwornika.

Uwaga. Łącząc układ pomiarowy należy pamiętać o zachowaniu zgodności biegunów napięcia z generatora i zacisków na makiecie przetwornika. PLANOWANIE I TECHNIKA EKSPERYMENTU Program ćwiczenia Temat: Badanie właściwości statycznych przetworników pomiarowych, badanie właściwości dynamicznych czujników temperatury Ćwiczenie 5 Spis przyrządów

Bardziej szczegółowo

LABORATORIUM PODSTAWY ELEKTRONIKI Badanie Bramki X-OR

LABORATORIUM PODSTAWY ELEKTRONIKI Badanie Bramki X-OR LORTORIUM PODSTWY ELEKTRONIKI adanie ramki X-OR 1.1 Wsęp eoreyczny. ramka XOR ramka a realizuje funkcję logiczną zwaną po angielsku EXLUSIVE-OR (WYŁĄZNIE LU). Polska nazwa brzmi LO. Funkcję EX-OR zapisuje

Bardziej szczegółowo

Układy sekwencyjne asynchroniczne Zadania projektowe

Układy sekwencyjne asynchroniczne Zadania projektowe Układy sekwencyjne asynchroniczne Zadania projekowe Zadanie Zaprojekować układ dwusopniowej sygnalizacji opycznej informującej operaora procesu o przekroczeniu przez konrolowany paramer warości granicznej.

Bardziej szczegółowo

METROLOGICZNE WŁASNOŚCI SYSTEMU BADAWCZEGO

METROLOGICZNE WŁASNOŚCI SYSTEMU BADAWCZEGO PROBLEY NIEONWENCJONALNYCH ŁADÓW ŁOŻYSOWYCH Łódź, 4 maja 999 r. Jadwiga Janowska, Waldemar Oleksiuk Insyu ikromechaniki i Fooniki, Poliechnika Warszawska ETROLOGICZNE WŁASNOŚCI SYSTE BADAWCZEGO SŁOWA LCZOWE:

Bardziej szczegółowo

ĆWICZENIE 7 WYZNACZANIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA. Wprowadzenie

ĆWICZENIE 7 WYZNACZANIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA. Wprowadzenie ĆWICZENIE 7 WYZNACZIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA Wprowadzenie Ciało drgające w rzeczywisym ośrodku z upływem czasu zmniejsza ampliudę drgań maleje energia mechaniczna

Bardziej szczegółowo

E5. KONDENSATOR W OBWODZIE PRĄDU STAŁEGO

E5. KONDENSATOR W OBWODZIE PRĄDU STAŁEGO E5. KONDENSATOR W OBWODZIE PRĄDU STAŁEGO Marek Pękała i Jadwiga Szydłowska Procesy rozładowania kondensaora i drgania relaksacyjne w obwodach RC należą do szerokiej klasy procesów relaksacyjnych. Procesy

Bardziej szczegółowo

Badanie transformatora 3-fazowego

Badanie transformatora 3-fazowego adanie ransormaora 3-azowego ) Próba sanu jałowego ransormaora przy = N = cons adania przeprowadza się w układzie połączeń pokazanych na Rys.. Rys.. Schema połączeń do próby sanu jałowego ransormaora.

Bardziej szczegółowo

zestaw laboratoryjny (generator przebiegu prostokątnego + zasilacz + częstościomierz), oscyloskop 2-kanałowy z pamięcią, komputer z drukarką,

zestaw laboratoryjny (generator przebiegu prostokątnego + zasilacz + częstościomierz), oscyloskop 2-kanałowy z pamięcią, komputer z drukarką, - Ćwiczenie 4. el ćwiczenia Zapoznanie się z budową i działaniem przerzunika asabilnego (muliwibraora) wykonanego w echnice dyskrenej oraz TTL a akże zapoznanie się z działaniem przerzunika T (zwanego

Bardziej szczegółowo

Sprawność pompy ciepła w funkcji temperatury górnego źródła ciepła

Sprawność pompy ciepła w funkcji temperatury górnego źródła ciepła POLITECHNIKA BIAŁOSTOCKA Wydział Budownicwa i Inżynierii Środowiska Kaedra Ciepłownicwa, Ogrzewnicwa i Wenylacji Insrukcja do zajęć laboraoryjnych Ćwiczenie nr 6 Laboraorium z przedmiou Alernaywne źródła

Bardziej szczegółowo

WYDZIAŁ PPT / KATEDRA INŻYNIERII BIOMEDYCZNE D-1 LABORATORIUM Z MIERNICTWA I AUTOMATYKI Ćwiczenie nr 10. Pomiary w warunkach dynamicznych.

WYDZIAŁ PPT / KATEDRA INŻYNIERII BIOMEDYCZNE D-1 LABORATORIUM Z MIERNICTWA I AUTOMATYKI Ćwiczenie nr 10. Pomiary w warunkach dynamicznych. Cel ćwiczenia: Poznanie budowy i zasady działania oraz parametrów charakterystycznych dla stykowych czujników temperatury. Zapoznanie się z metodami pomiaru temperatur czujnikami stykowymi oraz sposobami

Bardziej szczegółowo

Podstawowe człony dynamiczne

Podstawowe człony dynamiczne Podsawowe człony dynamiczne charakerysyki czasowe. Człon proporcjonalny = 2. Człony całkujący idealny 3. Człon inercyjny = = + 4. Człony całkujący rzeczywisy () = + 5. Człon różniczkujący rzeczywisy ()

Bardziej szczegółowo

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Skręcalność właściwa sacharozy. opiekun ćwiczenia: dr A. Pietrzak

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Skręcalność właściwa sacharozy. opiekun ćwiczenia: dr A. Pietrzak Kaedra Chemii Fizycznej Uniwersyeu Łódzkiego Skręcalność właściwa sacharozy opiekun ćwiczenia: dr A. Pierzak ćwiczenie nr 19 Zakres zagadnień obowiązujących do ćwiczenia 1. Akywność opyczna a srukura cząseczki.

Bardziej szczegółowo

Drgania elektromagnetyczne obwodu LCR

Drgania elektromagnetyczne obwodu LCR Ćwiczenie 61 Drgania elekromagneyczne obwodu LCR Cel ćwiczenia Obserwacja drgań łumionych i przebiegów aperiodycznych w obwodzie LCR. Pomiar i inerpreacja paramerów opisujących obserwowane przebiegi napięcia

Bardziej szczegółowo

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Wyznaczanie ciepła właściwego cieczy metodą kalorymetryczną

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Wyznaczanie ciepła właściwego cieczy metodą kalorymetryczną Katedra Chemii Fizycznej Uniwersytetu Łódzkiego Wyznaczanie ciepła właściwego cieczy metodą kalorymetryczną opracowanie ćwiczenia: dr J. Woźnicka, dr S. Belica ćwiczenie nr 38 Zakres zagadnień obowiązujących

Bardziej szczegółowo

LABORATORIUM Z ELEKTRONIKI

LABORATORIUM Z ELEKTRONIKI LABORAORIM Z ELEKRONIKI PROSOWNIKI Józef Boksa WA 01 1. PROSOWANIKI...3 1.1. CEL ĆWICZENIA...3 1.. WPROWADZENIE...3 1..1. Prosowanie...3 1.3. PROSOWNIKI NAPIĘCIA...3 1.4. SCHEMAY BLOKOWE KŁADÓW POMIAROWYCH...5

Bardziej szczegółowo

Zakład Metrologii i Systemów Pomiarowych Laboratorium Metrologii I. Grupa. Nr ćwicz.

Zakład Metrologii i Systemów Pomiarowych Laboratorium Metrologii I. Grupa. Nr ćwicz. Laboratorium Metrologii I Politechnika zeszowska akład Metrologii i Systemów Pomiarowych Laboratorium Metrologii I Mostki niezrównoważone prądu stałego I Grupa Nr ćwicz. 12 1... kierownik 2... 3... 4...

Bardziej szczegółowo

POMIARY CZĘSTOTLIWOŚCI I PRZESUNIĘCIA FAZOWEGO SYGNAŁÓW OKRESOWYCH. Cel ćwiczenia. Program ćwiczenia

POMIARY CZĘSTOTLIWOŚCI I PRZESUNIĘCIA FAZOWEGO SYGNAŁÓW OKRESOWYCH. Cel ćwiczenia. Program ćwiczenia Pomiary częsoliwości i przesunięcia fazowego sygnałów okresowych POMIARY CZĘSOLIWOŚCI I PRZESUNIĘCIA FAZOWEGO SYGNAŁÓW OKRESOWYCH Cel ćwiczenia Poznanie podsawowych meod pomiaru częsoliwości i przesunięcia

Bardziej szczegółowo

BADANIE EFEKTU HALLA. Instrukcja wykonawcza

BADANIE EFEKTU HALLA. Instrukcja wykonawcza ĆWICZENIE 57 BADANIE EFEKTU HALLA Instrukcja wykonawcza I. Wykaz przyrządów 1. Zasilacz elektromagnesu ZT-980-4 2. Zasilacz hallotronu 3. Woltomierz do pomiaru napięcia Halla U H 4. Miliamperomierz o maksymalnym

Bardziej szczegółowo

BADANIE ZABEZPIECZEŃ CYFROWYCH NA PRZYKŁADZIE PRZEKAŹNIKA KIERUNKOWEGO MiCOM P Przeznaczenie i zastosowanie przekaźników kierunkowych

BADANIE ZABEZPIECZEŃ CYFROWYCH NA PRZYKŁADZIE PRZEKAŹNIKA KIERUNKOWEGO MiCOM P Przeznaczenie i zastosowanie przekaźników kierunkowych Ćwiczenie 6 BADANIE ZABEZPIECZEŃ CYFROWYCH NA PRZYKŁADZIE PRZEKAŹNIKA KIERNKOWEGO MiCOM P127 1. Przeznaczenie i zasosowanie przekaźników kierunkowych Przekaźniki kierunkowe, zwane eż kąowymi, przeznaczone

Bardziej szczegółowo

Wykład 4 Metoda Klasyczna część III

Wykład 4 Metoda Klasyczna część III Teoria Obwodów Wykład 4 Meoda Klasyczna część III Prowadzący: dr inż. Tomasz Sikorski Insyu Podsaw Elekroechniki i Elekroechnologii Wydział Elekryczny Poliechnika Wrocławska D-, 5/8 el: (7) 3 6 fax: (7)

Bardziej szczegółowo

LABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ

LABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ INSTTUTU TECHNIKI CIEPLNEJ WDZIAŁ INŻNIERII ŚRODOWISKA I ENERGETKI POLITECHNIKI ŚLĄSKIEJ INSTRUKCJA LABORATORJNA Tema ćwiczenia: WZNACZANIE WSPÓŁCZNNIKA PRZEWODZENIA CIEPŁA CIAŁ STAŁCH METODĄ STANU UPORZĄDKOWANEGO

Bardziej szczegółowo

Ćwiczenie nr 9. Pomiar rezystancji metodą porównawczą.

Ćwiczenie nr 9. Pomiar rezystancji metodą porównawczą. Ćwiczenie nr 9 Pomiar rezystancji metodą porównawczą. 1. Cel ćwiczenia Celem ćwiczenia jest praktyczne poznanie różnych metod pomiaru rezystancji, a konkretnie zapoznanie się z metodą porównawczą. 2. Dane

Bardziej szczegółowo

POLITECHNIKA WROCŁAWSKA KATEDRA INŻYNIERII BIOMEDYCZNEJ LABORATORIUM CZUJNIKÓW I POMIARÓW WIELKOŚCI NIEELEKTRYCZNYCH K-7/W11

POLITECHNIKA WROCŁAWSKA KATEDRA INŻYNIERII BIOMEDYCZNEJ LABORATORIUM CZUJNIKÓW I POMIARÓW WIELKOŚCI NIEELEKTRYCZNYCH K-7/W11 POLITECHNIKA WROCŁAWSKA KATEDRA INŻYNIERII BIOMEDYCZNEJ LABORATORIUM CZUJNIKÓW I POMIARÓW WIELKOŚCI NIEELEKTRYCZNYCH K-7/W11 Ćwiczenie nr 2. POMIARY PARAMETRÓW DYNAMICZNYCH CZUJNIKÓW 1. Cel ćwiczenia:

Bardziej szczegółowo

POMIARY CZĘSTOTLIWOŚCI I PRZESUNIĘCIA FAZOWEGO SYGNAŁÓW OKRESOWYCH

POMIARY CZĘSTOTLIWOŚCI I PRZESUNIĘCIA FAZOWEGO SYGNAŁÓW OKRESOWYCH Program ćwiczeń: Pomiary częsoliwości i przesunięcia fazowego sygnałów okresowych POMIARY CZĘSTOTLIWOŚCI I PRZESUNIĘCIA FAZOWEGO SYGNAŁÓW OKRESOWYCH Cel ćwiczenia Celem ćwiczenia jes poznanie: podsawowych

Bardziej szczegółowo

Ćwiczenie 14. Sprawdzanie przyrządów analogowych i cyfrowych. Program ćwiczenia:

Ćwiczenie 14. Sprawdzanie przyrządów analogowych i cyfrowych. Program ćwiczenia: Ćwiczenie 14 Sprawdzanie przyrządów analogowych i cyfrowych Program ćwiczenia: 1. Sprawdzenie błędów podstawowych woltomierza analogowego 2. Sprawdzenie błędów podstawowych amperomierza analogowego 3.

Bardziej szczegółowo

Laboratorium Podstaw Pomiarów

Laboratorium Podstaw Pomiarów Laboratorium Podstaw Pomiarów Ćwiczenie 5 Pomiary rezystancji Instrukcja Opracował: dr hab. inż. Grzegorz Pankanin, prof. PW Instytut Systemów Elektronicznych Wydział Elektroniki i Technik Informacyjnych

Bardziej szczegółowo

POLITECHNIKA WROCŁAWSKA, WYDZIAŁ PPT I-21 LABORATORIUM Z PODSTAW ELEKTROTECHNIKI I ELEKTRONIKI 2 Ćwiczenie nr 8. Generatory przebiegów elektrycznych

POLITECHNIKA WROCŁAWSKA, WYDZIAŁ PPT I-21 LABORATORIUM Z PODSTAW ELEKTROTECHNIKI I ELEKTRONIKI 2 Ćwiczenie nr 8. Generatory przebiegów elektrycznych Cel ćwiczenia: Celem ćwiczenia jes zapoznanie sudenów z podsawowymi właściwościami ów przebiegów elekrycznych o jes źródeł małej mocy generujących przebiegi elekryczne. Przewidywane jes również (w miarę

Bardziej szczegółowo

Rozdział 4 Instrukcje sekwencyjne

Rozdział 4 Instrukcje sekwencyjne Rozdział 4 Insrukcje sekwencyjne Lisa insrukcji sekwencyjnych FBs-PLC przedsawionych w niniejszym rozdziale znajduje się w rozdziale 3.. Zasady kodowania przy zasosowaniu ych insrukcji opisane są w rozdziale

Bardziej szczegółowo

... nazwisko i imię ucznia klasa data

... nazwisko i imię ucznia klasa data ... nazwisko i imię ucznia klasa daa Liczba uzyskanych punków Ocena TEST SPRAWDZAJĄCY Z PRZYRZĄDÓW POMIAROWYCH W dniu dzisiejszym przysąpisz do esu pisemnego, kóry ma na celu sprawdzenie Twoich umiejęności

Bardziej szczegółowo

PROGNOZOWANIE. Ćwiczenia 2. mgr Dawid Doliński

PROGNOZOWANIE. Ćwiczenia 2. mgr Dawid Doliński Ćwiczenia 2 mgr Dawid Doliński Modele szeregów czasowych sały poziom rend sezonowość Y Y Y Czas Czas Czas Modele naiwny Modele średniej arymeycznej Model Browna Modele ARMA Model Hola Modele analiyczne

Bardziej szczegółowo

Dendrochronologia Tworzenie chronologii

Dendrochronologia Tworzenie chronologii Dendrochronologia Dendrochronologia jes nauką wykorzysującą słoje przyrosu rocznego drzew do określania wieku (daowania) obieków drewnianych (budynki, przedmioy). Analizy różnych paramerów słojów przyrosu

Bardziej szczegółowo

Politechnika Wrocławska Wydział Elektroniki, Katedra K-4. Klucze analogowe. Wrocław 2017

Politechnika Wrocławska Wydział Elektroniki, Katedra K-4. Klucze analogowe. Wrocław 2017 Poliechnika Wrocławska Klucze analogowe Wrocław 2017 Poliechnika Wrocławska Pojęcia podsawowe Podsawą realizacji układów impulsowych oraz cyfrowych jes wykorzysanie wielkosygnałowej pacy elemenów akywnych,

Bardziej szczegółowo

Pomiar rezystancji metodą techniczną

Pomiar rezystancji metodą techniczną Pomiar rezystancji metodą techniczną Cel ćwiczenia. Poznanie metod pomiarów rezystancji liniowych, optymalizowania warunków pomiaru oraz zasad obliczania błędów pomiarowych. Zagadnienia teoretyczne. Definicja

Bardziej szczegółowo

Podstawowe wyidealizowane elementy obwodu elektrycznego Rezystor ( ) = ( ) ( ) ( ) ( ) ( ) ( ) ( τ ) i t i t u ( ) u t u t i ( ) i t. dowolny.

Podstawowe wyidealizowane elementy obwodu elektrycznego Rezystor ( ) = ( ) ( ) ( ) ( ) ( ) ( ) ( τ ) i t i t u ( ) u t u t i ( ) i t. dowolny. Tema. Opracował: esław Dereń Kaedra Teorii Sygnałów Insyu Telekomunikacji Teleinformayki i Akusyki Poliechnika Wrocławska Prawa auorskie zasrzeżone Podsawowe wyidealizowane elemeny obwodu elekrycznego

Bardziej szczegółowo

Układ aktywnego mostka zrównoważonego

Układ aktywnego mostka zrównoważonego Bolesław TYNC Zakład Elekronicznej Aparaury Pomiarowej TYBO Układ akywnego moska zrównoważonego Sreszczenie Arykuł przedsawia oryginalny układ moska rezysancyjnego równoważonego za pomocą elemenu akywnego,

Bardziej szczegółowo

Przetworniki analogowo-cyfrowe.

Przetworniki analogowo-cyfrowe. POLITECHNIKA ŚLĄSKA WYDZIAŁ INŻYNIEII ŚODOWISKA I ENEGETYKI INSTYTUT MASZYN I UZĄDZEŃ ENEGETYCZNYCH LABOATOIUM ELEKTYCZNE Przeworniki analogowo-cyfrowe. (E 11) Opracował: Dr inż. Włodzimierz OGULEWICZ

Bardziej szczegółowo

DOBÓR PRZEKROJU ŻYŁY POWROTNEJ W KABLACH ELEKTROENERGETYCZNYCH

DOBÓR PRZEKROJU ŻYŁY POWROTNEJ W KABLACH ELEKTROENERGETYCZNYCH Franciszek SPYRA ZPBE Energopomiar Elekryka, Gliwice Marian URBAŃCZYK Insyu Fizyki Poliechnika Śląska, Gliwice DOBÓR PRZEKROJU ŻYŁY POWROTNEJ W KABLACH ELEKTROENERGETYCZNYCH. Wsęp Zagadnienie poprawnego

Bardziej szczegółowo

WYKŁAD FIZYKAIIIB 2000 Drgania tłumione

WYKŁAD FIZYKAIIIB 2000 Drgania tłumione YKŁD FIZYKIIIB Drgania łumione (gasnące, zanikające). F siła łumienia; r F r b& b współczynnik łumienia [ Nm s] m & F m & && & k m b m F r k b& opis różnych zjawisk izycznych Niech Ce p p p p 4 ± Trzy

Bardziej szczegółowo

Regulacja dwupołożeniowa (dwustawna)

Regulacja dwupołożeniowa (dwustawna) Regulacja dwupołożeniowa (dwustawna) I. Wprowadzenie Regulacja dwustawna (dwupołożeniowa) jest często stosowaną metodą regulacji temperatury w urządzeniach grzejnictwa elektrycznego. Polega ona na cyklicznym

Bardziej szczegółowo

1. Sporządzić tabele z wynikami pomiarów oraz wyznaczonymi błędami pomiarów dotyczących przetwornika napięcia zgodnie z poniższym przykładem

1. Sporządzić tabele z wynikami pomiarów oraz wyznaczonymi błędami pomiarów dotyczących przetwornika napięcia zgodnie z poniższym przykładem 1 Sporządzić tabele z wynikami pomiarów oraz wyznaczonymi błędami pomiarów dotyczących przetwornika napięcia zgodnie z poniższym przykładem Znaczenie symboli: Tab 1 Wyniki i błędy pomiarów Lp X [mm] U

Bardziej szczegółowo

Ćwiczenie 4 Badanie uogólnionego przetwornika pomiarowego

Ćwiczenie 4 Badanie uogólnionego przetwornika pomiarowego Ćwiczenie 4 Badanie uogólnionego przetwornika pomiarowego 1. Cel ćwiczenia Poznanie typowych układów pracy przetworników pomiarowych o zunifikowanym wyjściu prądowym. Wyznaczenie i analiza charakterystyk

Bardziej szczegółowo

Równania różniczkowe. Lista nr 2. Literatura: N.M. Matwiejew, Metody całkowania równań różniczkowych zwyczajnych.

Równania różniczkowe. Lista nr 2. Literatura: N.M. Matwiejew, Metody całkowania równań różniczkowych zwyczajnych. Równania różniczkowe. Lisa nr 2. Lieraura: N.M. Mawiejew, Meody całkowania równań różniczkowych zwyczajnych. W. Krysicki, L. Włodarski, Analiza Maemayczna w Zadaniach, część II 1. Znaleźć ogólną posać

Bardziej szczegółowo

( ) ( ) ( τ) ( t) = 0

( ) ( ) ( τ) ( t) = 0 Obliczanie wraŝliwości w dziedzinie czasu... 1 OBLICZANIE WRAśLIWOŚCI W DZIEDZINIE CZASU Meoda układu dołączonego do obliczenia wraŝliwości układu dynamicznego w dziedzinie czasu. Wyznaczane będą zmiany

Bardziej szczegółowo

Lista nr Znaleźć rozwiązania ogólne następujących równań różniczkowych: a) y = y t,

Lista nr Znaleźć rozwiązania ogólne następujących równań różniczkowych: a) y = y t, RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE B Lisa nr 1 1. Napisać równanie różniczkowe, jakie spełnia napięcie u = u() na okładkach kondensaora w obwodzie zawierającym połączone szeregowo oporność R i pojemność C,

Bardziej szczegółowo

POMIARY TEMPERATURY I

POMIARY TEMPERATURY I Cel ćwiczenia Ćwiczenie 5 POMIARY TEMPERATURY I Celem ćwiczenia jest poznanie budowy i zasady działania rezystancyjnych czujników temperatury, układów połączeń czujnika z elektrycznymi układami przetwarzającymi

Bardziej szczegółowo

Dobór przekroju żyły powrotnej w kablach elektroenergetycznych

Dobór przekroju żyły powrotnej w kablach elektroenergetycznych Dobór przekroju żyły powronej w kablach elekroenergeycznych Franciszek pyra, ZPBE Energopomiar Elekryka, Gliwice Marian Urbańczyk, Insyu Fizyki Poliechnika Śląska, Gliwice. Wsęp Zagadnienie poprawnego

Bardziej szczegółowo

Ćwiczenie 9. Mostki prądu stałego. Program ćwiczenia:

Ćwiczenie 9. Mostki prądu stałego. Program ćwiczenia: Ćwiczenie 9 Mostki prądu stałego Program ćwiczenia: 1. Pomiar rezystancji laboratoryjnym mostkiem Wheatsone'a 2. Niezrównoważony mostek Wheatsone'a. Pomiar rezystancji technicznym mostkiem Wheatsone'a

Bardziej szczegółowo

ĆWICZENIE 6 POMIARY REZYSTANCJI

ĆWICZENIE 6 POMIARY REZYSTANCJI ĆWICZENIE 6 POMIAY EZYSTANCJI Opracowała: E. Dziuban I. Cel ćwiczenia Celem ćwiczenia jest wdrożenie umiejętności poprawnego wyboru metody pomiaru w zależności od wartości mierzonej rezystancji oraz postulowanej

Bardziej szczegółowo

Katedra Energetyki. Laboratorium Podstaw Elektrotechniki i Elektroniki

Katedra Energetyki. Laboratorium Podstaw Elektrotechniki i Elektroniki 1 Katedra Energetyki Laboratorium Podstaw Elektrotechniki i Elektroniki Temat ćwiczenia: POMIARY PODSTAWOWYCH WIELKOŚCI ELEKTRYCZNYCH W OBWODACH PRĄDU STAŁEGO (obwód 3 oczkowy) 2 1. POMIARY PRĄDÓW I NAPIĘĆ

Bardziej szczegółowo

Ćwiczenie XII: PRAWO PODZIAŁU NERNSTA

Ćwiczenie XII: PRAWO PODZIAŁU NERNSTA Ćwiczenie XII: PRAWO PODZIAŁU NERNSTA opracowanie: Wojciech Solarski Wprowadzenie Prawo podziału sformułowane przez Walera H. Nensa opisuje układ rójskładnikowy, z czego dwa składniki o rozpuszczalniki

Bardziej szczegółowo

Układy zasilania tranzystorów. Punkt pracy tranzystora Tranzystor bipolarny. Punkt pracy tranzystora Tranzystor unipolarny

Układy zasilania tranzystorów. Punkt pracy tranzystora Tranzystor bipolarny. Punkt pracy tranzystora Tranzystor unipolarny kłady zasilania ranzysorów Wrocław 28 Punk pracy ranzysora Punk pracy ranzysora Tranzysor unipolarny SS GS p GS S S opuszczalny oszar pracy (safe operaing condiions SOA) P max Zniekszałcenia nieliniowe

Bardziej szczegółowo

R 1. Układy regulacji napięcia. Pomiar napięcia stałego.

R 1. Układy regulacji napięcia. Pomiar napięcia stałego. kłady regulacji napięcia. Pomiar napięcia stałego.. Cel ćwiczenia: Celem ćwiczenia jest zapoznanie się z metodami regulacji napięcia stałego, stosowanymi w tym celu układami elektrycznymi, oraz metodami

Bardziej szczegółowo

Ćwiczenie 9. Mostki prądu stałego. Zakres wymaganych wiadomości do kolokwium wstępnego: Program ćwiczenia:

Ćwiczenie 9. Mostki prądu stałego. Zakres wymaganych wiadomości do kolokwium wstępnego: Program ćwiczenia: Ćwiczenie 9 Mostki prądu stałego Program ćwiczenia: 1. Pomiar rezystancji laboratoryjnym mostkiem Wheatsone'a 2. Pomiar rezystancji technicznym mostkiem Wheatsone'a. Pomiar rezystancji technicznym mostkiem

Bardziej szczegółowo

Gr.A, Zad.1. Gr.A, Zad.2 U CC R C1 R C2. U wy T 1 T 2. U we T 3 T 4 U EE

Gr.A, Zad.1. Gr.A, Zad.2 U CC R C1 R C2. U wy T 1 T 2. U we T 3 T 4 U EE Niekóre z zadań dają się rozwiązać niemal w pamięci, pamięaj jednak, że warunkiem uzyskania różnej od zera liczby punków za każde zadanie, jes przedsawienie, oprócz samego wyniku, akże rozwiązania, wyjaśniającego

Bardziej szczegółowo

WNIOSKOWANIE STATYSTYCZNE

WNIOSKOWANIE STATYSTYCZNE Wnioskowanie saysyczne w ekonomerycznej analizie procesu produkcyjnego / WNIOSKOWANIE STATYSTYCZNE W EKONOMETRYCZNEJ ANAIZIE PROCESU PRODUKCYJNEGO Maeriał pomocniczy: proszę przejrzeć srony www.cyf-kr.edu.pl/~eomazur/zadl4.hml

Bardziej szczegółowo

Wymagania konieczne i podstawowe Uczeń: 1. Wykonujemy pomiary

Wymagania konieczne i podstawowe Uczeń: 1. Wykonujemy pomiary ocena dopuszczająca Wymagania podsawowe ocena dosaeczna ocena dobra Wymagania dopełniające ocena bardzo dobra 1 Lekcja wsępna 1. Wykonujemy pomiary 2 3 Wielkości fizyczne, kóre mierzysz na co dzień wymienia

Bardziej szczegółowo

LI OLIMPIADA FIZYCZNA ETAP II Zadanie doświadczalne

LI OLIMPIADA FIZYCZNA ETAP II Zadanie doświadczalne LI OLIMPIADA FIZYCZNA ETAP II Zadanie doświadczalne ZADANIE D1 Cztery identyczne diody oraz trzy oporniki o oporach nie różniących się od siebie o więcej niż % połączono szeregowo w zamknięty obwód elektryczny.

Bardziej szczegółowo

Instytut Inżynierii Biomedycznej i Pomiarowej. Wydział Podstawowych Problemów Techniki. Politechnika Wrocławska

Instytut Inżynierii Biomedycznej i Pomiarowej. Wydział Podstawowych Problemów Techniki. Politechnika Wrocławska Instytut Inżynierii Biomedycznej i Pomiarowej Wydział Podstawowych Problemów Techniki Politechnika Wrocławska Laboratorium Pomiarów Wielkości Nieelektrycznych Pomiary w warunkach dynamicznych Badanie właściwości

Bardziej szczegółowo

INSTRUKCJA UŻYTKOWANIA OSCYLOSKOPU TYPU HP 54603

INSTRUKCJA UŻYTKOWANIA OSCYLOSKOPU TYPU HP 54603 ZAŁĄCZNIK NR 1 INSTRUKCJA UŻYTKOWANIA OSCYLOSKOPU TYPU HP 5463 Do rejesracji przebiegów czasowych i charakerysyk służy oscyloskop cyfrowy. Drukarka przyłączona do oscyloskopu umożliwia wydrukowanie zarejesrowanych

Bardziej szczegółowo

Analiza rynku projekt

Analiza rynku projekt Analiza rynku projek A. Układ projeku 1. Srona yułowa Tema Auor 2. Spis reści 3. Treść projeku 1 B. Treść projeku 1. Wsęp Po co? Na co? Dlaczego? Dlaczego robię badania? Jakimi meodami? Dla Kogo o jes

Bardziej szczegółowo

Metodę poprawnie mierzonego prądu powinno się stosować do pomiaru dużych rezystancji, tzn. wielokrotnie większych od rezystancji amperomierza: (4)

Metodę poprawnie mierzonego prądu powinno się stosować do pomiaru dużych rezystancji, tzn. wielokrotnie większych od rezystancji amperomierza: (4) OBWODY JEDNOFAZOWE POMIAR PRĄDÓW, NAPIĘĆ. Obwody prądu stałego.. Pomiary w obwodach nierozgałęzionych wyznaczanie rezystancji metodą techniczną. Metoda techniczna pomiaru rezystancji polega na określeniu

Bardziej szczegółowo

4. Schemat układu pomiarowego do badania przetwornika

4. Schemat układu pomiarowego do badania przetwornika 1 1. Projekt realizacji prac związanych z uruchomieniem i badaniem przetwornika napięcie/częstotliwość z układem AD654 2. Założenia do opracowania projektu a) Dane techniczne układu - Napięcie zasilające

Bardziej szczegółowo

PAlab_4 Wyznaczanie charakterystyk częstotliwościowych

PAlab_4 Wyznaczanie charakterystyk częstotliwościowych PAlab_4 Wyznaczanie charakerysyk częsoliwościowych Ćwiczenie ma na celu przedsawienie prakycznych meod wyznaczania charakerysyk częsoliwościowych elemenów dynamicznych. 1. Wprowadzenie Jedną z podsawowych

Bardziej szczegółowo

Rys.1. Podstawowa klasyfikacja sygnałów

Rys.1. Podstawowa klasyfikacja sygnałów Kaedra Podsaw Sysemów echnicznych - Podsawy merologii - Ćwiczenie 1. Podsawowe rodzaje i ocena sygnałów Srona: 1 1. CEL ĆWICZENIA Celem ćwiczenia jes zapoznanie się z podsawowymi rodzajami sygnałów, ich

Bardziej szczegółowo

Akademia Morska w Szczecinie. Laboratorium paliw, olejów i smarów

Akademia Morska w Szczecinie. Laboratorium paliw, olejów i smarów Akademia Morska w Szczecinie Wydział Mechaniczny Kaedra Fizyki i Chemii Laboraorium paliw, olejów i smarów Ćwiczenie laboraoryjne Pomiar gęsości oraz wyznaczanie emperaurowego współczynnika gęsości produków

Bardziej szczegółowo

ĆWICZENIE 8 WOLTOMIERZ CYFROWY. Celem ćwiczenia jest poznanie zasady działania i właściwości metrologicznych

ĆWICZENIE 8 WOLTOMIERZ CYFROWY. Celem ćwiczenia jest poznanie zasady działania i właściwości metrologicznych ĆWICZENIE 8 WOLTOMIERZ CYFROWY 16.1 Cel ćwiczenia Celem ćwiczenia jes poznanie zasady działania i właściwości merologicznych wolomierzy cyfrowych. 16.2 Wprowadzenie 16.2.1 Wiadomości wsępne Wolomierze

Bardziej szczegółowo

Badanie właściwości dynamicznych obiektów I rzędu i korekcja dynamiczna

Badanie właściwości dynamicznych obiektów I rzędu i korekcja dynamiczna Ćwiczenie 20 Badanie właściwości dynamicznych obiektów I rzędu i korekcja dynamiczna Program ćwiczenia: 1. Wyznaczenie stałej czasowej oraz wzmocnienia statycznego obiektu inercyjnego I rzędu 2. orekcja

Bardziej szczegółowo

ĆWICZENIE 5. POMIARY NAPIĘĆ I PRĄDÓW STAŁYCH Opracowała: E. Dziuban. I. Cel ćwiczenia

ĆWICZENIE 5. POMIARY NAPIĘĆ I PRĄDÓW STAŁYCH Opracowała: E. Dziuban. I. Cel ćwiczenia ĆWICZEIE 5 I. Cel ćwiczenia POMIAY APIĘĆ I PĄDÓW STAŁYCH Opracowała: E. Dziuban Celem ćwiczenia jest zaznajomienie z przyrządami do pomiaru napięcia i prądu stałego: poznanie budowy woltomierza i amperomierza

Bardziej szczegółowo

Ćwiczenie 119. Tabela II. Część P19. Wyznaczanie okresu drgań masy zawieszonej na sprężynie. Nr wierzchołka 0 1 2 3 4 5 6 7 8

Ćwiczenie 119. Tabela II. Część P19. Wyznaczanie okresu drgań masy zawieszonej na sprężynie. Nr wierzchołka 0 1 2 3 4 5 6 7 8 2012 Kaedra Fizyki SGGW Nazwisko... Daa... Nr na liście... Imię... Wydział... Dzień yg.... Godzina... Ruch harmoniczny prosy masy na sprężynie Tabela I: Część X19. Wyznaczanie sałej sprężyny Położenie

Bardziej szczegółowo

2.1 Zagadnienie Cauchy ego dla równania jednorodnego. = f(x, t) dla x R, t > 0, (2.1)

2.1 Zagadnienie Cauchy ego dla równania jednorodnego. = f(x, t) dla x R, t > 0, (2.1) Wykład 2 Sruna nieograniczona 2.1 Zagadnienie Cauchy ego dla równania jednorodnego Równanie gań sruny jednowymiarowej zapisać można w posaci 1 2 u c 2 2 u = f(x, ) dla x R, >, (2.1) 2 x2 gdzie u(x, ) oznacza

Bardziej szczegółowo

WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH

WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH SaSof Polska, el. 12 428 43 00, 601 41 41 51, info@sasof.pl, www.sasof.pl WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH Joanna Maych, Krajowy Depozy Papierów

Bardziej szczegółowo

Podstawy elektrotechniki

Podstawy elektrotechniki Wydział Mechaniczno-Energeyczny Podsawy elekroechniki Prof. dr hab. inż. Juliusz B. Gajewski, prof. zw. PWr Wybrzeże S. Wyspiańskiego 27, 50-370 Wrocław Bud. A4 Sara kołownia, pokój 359 Tel.: 71 320 3201

Bardziej szczegółowo

imei 1. Cel ćwiczenia 2. Zagadnienia do przygotowania 3. Program ćwiczenia

imei 1. Cel ćwiczenia 2. Zagadnienia do przygotowania 3. Program ćwiczenia CYFROWE PRZEWARZANIE SYGNAŁÓW Laboraorium Inżynieria Biomedyczna sudia sacjonarne pierwszego sopnia ema: Wyznaczanie podsawowych paramerów okresowych sygnałów deerminisycznych imei Insyu Merologii Elekroniki

Bardziej szczegółowo

UWAGA. Wszystkie wyniki zapisywać na dysku Dane E: Program i przebieg ćwiczenia:

UWAGA. Wszystkie wyniki zapisywać na dysku Dane E: Program i przebieg ćwiczenia: Cel ćwiczenia: Zapoznanie się z. metodami badania i analitycznego wyznaczania parametrów dynamicznych obiektów rzeczywistych na przykładzie mikrotermostatu oraz z metodami symulacyjnymi umożliwiającymi

Bardziej szczegółowo