LABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "LABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ"

Transkrypt

1 INSTTUTU TECHNIKI CIEPLNEJ WDZIAŁ INŻNIERII ŚRODOWISKA I ENERGETKI POLITECHNIKI ŚLĄSKIEJ INSTRUKCJA LABORATORJNA Tema ćwiczenia: WZNACZANIE WSPÓŁCZNNIKA PRZEWODZENIA CIEPŁA CIAŁ STAŁCH METODĄ STANU UPORZĄDKOWANEGO

2 Wyznaczanie współczynnika przewodzenia ciepła ciał sałych meodą sanu uporządkowanego. WSTĘP Przewodzenie ciepła jes elemenarnym sposobem (obok konwekcji i promieniowania) przepływu ciepła. W czysej posaci wysępuje ono w ciałach sałych. Przewodzenie ciepła jes jednym ze zjawisk nieodwracalnych i jako akie jes przejawem reakcji układu ermodynamicznego na zakłócenie sanu równowagi. Reakcja a zmierza do zlikwidowania zakłócenia. Jeżeli jedynym przejawem braku równowagi jes nierównomierność emperaury układu, o jedynym zjawiskiem nieodwracalnym będzie przepływ ciepła. Jeżeli zakłócenie sanu równowagi nie ma charakeru zakłócenia ciągłego, o zainicjowany ym zakłóceniem proces przewodzenia ciepła sprawia, że warości emperaury w poszczególnych punkach układu będą się zmieniać w czasie, zdążając do emperaury równowagi. Ta pierwsza cecha, zn. zmienność emperaury w czasie charakeryzuje nieusalone przewodzenie ciepła. Zakłócenie, kóre działa w sposób ciągły, inicjuje również w momencie pojawienia się proces nieusalony. Proces en nie doprowadza jednak do sanu równowagi. Jeżeli zakłócenie jes sałe i na ym samym poziomie, o po dosaecznie długim czasie dochodzimy do zw. Sanu usalonego, w kórym warości emperaury w różnych punkach układu nie są równe, ale są niezmienne w czasie. Bodźcem wywołującym proces przewodzenia ciepła jes, jak wyżej wspomniano, niejednorodność pola emperaury w układzie ermodynamicznym. Lokalną (zn. w danym punkcie przesrzeni) miarą niejednorodności pola emperaury jes największa warość pochodnej kierunkowej w ym punkcie, czyli gradien: grad T T. () Od gradienu emperaury w danym punkcie zależy wekor gęsości srumienia ciepła Q& Q q& = q& A = (w ermodynamice przez q& & oznacza się ), kóry wyraża ilościowy efek A m przewodzenia ciepła. Zależność ę określa prawo Fouriera: r q & λ T. () Współczynnik λ wysępujący po prawej sronie równania Fouriera nazywa się współczynnikiem przewodzenia ciepła. Jednoską współczynnika przewodzenia ciepła w układzie SI jes W/(mK). Jes o współczynnik proporcjonalności we wzorze Fouriera (), a liczbowo oznacza jednoskowy srumień ciepła jaki przepływa przez płaską płyę o powierzchni A = m i grubości = m jeżeli = K. Współczynnik przewodzenia ciepła zależy od rodzaju subsancji przewodzącej ciepło, a dla samej subsancji - od jej sanu ermicznego, zn. od emperaury i od ciśnienia. Wpływ en może być różnokierunkowy, zn. funkcja λ(t) może być zarówno rosnąca, jak i malejąca, w zależności od rodzaju subsancji. Ciśnienie ma prakyczny wpływ jedynie na przewodzenie cieplne gazów. Pod pojęciem ciał sałych rozumie się nie ylko ciała o liej srukurze, ale akże ciała włóknise i porowae. Wynika sąd szeroki zakres zmienności współczynnika przewodzenia ciepła ciał sałych od 0.0 do 40 W/(mK) [3]. Najniższe warości doyczą maeriałów porowaych i włóknisych, najwyższe doyczą meali, przy czym dla meali współczynnik en bardzo silnie zależy od sopnia czysości.

3 Wyznaczanie współczynnika przewodzenia ciepła ciał sałych meodą sanu uporządkowanego 3. PODSTAW TEORETCZNE Meody wyznaczania współczynnika przewodzenia ciepła dzielą się na meody sanu usalonego i sanu nieusalonego. Meody opare na usalonym przewodzeniu ciepła są dokładne i prose pomiarowo, jednak wymagają one długiego czasu niezbędnego do osiągnięcia sanu usalonego układu. Meody opare na nieusalonym przewodzeniu ciepła są mniej dokładne, jednak wygodne ze względu na króki czas rwania pomiarów. Spośród ych meod najczęściej sosowana jes meoda wykorzysująca zw. san uporządkowany. Równanie bilansu energii (zwane równaniem Fouriera-Kirchhoffa) pozwalające wyznaczyć pole emperaury wewnąrz rozparywanego jednowymiarowego układu (przy sałym ) ma posać nasępującą: = a. (3) τ x Rozwiązanie ego równania można przedsawić w posaci szeregu nieskończonego: ( x, ) = A U ( x) n= n n mnτ τ e, (4) gdzie: A n - sałe, U n (x) - funkcja współrzędnych geomerycznych, m n - sałe określające zmianę emperaury w czasie. Wyrazy m n szybko rosną w miarę wzrosu numeru n. Wynika z ego, że w miarę wzrosu czasu, wpływ dalszych wyrazów saje się coraz mniejszy i warość emperaury w danym punkcie x może być dosaecznie dokładnie opisana pierwszym wyrazem szeregu: m τ ( τ ) A U e =, (5) w kórym zależność emperaury od czasu ma charaker funkcji wykładniczej. Czas, w kórym zależność emperaury od czasu w danym punkcie ciała ma charaker wykładniczy (5) nosi nazwę sanu uporządkowanego. W przypadku powierzchniowego nagrzewania przy sałych źródłach ciepła q& w syuacji, gdy isnieje sraa wywołana wnikaniem ciepła do ooczenia przy sałym współczynniku wnikania ciepła α, warunek brzegowy przyjmuje posać: & ( r o ) λ = q α. (6) n r r F F W obliczeniach inżynierskich zwykle dopuszczalne jes pominięcie sray ciepła (na sanowisku obydwie próbki są zaizolowane). Odpowiada o syuacji α = 0, a ym samym zamias (6) orzymuje się warunek brzegowy II rodzaju: n = q& λ. (7) r F

4 Wyznaczanie współczynnika przewodzenia ciepła ciał sałych meodą sanu uporządkowanego 4 Wsad ulega nagrzewaniu od emperaury począkowej (x,0) = p (rys.). Najwyższa emperaura dla czasu τ > 0 wysępuje na powierzchni ciała. W przypadku nagrzewania nieskończonej płaskiej płyy o grubości δ, po przyjęciu środka układu współrzędnych w środku płyy, zagadnienie począkowo-brzegowe jes złożone z nasępującego układu równań: a x ( x,0) λ x =, τ =, x= ± δ p = ± q&. (8) Po wprowadzeniu bezwymiarowej współrzędnej położenia bezwymiarowego czasu (liczba Fouriera) x ζ = ζ δ a τ Fo = Fo 0 δ, (9), (0) bezwymiarowej emperaury kryerialnej ( ) q& δ λ p = () oraz nadwyżki emperaury nad emperaurę począkową układ (8) przyjmuje posać: ( x τ ) ( x,0) = ( x ) p ϑ =, τ, () ζ ζ =, Fo = 0, Fo (3) = 0 ζ =± = ±. Rozwiązanie układu (3), orzymane za pomocą szeregów Fouriera, ma posać []:

5 Wyznaczanie współczynnika przewodzenia ciepła ciał sałych meodą sanu uporządkowanego 5 qδ ( ) ( ) ( ), Fo Fo 3ζ + ϑ ζ = λ 6 Π i= lub w zmiennych bezwymiarowych: i i cos ( iπζ ) e i Π Fo, (4) ( ) ( ) ( ) i ζ, Fo = Fo ζ + cos( i ζ) e 6 3 Π Π i i = i Π Fo. (5) υ υ τ 3> τ υ τ > τ υ τ >0 0 υ τ =υ p =0 ζ Rys. Rozkład emperaury w płaskiej płycie Wykres zależności = f(fo) dla dwóch warości współrzędnych ζ = 0 - oś płyy i ζ = - grzana powierzchnia płyy, przedsawiono na rys.. Dla warości Fo 0.5 można pominąć sumę po prawej sronie równania (5) i zależność = f(fo) przyjmuje posać : dla ζ = 0 0 = Fo Fo (a) dla ζ = = Fo+ Fo (b), (6) zaś rozkład emperaury wewnąrz płyy jes określony równaniem: ( ) = Fo Fo ζ. (7)

6 Wyznaczanie współczynnika przewodzenia ciepła ciał sałych meodą sanu uporządkowanego 6 Równania (6) służą do wyznaczania warości współczynnika przewodzenia ciepła λ próbki ζ = Fo+/3 0.4 ζ = Fo-/ Fo Rys. Zależność = (Fo) dla płaskiej, nieskończenie rozległej płyy 3. OPIS STANOWISKA POMIAROWEGO Schema sanowiska pomiarowego przedsawiono na rysunku 3. Symeryczny układ składa się z grzejnika, dwóch próbek oraz czerech płyek miedzianych z ermoparami. Całość zaizolowana jes syropianem i korkiem. Spirala grzejnika elekrycznego zaopiona jes w folii. Miedziane płyki zapewniają wyrównanie emperaury na powierzchni płyek pomiarowych. Do powierzchni płyek przyluowane są ermopary. Zasosowano ermopary Ni - CrNi (dla umiarkowanych - o E, K 0.04 mv). Próbki mają kszał walcowy o grubości δ = 0 mm i średnicy d = 70 mm. Do zasilania grzejnika służy zasilacz sabilizowany. Napięcie prądu zasilającego grzejnik U mierzone jes wolomierzem. Sanowisko jes również wyposażone w elekroniczny zegar. Ćwiczenie polega na uruchomieniu układu i po usabilizowaniu się emperaury począkowej na włączeniu zasilacza z równoczesnym włączeniem sopera. Co min. należy odczyać wskazania miernika emperaury i warość napięcia zasilania. Moc grzejnika wynosi: P = U R, W (8)

7 Wyznaczanie współczynnika przewodzenia ciepła ciał sałych meodą sanu uporządkowanego 7 Z U τ 00,00 s 6 pgg pgd pig pid 5 Rys. 3 Schema sanowiska pomiarowego - zasilacz z wolomierzem, - grzejnik, 3 - próbki, 4 - płyki miedziane z ermoparami, 5 - izolacja, 6 - miernik emperaury W przypadku ogólnym srumień ciepła dopływającego do próbki jes mniejszy od mocy grzejnika o ciepło zakumulowane w samym grzejniku. Srumień ciepła zakumulowany w grzejniku zależy od jego pojemności cieplnej W g i od szybkości przyrosu jego emperaury. Srumień ciepła dopływający do próbki wynosi więc: d Q & g g = Wg dτ, W (9) Q & = P &, W (0) p Q g Gęsość srumienia ciepła dopływającego do próbki: Q& 4 P P q& =, W/m () p p = = A Πd Πd W przypadku sanowiska można przyjąć, że grzejnik sanowi płaskie źródło ciepła, a więc nie nasępuje w nim kumulacja ciepła. Nadwyżki emperaury powierzchni próbek nad emperaurę ooczenia są mierzone ermoparami Ni-CrNi o sałej ermoelekrycznej k = 5 K/mV. Siła ermoelekryczna ermopar jes mierzona i przeliczana przez miernik, kóry jes wyposażony w czujnik mierzący emperaurę ooczenia. Warość a zosaje dodana do warości nadwyżki emperaury i z wyświelacza odczyujemy wpros emperaurę w danym punkcie.

8 Wyznaczanie współczynnika przewodzenia ciepła ciał sałych meodą sanu uporządkowanego 8 4. PROGRAM ĆWICZENIA sprawdzić, czy emperaury w próbce i grzejniku są wyrównane (wskazania miernika dla obu powierzchni powinny być jednakowe), włączyć zasilacz grzejnika i równocześnie uruchomić soper, co min. odczyać wskazania miernika (emperaurę powierzchni grzanej z dwóch ermopar, emperaurę powierzchni izolowanej z dwóch ermopar) oraz napięcie zasilania U, czas pomiaru oraz liczba pomiarów zosanie określona przez prowadzącego ćwiczenie. Wzór abeli pomiarowej L.p czas min U V pgg ºC pgd ºC pig ºC pid ºC 5. OPRACOWANIE WNIKÓW POMIARÓW a) obliczyć moc cieplną grzejnika wg równania (7), R = 0.95 Ω, b) obliczyć emperaurę powierzchni grzanej i izolowanej w danej chwili czasu jako średnią arymeyczną z odczyanych warości: pg pi pgg + pgd = () pig + pid =. (3) nasępnie obliczyć nadwyżki emperaury: ( ) ( 0) ϑ = τ (4) pg pg ( ) ( 0) ϑ = τ (5) pi pi c) narysować wykres zależności emperaury pg i pi od czasu grzania, d) obliczyć gęsość srumienia ciepła do próbki q p według równania (0), e) dla czasu τ 600 s obliczyć współczynnik przewodzenia ciepła. Z równania (6) dla pewnej warości Fo:

9 Wyznaczanie współczynnika przewodzenia ciepła ciał sałych meodą sanu uporządkowanego 9 0 = λ = q& δ ϑ ϑ (6) f) powórzyć obliczenia dla punku (e) dla innego czasu. Obliczyć średnie warości λ. 6. SPRAWOZDANIE Sprawozdanie powinno zawierać: sronę yułową (według wzoru podanego przez prowadzącego), karę pomiarową podpisaną przez prowadzącego zajęcia, króki wsęp eoreyczny (definicja fizyczna badanej wielkości, opis meody pomiarowej, opis wyznaczanej wielkości, opis sanowiska pomiarowego, podsawowe wzory obliczeniowe - w sumie około srony formau A4), schema sanowiska i opis pomiarów, ablice z obliczonymi warościami emperaury, wykres zmian warości emperaury na powierzchni w czasie, obliczone warości λ, uwagi i wnioski końcowe (porównanie wyznaczonych warości z warościami ablicowymi, analizę przyczyn dużych różnic). LITERATURA [] Kosowski E., Przepływ ciepła, Skryp Poliechniki Śląskiej nr 56, Wyd.II, Gliwice 99 [] Składzień J., Termokineyka dla elekryków, Skryp Poliechniki Śląskiej, Gliwice [3] Gdula S. i inni, Przewodzenie ciepła, Pańswowe Wydawnicwa Naukowe, Warszawa 984 [4] Składzień J., Termodynamika i ermokineyka, Skryp Poliechniki Śląskiej nr 3, Gliwice 985 Insrukcja zakualizowana

Głównie występuje w ośrodkach gazowych i ciekłych.

Głównie występuje w ośrodkach gazowych i ciekłych. W/g ermodynamiki - ciepło jes jednym ze sposobów ransporu energii do/z bila, zysy przepływ ciepła może wysąpić jedynie w ciałach sałych pozosających w spoczynku. Proces wymiany ciepla: przejmowanie ciepła

Bardziej szczegółowo

ĆWICZENIE 7 WYZNACZANIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA. Wprowadzenie

ĆWICZENIE 7 WYZNACZANIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA. Wprowadzenie ĆWICZENIE 7 WYZNACZIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA Wprowadzenie Ciało drgające w rzeczywisym ośrodku z upływem czasu zmniejsza ampliudę drgań maleje energia mechaniczna

Bardziej szczegółowo

Dobór przekroju żyły powrotnej w kablach elektroenergetycznych

Dobór przekroju żyły powrotnej w kablach elektroenergetycznych Dobór przekroju żyły powronej w kablach elekroenergeycznych Franciszek pyra, ZPBE Energopomiar Elekryka, Gliwice Marian Urbańczyk, Insyu Fizyki Poliechnika Śląska, Gliwice. Wsęp Zagadnienie poprawnego

Bardziej szczegółowo

E5. KONDENSATOR W OBWODZIE PRĄDU STAŁEGO

E5. KONDENSATOR W OBWODZIE PRĄDU STAŁEGO E5. KONDENSATOR W OBWODZIE PRĄDU STAŁEGO Marek Pękała i Jadwiga Szydłowska Procesy rozładowania kondensaora i drgania relaksacyjne w obwodach RC należą do szerokiej klasy procesów relaksacyjnych. Procesy

Bardziej szczegółowo

ψ przedstawia zależność

ψ przedstawia zależność Ruch falowy 4-4 Ruch falowy Ruch falowy polega na rozchodzeniu się zaburzenia (odkszałcenia) w ośrodku sprężysym Wielkość zaburzenia jes, podobnie jak w przypadku drgań, funkcją czasu () Zaburzenie rozchodzi

Bardziej szczegółowo

DOBÓR PRZEKROJU ŻYŁY POWROTNEJ W KABLACH ELEKTROENERGETYCZNYCH

DOBÓR PRZEKROJU ŻYŁY POWROTNEJ W KABLACH ELEKTROENERGETYCZNYCH Franciszek SPYRA ZPBE Energopomiar Elekryka, Gliwice Marian URBAŃCZYK Insyu Fizyki Poliechnika Śląska, Gliwice DOBÓR PRZEKROJU ŻYŁY POWROTNEJ W KABLACH ELEKTROENERGETYCZNYCH. Wsęp Zagadnienie poprawnego

Bardziej szczegółowo

Wyznaczanie współczynnika przenikania ciepła dla przegrody płaskiej

Wyznaczanie współczynnika przenikania ciepła dla przegrody płaskiej Katedra Silników Spalinowych i Pojazdów ATH ZAKŁAD TERMODYNAMIKI Wyznaczanie współczynnika przenikania ciepła dla przegrody płaskiej - - Wstęp teoretyczny Jednym ze sposobów wymiany ciepła jest przewodzenie.

Bardziej szczegółowo

ĆWICZENIE 4 Badanie stanów nieustalonych w obwodach RL, RC i RLC przy wymuszeniu stałym

ĆWICZENIE 4 Badanie stanów nieustalonych w obwodach RL, RC i RLC przy wymuszeniu stałym ĆWIZENIE 4 Badanie sanów nieusalonych w obwodach, i przy wymuszeniu sałym. el ćwiczenia Zapoznanie się z rozpływem prądów, rozkładem w sanach nieusalonych w obwodach szeregowych, i Zapoznanie się ze sposobami

Bardziej szczegółowo

Badanie funktorów logicznych TTL - ćwiczenie 1

Badanie funktorów logicznych TTL - ćwiczenie 1 adanie funkorów logicznych TTL - ćwiczenie 1 1. Cel ćwiczenia Zapoznanie się z podsawowymi srukurami funkorów logicznych realizowanych w echnice TTL (Transisor Transisor Logic), ich podsawowymi paramerami

Bardziej szczegółowo

( 3 ) Kondensator o pojemności C naładowany do różnicy potencjałów U posiada ładunek: q = C U. ( 4 ) Eliminując U z równania (3) i (4) otrzymamy: =

( 3 ) Kondensator o pojemności C naładowany do różnicy potencjałów U posiada ładunek: q = C U. ( 4 ) Eliminując U z równania (3) i (4) otrzymamy: = ROZŁADOWANIE KONDENSATORA I. el ćwiczenia: wyznaczenie zależności napięcia (i/lub prądu I ) rozładowania kondensaora w funkcji czasu : = (), wyznaczanie sałej czasowej τ =. II. Przyrządy: III. Lieraura:

Bardziej szczegółowo

ĆWICZENIE NR 43 U R I (1)

ĆWICZENIE NR 43 U R I (1) ĆWCZENE N 43 POMY OPO METODĄ TECHNCZNĄ Cel ćwiczenia: wyznaczenie warości oporu oporników poprzez pomiary naężania prądu płynącego przez opornik oraz napięcia na oporniku Wsęp W celu wyznaczenia warości

Bardziej szczegółowo

Ćw. S-II.2 CHARAKTERYSTYKI SKOKOWE ELEMENTÓW AUTOMATYKI

Ćw. S-II.2 CHARAKTERYSTYKI SKOKOWE ELEMENTÓW AUTOMATYKI Dr inż. Michał Chłędowski PODSAWY AUOMAYKI I ROBOYKI LABORAORIUM Ćw. S-II. CHARAKERYSYKI SKOKOWE ELEMENÓW AUOMAYKI Cel ćwiczenia Celem ćwiczenia jes zapoznanie się z pojęciem charakerysyki skokowej h(),

Bardziej szczegółowo

Równania różniczkowe. Lista nr 2. Literatura: N.M. Matwiejew, Metody całkowania równań różniczkowych zwyczajnych.

Równania różniczkowe. Lista nr 2. Literatura: N.M. Matwiejew, Metody całkowania równań różniczkowych zwyczajnych. Równania różniczkowe. Lisa nr 2. Lieraura: N.M. Mawiejew, Meody całkowania równań różniczkowych zwyczajnych. W. Krysicki, L. Włodarski, Analiza Maemayczna w Zadaniach, część II 1. Znaleźć ogólną posać

Bardziej szczegółowo

Silniki cieplne i rekurencje

Silniki cieplne i rekurencje 6 FOTO 33, Lao 6 Silniki cieplne i rekurencje Jakub Mielczarek Insyu Fizyki UJ Chciałbym Pańswu zaprezenować zagadnienie, kóre pozwala, rozważając emaykę sprawności układu silników cieplnych, zapoznać

Bardziej szczegółowo

LABORATORIUM PODSTAW ELEKTRONIKI PROSTOWNIKI

LABORATORIUM PODSTAW ELEKTRONIKI PROSTOWNIKI ZESPÓŁ LABORATORIÓW TELEMATYKI TRANSPORTU ZAKŁAD TELEKOMUNIKJI W TRANSPORCIE WYDZIAŁ TRANSPORTU POLITECHNIKI WARSZAWSKIEJ LABORATORIUM PODSTAW ELEKTRONIKI INSTRUKCJA DO ĆWICZENIA NR 5 PROSTOWNIKI DO UŻYTKU

Bardziej szczegółowo

DYNAMIKA KONSTRUKCJI

DYNAMIKA KONSTRUKCJI 10. DYNAMIKA KONSTRUKCJI 1 10. 10. DYNAMIKA KONSTRUKCJI 10.1. Wprowadzenie Ogólne równanie dynamiki zapisujemy w posaci: M d C d Kd =P (10.1) Zapis powyższy oznacza, że równanie musi być spełnione w każdej

Bardziej szczegółowo

Zasada pędu i popędu, krętu i pokrętu, energii i pracy oraz d Alemberta bryły w ruchu postępowym, obrotowym i płaskim

Zasada pędu i popędu, krętu i pokrętu, energii i pracy oraz d Alemberta bryły w ruchu postępowym, obrotowym i płaskim Zasada pędu i popędu, kręu i pokręu, energii i pracy oraz d Alembera bryły w ruchu posępowym, obroowym i płaskim Ruch posępowy bryły Pęd ciała w ruchu posępowym obliczamy, jak dla punku maerialnego, skupiając

Bardziej szczegółowo

Temat: Wyznaczanie charakterystyk baterii słonecznej.

Temat: Wyznaczanie charakterystyk baterii słonecznej. Ćwiczenie Nr 356 Tema: Wyznaczanie charakerysyk baerii słonecznej. I. Lieraura. W. M. Lewandowski Proekologiczne odnawialne źródła energii, WNT, 007 (www.e-link.com.pl). Ćwiczenia laboraoryjne z fizyki

Bardziej szczegółowo

Wymagania konieczne i podstawowe Uczeń: 1. Wykonujemy pomiary

Wymagania konieczne i podstawowe Uczeń: 1. Wykonujemy pomiary ocena dopuszczająca Wymagania podsawowe ocena dosaeczna ocena dobra Wymagania dopełniające ocena bardzo dobra 1 Lekcja wsępna 1. Wykonujemy pomiary 2 3 Wielkości fizyczne, kóre mierzysz na co dzień wymienia

Bardziej szczegółowo

POMIAR PARAMETRÓW SYGNAŁOW NAPIĘCIOWYCH METODĄ PRÓKOWANIA I CYFROWEGO PRZETWARZANIA SYGNAŁU

POMIAR PARAMETRÓW SYGNAŁOW NAPIĘCIOWYCH METODĄ PRÓKOWANIA I CYFROWEGO PRZETWARZANIA SYGNAŁU Pomiar paramerów sygnałów napięciowych. POMIAR PARAMERÓW SYGNAŁOW NAPIĘCIOWYCH MEODĄ PRÓKOWANIA I CYFROWEGO PRZEWARZANIA SYGNAŁU Cel ćwiczenia Poznanie warunków prawidłowego wyznaczania elemenarnych paramerów

Bardziej szczegółowo

Pomiar współczynnika przewodzenia ciepła ciał stałych

Pomiar współczynnika przewodzenia ciepła ciał stałych Katedra Silników Spalinowych i Pojazdów ATH ZAKŁAD TERMODYNAMIKI Pomiar współczynnika przewodzenia ciepła ciał stałych - - Wiadomości wstępne Przewodzenie ciepła jest procesem polegającym na przenoszeniu

Bardziej szczegółowo

Wykład 5 Elementy teorii układów liniowych stacjonarnych odpowiedź na dowolne wymuszenie

Wykład 5 Elementy teorii układów liniowych stacjonarnych odpowiedź na dowolne wymuszenie Wykład 5 Elemeny eorii układów liniowych sacjonarnych odpowiedź na dowolne wymuszenie Prowadzący: dr inż. Tomasz Sikorski Insyu Podsaw Elekroechniki i Elekroechnologii Wydział Elekryczny Poliechnika Wrocławska

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA Z FIZYKI WYMAGANIA EDUKACYJNE DLA UCZNIÓW KLAS I

PRZEDMIOTOWY SYSTEM OCENIANIA Z FIZYKI WYMAGANIA EDUKACYJNE DLA UCZNIÓW KLAS I PRZEDMIOTOWY SYSTEM OCENIANIA Z FIZYKI WYMAGANIA EDUKACYJNE DLA UCZNIÓW KLAS I Wymagania konieczne ocena dopuszczająca wie że długość i odległość mierzymy w milimerach cenymerach merach lub kilomerach

Bardziej szczegółowo

20. Wyznaczanie ciepła właściwego lodu c pl i ciepła topnienia lodu L

20. Wyznaczanie ciepła właściwego lodu c pl i ciepła topnienia lodu L 20. Wyznaczanie ciepła właściwego lodu c pl i ciepła opnienia lodu L I. Wprowadzenie 1. Ciepło właściwe lodu i ciepło opnienia lodu wyznaczymy meodą kalorymeryczną sporządzając odpowiedni bilans cieplny.

Bardziej szczegółowo

Rys.1. Podstawowa klasyfikacja sygnałów

Rys.1. Podstawowa klasyfikacja sygnałów Kaedra Podsaw Sysemów echnicznych - Podsawy merologii - Ćwiczenie 1. Podsawowe rodzaje i ocena sygnałów Srona: 1 1. CEL ĆWICZENIA Celem ćwiczenia jes zapoznanie się z podsawowymi rodzajami sygnałów, ich

Bardziej szczegółowo

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Skręcalność właściwa sacharozy. opiekun ćwiczenia: dr A. Pietrzak

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Skręcalność właściwa sacharozy. opiekun ćwiczenia: dr A. Pietrzak Kaedra Chemii Fizycznej Uniwersyeu Łódzkiego Skręcalność właściwa sacharozy opiekun ćwiczenia: dr A. Pierzak ćwiczenie nr 19 Zakres zagadnień obowiązujących do ćwiczenia 1. Akywność opyczna a srukura cząseczki.

Bardziej szczegółowo

Sprawność pompy ciepła w funkcji temperatury górnego źródła ciepła

Sprawność pompy ciepła w funkcji temperatury górnego źródła ciepła POLITECHNIKA BIAŁOSTOCKA Wydział Budownicwa i Inżynierii Środowiska Kaedra Ciepłownicwa, Ogrzewnicwa i Wenylacji Insrukcja do zajęć laboraoryjnych Ćwiczenie nr 6 Laboraorium z przedmiou Alernaywne źródła

Bardziej szczegółowo

WYKŁAD 1 ZASADY ELEKTROMECHANICZNEGO PRZETWARZANIA ENERGII

WYKŁAD 1 ZASADY ELEKTROMECHANICZNEGO PRZETWARZANIA ENERGII WYKŁAD 1 ZASADY ELEKTROMECHANICZNEGO RZETWARZANIA ENERGII 1.1. Zasada zachowania energii. unem wyjściowym dla analizy przewarzania energii i mocy w pewnym przedziale czasu jes zasada zachowania energii

Bardziej szczegółowo

Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych. i rocznych ocen klasyfikacyjnych z fizyki dla klasy 1 gimnazjum

Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych. i rocznych ocen klasyfikacyjnych z fizyki dla klasy 1 gimnazjum Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z fizyki dla klasy 1 gimnazjum Semesr I 1. Wykonujemy pomiary Tema zajęć Wielkości fizyczne, kóre

Bardziej szczegółowo

LABORATORIUM PODSTAWY ELEKTRONIKI Badanie Bramki X-OR

LABORATORIUM PODSTAWY ELEKTRONIKI Badanie Bramki X-OR LORTORIUM PODSTWY ELEKTRONIKI adanie ramki X-OR 1.1 Wsęp eoreyczny. ramka XOR ramka a realizuje funkcję logiczną zwaną po angielsku EXLUSIVE-OR (WYŁĄZNIE LU). Polska nazwa brzmi LO. Funkcję EX-OR zapisuje

Bardziej szczegółowo

Ruch płaski. Bryła w ruchu płaskim. (płaszczyzna kierująca) Punkty bryły o jednakowych prędkościach i przyspieszeniach. Prof.

Ruch płaski. Bryła w ruchu płaskim. (płaszczyzna kierująca) Punkty bryły o jednakowych prędkościach i przyspieszeniach. Prof. Ruch płaski Ruchem płaskim nazywamy ruch, podczas kórego wszyskie punky ciała poruszają się w płaszczyznach równoległych do pewnej nieruchomej płaszczyzny, zwanej płaszczyzną kierującą. Punky bryły o jednakowych

Bardziej szczegółowo

Analiza rynku projekt

Analiza rynku projekt Analiza rynku projek A. Układ projeku 1. Srona yułowa Tema Auor 2. Spis reści 3. Treść projeku 1 B. Treść projeku 1. Wsęp Po co? Na co? Dlaczego? Dlaczego robię badania? Jakimi meodami? Dla Kogo o jes

Bardziej szczegółowo

Ćwiczenie XII: PRAWO PODZIAŁU NERNSTA

Ćwiczenie XII: PRAWO PODZIAŁU NERNSTA Ćwiczenie XII: PRAWO PODZIAŁU NERNSTA opracowanie: Wojciech Solarski Wprowadzenie Prawo podziału sformułowane przez Walera H. Nensa opisuje układ rójskładnikowy, z czego dwa składniki o rozpuszczalniki

Bardziej szczegółowo

Szeregi Fouriera. Powyższe współczynniki można wyznaczyć analitycznie z następujących zależności:

Szeregi Fouriera. Powyższe współczynniki można wyznaczyć analitycznie z następujących zależności: Trygonomeryczny szereg Fouriera Szeregi Fouriera Każdy okresowy sygnał x() o pulsacji podsawowej ω, spełniający warunki Dirichlea:. całkowalny w okresie: gdzie T jes okresem funkcji x(), 2. posiadający

Bardziej szczegółowo

PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK

PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK 1 PROGNOZOWANIE I SYMULACJE 2 hp://www.oucome-seo.pl/excel2.xls DODATEK SOLVER WERSJE EXCELA 5.0, 95, 97, 2000, 2002/XP i 2003. 3 Dodaek Solver jes dosępny w menu Narzędzia. Jeżeli Solver nie jes dosępny

Bardziej szczegółowo

Krzywe na płaszczyźnie.

Krzywe na płaszczyźnie. Krzwe na płaszczźnie. Współrzędne paramerczne i biegunowe. Współrzędne biegunowe. Dan jes punk O, zwan biegunem, kór sanowi począek półprosej, zwanej półosią. Dowoln punk P na płaszczźnie można opisać

Bardziej szczegółowo

LABORATORIUM METROLOGII

LABORATORIUM METROLOGII LABORATORIUM METROLOGII POMIARY PRZEWODNOŚCI CIEPLNEJ CIAŁ STAŁYCH Cel ćwiczenia: zapoznanie z metodami pomiaru współczynnika przewodzenia ciepła, oraz jego wyznaczenie metodą stacjonarną. 1 WPROWADZENIE

Bardziej szczegółowo

Wyznaczenie współczynników przejmowania ciepła dla konwekcji wymuszonej

Wyznaczenie współczynników przejmowania ciepła dla konwekcji wymuszonej LABORATORIUM TERMODYNAMIKI INSTYTUTU TECHNIKI CIEPLNEJ I MECHANIKI PŁYNÓW WYDZIAŁ MECHANICZNO-ENERGETYCZNY POLITECHNIKI WROCŁAWSKIEJ INSTRUKCJA LABORATORYJNA Temat ćwiczenia 18 Wyznaczenie współczynników

Bardziej szczegółowo

WSPÓŁCZYNNIK PRZEJMOWANIA CIEPŁA PRZEZ KONWEKCJĘ

WSPÓŁCZYNNIK PRZEJMOWANIA CIEPŁA PRZEZ KONWEKCJĘ INSYU INFORMAYKI SOSOWANEJ POLIECHNIKI ŁÓDZKIEJ Ćwiczenie Nr2 WSPÓŁCZYNNIK PRZEJMOWANIA CIEPŁA PRZEZ KONWEKCJĘ 1.WPROWADZENIE. Wymiana ciepła pomiędzy układami termodynamicznymi może być realizowana na

Bardziej szczegółowo

Lista nr Znaleźć rozwiązania ogólne następujących równań różniczkowych: a) y = y t,

Lista nr Znaleźć rozwiązania ogólne następujących równań różniczkowych: a) y = y t, RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE B Lisa nr 1 1. Napisać równanie różniczkowe, jakie spełnia napięcie u = u() na okładkach kondensaora w obwodzie zawierającym połączone szeregowo oporność R i pojemność C,

Bardziej szczegółowo

Pytania na EGZAMIN INŻYNIERSKI z Inżynierii Procesowej na kierunku TŻiŻCz, UP P-ń 2014/15

Pytania na EGZAMIN INŻYNIERSKI z Inżynierii Procesowej na kierunku TŻiŻCz, UP P-ń 2014/15 Pyania na EGZAMIN INŻYNIERSKI z Inżynierii Procesowej na kierunku TŻiŻCz, UP P-ń 2014/15 1. Przez przewód o przekroju kołowym, o osi poziomej i zmiennej średnicy (D i d) odbywa się izoermiczny, ciągły

Bardziej szczegółowo

KONDUKCYJNA WYMIANA CIEPŁA - STYKOWY POMIAR TEMPERATURY

KONDUKCYJNA WYMIANA CIEPŁA - STYKOWY POMIAR TEMPERATURY IŃSTYTUT INFORMATYKI STOSOWANEJ POLITECHNIKI ŁÓDZKIEJ Ćwiczenie Nr1 KONDUKCYJNA WYMIANA CIEPŁA - STYKOWY POMIAR TEMPERATURY 1.WPROWADZENIE Przewodzenie ciepła (kondukcja) jest to wymiana ciepła między

Bardziej szczegółowo

Praca domowa nr 1. Metodologia Fizyki. Grupa 1. Szacowanie wartości wielkości fizycznych Zad Stoisz na brzegu oceanu, pogoda jest idealna,

Praca domowa nr 1. Metodologia Fizyki. Grupa 1. Szacowanie wartości wielkości fizycznych Zad Stoisz na brzegu oceanu, pogoda jest idealna, Praca domowa nr. Meodologia Fizyki. Grupa. Szacowanie warości wielkości fizycznych Zad... Soisz na brzegu oceanu, pogoda jes idealna, powierze przeźroczyse; proszę oszacować jak daleko od Ciebie znajduje

Bardziej szczegółowo

PROGNOZOWANIE I SYMULACJE EXCEL 2 PROGNOZOWANIE I SYMULACJE EXCEL AUTOR: ŻANETA PRUSKA

PROGNOZOWANIE I SYMULACJE EXCEL 2 PROGNOZOWANIE I SYMULACJE EXCEL AUTOR: ŻANETA PRUSKA 1 PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: mgr inż. ŻANETA PRUSKA DODATEK SOLVER 2 Sprawdzić czy w zakładce Dane znajduję się Solver 1. Kliknij przycisk Microsof Office, a nasępnie kliknij przycisk Opcje

Bardziej szczegółowo

WPŁYW WARUNKÓW CHŁODZENIA

WPŁYW WARUNKÓW CHŁODZENIA Akademia Górniczo-Hunicza im. Sanisława Saszica Wydział Inżynierii Meali i Informayki Przemysłowej Kaedra Techniki Cieplnej i Ochrony Środowiska Rozprawa dokorska WPŁYW WARUNKÓW CHŁODZENIA ORAZ PRZEWODNOŚCI

Bardziej szczegółowo

Pobieranie próby. Rozkład χ 2

Pobieranie próby. Rozkład χ 2 Graficzne przedsawianie próby Hisogram Esymaory przykład Próby z rozkładów cząskowych Próby ze skończonej populacji Próby z rozkładu normalnego Rozkład χ Pobieranie próby. Rozkład χ Posać i własności Znaczenie

Bardziej szczegółowo

SPRAWOZDANIE Z PROJEKTU Dioda jako czujnik temperatury

SPRAWOZDANIE Z PROJEKTU Dioda jako czujnik temperatury emperaury 1. Cele Sprawdzenie zależności między emperaurą a naężeniem świała emiowanego przez diodę LED (napięciem baza-emier na ranzysorze) w układzie z Rys.1 (parz srona 1 Budowa układu ). 2. Wykaz przyrządów

Bardziej szczegółowo

Akademia Morska w Szczecinie. Laboratorium paliw, olejów i smarów

Akademia Morska w Szczecinie. Laboratorium paliw, olejów i smarów Akademia Morska w Szczecinie Wydział Mechaniczny Kaedra Fizyki i Chemii Laboraorium paliw, olejów i smarów Ćwiczenie laboraoryjne Pomiar gęsości oraz wyznaczanie emperaurowego współczynnika gęsości produków

Bardziej szczegółowo

BADANIE DYNAMICZNYCH WŁAŚCIWOŚCI PRZETWORNIKÓW POMIAROWYCH

BADANIE DYNAMICZNYCH WŁAŚCIWOŚCI PRZETWORNIKÓW POMIAROWYCH BADANIE DYNAMICZNYCH WŁAŚCIWOŚCI PRZETWORNIKÓW POMIAROWYCH. Cel ćwiczenia Celem ćwiczenia jes poznanie właściwości przyrządów i przeworników pomiarowych związanych ze sanami przejściowymi powsającymi po

Bardziej szczegółowo

LABORATORIUM Z ELEKTRONIKI

LABORATORIUM Z ELEKTRONIKI LABORAORIM Z ELEKRONIKI PROSOWNIKI Józef Boksa WA 01 1. PROSOWANIKI...3 1.1. CEL ĆWICZENIA...3 1.. WPROWADZENIE...3 1..1. Prosowanie...3 1.3. PROSOWNIKI NAPIĘCIA...3 1.4. SCHEMAY BLOKOWE KŁADÓW POMIAROWYCH...5

Bardziej szczegółowo

Instrukcja do laboratorium z fizyki budowli.

Instrukcja do laboratorium z fizyki budowli. Instrukcja do laboratorium z fizyki budowli. Ćwiczenie: Pomiar współczynnika przewodzenia ciepła materiałów budowlanych Strona 1 z 5 Cel ćwiczenia Prezentacja metod stacjonarnych i dynamicznych pomiaru

Bardziej szczegółowo

1. Wprowadzenie: dt q = - λ dx. q = lim F

1. Wprowadzenie: dt q = - λ dx. q = lim F PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W PILE INSTYTUT POLITECHNICZNY Zakład Budowy i Eksploatacji Maszyn PRACOWNIA TERMODYNAMIKI TECHNICZNEJ INSTRUKCJA Temat ćwiczenia: WYZNACZANIE WSPÓŁCZYNNIKA PRZEWODNOŚCI

Bardziej szczegółowo

Dynamiczne formy pełzania i relaksacji (odprężenia) górotworu

Dynamiczne formy pełzania i relaksacji (odprężenia) górotworu Henryk FILCEK Akademia Górniczo-Hunicza, Kraków Dynamiczne formy pełzania i relaksacji (odprężenia) góroworu Sreszczenie W pracy podano rozważania na ema możliwości wzbogacenia reologicznego równania konsyuywnego

Bardziej szczegółowo

8. Zakładane osiągnięcia ucznia (Plan wynikowy)

8. Zakładane osiągnięcia ucznia (Plan wynikowy) Fizyka Świa fizyki Klasy 7 8 Szkoła podsawowa 8. Zakładane osiągnięcia ucznia (Plan wynikowy) Klasa 7 Tema lekcji 1 4 Wielkości fizyczne, kóre mierzysz na co dzień 5 6 Pomiar warości siły ciężkości 7 8

Bardziej szczegółowo

zestaw laboratoryjny (generator przebiegu prostokątnego + zasilacz + częstościomierz), oscyloskop 2-kanałowy z pamięcią, komputer z drukarką,

zestaw laboratoryjny (generator przebiegu prostokątnego + zasilacz + częstościomierz), oscyloskop 2-kanałowy z pamięcią, komputer z drukarką, - Ćwiczenie 4. el ćwiczenia Zapoznanie się z budową i działaniem przerzunika asabilnego (muliwibraora) wykonanego w echnice dyskrenej oraz TTL a akże zapoznanie się z działaniem przerzunika T (zwanego

Bardziej szczegółowo

BADANIE WYMIENNIKÓW CIEPŁA

BADANIE WYMIENNIKÓW CIEPŁA 1.Wprowadzenie DNIE WYMIENNIKÓW CIEPŁ a) PŁSZCZOWO-RUROWEGO b) WĘŻOWNICOWEGO adanie wymiennika ciepła sprowadza się do pomiaru współczynników przenikania ciepła k w szerokim zakresie zmian parametrów ruchowych,

Bardziej szczegółowo

EKONOMETRIA wykład 2. Prof. dr hab. Eugeniusz Gatnar.

EKONOMETRIA wykład 2. Prof. dr hab. Eugeniusz Gatnar. EKONOMERIA wykład Prof. dr hab. Eugeniusz Ganar eganar@mail.wz.uw.edu.pl Przedziały ufności Dla paramerów srukuralnych modelu: P bˆ j S( bˆ z prawdopodobieńswem parameru b bˆ S( bˆ, ( m j j j, ( m j b

Bardziej szczegółowo

ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1

ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1 ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1 mgr inż. Żanea Pruska Maeriał opracowany na podsawie lieraury przedmiou. Zadanie 1 Firma Alfa jes jednym z głównych dosawców firmy Bea. Ilość produku X,

Bardziej szczegółowo

Laboratorium komputerowe z wybranych zagadnień mechaniki płynów

Laboratorium komputerowe z wybranych zagadnień mechaniki płynów ANALIZA PRZEKAZYWANIA CIEPŁA I FORMOWANIA SIĘ PROFILU TEMPERATURY DLA NIEŚCIŚLIWEGO, LEPKIEGO PRZEPŁYWU LAMINARNEGO W PRZEWODZIE ZAMKNIĘTYM Cel ćwiczenia Celem ćwiczenia będzie obserwacja procesu formowania

Bardziej szczegółowo

gazów lub cieczy, wywołanym bądź różnicą gęstości (różnicą temperatur), bądź przez wymuszenie czynnikami zewnętrznymi.

gazów lub cieczy, wywołanym bądź różnicą gęstości (różnicą temperatur), bądź przez wymuszenie czynnikami zewnętrznymi. WYMIANA (TRANSPORT) CIEPŁA Trzy podstawowe mechanizmy transportu ciepła (wymiany ciepła): 1. PRZEWODZENIIE - przekazywanie energii od jednej cząstki do drugiej, za pośrednictwem ruchu drgającego tych cząstek.

Bardziej szczegółowo

I. KINEMATYKA I DYNAMIKA

I. KINEMATYKA I DYNAMIKA piagoras.d.pl I. KINEMATYKA I DYNAMIKA KINEMATYKA: Położenie ciała w przesrzeni można określić jedynie względem jakiegoś innego ciała lub układu ciał zwanego układem odniesienia. Ruch i spoczynek są względne

Bardziej szczegółowo

POMIAR INDUKCJI MAGNETYCZNEJ ZA POMOCĄ FLUKSOMETRU

POMIAR INDUKCJI MAGNETYCZNEJ ZA POMOCĄ FLUKSOMETRU Ćwiczenie 56 E. Dudziak POMIAR INDUKCJI MAGNETYCZNEJ ZA POMOCĄ FLUKSOMETRU Cel ćwiczenia: pomiar fluksomerem indukcji maneycznej sałeo pola maneyczneo między nabieunnikami elekromanesu. Zaadnienia: indukcja

Bardziej szczegółowo

Ćwiczenia 3 ( ) Współczynnik przyrostu naturalnego. Koncepcja ludności zastojowej i ustabilizowanej. Prawo Lotki.

Ćwiczenia 3 ( ) Współczynnik przyrostu naturalnego. Koncepcja ludności zastojowej i ustabilizowanej. Prawo Lotki. Ćwiczenia 3 (22.04.2013) Współczynnik przyrosu nauralnego. Koncepcja ludności zasojowej i usabilizowanej. Prawo Loki. Współczynnik przyrosu nauralnego r = U Z L gdzie: U - urodzenia w roku Z - zgony w

Bardziej szczegółowo

WSTĘP DO ELEKTRONIKI

WSTĘP DO ELEKTRONIKI WSTĘP DO ELEKTRONIKI Część I Napięcie, naężenie i moc prądu elekrycznego Sygnały elekryczne i ich klasyfikacja Rodzaje układów elekronicznych Janusz Brzychczyk IF UJ Elekronika Dziedzina nauki i echniki

Bardziej szczegółowo

BADANIE WYMIENNIKA CIEPŁA TYPU RURA W RURZE

BADANIE WYMIENNIKA CIEPŁA TYPU RURA W RURZE BDNIE WYMIENNIK CIEPŁ TYPU RUR W RURZE. Cel ćwiczenia Celem ćwiczenia jest zapoznanie z konstrukcją, metodyką obliczeń cieplnych oraz poznanie procesu przenikania ciepła w rurowych wymiennikach ciepła..

Bardziej szczegółowo

Ćwiczenie E-5 UKŁADY PROSTUJĄCE

Ćwiczenie E-5 UKŁADY PROSTUJĄCE KŁADY PROSJĄCE I. Cel ćwiczenia: pomiar podsawowych paramerów prosownika jedno- i dwupołówkowego oraz najprosszych filrów. II. Przyrządy: płyka monaŝowa, wolomierz magneoelekryczny, wolomierz elekrodynamiczny

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki Poliechnika Gdańska Wydział Elekroechniki i Auomayki Kaedra Inżynierii Sysemów Serowania Podsawy Auomayki Repeyorium z Podsaw auomayki Zadania do ćwiczeń ermin T15 Opracowanie: Kazimierz Duzinkiewicz,

Bardziej szczegółowo

WYMAGANIA NA POSZCZEGÓLNE OCENY Z FIZYKI W KLASIE I GIMNAZJUM

WYMAGANIA NA POSZCZEGÓLNE OCENY Z FIZYKI W KLASIE I GIMNAZJUM WYMAGANIA NA POSZCZEGÓLNE OCENY Z FIZYKI W KLASIE I GIMNAZJUM ROK SZKOLNY: 2016/2017 Wymagania na ocenę dopuszczająca: wymienia przyrządy, za pomocą kórych mierzymy długość, emperaurę, czas, szybkość i

Bardziej szczegółowo

Wyznaczanie krzywej ładowania kondensatora

Wyznaczanie krzywej ładowania kondensatora Ćwiczenie E10 Wyznaczanie krzywej ładowania kondensatora E10.1. Cel ćwiczenia Celem ćwiczenia jest zbadanie przebiegu procesu ładowania kondensatora oraz wyznaczenie stałej czasowej szeregowego układu.

Bardziej szczegółowo

Kondensacyjne gazowe nagrzewnice powietrza GMS9- górnonadmuchowy/leżący GDS9 - dolnonadmuchowy

Kondensacyjne gazowe nagrzewnice powietrza GMS9- górnonadmuchowy/leżący GDS9 - dolnonadmuchowy Kondensacyjne gazowe nagrzewnice powierza - górnonadmuchowy/leżący - dolnonadmuchowy Kondensacyjne nagrzewnice gazowe jednosopniowe Goodman / posiadają opaenowany, aluminiowany salowy rurowy wymiennik

Bardziej szczegółowo

Metody Lagrange a i Hamiltona w Mechanice

Metody Lagrange a i Hamiltona w Mechanice Meody Lagrange a i Hamilona w Mechanice Mariusz Przybycień Wydział Fizyki i Informayki Sosowanej Akademia Górniczo-Hunicza Wykład 7 M. Przybycień (WFiIS AGH) Meody Lagrange a i Hamilona... Wykład 7 1 /

Bardziej szczegółowo

Pomiar wielkości nieelektrycznych: temperatury, przemieszczenia i prędkości.

Pomiar wielkości nieelektrycznych: temperatury, przemieszczenia i prędkości. Zakład Napędów Wieloźródłowych Instytut Maszyn Roboczych CięŜkich PW Laboratorium Elektrotechniki i Elektroniki Ćwiczenie E3 - protokół Pomiar wielkości nieelektrycznych: temperatury, przemieszczenia i

Bardziej szczegółowo

Plan wynikowy Klasa 7

Plan wynikowy Klasa 7 Plan wynikowy Klasa 7 1. Wykonujemy pomiary 1 4 Wielkości fizyczne, kóre mierzysz na co dzień 5 6 Pomiar warości siły ciężkości wymienia przyrządy, za pomocą kórych mierzymy długość, emperaurę, czas, szybkość

Bardziej szczegółowo

Sprawdzanie prawa Ohma i wyznaczanie wykładnika w prawie Stefana-Boltzmanna

Sprawdzanie prawa Ohma i wyznaczanie wykładnika w prawie Stefana-Boltzmanna Sprawdzanie prawa Ohma i wyznaczanie wykładnika w prawie Stefana-Boltzmanna Wprowadzenie. Prawo Stefana Boltzmanna Φ λ nm Rys.1. Prawo Plancka. Pole pod każdą krzywą to całkowity strumień: Φ c = σs T 4

Bardziej szczegółowo

y 1 y 2 = f 2 (t, y 1, y 2,..., y n )... y n = f n (t, y 1, y 2,..., y n ) f 1 (t, y 1, y 2,..., y n ) y = f(t, y),, f(t, y) =

y 1 y 2 = f 2 (t, y 1, y 2,..., y n )... y n = f n (t, y 1, y 2,..., y n ) f 1 (t, y 1, y 2,..., y n ) y = f(t, y),, f(t, y) = Uk lady równań różniczkowych Pojȩcia wsȩpne Uk ladem równań różniczkowych nazywamy uk lad posaci y = f (, y, y 2,, y n ) y 2 = f 2 (, y, y 2,, y n ) y n = f n (, y, y 2,, y n ) () funkcje f j, j =, 2,,

Bardziej szczegółowo

ANALIZA ODPOWIEDZI UKŁADÓW KONSTRUKCYJNYCH NA WYMUSZENIE W POSTACI SIŁY O DOWOLNYM PRZEBIEGU CZASOWYM

ANALIZA ODPOWIEDZI UKŁADÓW KONSTRUKCYJNYCH NA WYMUSZENIE W POSTACI SIŁY O DOWOLNYM PRZEBIEGU CZASOWYM Budownicwo Mariusz Poński ANALIZA ODPOWIEDZI UKŁADÓW KONSTRUKCYJNYCH NA WYMUSZENIE W POSTACI SIŁY O DOWOLNYM PRZEBIEGU CZASOWYM Wprowadzenie Coraz większe ograniczenia czasowe podczas wykonywania projeków

Bardziej szczegółowo

WNIKANIE CIEPŁA PRZY WRZENIU CIECZY

WNIKANIE CIEPŁA PRZY WRZENIU CIECZY WNIKANIE CIEPŁA PRZY WRZENIU CIECZY 1. Wprowadzenie Z wrzeniem cieczy jednoskładnikowej A mamy do czynienia wówczas, gdy proces przechodzenia cząstek cieczy w parę zachodzi w takiej temperaturze, w której

Bardziej szczegółowo

POMIARY CZĘSTOTLIWOŚCI I PRZESUNIĘCIA FAZOWEGO SYGNAŁÓW OKRESOWYCH

POMIARY CZĘSTOTLIWOŚCI I PRZESUNIĘCIA FAZOWEGO SYGNAŁÓW OKRESOWYCH Program ćwiczeń: Pomiary częsoliwości i przesunięcia fazowego sygnałów okresowych POMIARY CZĘSTOTLIWOŚCI I PRZESUNIĘCIA FAZOWEGO SYGNAŁÓW OKRESOWYCH Cel ćwiczenia Celem ćwiczenia jes poznanie: podsawowych

Bardziej szczegółowo

PROGNOZOWANIE. Ćwiczenia 2. mgr Dawid Doliński

PROGNOZOWANIE. Ćwiczenia 2. mgr Dawid Doliński Ćwiczenia 2 mgr Dawid Doliński Modele szeregów czasowych sały poziom rend sezonowość Y Y Y Czas Czas Czas Modele naiwny Modele średniej arymeycznej Model Browna Modele ARMA Model Hola Modele analiyczne

Bardziej szczegółowo

LABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ

LABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIEII ŚODOWISKA I ENEGETYKI POLITECHNIKI ŚLĄSKIEJ INSTUKCJA LABOATOYJNA Temat ćwiczenia: WYZNACZANIE WSPÓŁCZYNNIKA WNIKANIA CIEPŁA PZY KONWEKCJI SWOBODNEJ W WODZIE

Bardziej szczegółowo

Wymagania programowe z fizyki w klasie II gimnazjum rok szkolny 2013/2014

Wymagania programowe z fizyki w klasie II gimnazjum rok szkolny 2013/2014 Wymagania programowe z fizyki w klasie II gimnazjum rok szkolny 013/014 0 Zajęcia organizacyjne 1. Jak opisujemy ruch? Lp. Tema lekcji Wymagania konieczne i podsawowe 1 Układ odniesienia. Tor ruchu, droga

Bardziej szczegółowo

PROFIL PRĘDKOŚCI W RURZE PROSTOLINIOWEJ

PROFIL PRĘDKOŚCI W RURZE PROSTOLINIOWEJ LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie N 7 PROFIL PRĘDKOŚCI W RURZE PROSTOLINIOWEJ . Cel ćwiczenia Doświadczalne i teoretyczne wyznaczenie profilu prędkości w rurze prostoosiowej 2. Podstawy teoretyczne:

Bardziej szczegółowo

Metody badania wpływu zmian kursu walutowego na wskaźnik inflacji

Metody badania wpływu zmian kursu walutowego na wskaźnik inflacji Agnieszka Przybylska-Mazur * Meody badania wpływu zmian kursu waluowego na wskaźnik inflacji Wsęp Do oceny łącznego efeku przenoszenia zmian czynników zewnęrznych, akich jak zmiany cen zewnęrznych (szoki

Bardziej szczegółowo

(Plan wynikowy) - zakładane osiągnięcia ucznia Fizyka klasa II

(Plan wynikowy) - zakładane osiągnięcia ucznia Fizyka klasa II (Plan wynikowy) - zakładane osiągnięcia ucznia Fizyka klasa II 1 Zapoznanie z wymaganiami edukacyjnymi i kryeriami oceniania. Regulamin pracowni i przepisy BHP. 1. Jak opisujemy ruch? (1.1, 1., 1.5, 1.6,

Bardziej szczegółowo

WENTYLACJA i KLIMATYZACJA 2. Ćwiczenia nr 1

WENTYLACJA i KLIMATYZACJA 2. Ćwiczenia nr 1 Insyu Inżynierii Cieplnej i Ochrony Powierza Poliechniki Krakowskiej Zakład Wenylacji Klimayzacji i Chłodnicwa WENTYLACJA i KLIMATYZACJA 2 Ćwiczenia nr 1 Urządzenia do uzdania powierza w klimayzacji Dr

Bardziej szczegółowo

M10. Własności funkcji liniowej

M10. Własności funkcji liniowej M10. Własności funkcji liniowej dr Artur Gola e-mail: a.gola@ajd.czest.pl pokój 3010 Definicja Funkcję określoną wzorem y = ax + b, dla x R, gdzie a i b są stałymi nazywamy funkcją liniową. Wykresem funkcji

Bardziej szczegółowo

Jacek Kwiatkowski Magdalena Osińska. Procesy zawierające stochastyczne pierwiastki jednostkowe identyfikacja i zastosowanie.

Jacek Kwiatkowski Magdalena Osińska. Procesy zawierające stochastyczne pierwiastki jednostkowe identyfikacja i zastosowanie. DYNAMICZNE MODELE EKONOMETRYCZNE Jacek Kwiakowski Magdalena Osińska Uniwersye Mikołaja Kopernika Procesy zawierające sochasyczne pierwiaski jednoskowe idenyfikacja i zasosowanie.. Wsęp Większość lieraury

Bardziej szczegółowo

WYMAGANIA NA OCENY Z FIZYKI KLASA 7

WYMAGANIA NA OCENY Z FIZYKI KLASA 7 WYMAGANIA NA OCENY Z FIZYKI KLASA 7 Tema lekcji Wielkości fizyczne, kóre mierzysz na co dzień Pomiar warości siły ciężkości Ocena - dopuszczający i dosaeczny wymienia przyrządy, za pomocą kórych mierzymy

Bardziej szczegółowo

Dr inŝ. Janusz Eichler Dr inŝ. Jacek Kasperski. ODSTĘPSTWA RZECZYWISTEGO OBIEGU ABSORPCYJNO-DYFUZYJNEGO OD OBIEGU TEORETYCZNEGO (część I).

Dr inŝ. Janusz Eichler Dr inŝ. Jacek Kasperski. ODSTĘPSTWA RZECZYWISTEGO OBIEGU ABSORPCYJNO-DYFUZYJNEGO OD OBIEGU TEORETYCZNEGO (część I). Dr inŝ Janusz Eichler Dr inŝ Jacek Kasperski Zakład Chłodnicwa i Kriogeniki Insyu echniki Cieplnej i Mechaniki Płynów I-20 Poliechnika Wrocławska ODSĘPSWA RZECZYWISEGO OBIEGU ABSORPCYJNO-DYFUZYJNEGO OD

Bardziej szczegółowo

Wyznaczanie temperatury i wysokości podstawy chmur

Wyznaczanie temperatury i wysokości podstawy chmur Wyznaczanie emperaury i wysokości podsawy chmur Czas rwania: 10 minu Czas obserwacji: dowolny Wymagane warunki meeorologiczne: pochmurnie lub umiarkowane zachmurzenie Częsoliwość wykonania: 1 raz w ciągu

Bardziej szczegółowo

MAKROEKONOMIA 2. Wykład 3. Dynamiczny model DAD/DAS, część 2. Dagmara Mycielska Joanna Siwińska - Gorzelak

MAKROEKONOMIA 2. Wykład 3. Dynamiczny model DAD/DAS, część 2. Dagmara Mycielska Joanna Siwińska - Gorzelak MAKROEKONOMIA 2 Wykład 3. Dynamiczny model DAD/DAS, część 2 Dagmara Mycielska Joanna Siwińska - Gorzelak ( ) ( ) ( ) i E E E i r r = = = = = θ θ ρ ν φ ε ρ α * 1 1 1 ) ( R. popyu R. Fishera Krzywa Phillipsa

Bardziej szczegółowo

Ćw. 1. BADANIE PRZEBIEGÓW NAGRZEWANIA SIĘ I STYGNIĘCIA PRZEWODÓW PRZY OBCIĄŻENIU PRZERYWANYM

Ćw. 1. BADANIE PRZEBIEGÓW NAGRZEWANIA SIĘ I STYGNIĘCIA PRZEWODÓW PRZY OBCIĄŻENIU PRZERYWANYM Ćw. 1. BADANIE PRZEBIEGÓW NAGRZEWANIA SIĘ I SYGNIĘCIA PRZEWODÓW PRZY OBCIĄŻENIU PRZERYWANYM 1. Wprowadzenie 1.1. Wiadomości podstawowe W eksploatacji urządzeń elektroenergetycznych i ich elementów, a do

Bardziej szczegółowo

dr Bartłomiej Rokicki Katedra Makroekonomii i Teorii Handlu Zagranicznego Wydział Nauk Ekonomicznych UW

dr Bartłomiej Rokicki Katedra Makroekonomii i Teorii Handlu Zagranicznego Wydział Nauk Ekonomicznych UW Kaedra Makroekonomii i Teorii Handlu Zagranicznego Wydział Nauk Ekonomicznych UW Sposoby usalania płac w gospodarce Jednym z głównych powodów, dla kórych na rynku pracy obserwujemy poziom bezrobocia wyższy

Bardziej szczegółowo

Alicja Ganczarek Akademia Ekonomiczna w Katowicach. Analiza niezależności przekroczeń VaR na wybranym segmencie rynku energii

Alicja Ganczarek Akademia Ekonomiczna w Katowicach. Analiza niezależności przekroczeń VaR na wybranym segmencie rynku energii DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 007 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Akademia Ekonomiczna w Kaowicach Analiza

Bardziej szczegółowo

Regulatory. Zadania regulatorów. Regulator

Regulatory. Zadania regulatorów. Regulator Regulaory Regulaor Urządzenie, kórego podsawowym zadaniem jes na podsawie sygnału uchybu (odchyłki regulacji) ukszałowanie sygnału serującego umożliwiającego uzyskanie pożądanego przebiegu wielkości regulowanej

Bardziej szczegółowo

Wymagania edukacyjne i system oceniania z fizyki dla klasy 7

Wymagania edukacyjne i system oceniania z fizyki dla klasy 7 Wymagania edukacyjne i sysem oceniania z fizyki dla klasy 7 1. Ocenie podlegają: a) wiedza, b) umiejęności, c) akywność na lekcji, d) wkład pracy i zaangażowanie. 2. Wiedza i umiejęności są sprawdzane

Bardziej szczegółowo

Laboratorium z PODSTAW AUTOMATYKI, cz.1 EAP, Lab nr 3

Laboratorium z PODSTAW AUTOMATYKI, cz.1 EAP, Lab nr 3 I. ema ćwiczenia: Dynamiczne badanie przerzuników II. Cel/cele ćwiczenia III. Wykaz użyych przyrządów IV. Przebieg ćwiczenia Eap 1: Przerzunik asabilny Przerzuniki asabilne służą jako generaory przebiegów

Bardziej szczegółowo

Ćwiczenie 119. Tabela II. Część P19. Wyznaczanie okresu drgań masy zawieszonej na sprężynie. Nr wierzchołka 0 1 2 3 4 5 6 7 8

Ćwiczenie 119. Tabela II. Część P19. Wyznaczanie okresu drgań masy zawieszonej na sprężynie. Nr wierzchołka 0 1 2 3 4 5 6 7 8 2012 Kaedra Fizyki SGGW Nazwisko... Daa... Nr na liście... Imię... Wydział... Dzień yg.... Godzina... Ruch harmoniczny prosy masy na sprężynie Tabela I: Część X19. Wyznaczanie sałej sprężyny Położenie

Bardziej szczegółowo

Ć W I C Z E N I E N R E-9

Ć W I C Z E N I E N R E-9 INSTYTT FIZYKI WYDZIAŁ INŻYNIERII PRODKJI I TEHNOLOGII MATERIAŁÓW POLITEHNIKA ZĘSTOHOWSKA PRAOWNIA ELEKTRYZNOŚI I MAGNETYZM Ć W I Z E N I E N R E-9 DRGANIA RELAKSAYJNE I. Zagadnienia do przesudiowania

Bardziej szczegółowo

Prognozowanie średniego miesięcznego kursu kupna USD

Prognozowanie średniego miesięcznego kursu kupna USD Prognozowanie średniego miesięcznego kursu kupna USD Kaarzyna Halicka Poliechnika Białosocka, Wydział Zarządzania, Kaedra Informayki Gospodarczej i Logisyki, e-mail: k.halicka@pb.edu.pl Jusyna Godlewska

Bardziej szczegółowo