Zadania z algebry liniowej - sem. I Przestrzenie liniowe, bazy, rząd macierzy

Wielkość: px
Rozpocząć pokaz od strony:

Download "Zadania z algebry liniowej - sem. I Przestrzenie liniowe, bazy, rząd macierzy"

Transkrypt

1 Zadania z algebry liniowej - sem I Przestrzenie liniowe bazy rząd macierzy Definicja 1 Niech (K + ) będzie ciałem (zwanym ciałem skalarów a jego elementy nazywać będziemy skalarami) Przestrzenią liniową (wektorową) nad ciałem K nazywamy niepusty zbiór V z dwoma działaniami: dodawaniem wektorów + : V V V tzn vw V v + w V mnożeniem wektorów przez skalar : K V V tzn α K v V αv V spełniającymi następujące warunki: 1 o 4 o (V +) jest grupą przemienną 5 o α K vw V α(v + w) = αv + αw 6 o αβ K v V (α + β)v = αv + βv 7 o αβ K v V α(βv) = (α β)v 8 o 1 K v V 1 v = v Zadanie 1 Sprawdzić czy podany zbiór ze wskazanymi działaniami jest przestrzenią wektorową nad ciałem K = R: a) R 2 (x 1 y 1 ) (x 2 y 2 ) = (x 1 + x 2 y 1 + y 2 ) α (x y) = (αx αy) b) R 2 (x 1 y 1 ) (x 2 y 2 ) = (x 1 + x 2 y 1 + y 2 ) α (x y) = (αy αx) c) R 2 (x 1 y 1 ) (x 2 y 2 ) = (x 1 + x 2 y 1 + y 2 ) α (x y) = (0 αy) d) R 2 (x 1 y 1 ) (x 2 y 2 ) = (x 1 + x 2 y 1 + y 2 ) α (x y) = ((α + 1)x αy) e) R 2 (x 1 y 1 ) (x 2 y 2 ) = (x 1 + x 2 y 1 + y 2 ) α (x y) = (αx 2y) f) R 2 (x 1 y 1 ) (x 2 y 2 ) = (y 1 + y 2 x 1 + x 2 ) α (x y) = (αx αy) g) R 2 (x 1 y 1 ) (x 2 y 2 ) = (x 1 x 2 y 1 y 2 ) α (x y) = (αx αy) h) R 2 (x 1 y 1 ) (x 2 y 2 ) = (2x 1 + 3x 2 y 1 + y 2 ) α (x y) = (αx αy) i) R 2 (x 1 y 1 ) (x 2 y 2 ) = (0 0) α (x y) = (αx αy) j) C(R R) (f g)(x) = f(x) + g(x) (α f)(x) = αf(x) k) C(R R) (f g)(x) = 2f(x) (α f)(x) = αf(x) l) M 2 2 (R) A B = A + B α A = αa 1

2 m) M 2 2 (R) A B = 2A + B α A = αa Odpowiedzi: a) tak b) nie c) nie d) nie e) nie f) nie g) nie h) nie i) nie j) tak k) nie l) tak m) nie Twierdzenie 1 Niech V będzie przestrzenią liniową nad ciałem K oraz v w V α β K Wtedy zachodzą następujące własności: v V 0v = 0 α K α0 = 0 αv = 0 (α = 0 v = 0) (v 0 αv = βv) α = β (α 0 αv = αw) v = w ( α)v = α( v) = (αv) Zadanie 2 Udowodnić powyższe twierdzenie Definicja 2 Niepusty zbiór W V nazywamy podprzestrzenią liniową przestrzeni liniowej V jeżeli vw W v + w W oraz α K v W αv W Uwaga 1 Powyższe warunki można zastąpić jednym równoważnym: αβ K vw W αv + βw W Zadanie 3 Sprawdzić czy zbiór jest podprzestrzenią danej przestrzeni wektorowej nad ciałem K = R: a) {(x y) R 2 y = x} w R 2 b) {(x y) R 2 y = x} w R 2 c) {(x y) R 2 y = 2x} w R 2 d) {(x y) R 2 y = x + 1} w R 2 e) {(x y) R 2 x y 0} w R 2 f) {(x y) R 2 y x} w R 2 g) {(x y) R 2 x 2 + y 2 1} w R 2 h) {(x y) R 2 xy = 0} w R 2 i) {(x y z) R 3 y = x z = 0} w R 3 j) {(x y z) R 3 x + y + z = 0} w R 3 k) {(x y z) R 3 xy = 0} w R 3 l) {(x y z) R 3 x + y = 1 z = 2x} w R 3 m) GL(n R) w M n n (R) n) {A M 2 2 (R) det(a) = 0} w M 2 2 (R) o) {A M 2 2 (R) A 2 = 0} w M 2 2 (R) p) {f C(R R) f( x) = f(x)} w C(R R) q) {f C(R R) f(0) = 0} w C(R R) r) {f C(R R) f(0) = 1} w C(R R) Odpowiedzi: a) tak b) tak c) tak d) nie e) nie f) nie g) nie h) nie i) tak j) tak k) nie l) nie m) nie n) nie o) nie p) tak q) tak r) nie 2

3 Twierdzenie 2 Niech U W będą podprzestrzeniami liniowymi przestrzeni liniowej V Wówczas 1 zbiór U W jest podprzestrzenią liniową V 2 zbiór U W jest podprzestrzenią liniową V wtedy i tylko wtedy gdy U W lub W U Zadanie 4 Które ze zbiorów W są podprzestrzeniami wskazanych przestrzeni liniowych V? a) W = {(x y) : x + 2y = 0 2x + 2y = 0 } V = R 2 b) W = {(x y) : x + 2y = 0 2x + 2y = 0 } V = R 2 c) W = {(x y) : 2x + 4y = 0 x = 0 } V = R 2 d) W = {(x y) : 2x + 4y = 0 x = 0 } V = R 2 e) W = {(x y z) : x + y 2z = 0 3x 2y + z = 0 } V = R 3 f) W = {(x y z) : x + y 2z = 0 3x 2y + z = 0 } V = R 3 g) W = {p R[x] : p(1) = 0 p (2) = 0 } V = R[x] h) W = {p R[x] : p(1) = 0 p (2) = 0 } V = R[x] Definicja 3 Podprzestrzeń liniową V nazywamy generowaną (rozpiętą) przez A = {v 1 v 2 v n } i oznaczamy span{v 1 v 2 v 2 } = {w V : w = α 1 v 1 + α 2 v 2 + α n v n α i K 1 i n} Przestrzeń ta zawiera wszystkie kombinacje liniowe tych wektorów Sam zbiór A = {v 1 v n } nazywamy zbiorem generującym (rozpinajacym) podprzestrzeń span{a} Stosuje się również oznaczenia < v 1 v n > lin{v 1 v n } L(v 1 v n ) Zadanie 5 Przestawić wektor v w postaci kombinacji liniowej wektorów v i lub pokazać że jest to niemożliwe: a) v = [1 2] v 1 = [0 1] v 2 = [1 5] b) v = [1 3] v 1 = [2 3] v 2 = [3 4] c) v = [1 0] v 1 = [5 3] v 2 = [ 1 2] d) v = [9 3] v 1 = [2 3] v 2 = [4 2] e) v = x 2 1 v 1 = x 1 v 2 = x 2 + x v 3 = x + 2 f) v = x 2 + 3x v 1 = 3x v 2 = x 1 v 3 = x Zadanie 6 Który z wektorów x 1 = [ ] x 2 = [ ] x 3 = [ ] x 4 = [ ] x 5 = [ ] x 6 = [ ] x 7 = [ ] x 8 = [ ] należy do przestrzeni V = span {[ ] [ ] [ ]}? 3

4 Zadanie 7 Wykazać że a) jeśli a b c V to span{a b c} = span{a + b b + c c} b) jeśli a b c V to span{a b c} = span{a a + b a + b + c} c) jeśli a b c V to span{a b c} = span{a b a c a} d) span{x 1 x 2 x 3 y} = span{x 1 x 2 x 3 } y span{x 1 x 2 x 3 } Definicja 4 Niech V będzie przestrzenią liniową Mówimy że wektory v 1 v 2 v n V są liniowo niezależne jeżeli α1 α n K α 1 v 1 + α 2 v α n v n = 0 α 1 = α 2 = = α n = 0 W przeciwnym wypadku wektory te są liniowo zależne czyli jeden z nich można zapisać jako kombinację liniową pozostałych Zadanie 8 Za pomocą definicji zbadać liniową niezależność wektorów: a) [2 1] [1 2] b) [2 2] [2 2] c) [3 3] [ 3 3] Zadanie 9 Pokazać że a) jeśli v 1 v 2 v 3 są liniowo niezależne to u 1 = v 1 + v 2 u 2 = v 2 + v 3 u 3 = v 1 + v 3 są liniowo niezależne b) jeśli v 1 v 2 v 3 są dowolnymi wektorami z przestrzeni V to u 1 = v 1 v 2 u 2 = v 2 v 3 u 3 = v 3 v 1 są liniowo zależne c) jeśli v 1 v 2 v n są dowolnymi wektorami z przestrzeni V to u 1 = v 1 v 2 u 2 = v 2 v 3 u n 1 = v n 1 v n u n = v n v 1 są liniowo zależne Definicja 5 Bazą przestrzeni liniowej V nazywamy zbiór B wektorów z tej przestrzeni gdy jest on liniowo niezależny oraz V = span{b} Definicja 6 Jeśli baza składa się z n wektorów to wymiar przestrzeni wynosi dim(v ) = n Wymiar może być też równy 0 (dla przestrzeni zerowej) lub (dla przestrzeni która nie ma bazy skończonej) Twierdzenie 3 Wektory v 1 = (v 11 v 12 v 1n ) v 2 = (v 21 v 22 v 2n ) v n = (v n1 v n2 v nn ) 4

5 tworzą bazę przestrzeni R n wtedy i tylko wtedy gdy v 11 v 12 v 1n v 21 v 22 v 2n 0 v n1 v n2 v nn Zadanie 10 Za pomocą wyznacznika zbadać liniową niezależność wektorów (sprawdzić czy wektory są bazą w R n ): a) [1 1 0] [1 0 1] [1 1 1] b) [5 4 3] [2 1 1] [ ] c) [1 3 2] [2 1 4] [ ] d) [4 3 2] [ 3 2 4] [2 3 1] e) [ ] [ ] [ ] [ ] f) [ ] [ ] [ ] [ ] Definicja 7 (Współrzędne wektora w bazie) Niech B = {b 1 b 2 b n } gdzie n N będzie bazą przestrzeni liniowej V Współrzędnymi wektora v V w bazie B nazywamy współczynniki α i R (ogólnie: α i K) 1 i n kombinacji liniowej przedstawiającej ten wektor v = α 1 b 1 + α 2 b α n b n Współrzędne wektora v w ustalonej bazie zapisujemy v = [α 1 α 2 α n ] Zadanie 11 Wyznaczyć bazę i wymiar przestrzeni generowanej przez wektory: a) [1 3 2] [2 2 1] [1 7 7] [ 1 1 7] [1 1 7] b) [ ] [ ] [ ] c) [ ] [ ] [ ] [ ] d) [ ] [ ] [ ] [ ] e) [ ] [ ] [ ] f) [ ] [ ] [ ] g) [ ] [ ] [ ] [ ] [ ] Zadanie 12 Wyznaczyć bazę przestrzeni R 3 zawierającą wektory v 1 v 2 gdzie: a) v 1 = [1 2 2] v 2 = [2 2 1] b) v 1 = [3 2 1] v 2 = [2 0 3] c) v 1 = [1 2 3] v 2 = [0 1 1] d) v 1 = [ 1 1 1] v 2 = [1 1 1] 5

6 Zadanie 13 Dla jakich a R poniższe wektory tworzą bazę przestrzeni R? a) [1 1 1] [1 a 2] [2 3 4] b) [2 1 1] [1 0 3] [1 1 a] c) [1 2 3] [3 2 1] [a 0 3] d) [1 1 1] [a 1 2] [ 2 2 1] Zadanie 14 Wyznaczyć bazę przestrzeni R 4 zawierającą wektory v 1 v 2 gdzie: a) v 1 = [ ] v 2 = [ ] c) v 1 = [ ] v 2 = [ ] b) v 1 = [ ] v 2 = [ ] Definicja 8 Niech A M n m (R) w 1 w n Wtedy możemy zdefiniować: Jej kolumny oznaczmy przez k 1 k m a wiersze 1 rząd macierzy A jako największy możliwy stopień niezerowego minora macierzy A i oznaczamy go przez r(a) 2 przestrzeń kolumnową macierzy A C(A) = span{k 1 k m } 3 przestrzeń wierszową macierzy A R(A) = span{w 1 w n } 4 przestrzeń zerową macierzy A N(A) = {x = (x 1 x 2 x n ) T : Ax = 0} Twierdzenie 4 Dla dowolnej macierzy A M n m (R) zachodzą równości r(a) = dimc(a) = dimr(a) Twierdzenie 5 Poniższe operacje nie zmieniają rzędu macierzy: zamiana między sobą dwóch wierszy (kolumn) pomnożenie wiersza (kolumny) przez niezerową liczbę dodanie do ustalonej kolumny (do ustalonego wiersza) innej kolumny (innego wiersza) Zadanie 15 Obliczyć rząd macierzy: a) [ ] c) b) d)

7 e) f) g) h) i) j) Odpowiedzi: a) 2 b) 2 c) 4 d) 4 e) 4 f) 3 g) 3 h) 4 i) 5 j) 3 Zadanie 16 Wyznaczyć bazę przestrzeni kolumnowej C(A) bazę przestrzeni wierszowej R(A) bazę przestrzeni zerowej N(A) i rząd macierzy r(a) dla macierzy: a) c) e) b) d) f) Uwaga 2 Jeśli r(a) = n oznacza to macierz posiada n kolumn liniowo niezależnych Zadanie 17 Zbadać liniową niezależność wektorów z Zadania 10 przy użyciu rzędu macierzy Definicja 9 (Macierz przejścia z bazy A do bazy B) Niech V będzie przestrzenią liniową oraz niech A = {a 1 a 2 a n } B = {b 1 b 2 b n } będą bazami tej przestrzeni Macierzą przejścia z bazy A do bazy B nazywamy macierz kwadratową PB A stopnia n której kolejnymi kolumnami są współrzędne kolejnych wektorów bazy B w bazie A to znaczy: b 1 = p 11 a 1 + p 21 a p n1 a n p 11 p 12 p 1n b 2 = p 12 a 1 + p 22 a p n2 a n P A p 21 p 22 p 2n B = b n = p 1n a 1 + p 2n a p nn a n p n1 p n2 p nn Uwaga 3 Macierz przejścia z bazy B do bazy A można obliczyć jako macierz odwrotną ( ) 1 PA B = PB A 7

8 Uwaga 4 Niech v A = [α 1 α 2 α n ] A V czyli v = α 1 a 1 + α 2 a α n a n Przy powyższych oznaczeniach współrzędne [β 1 β 2 β n ] wektora v w bazie B (co oznaczamy v B lub [v] B ) wyrażają się wzorem v B = P B A v A czyli 1 β 1 p 11 p 12 p 1n α 1 β 2 = p 21 p 22 p 2n α 2 β n p n1 p n2 p nn α n Uwaga 5 Jeżeli E = {e 1 e 2 e 3 } oznacza bazę standardową przestrzeni V to wtedy dla bazy A = {a 1 a 2 a n } i bazy B = {b 1 b 2 b n } tej samej przestrzeni mamy A = PA E = a 1 a 2 a n B = PB E = b 1 b 2 b n gdzie w oznacza zapis pionowy wektora w Wtedy macierze przejścia z bazy A do bazy B oraz z bazy B do bazy A możemy obliczyć na kilka sposobów: licząc macierze odwrotne i odpowiednie iloczyny P A B = P B A = używając metody eliminacji Gaussa-Jordana ( P E A ) 1 P E B = P A E P E B ( P E B ) 1 P E A = P B E P E A [A B] [B A] [ ] I PB A [ ] I PA B po otrzymaniu jednej macierzy odwrócić ją by otrzymać drugą (Uwaga 3) Zadanie 18 Wyznaczyć wektor współrzędnych [v] B wektora v względem bazy B gdy: a) v = [2 0] B = {[5 6] [1 2]} b) v = [1 2] B = {[4 5] [6 7]} c) v = [0 1 3] B = {[1 1 1] [1 1 0] [1 0 1]} d) v = [1 0 2] B = {[3 2 3] [3 2 1] [1 0 0]} e) v = [ 3 3 4] B = {[ 1 2 0] [2 1 0] [0 1 2]} f) v = [8 3 2] B = {[2 2 3] [4 6 6] [0 1 2]} g) v = 1 + x + 7x 2 B = { 1 + x 2 x + x 2 2x + x 2} h) v = 3 + x 6x 2 B = { 1 x 2 x x 2 2x + x 2} 8

9 Zadanie 19 Wyznaczyć wektor v gdy dana jest baza B i wektor współrzędnych [v] B : a) [v] B = [2 0] B = {[5 6] [1 2]} b) [v] B = [1 2] B = {[4 5] [6 7]} c) [v] B = [0 1 3] B = {[1 1 1] [1 1 0] [1 0 1]} d) [v] B = [1 0 2] B = {[3 2 3] [3 2 1] [1 0 0]} e) [v] B = [ 3 3 4] B = {[ 1 2 0] [2 1 0] [0 1 2]} f) [v] B = [8 3 2] B = {[2 2 3] [4 6 6] [0 1 2]} Zadanie 20 Wyznaczyć bazę B w przestrzeni R 2 taką że [ 7 11] B = [2 3] [ 1 2] B = [1 1] Zadanie 21 Wyznaczyć macierz przejścia z bazy B do bazy C oraz [v] C gdy: a) B = {b 1 b 2 } C = {c 1 c 2 } gdzie c 1 = 6b 1 2b 2 c 2 = 3b 1 + 2b 2 [v] B = [2 4] b) B = {b 1 b 2 } C = {c 1 c 2 } gdzie c 1 = b 1 + 2b 2 c 2 = 3b 1 b 2 [v] B = [1 1] c) B = {b 1 b 2 } C = {c 1 c 2 } gdzie c 1 = b 1 b 2 c 2 = b 1 + b 2 [v] B = [ 1 1] d) B = {b 1 b 2 b 3 } C = {c 1 c 2 c 3 } gdzie c 1 = b 1 + b 2 + b 3 c 2 = b 1 + b 2 b 3 c 3 = 3b 1 + 2b 2 b 3 [v] B = [1 2 3] e) B = {b 1 b 2 b 3 } C = {c 1 c 2 c 3 } gdzie c 1 = 4b 1 b 2 c 2 = b 1 + b 2 c 3 = b 2 2b 3 [v] B = [1 1 1] f) B = {[3 1] [2 2]} C = {[5 2] [ 1 1]} [v] B = [1 2] g) B = {[1 1] [ 1 1]} C = {[2 3] [3 0]} [v] B = [2 2] h) B = {[7 2] [2 1]} C = {[4 1] [5 2]} [v] B = [0 1] i) B = { 1 x x 2} C = { 1 2x + x 2 3 5x + 4x 2 2x + 3x 2} [v] B = x + 1 j) B = { 1 x x 2 x 3} C = { x 3 x 2 x 2 x x 1 x } [v] B = x + 1 Twierdzenie 6 (Kroneckera-Capellego) Układ m równań liniowych z n niewiadomymi postaci a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2 a m1 x 1 + a m2 x a mn x n = b m ma rozwiązanie wtedy i tylko wtedy gdy r (A) = r ([A B]) Fakt 1 Niech AX = B (jak w poprzednim twierdzeniu) ma następującą ilość rozwiązań: 1 jeżeli r (A) = r ([A B]) = n to układ ma dokładnie jedno rozwiązanie 2 jeżeli r (A) = r ([A B]) = r < n to układ ma nieskończenie wiele rozwiązań zależnych od n r parametrów 3 jeżeli r (A) r ([A B]) to układ nie ma rozwiązania 9

10 Zadanie 22 Określić liczbę rozwiązań układu równań używając rzędu macierzy: a) b) c) { 2x 6y = 5 x +3y = 2 2x +y +3z = 4 x +2y z = 1 x y +4z = 3 x +2y +2z = 1 y +z = 1 x +y +2z = 3 3y +4z = 4 d) e) f) 3x +y +z t = 1 x +y +z = 1 x y z t = 0 x +y z t = 1 x +y +z +t = 1 x +y = 3 x +2y +3z +4t = 5 2x +3y +4z +5t = 1 3x +4y +5z +t = 2 4x +5y +z +2t = 3 Bibliografia: 1 K Jankowska T Jankowski Zbiór zadań z matematyki PG Gdańsk T Jurlewicz Z Skoczylas Algebra liniowa 1 Definicje twierdzenia wzory GiS Wrocław T Jurlewicz Z Skoczylas Algebra liniowa 1 Przykłady i zadania GiS Wrocław T Jurlewicz Z Skoczylas Algebra liniowa 2 Definicje twierdzenia wzory GiS Wrocław T Jurlewicz Z Skoczylas Algebra liniowa 2 Przykłady i zadania GiS Wrocław A Romanowski Algebra liniowa PG Gdańsk J Rutkowski Algebra liniowa w zadaniach PWN Warszawa J Topp Algebra liniowa PG Gdańsk

Przestrzenie wektorowe

Przestrzenie wektorowe Rozdział 4 Przestrzenie wektorowe Rozważania dotyczące przestrzeni wektorowych rozpoczniemy od kilku prostych przykładów. Przykład 4.1. W przestrzeni R 3 = {(x, y, z) : x, y, z R} wprowadzamy dwa działania:

Bardziej szczegółowo

Przestrzenie liniowe

Przestrzenie liniowe Rozdział 4 Przestrzenie liniowe 4.1. Działania zewnętrzne Niech X oraz F będą dwoma zbiorami niepustymi. Dowolną funkcję D : F X X nazywamy działaniem zewnętrznym w zbiorze X nad zbiorem F. Przykład 4.1.

Bardziej szczegółowo

R n = {(x 1, x 2,..., x n ): x i R, i {1,2,...,n} },

R n = {(x 1, x 2,..., x n ): x i R, i {1,2,...,n} }, nazywa- Definicja 1. Przestrzenią liniową R n my zbiór wektorów R n = {(x 1, x 2,..., x n ): x i R, i {1,2,...,n} }, z określonymi działaniami dodawania wektorów i mnożenia wektorów przez liczby rzeczywiste.

Bardziej szczegółowo

Przestrzenie liniowe

Przestrzenie liniowe Przestrzenie liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 2 wykład z algebry liniowej Warszawa, październik 2015 Mirosław Sobolewski (UW) Warszawa, wrzesień 2015 1 / 10 Przestrzenie

Bardziej szczegółowo

Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego.

Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego. . Metoda eliminacji. Treść wykładu i ich macierze... . Metoda eliminacji. Ogólna postać układu Układ m równań liniowych o n niewiadomych x 1, x 2,..., x n : a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21

Bardziej szczegółowo

O MACIERZACH I UKŁADACH RÓWNAŃ

O MACIERZACH I UKŁADACH RÓWNAŃ O MACIERZACH I UKŁADACH RÓWNAŃ Problem Jak rozwiązać podany układ równań? 2x + 5y 8z = 8 4x + 3y z = 2x + 3y 5z = 7 x + 8y 7z = Definicja Równanie postaci a x + a 2 x 2 + + a n x n = b gdzie a, a 2, a

Bardziej szczegółowo

Wykład 5. Ker(f) = {v V ; f(v) = 0}

Wykład 5. Ker(f) = {v V ; f(v) = 0} Wykład 5 Niech f : V W będzie przekształceniem liniowym przestrzeni wektorowych Wtedy jądrem przekształcenia nazywamy zbiór tych elementów z V, których obrazem jest wektor zerowy w przestrzeni W Jądro

Bardziej szczegółowo

Algebra liniowa z geometrią

Algebra liniowa z geometrią Algebra liniowa z geometrią Maciej Czarnecki 15 stycznia 2013 Spis treści 1 Geometria płaszczyzny 2 1.1 Wektory i skalary........................... 2 1.2 Macierze, wyznaczniki, układy równań liniowych.........

Bardziej szczegółowo

Układy równań liniowych i metody ich rozwiązywania

Układy równań liniowych i metody ich rozwiązywania Układy równań liniowych i metody ich rozwiązywania Łukasz Wojciechowski marca 00 Dany jest układ m równań o n niewiadomych postaci: a x + a x + + a n x n = b a x + a x + + a n x n = b. a m x + a m x +

Bardziej szczegółowo

1 Macierze i wyznaczniki

1 Macierze i wyznaczniki 1 Macierze i wyznaczniki 11 Definicje, twierdzenia, wzory 1 Macierzą rzeczywistą (zespoloną) wymiaru m n, gdzie m N oraz n N, nazywamy prostokątną tablicę złożoną z mn liczb rzeczywistych (zespolonych)

Bardziej szczegółowo

φ(x 1,..., x n ) = a i x 2 i +

φ(x 1,..., x n ) = a i x 2 i + Teoria na egzamin z algebry liniowej Wszystkie podane pojęcia należy umieć określić i podać pprzykłady, ewentualnie kontrprzykłady. Ponadto należy znać dowody tam gdzie to jest zaznaczone. Liczby zespolone.

Bardziej szczegółowo

1 Elementy logiki i teorii mnogości

1 Elementy logiki i teorii mnogości 1 Elementy logiki i teorii mnogości 11 Elementy logiki Notatki do wykładu Definicja Zdaniem logicznym nazywamy zdanie oznajmujące, któremu przysługuje jedna z dwu logicznych ocen prawda (1) albo fałsz

Bardziej szczegółowo

Zastosowania wyznaczników

Zastosowania wyznaczników Zastosowania wyznaczników Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 7.wykład z algebry liniowej Warszawa, listopad 2012 Mirosław Sobolewski (UW) Warszawa, listopad 2012 1 / 17

Bardziej szczegółowo

= Zapiszemy poniższy układ w postaci macierzy. 8+$+ 2&=4 " 5 3$ 7&=0 5$+7&=4

= Zapiszemy poniższy układ w postaci macierzy. 8+$+ 2&=4  5 3$ 7&=0 5$+7&=4 17. Układ równań 17.1 Co nazywamy układem równań liniowych? Jak zapisać układ w postaci macierzowej (pokazać również na przykładzie) Co to jest rozwiązanie układu? Jaki układ nazywamy jednorodnym, sprzecznym,

Bardziej szczegółowo

Rozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm

Rozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i,j) (i = 1,,n;j = 1,,m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F = R lub F = C, nazywamy macierzą (rzeczywistą, gdy F

Bardziej szczegółowo

Układy liniowo niezależne

Układy liniowo niezależne Układy liniowo niezależne Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 3.wykład z algebry liniowej Warszawa, październik 2016 Mirosław Sobolewski (UW) Warszawa, październik 2016 1

Bardziej szczegółowo

wszystkich kombinacji liniowych wektorów układu, nazywa się powłoką liniową uk ładu wektorów

wszystkich kombinacji liniowych wektorów układu, nazywa się powłoką liniową uk ładu wektorów KOINACJA LINIOWA UKŁADU WEKTORÓW Definicja 1 Niech będzie przestrzenią liniową (wektorową) nad,,,, układem wektorów z przestrzeni, a,, współczynnikami ze zbioru (skalarami). Wektor, nazywamy kombinacją

Bardziej szczegółowo

ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ

ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ WSHE, O/K-CE 10. Homomorfizmy Definicja 1. Niech V, W będą dwiema przestrzeniami liniowymi nad ustalonym ciałem, odwzorowanie ϕ : V W nazywamy homomorfizmem

Bardziej szczegółowo

Układy równań i nierówności liniowych

Układy równań i nierówności liniowych Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +

Bardziej szczegółowo

Przekształcenia liniowe

Przekształcenia liniowe Przekształcenia liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 4. wykład z algebry liniowej Warszawa, październik 2010 Mirosław Sobolewski (UW) Warszawa, wrzesień 2006 1 / 7

Bardziej szczegółowo

Zestaw zadań 5: Sumy i sumy proste podprzestrzeni. Baza i wymiar. Rzędy macierzy. Struktura zbioru rozwiązań układu równań.

Zestaw zadań 5: Sumy i sumy proste podprzestrzeni. Baza i wymiar. Rzędy macierzy. Struktura zbioru rozwiązań układu równań. Zestaw zadań : Sumy i sumy proste podprzestrzeni Baza i wymiar Rzędy macierzy Struktura zbioru rozwiązań układu równań () Pokazać, że jeśli U = lin(α, α,, α k ), U = lin(β, β,, β l ), to U + U = lin(α,

Bardziej szczegółowo

Pokazać, że wyżej zdefiniowana struktura algebraiczna jest przestrzenią wektorową nad ciałem

Pokazać, że wyżej zdefiniowana struktura algebraiczna jest przestrzenią wektorową nad ciałem Zestaw zadań 9: Przestrzenie wektorowe. Podprzestrzenie () Wykazać, że V = C ze zwykłym dodawaniem jako dodawaniem wektorów i operacją mnożenia przez skalar : C C C, (z, v) z v := z v jest przestrzenią

Bardziej szczegółowo

Przekształcenia liniowe

Przekształcenia liniowe Przekształcenia liniowe Zadania Które z następujących przekształceń są liniowe? (a) T : R 2 R 2, T (x, x 2 ) = (2x, x x 2 ), (b) T : R 2 R 2, T (x, x 2 ) = (x + 3x 2, x 2 ), (c) T : R 2 R, T (x, x 2 )

Bardziej szczegółowo

Działania na przekształceniach liniowych i macierzach

Działania na przekształceniach liniowych i macierzach Działania na przekształceniach liniowych i macierzach Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 5 wykład z algebry liniowej Warszawa, listopad 2013 Mirosław Sobolewski (UW) Warszawa,

Bardziej szczegółowo

ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ. 1. Ciała

ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ. 1. Ciała ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ WSHE, O/K-CE 1. Ciała Definicja 1. Układ { ; 0, 1; +, } złożony ze zbioru, dwóch wyróżnionych elementów 0, 1 oraz dwóch działań +:, : nazywamy ciałem

Bardziej szczegółowo

Przestrzeń liniowa i przekształcenie liniowe

Przestrzeń liniowa i przekształcenie liniowe opracował Maciej Grzesiak Przestrzeń liniowa i przekształcenie liniowe W algebrze rozpatruje się zbiory abstrakcyjne Natura elementów zbioru się nie liczy Na elementach rozpatruje się działania spełniające

Bardziej szczegółowo

Baza w jądrze i baza obrazu ( )

Baza w jądrze i baza obrazu ( ) Przykład Baza w jądrze i baza obrazu (839) Znajdź bazy jądra i obrazu odwzorowania α : R 4 R 3, gdzie α(x, y, z, t) = (x + 2z + t, 2x + y 3z 5t, x y + z + 4t) () zór ten oznacza, że α jest odwzorowaniem

Bardziej szczegółowo

4 Przekształcenia liniowe

4 Przekształcenia liniowe MIMUW 4. Przekształcenia liniowe 16 4 Przekształcenia liniowe Obok przestrzeni liniowych, podstawowym obiektem algebry liniowej są przekształcenia liniowe. Rozpatrując przekształcenia liniowe między przestrzeniami

Bardziej szczegółowo

Rozwiązania, seria 5.

Rozwiązania, seria 5. Rozwiązania, seria 5. 26 listopada 2012 Zadanie 1. Zbadaj, dla jakich wartości parametru r R wektor (r, r, 1) lin{(2, r, r), (1, 2, 2)} R 3? Rozwiązanie. Załóżmy, że (r, r, 1) lin{(2, r, r), (1, 2, 2)}.

Bardziej szczegółowo

Endomorfizmy liniowe

Endomorfizmy liniowe Endomorfizmy liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 8. wykład z algebry liniowej Warszawa, listopad 2011 Mirosław Sobolewski (UW) Warszawa, listopad 2011 1 / 16 Endomorfizmy

Bardziej szczegółowo

Kombinacje liniowe wektorów.

Kombinacje liniowe wektorów. Kombinacje liniowe wektorów Definicja: Niech V będzie przestrzenią liniową nad ciałem F, niech A V Zbiór wektorów A nazywamy liniowo niezależnym, jeżeli m N v,, v m A a,, a m F [a v + + a m v m = θ a =

Bardziej szczegółowo

Macierz o wymiarach m n. a 21. a 22. A =

Macierz o wymiarach m n. a 21. a 22. A = Macierze 1 Macierz o wymiarach m n A = a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn Mat m n (R) zbiór macierzy m n o współczynnikach rzeczywistych Analogicznie określamy Mat m n (Z), Mat m n (Q) itp 2

Bardziej szczegółowo

Wyznaczniki. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. 6. Wykład z algebry liniowej Warszawa, listopad 2013

Wyznaczniki. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. 6. Wykład z algebry liniowej Warszawa, listopad 2013 Wyznaczniki Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 6. Wykład z algebry liniowej Warszawa, listopad 2013 Mirosław Sobolewski (UW) Warszawa, listopad 2013 1 / 13 Terminologia

Bardziej szczegółowo

Jak łatwo zauważyć, zbiór form symetrycznych (podobnie antysymetrycznych) stanowi podprzestrzeń przestrzeni L(V, V, K). Oznaczamy ją Sym(V ).

Jak łatwo zauważyć, zbiór form symetrycznych (podobnie antysymetrycznych) stanowi podprzestrzeń przestrzeni L(V, V, K). Oznaczamy ją Sym(V ). Odwzorowania n-liniowe; formy n-liniowe Definicja 1 Niech V 1,..., V n, U będą przestrzeniami liniowymi nad ciałem K. Odwzorowanie G: V 1 V n U nazywamy n-liniowym, jeśli dla każdego k [n] i wszelkich

Bardziej szczegółowo

MATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ

MATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ MATEMATYKA I SEMESTR ALK (PwZ). Sumy i sumy podwójne : Σ i ΣΣ.. OKREŚLENIE Ciąg liczbowy = Dowolna funkcja przypisująca liczby rzeczywiste pierwszym n (ciąg skończony), albo wszystkim (ciąg nieskończony)

Bardziej szczegółowo

Iloczyn skalarny. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. 10. wykład z algebry liniowej Warszawa, grudzień 2013

Iloczyn skalarny. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. 10. wykład z algebry liniowej Warszawa, grudzień 2013 Iloczyn skalarny Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 10. wykład z algebry liniowej Warszawa, grudzień 2013 Mirosław Sobolewski (UW) Warszawa, grudzień 2013 1 / 14 Standardowy

Bardziej szczegółowo

1 Przestrzeń liniowa. α 1 x α k x k = 0

1 Przestrzeń liniowa. α 1 x α k x k = 0 Z43: Algebra liniowa Zagadnienie: przekształcenie liniowe, macierze, wyznaczniki Zadanie: przekształcenie liniowe, jądro i obraz, interpretacja geometryczna. Przestrzeń liniowa Już w starożytności człowiek

Bardziej szczegółowo

Formy kwadratowe. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. 14. wykład z algebry liniowej Warszawa, styczeń 2011

Formy kwadratowe. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. 14. wykład z algebry liniowej Warszawa, styczeń 2011 Formy kwadratowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 14. wykład z algebry liniowej Warszawa, styczeń 2011 Mirosław Sobolewski (UW) Warszawa, 2011 1 / 16 Definicja Niech V,

Bardziej szczegółowo

5. Rozwiązywanie układów równań liniowych

5. Rozwiązywanie układów równań liniowych 5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a

Bardziej szczegółowo

Zadania z Algebry liniowej 3 semestr zimowy 2008/2009

Zadania z Algebry liniowej 3 semestr zimowy 2008/2009 Zadania z Algebry liniowej 3 semestr zimowy 2008/2009 1. Niech V będzie przestrzenią wektorową nad ciałem K i niech 0 K oraz θ V będą elementem zerowym ciała K i wektorem zerowym przestrzeni V. Posługując

Bardziej szczegółowo

ALGEBRA LINIOWA 2. Lista zadań 2003/2004. Opracowanie : dr Teresa Jurlewicz, dr Zbigniew Skoczylas

ALGEBRA LINIOWA 2. Lista zadań 2003/2004. Opracowanie : dr Teresa Jurlewicz, dr Zbigniew Skoczylas ALGEBRA LINIOWA 2 Lista zadań 23/24 Opracowanie : dr Teresa Jurlewicz dr Zbigniew Skoczylas Lista pierwsza Zadanie Uzasadnić z definicji że zbiór wszystkich rzeczywistych macierzy trójkątnych górnych stopnia

Bardziej szczegółowo

Wprowadzenie do metod numerycznych Wykład 3 Metody algebry liniowej I Wektory i macierze

Wprowadzenie do metod numerycznych Wykład 3 Metody algebry liniowej I Wektory i macierze Wprowadzenie do metod numerycznych Wykład 3 Metody algebry liniowej I Wektory i macierze Polsko-Japońska Wyższa Szkoła Technik Komputerowych Katedra Informatyki Stosowanej Spis treści Spis treści 1 Wektory

Bardziej szczegółowo

9 Przekształcenia liniowe

9 Przekształcenia liniowe 9 Przekształcenia liniowe Definicja 9.1. Niech V oraz W będą przestrzeniami liniowymi nad tym samym ciałem F. Przekształceniem liniowym nazywamy funkcję ϕ : V W spełniającą warunek (LM) v1,v 2 V a1,a 2

Bardziej szczegółowo

Lokalna odwracalność odwzorowań, odwzorowania uwikłane

Lokalna odwracalność odwzorowań, odwzorowania uwikłane Lokalna odwracalność odwzorowań, odwzorowania uwikłane Katedra Matematyki i Ekonomii Matematycznej Szkoła Główna Handlowa 17 maja 2012 Definicja Mówimy, że odwzorowanie F : X R n, gdzie X R n, jest lokalnie

Bardziej szczegółowo

Zadania z analizy i algebry. (wykład prof.prof. J. Wojtkiewicza i K. Napiórkowskiego) ALGEBRA, przestrzenie wektorowe

Zadania z analizy i algebry. (wykład prof.prof. J. Wojtkiewicza i K. Napiórkowskiego) ALGEBRA, przestrzenie wektorowe Zadania z analizy i algebry. (wykład prof.prof. J. Wojtkiewicza i K. Napiórkowskiego) ALGEBRA, przestrzenie wektorowe Zadanie Zbadać czy wektor v mażna przedstawić jako kombinację liniową wektorów e i

Bardziej szczegółowo

Metody i analiza danych

Metody i analiza danych 2015/2016 Metody i analiza danych Macierze Laboratorium komputerowe 2 Anna Kiełbus Zakres tematyczny 1. Funkcje wspomagające konstruowanie macierzy 2. Dostęp do elementów macierzy. 3. Działania na macierzach

Bardziej szczegółowo

Układy równań i równania wyższych rzędów

Układy równań i równania wyższych rzędów Rozdział Układy równań i równania wyższych rzędów Układy równań różniczkowych zwyczajnych Wprowadzenie W poprzednich paragrafach zajmowaliśmy się równaniami różniczkowymi y = f(x, y), których rozwiązaniem

Bardziej szczegółowo

Układy równań liniowych

Układy równań liniowych Układy równań liniowych Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 1. wykład z algebry liniowej Warszawa, październik 2015 Mirosław Sobolewski (UW) Warszawa, wrzesień 2015 1 / 1

Bardziej szczegółowo

Grupy, pierścienie i ciała

Grupy, pierścienie i ciała Grupy, pierścienie i ciała Definicja: Niech A będzie niepustym zbiorem. Działaniem wewnętrznym (lub, krótko, działaniem) w zbiorze A nazywamy funkcję : A A A. Niech ponadto B będzie niepustym zbiorem.

Bardziej szczegółowo

B jest liniowo niezależny V = lin (B) 1. Układ pusty jest bazą przestrzeni trywialnej {θ}. a i v i = i I. b i v i, (a i b i ) v i = θ.

B jest liniowo niezależny V = lin (B) 1. Układ pusty jest bazą przestrzeni trywialnej {θ}. a i v i = i I. b i v i, (a i b i ) v i = θ. 8 Baza i wymiar Definicja 8.1. Bazą przestrzeni liniowej nazywamy liniowo niezależny układ jej wektorów, który generuję tę przestrzeń. Innymi słowy, układ B = (v i ) i I wektorów z przestrzeni V jest bazą

Bardziej szczegółowo

MATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ

MATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ MATEMATYKA I SEMESTR ALK (PwZ). Sumy i sumy podwójne : Σ i ΣΣ.. OKREŚLENIE Ciąg liczbowy = Dowolna funkcja przypisująca liczby rzeczywiste pierwszym n (ciąg skończony), albo wszystkim (ciąg nieskończony)

Bardziej szczegółowo

Praca domowa - seria 6

Praca domowa - seria 6 Praca domowa - seria 6 28 grudnia 2012 Zadanie 1. Znajdź bazę jądra i obrazu przekształcenia liniowego φ : R 4 wzorem: R 3 danego φ(x 1, x 2, x 3, x 4 ) = (x 1 +2x 2 x 3 +3x 4, x 1 +x 2 +2x 3 +x 4, 2x

Bardziej szczegółowo

Algebra z geometrią analityczną zadania z odpowiedziami

Algebra z geometrią analityczną zadania z odpowiedziami Algebra z geometrią analityczną zadania z odpowiedziami Maciej Burnecki Spis treści 0 Wyrażenia algebraiczne, indukcja matematyczna 2 2 2 1 Geometria analityczna w R 2 3 3 3 2 Liczby zespolone 4 4 4 3

Bardziej szczegółowo

Zestaw zadań 14: Wektory i wartości własne. ) =

Zestaw zadań 14: Wektory i wartości własne. ) = Zestaw zadań 4: Wektory i wartości własne () Niech V = V V 2 będzie przestrzenią liniową nad ciałem K, w którym + 0 Znaleźć wszystkie podprzestrzenie niezmiennicze rzutu V na V wzdłuż V 2 oraz symetrii

Bardziej szczegółowo

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni ,5 1

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni ,5 1 Zał. nr 4 do ZW WYDZIAŁ ***** KARTA PRZEDMIOTU Nazwa w języku polskim ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ B Nazwa w języku angielskim Algebra and Analytic Geometry B Kierunek studiów (jeśli dotyczy): Specjalność

Bardziej szczegółowo

Macierze - obliczanie wyznacznika macierzy z użyciem permutacji

Macierze - obliczanie wyznacznika macierzy z użyciem permutacji Macierze - obliczanie wyznacznika macierzy z użyciem permutacji I LO im. F. Ceynowy w Świeciu Radosław Rudnicki joix@mat.uni.torun.pl 17.03.2009 r. Typeset by FoilTEX Streszczenie Celem wykładu jest wprowadzenie

Bardziej szczegółowo

Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem.

Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem. 1 Wektory Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem. 1.1 Dodawanie wektorów graficzne i algebraiczne. Graficzne - metoda równoległoboku. Sprowadzamy wektory

Bardziej szczegółowo

Rozwiązywanie układów równań liniowych

Rozwiązywanie układów równań liniowych Rozwiązywanie układów równań liniowych Marcin Orchel 1 Wstęp Jeśli znamy macierz odwrotną A 1, to możęmy znaleźć rozwiązanie układu Ax = b w wyniku mnożenia x = A 1 b (1) 1.1 Metoda eliminacji Gaussa Pierwszy

Bardziej szczegółowo

Wyk lad 7 Baza i wymiar przestrzeni liniowej

Wyk lad 7 Baza i wymiar przestrzeni liniowej Wyk lad 7 Baza i wymiar przestrzeni liniowej 1 Baza przestrzeni liniowej Niech V bedzie przestrzenia liniowa. Powiemy, że podzbiór X V jest maksymalnym zbiorem liniowo niezależnym, jeśli X jest zbiorem

Bardziej szczegółowo

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA Załącznik nr 4 do Uchwały Senatu nr 430/01/2015 SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2015-2018 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu Algebra liniowa z geometrią Kod przedmiotu/

Bardziej szczegółowo

Algebra z geometrią analityczną zadania z odpowiedziami

Algebra z geometrią analityczną zadania z odpowiedziami Algebra z geometrią analityczną zadania z odpowiedziami Maciej Burnecki opracowanie Spis treści I Wyrażenia algebraiczne, indukcja matematyczna 2 II Geometria analityczna w R 2 4 III Liczby zespolone 5

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Załącznik nr 1 do procedury nr W_PR_12 Nazwa przedmiotu: Matematyka II Mathematics II Kierunek: inżynieria środowiska Rodzaj przedmiotu: Poziom kształcenia: nauk ścisłych, moduł 1 I stopnia Rodzaj zajęć:

Bardziej szczegółowo

Zadania z analizy matematycznej - sem. I Liczby i funkcje

Zadania z analizy matematycznej - sem. I Liczby i funkcje Zadania z analizy matematycznej - sem. I Liczby i funkcje Definicja 1. Mówimy że: liczba m Z jest dzielnikiem liczby n Z gdy istnieje l Z takie że n = l m. Zapisujemy to symbolem m n; liczba m Z jest wspólnym

Bardziej szczegółowo

Skończone rozszerzenia ciał

Skończone rozszerzenia ciał Skończone rozszerzenia ciał Notkę tę rozpoczniemy od definicji i prostych własności wielomianu minimalnego, następnie wprowadzimy pojecie rozszerzenia pojedynczego o element algebraiczny, udowodnimy twierdzenie

Bardziej szczegółowo

Układy równań liniowych, macierze, Google

Układy równań liniowych, macierze, Google Układ równań linowych { x+2y = 6, 3x y = 4 (0) Spotkania z Matematyka Układy równań liniowych, macierze, Google Aleksander Denisiuk denisjuk@matman.uwm.edu.pl Uniwersytet Warmińsko-Mazurski w Olsztynie

Bardziej szczegółowo

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2012/13

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2012/13 Sylabus do programu kształcenia obowiązującego od roku akademickiego 2012/13 (1) Nazwa Algebra liniowa z geometrią (2) Nazwa jednostki prowadzącej Instytut Matematyki przedmiot (3) Kod () Studia Kierunek

Bardziej szczegółowo

Matematyka liczby zespolone. Wykład 1

Matematyka liczby zespolone. Wykład 1 Matematyka liczby zespolone Wykład 1 Siedlce 5.10.015 Liczby rzeczywiste Zbiór N ={0,1,,3,4,5, } nazywamy zbiorem Liczb naturalnych, a zbiór N + ={1,,3,4, } nazywamy zbiorem liczb naturalnych dodatnich.

Bardziej szczegółowo

1 Określenie pierścienia

1 Określenie pierścienia 1 Określenie pierścienia Definicja 1. Niech P będzie zbiorem, w którym określone są działania +, (dodawanie i mnożenie). Mówimy, że struktura (P, +, ) jest pierścieniem, jeżeli spełnione są następujące

Bardziej szczegółowo

D1. Algebra macierzy. D1.1. Definicje

D1. Algebra macierzy. D1.1. Definicje D1. Algebra macierzy W niniejszym dodatku podamy podstawowe operacje macierzowe oraz niektóre techniki algebry macierzowej nie dbając szczególnie o formalizm matematyczny. Zakres jest wystarczający dla

Bardziej szczegółowo

Pierścień wielomianów jednej zmiennej

Pierścień wielomianów jednej zmiennej Rozdział 1 Pierścień wielomianów jednej zmiennej 1.1 Definicja pierścienia wielomianów jednej zmiennej Definicja 1.1 Niech P będzie dowolnym pierścieniem. Ciąg nieskończony (a 0, a 1,..., a n,...) elementów

Bardziej szczegółowo

Macierze. 1 Podstawowe denicje. 2 Rodzaje macierzy. Denicja

Macierze. 1 Podstawowe denicje. 2 Rodzaje macierzy. Denicja Macierze 1 Podstawowe denicje Macierz wymiaru m n, gdzie m, n N nazywamy tablic liczb rzeczywistych (lub zespolonych) postaci a 11 a 1j a 1n A = A m n = [a ij ] m n = a i1 a ij a in a m1 a mj a mn W macierzy

Bardziej szczegółowo

Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa. P. F. Góra

Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa. P. F. Góra Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012 Uwarunkowanie zadania numerycznego Niech ϕ : R n R m będzie pewna funkcja odpowiednio wiele

Bardziej szczegółowo

Wstęp do komputerów kwantowych

Wstęp do komputerów kwantowych Wprowadzenie do mechaniki kwantowej Uniwersytet Łódzki, Wydział Fizyki i Informatyki Stosowanej 2008/2009 Wprowadzenie do mechaniki kwantowej Podstawy matematyczne 1 Algebra liniowa Bazy i liniowa niezależność

Bardziej szczegółowo

1. Wielomiany Podstawowe definicje i twierdzenia

1. Wielomiany Podstawowe definicje i twierdzenia 1. Wielomiany Podstawowe definicje i twierdzenia Definicja wielomianu. Wielomianem stopnia n zmiennej rzeczywistej x nazywamy funkcję w określoną wzorem w(x) = a n x n + a n 1 x n 1 + + a 1 x + a 0, przy

Bardziej szczegółowo

Algebra liniowa z geometrią

Algebra liniowa z geometrią Algebra liniowa z geometrią prof. dr hab. Andrzej Szczepański Wydział MFI UG Instytut Matematyki 14 czerwca 2017 rof. dr hab. Andrzej Szczepański (Wydział MFI UG Algebra Instytut liniowa Matematyki) z

Bardziej szczegółowo

Dr inż. Janusz Dębiński Mechanika ogólna Wykład 2 Podstawowe wiadomości z matematyki Kalisz

Dr inż. Janusz Dębiński Mechanika ogólna Wykład 2 Podstawowe wiadomości z matematyki Kalisz Dr inż. Janusz Dębiński Mechanika ogólna Wykład 2 Podstawowe wiadomości z matematyki Kalisz Dr inż. Janusz Dębiński 1 2.1. Przestrzeń i płaszczyzna Podstawowe definicje Punkt - najmniejszy bezwymiarowy

Bardziej szczegółowo

Definicja i własności wartości bezwzględnej.

Definicja i własności wartości bezwzględnej. Równania i nierówności z wartością bezwzględną. Rozwiązywanie układów dwóch (trzech) równań z dwiema (trzema) niewiadomymi. Układy równań liniowych z parametrem, analiza rozwiązań. Definicja i własności

Bardziej szczegółowo

0.1 Pierścienie wielomianów

0.1 Pierścienie wielomianów 0.1 Pierścienie wielomianów Zadanie 1. Znaleźć w pierścieniu Z 5 [X] drugi wielomian określający tę samą funkcję, co wielomian X 2 X + 1. (Odp. np. X 5 + X 2 2X + 1). Zadanie 2. Znaleźć sumę i iloczyn

Bardziej szczegółowo

Zaawansowane metody numeryczne

Zaawansowane metody numeryczne Wykład 10 Rozkład LU i rozwiązywanie układów równań liniowych Niech będzie dany układ równań liniowych postaci Ax = b Załóżmy, że istnieją macierze L (trójkątna dolna) i U (trójkątna górna), takie że macierz

Bardziej szczegółowo

Grupy. Permutacje 1. (G2) istnieje element jednostkowy (lub neutralny), tzn. taki element e G, że dla dowolnego a G zachodzi.

Grupy. Permutacje 1. (G2) istnieje element jednostkowy (lub neutralny), tzn. taki element e G, że dla dowolnego a G zachodzi. Grupy. Permutacje 1 1 Definicja grupy Niech G będzie zbiorem. Działaniem na zbiorze G nazywamy odwzorowanie (oznaczane, jak mnożenie, przez ) przyporządkowujące każdej parze uporządkowanej (a, b) G G element

Bardziej szczegółowo

Macierze Lekcja I: Wprowadzenie

Macierze Lekcja I: Wprowadzenie Macierze Lekcja I: Wprowadzenie Wydział Matematyki Politechniki Wrocławskiej Definicja Niech dane będą dwie liczby naturalne dodatnie m i n. Układ m n liczb ułożonych w prostokątną tablicę złożoną z m

Bardziej szczegółowo

Wyk lad 5 W lasności wyznaczników. Macierz odwrotna

Wyk lad 5 W lasności wyznaczników. Macierz odwrotna Wyk lad 5 W lasności wyznaczników Macierz odwrotna 1 Operacje elementarne na macierzach Bardzo ważne znaczenie w algebrze liniowej odgrywaja tzw operacje elementarne na wierszach lub kolumnach macierzy

Bardziej szczegółowo

Rozwiązania zadań z listy T.Koźniewskiego

Rozwiązania zadań z listy T.Koźniewskiego Rozwiązania zadań z listy T.Koźniewskiego 1. Podstawiamy do równań. Tylko czwarty wektor spełnia wszystkie trzy równania.. U 1 : ( + 0x 9x 4, 7x + 8x 4, x, x 4 ), U : ( x 4, 4 x 4, + x 4, x 4 ), U : (x

Bardziej szczegółowo

6 Homomorfizmy przestrzeni liniowych

6 Homomorfizmy przestrzeni liniowych konspekt wykladu - 2009/10 1 6 Homomorfizmy przestrzeni liniowych Definicja 6.1. Niech V, U be przestrzeniami liniowymi nad cialem K. Przeksztalcenie F : V W nazywamy przeksztalceniem liniowym (homomorfizmem

Bardziej szczegółowo

Rozdzia l 1. Przestrzenie wektorowe

Rozdzia l 1. Przestrzenie wektorowe Rozdzia l 1 Przestrzenie wektorowe Materiał tego rozdziału jest, z jednej strony, trudny, bo operuje pojęciami abstrakcyjnymi, a zdrugiej strony łatwy, nie zawiera w sobie istotnych problemów technicznych,

Bardziej szczegółowo

1 Podstawowe oznaczenia

1 Podstawowe oznaczenia Poniżej mogą Państwo znaleźć skondensowane wiadomości z wykładu. Należy je traktować jako przegląd pojęć, które pojawiły się na wykładzie. Materiały te nie są w pełni tożsame z tym co pojawia się na wykładzie.

Bardziej szczegółowo

MACIERZE. ZWIĄZEK Z ODWZOROWANIAMI LINIOWYMI.

MACIERZE. ZWIĄZEK Z ODWZOROWANIAMI LINIOWYMI. MAIERZE. ZWIĄZEK Z ODWZOROWANIAMI LINIOWYMI. k { 1,,..., k} Definicja 1. Macierzą nazyway każde odwzorowanie określone na iloczynie kartezjański.wartość tego odwzorowania na parze (i,j) k j oznaczay aij

Bardziej szczegółowo

Notatki do wykładu Geometria Różniczkowa I

Notatki do wykładu Geometria Różniczkowa I Notatki do wykładu Geometria Różniczkowa I Katarzyna Grabowska, KMMF 1 listopada 013 1 Odwzorowanie styczne i cofnięcie formy cd: 1.1 Transport pola wektorowego i cofnięcie formy W poprzednim paragrafie

Bardziej szczegółowo

Funkcja kwadratowa. f(x) = ax 2 + bx + c,

Funkcja kwadratowa. f(x) = ax 2 + bx + c, Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax 2 + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax 2, a R \

Bardziej szczegółowo

Wyk lad 11 Przekszta lcenia liniowe a macierze

Wyk lad 11 Przekszta lcenia liniowe a macierze Wyk lad 11 Przekszta lcenia liniowe a macierze 1 Izomorfizm przestrzeni L(V ; W ) i M m n (R) Twierdzenie 111 Niech V i W bed a przestrzeniami liniowymi o bazach uporzadkowanych (α 1,, α n ) i (β 1,, β

Bardziej szczegółowo

3. Macierze i Układy Równań Liniowych

3. Macierze i Układy Równań Liniowych 3. Macierze i Układy Równań Liniowych Rozważamy równanie macierzowe z końcówki ostatniego wykładu ( ) 3 1 X = 4 1 ( ) 2 5 Podstawiając X = ( ) x y i wymnażając, otrzymujemy układ 2 równań liniowych 3x

Bardziej szczegółowo

Metody numeryczne. Janusz Szwabiński. Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/50

Metody numeryczne. Janusz Szwabiński. Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/50 Metody numeryczne Układy równań liniowych, część II Janusz Szwabiński szwabin@ift.uni.wroc.pl Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/50 Układy równań liniowych, część II 1. Iteracyjne poprawianie

Bardziej szczegółowo

UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH

UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH Transport, studia I stopnia rok akademicki 2011/2012 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Uwagi wstępne Układ liniowych równań algebraicznych można

Bardziej szczegółowo

1 Pierścienie i ich homomorfizmy. Ideał, pierścień ilorazowy. Ideały pierwsze i maksymalne, dziedziny i ciała - definicje i przykłady

1 Pierścienie i ich homomorfizmy. Ideał, pierścień ilorazowy. Ideały pierwsze i maksymalne, dziedziny i ciała - definicje i przykłady Tekst ten jest dostępny na stronie http://www-usersmatumkpl/ cstefan/ W razie potrzeby tam będą znajdowały się ewentualne poprawki i uzupełnienia 1 Pierścienie i ich homomorfizmy Ideał, pierścień ilorazowy

Bardziej szczegółowo

Metody numeryczne II. Układy równań liniowych

Metody numeryczne II. Układy równań liniowych Metody numeryczne II. Układy równań liniowych Oleksandr Sokolov Wydział Fizyki, Astronomii i Informatyki Stosowanej UMK (2016/17) http://fizyka.umk.pl/~osokolov/mnii/ Układ równań liniowych Układem równań

Bardziej szczegółowo

FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y.

FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. FUNKCJE LICZBOWE Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. Innymi słowy f X Y = {(x, y) : x X oraz y Y }, o ile (x, y) f oraz (x, z) f pociąga

Bardziej szczegółowo

Algebra liniowa z geometrią

Algebra liniowa z geometrią Algebra liniowa z geometrią Krzysztof Tartas Witold Bołt 19 czerwca 2004 roku 1 Wykład 11 Pojęcie grupy Definicja 11 (grupa) Zbiór G wraz z działaniem dwuargumentowym : G G G nazywamy grupą o ile działanie

Bardziej szczegółowo

GAL. zestawy do prac domowych z rozwiązaniami semestr zimowy 2011/2012. Wydział MIM UW

GAL. zestawy do prac domowych z rozwiązaniami semestr zimowy 2011/2012. Wydział MIM UW GAL zestawy do prac domowych z rozwiązaniami semestr zimowy / Wydział MIM UW wersja z października Spis treści Układy równań Liczby zespolone 7 Przestrzenie liniowe, kombinacje liniowe Podprzestrzenie

Bardziej szczegółowo

Ciała i wielomiany 1. przez 1, i nazywamy jedynką, zaś element odwrotny do a 0 względem działania oznaczamy przez a 1, i nazywamy odwrotnością a);

Ciała i wielomiany 1. przez 1, i nazywamy jedynką, zaś element odwrotny do a 0 względem działania oznaczamy przez a 1, i nazywamy odwrotnością a); Ciała i wielomiany 1 Ciała i wielomiany 1 Definicja ciała Niech F będzie zbiorem, i niech + ( dodawanie ) oraz ( mnożenie ) będą działaniami na zbiorze F. Definicja. Zbiór F wraz z działaniami + i nazywamy

Bardziej szczegółowo

WEKTORY I MACIERZE. Strona 1 z 11. Lekcja 7.

WEKTORY I MACIERZE. Strona 1 z 11. Lekcja 7. Strona z WEKTORY I MACIERZE Wektory i macierze ogólnie nazywamy tablicami. Wprowadzamy je:. W sposób jawny: - z menu Insert Matrix, - skrót klawiszowy: {ctrl}+m, - odpowiedni przycisk z menu paska narzędziowego

Bardziej szczegółowo