Fakulta biomedic ınsk eho inˇzen yrstv ı Teoretick a elektrotechnika Prof. Ing. Jan Uhl ıˇr, CSc. L eto 2017

Wielkość: px
Rozpocząć pokaz od strony:

Download "Fakulta biomedic ınsk eho inˇzen yrstv ı Teoretick a elektrotechnika Prof. Ing. Jan Uhl ıˇr, CSc. L eto 2017"

Transkrypt

1 Fakulta biomedicínského inženýrství Teoretická elektrotechnika Prof. Ing. Jan Uhlíř, CSc. Léto 2017

2 5 1. Obvody druhého řádu frekvenční a časová analýza Širokopásmový obvod Rezonanční obvod 1

3 RC obvod druhého řádu Řešení časové odezvy složitějšího obvodu U U 2 X U 2 R1 100 L1 10m L1 10m U 1 R2 1k L2 0.1 I 1 R1 100 R2 1k L2 0.1 Dvě diferenciální rovnice pro dvě nezávislá napětí u x a u 2 vytvořená skokem napětí u 1 = 1(t)U 2

4 Pro u x (t) při nulových počátečních podmínkách platí I 1 = u 1 = u x + 1 R 1 R 1 L (u x u 2 )dt 1 0 Laplaceův obraz U x (p) odvodíme z Laplaceovy transformace uvedené diferenciální rovnice: t U x (p) = U 2(p)R 1 + U 1 (p)pl 1 R 1 + pl 1 Pro u 2 (t) při nulových počátečních podmínkách platí t u R 2 L u 2dt L (u 2 u x )dt = Dosazením obrazu U x (p) do obrazu druhé diferenciální rovnice a s použitím obrazu pro u 1 (t) ve tvaru U 1 (p) = U 1 p dostaneme Laplaceův obraz pro U 2 (p) t U 2 (p) = U L 2 L 1 1 p 2 + p ( R 1 L 2 R 2 L 1 + L 2 L ) + R 1 L 1 3

5 Pro nalezení časového průběhu je třeba nalézt k uvedenému Laplaceovu obrazu odpovídající předmět U 2 (p) = U R 2 1 L 1 p 2 + p ( R 1 L + R 2 1 L + R ) 2 2 L + R 1 R 2 1 L 1 L 2 U 2 (p) = R 2 L 1 U (p λ 1 )(p λ 2 ) u 2 (t) = R 2 L 1 U (λ 1 λ 2 ) ( e λ 1 t e λ 2t ) Pro dané hodnoty L 1 = 10mH, L 2 = 100mH, R 1 = 100Ω, R 2 = 1kΩ, dostaneme hodnoty λ 1 = , λ 2 = 840 4

6 Obvod druhého řádu HUS širokopásmový obvod (zjednodušený model transformátoru) R 1 L 1 Û 1 L 2 R 2 Û 2 L 1 rozptylová indukčnost L 2 hlavní indukčnost R 1 odpor vinutí R 2 přetransformovaný odpor zátěže a ztráty v jádře 5

7 Ẑ 1 = R 1 + jωl 1, Ẑ 2 = jωl 2R 2 R 2 + jωl 2, Û 2 = Û 1 Ẑ 2 Ẑ 1 + Ẑ 2 a odtud Û 2 = Û 1 1 ( 1 + R 1 R 2 + L 1 L 2 ) j ( 1 ωτd ωτ i ). kde τ d = L 2 R a τ 1 i = L 1 R jsou časové konstanty pro derivační a integrační 2 charakter frekvenční závislosti přenosu. 6

8 U 2m = U 1m 1 (1 + R 1 R 2 + L 1 L 2 ) 2 + ( 1 ωτd ωτ i ) 2. Jestliže budeme považovat fázi vstupního napětí za nulovou, pak můžeme pro fázi výstupního napětí najít frekvenční závislost ve tvaru ( ) ( ) 1 Im(H(jω)) ωτd ωτ i ϕ(ω) = arctg = ( Re(H(jω)) 1 + R 1 R + L ). 1 2 L 2 Kvalitní transformátor vykazuje R 1 R 2 a L 1 L 2. Potom v určitém pásmu kmitočtů, kde ϕ 0 bude U 2m U 1m. Pro takový transformátor platí τ i τ d a lze přibližně určit šířku přenášeného pásma, t.j. frekvenční interval, ve kterém je fáze ϕ = ±45 ω 1/τ i 1/τ d 7

9 Nízkofrekvenční (audio) transformátor K 10K 100K db(v(1)) F (Hz) K 10K 100K ph(v(1)) (Degrees) F (Hz) L 1 = 10 mh, L 2 = 200 mh, R 1 = 50 Ω, R 2 = 1kΩ, f 16kHz 8

10 Sériový rezonanční obvod RLC ve frekvenční oblasti Û Î R L 2,533 C 1 µf Î = Û R + jωl + 1 jωc jωc = Û (1 ω 2 LC) + jωrc označíme 1 LC = ω2 r, kde ω r = 1 LC = 2πf r je rezonanční kmitočet. 9

11 Û U m sin ωt Î I m sin(ωt + ϕ) ωc I m = Î = U m (1 ω 2 LC) 2 + (ωrc) 2 ϕ = arctg ( 1 ω 2 LC ωrc ) když ω = ω r = 1 LC, bude obvod naladěn do rezonance: ωc I m = Î = U m = U m (1 ω 2 LC) 2 + (ωrc) 2 R ϕ = arctg ( 1 ω 2 LC ωrc ) = 0 10

12 RLC obvod frekvenční charakteristika log(i/i0) [db] (i0 = Q < 0, 5 Q = 4 Q = ϕ [ ] K logf [Hz] 11

13 Napětí na induktoru Û L = jωlî = Û ω 2 LC (1 ω 2 LC)+jωRC Při rezonanci Û L = jû 1 ω r RC = jq Û kde Q = ω 1 r RC = R 1 LC je činitel jakosti obvodu U Lm = U m Q ϕ = π/2 50 V ULm 40 V 30 V 20 V 10 V 0 V 70 Hz 100 Hz 140 Hz U m = 1 V Q = 40 log(f) 12

14 Šířka pásma mezní kmitočty ϕ = ±45, U Rm /U m = 3dB Û R = Û ωrc jωrc ω 2 LC+1 ϕ = ±45 = 1 ω2 LC ωrc = ±1 U Rm [db] Pro Q > 5 ω 1,2 = ω r (1 ± 1 2Q ) = Q = 7,5 0,0-7,5 ω r ω 1 ω 2 = f r / f(3db) -3 db -15,0-22,5-30,0 98,75Hz 101,25 Hz f 100 Hz =2,50 Hz 13

15 Přechodný děj při sinusovém buzení rezonančního obvodu zdrojem napětí U m = 1V, f = 100Hz, Q = 40. R1 60 RLC-HUS.cir u C V L m 100m 200m 300m 400m 500m v(3) (V) T (Secs) Napětí na svorkách induktoru 14

16 Obvod druhého řádu odezva na skok širokopásmový obvod (zjednodušený model transformátoru) R 1 pl 1 R 2 U 1 (p) = 1 pl p U 2 U 2 L 1 rozptylová indukčnost L 2 hlavní indukčnost R 1 odpor vinutí R 2 přetransformovaný odpor zátěže a ztráty v jádře 15

17 S použitím obrazu pro u 1 (t) ve tvaru U 1 (p) = U 1 p dostaneme Laplaceův obraz pro U 2 (p) U 2 (p) = U R 2 1 L 1 p 2 + p ( R 1 L + R 2 1 L + R ) 2 2 L + R 1 R 2 1 L 1 L 2 U 2 (p) = R 2 L 1 U (p λ 1 )(p λ 2 ) u 2 (t) = R 2 L 1 U (λ 1 λ 2 ) Pro dané hodnoty ( e λ 1 t e λ 2t ) L 1 = 10mH, L 2 = 100mH, R 1 = 100Ω, R 2 = 1kΩ, dostaneme hodnoty λ 1 = , λ 2 =

18 Řešení integrodiferenciální rovnice s konstantními koeficienty s použitím Laplaceovy transformace nalezlo vzorec popisující časovou funkci vybrané obvodové veličiny, tedy řešení v analytickém tvaru. Simulační programy pro dané parametry obvodových prvků využívají numerické řešení obvodových rovnic a vedou k získání průběhu napětí a proudů v konkrétním obvodu, aniž je potřeba znát analytické výrazy, které je popisují. 17

19 Na obrázku je srovnání výstupu z Matlabu a Microcapu Matlab x MicroCap u 60.u 120.u 180.u 240.u 300.u L1 = 0.01; L2 = 0.1; R1 = 100; R2 = 1000; t = [0 : 1e 6 : 3e 4]; U = 1; lambda = roots([1 R1/L1 + R2/L2 + R2/L1 R1 R2/(L1 L2)]); u2 = (R2/L1) (1/(lambda(1) lambda(2))) (exp(t lambda(1)) exp(t lambda(2))); plot(t, u2) 18

20 Sériový rezonanční obvod RLC v časové oblasti i(t) R U 0 L 2,533 H C 1 µf 19

21 Obvod popisuje integrodiferenciální rovnice Ri + L di dt + 1 C t 0 i(τ)dτ = U 0 pro t > 0 a u C (0+) = 0 připomeňme rezonanční kmitočet a činitel jakosti 1 LC = ω2 r, Q = 1 R L C = ω rl R = 1 ω r RC, které doplníme o činitel tlumení α = R 2L = ω r 2Q 20

22 Laplaceův obraz rovnice popisující proud v obvodu při nulových počátečních I(p) = U 0 L podmínkách je ( I(p) R + pl + 1 ) pc 1 (p 2 + 2αp + ωr 2 ) = U 0 L = U 0 p 1 (p λ 1 )(p λ 2 ) Pokud λ 1 λ 2, pak je časový průběh dán vztahem i(t) = U 0 L(λ 1 λ 2 ) kde λ 1,2 = α ± ( e λ 1 t e λ 2t ) α 2 ω 2 r 21

23 Pokud α = ω r, je I(p) = U 0 L 1 (p 2 + 2αp + α 2 ) = U 0 L a tomu odpovídající časový průběh 1 (p + α) 2 i(t) = U 0 L t e αt Pokud λ 1,2 jsou dvě reálná čísla (α > ω r ), bude časový průběh i(t) = 2L U 0e αt α 2 ω 2 r ( e t α 2 ωr 2 e t ) α 2 ωr 2 Pokud λ 1,2 jsou dvě komplexně sdružená čísla (α < ω r ), bude i(t) = 2jL U 0e αt ω 2 r α 2 ( e jt ω 2 r α2 e jt ω 2 r α2) = = U 0e α t ( ) L ω sin t ω 2 r 2 α 2 r α 2 22

24 Odezva RLC obvodu (R = 3500 Ω) na skok napětí (U 0 = 10 V) 2.5mA t=[0:0.0001:0.02]; 1 U=10; R=3500; C=1e-6; 0.5 L=2.533; alfa=r/(2*l) 0 omegar=1/sqrt(l*c) fr=omegar/(2*pi) 0 20ms i=(u*exp(-alfa*t)/(2*l*sqrt(alfa^2-omegar^2))). *(exp(t*sqrt(alfa^2-omegar^2))-exp(-t*sqrt(alfa^2-omegar^2))); plot(t,i) ω r = [rad/s] (f r = 100 [Hz]) α = 691 [1/s] 23

25 Odezva RLC obvodu (R = 400 Ω) na skok napětí (U 0 = 10 V) 6mA t=[0:0.0001:0.1 ]; 0 U=10; R=400; -1 C=1e-6; -2 L=2.533; -3 alfa=r/(2*l) omegar=1/sqrt(l*c) -4mA fr=omegar/(2*pi) 100ms i=(u*exp(-alfa*t)/(2*l*sqrt(alfa^2-omegar^2))). *(exp(t*sqrt(alfa^2-omegar^2))-exp(-t*sqrt(alfa^2-omegar^2))); plot(t,i) ω r = [rad/s] (f r = 100 [Hz]) α = 79 [1/s] 24

26 Pro α = ω r je obvod na mezi aperiodicity. Odezva nemá překmit proudu opačné polarity. Přechodný děj je nejkratší možný: i(t) = U 0 L t e αt 25mA ms 25

27 5 2. Vedení 26

28 Homogenní vedení vedení se ztrátami R/2 L/2 L/2 R/2 C G bezeztrátové vedení L/2 L/2 C 27

29 Model bezeztrátového vedení L/2 L L L L L L/2 C C C C C C 28

30 Dlouhé vedení se chová na obou koncích jako obvod s impedancí Z 0. Jde však o obvod, kterým se šíří vlna, která postupně energii ukládá do bezeztrátových prvků L a C a na konci vedení ji odevzdává do zátěže. Pro charakteristickou impedanci platí Z 0 = L C, [ Ω ] kde L je indukčnost a C je kapacita vedení na jednotku délky. Zpoždění na jednotku délky je dáno vztahem t d = L C. [ s ] 29

31 Vlastnosti některých vedení L [nh/m] C [pf/m] Z 0 [Ω] t d [ns/m] vodič ve vzduchu kroucená dvoulinka plochý kabel koax. kabel ,

32 Úplný obvod s dlouhým vedením R 0 Z 0 t d u 0 u A u B R z 31

33 Pro popis chování obvodu zavedeme dva koeficienty odrazu ρ A = R 0 Z 0 R 0 + Z 0 a ρ B = R z Z 0 R z + Z 0. Je-li na vstup v čase t = 0 zaveden impuls o velikosti U = u 0 (0) platí u A (0) = U následující vztahy Z 0 Z 0 + R 0, u B (0) = 0. Potom u B (t d ) = u A (0)(1 + ρ B ) u A (2t d ) = u A (0)(1 + ρ B + ρ B ρ A ) u B (3t d ) = u A (0)(1 + ρ B + ρ B ρ A + ρ B ρ A ρ B ) u A (4t d ) = u A (0)(1 + ρ B + ρ B ρ A + ρ B ρ A ρ B + ρ B ρ A ρ B ρ A ) u B ( ) = u A ( ) = U R z R z + R 0. 32

34 Přechodný děj na vedení Z 0 = 50 Ω, R 0 = 5 Ω, R z = 500 Ω ns 5ns 10ns 15ns 20ns 25ns 30ns 35ns 40ns 0ns 5ns 10ns 15ns 20ns 25ns 30ns 35ns 40ns 0ns 5ns 10ns 15ns 20ns 25ns 30ns 35ns 40ns u 0 u A u B 33

35 Obvod s periodickým impulsním signálem Z 0 = 100Ω t d = 100ns u 0 = 5V R 0 = 30Ω t i = 250ns t p = 500ns R z = 2kΩ ub ua u0 7,5 6,0 4,5 3,0 1,5 0,0 8,0 6,0 4,0 2,0 0,0-2,0 20,0 15,0 10,0 5,0 0,0-5,0 0,0 0,3 0,6 0,9 1,2 1,5 t 34

36 Podmínky pro zakončování vedení ρ B = 0, tedy tehdy, kdy R z = Z 0. Vedení je na svém konci impedančně přizpůsobeno a napětí se na výstupu ustálí okamžitě po uplynutí doby t d. Na vstupu je napětí odpovídající ustálenému stavu okamžitě s příchodem vrcholu vstupního impulsu a již se nezmění. ρ A = 0 a ρ B = 1, tedy tehdy, kdy R 0 = Z 0 a současně R z. Vedení je impedančně přizpůsobeno ke zdroji signálu a na výstupu je naprázdno (častý případ spojení obvodů CMOS). V tomto případě se na vstupu vedení vytvoří nejprve napětí poloviční než má zdroj impulsu, takový impuls se šíří vedením, na jehož konci se při odrazu zdvojnásobí na hodnotu shodnou s napětím zdroje a když odražená vlna dorazí zpět na vstup, ustálí se vstupní napětí na vrcholu vstupního impulsu. 35

37 ρ A = 0 a ρ B = 1, tedy tehdy, kdy R 0 = Z 0 a současně R z = 0. Vedení je přizpůsobeno na vstupu a na konci je zkrat. Na vstupu vedení se vytvoří napětí poloviční než je napětí zdroje U. Vlna s touto výškou se šíří ke konci vedení a odrazí se s opačnou polaritou (na zkratu je nulové napětí) a za dobu 2t d se na vstupu vedení vytvoří ustálené nulové napětí. Takto lze generovat na vstupu vedení krátké, poměrně přesně časově definované impulsy.

38 Všechny zdroje signálu jsou zatíženy charakteristickými impedancemi připojených vodičů. To se však projevuje jen v době, kdy se ze zdroje šíří dopředná vlna a na vstupních svorkách nepůsobí odražené vlny. Pokud se napětí na vedeních mění tak pomalu, že se zpětná vlna vrátí dříve než se vstupní signál výrazně změní, pak lze s bezeztrátovým vedením počítat jako s vodičem o nulovém odporu a na vstupu vedení počítat s vlastnostmi obvodu, ke kterému vedení vede. Pro posouzení nutnosti řešit spoj s ohledem na odrazy a související defekty v napět ových úrovních platí empirický vztah t r 2 t d l, který říká, že vedení o délce l ovlivní významně přenos impulsů, pokud impulsy mají trvání čela kratší, než je dvojnásobek doby zpoždění. Např. pro kroucený pár se zpožděním t d = 10 ns/m a impulsy s časem t r = 2 ns, začne být vliv odrazů významný již od délky spoje 10 cm. 36

39 Odrazy na vedení - grafická konstrukce (Bergeronův diagram) R 0 i u z Rz Z0 u u 0 37

Fakulta biomedic ınsk eho inˇzen yrstv ı Teoretick a elektrotechnika Prof. Ing. Jan Uhl ıˇr, CSc. L eto 2019

Fakulta biomedic ınsk eho inˇzen yrstv ı Teoretick a elektrotechnika Prof. Ing. Jan Uhl ıˇr, CSc. L eto 2019 Fakulta biomedicínského inženýrství Teoretická elektrotechnika Prof. Ing. Jan Uhlíř, CSc. Léto 2019 6. Vedení obvod s nesoustředěnými parametry 1 Obecný impulsní signál základní parametry t r t f u vrchol

Bardziej szczegółowo

Fakulta biomedic ınsk eho inˇzen yrstv ı Teoretick a elektrotechnika Prof. Ing. Jan Uhl ıˇr, CSc. L eto 2017

Fakulta biomedic ınsk eho inˇzen yrstv ı Teoretick a elektrotechnika Prof. Ing. Jan Uhl ıˇr, CSc. L eto 2017 Fakulta biomedicínského inženýrství Teoretická elektrotechnika Prof. Ing. Jan Uhlíř, CSc. Léto 2017 4. Výpočty v časové oblasti 1 Laplaceova transformace aplikace v analýze elektrických obvodů Obvodové

Bardziej szczegółowo

Inverzní Z-transformace

Inverzní Z-transformace Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 9. přednáška 11MSP úterý 16. dubna 2019 verze: 2019-04-15 12:25

Bardziej szczegółowo

Stavový popis Stabilita spojitých systémů (K611MSAP) Katedra aplikované matematiky Fakulta dopravní ČVUT. čtvrtek 20. dubna 2006

Stavový popis Stabilita spojitých systémů (K611MSAP) Katedra aplikované matematiky Fakulta dopravní ČVUT. čtvrtek 20. dubna 2006 Modelování systémů a procesů (K611MSAP) Přednáška 4 Katedra aplikované matematiky Fakulta dopravní ČVUT Pravidelná přednáška K611MSAP čtvrtek 20. dubna 2006 Obsah 1 Laplaceova transformace Přenosová funkce

Bardziej szczegółowo

Fakulta biomedic ınsk eho inˇzen yrstv ı Teoretick a elektrotechnika Prof. Ing. Jan Uhl ıˇr, CSc. L eto 2017

Fakulta biomedic ınsk eho inˇzen yrstv ı Teoretick a elektrotechnika Prof. Ing. Jan Uhl ıˇr, CSc. L eto 2017 Fakulta biomedicínského inženýrství Teoretická elektrotechnika Prof. Ing. Jan Uhlíř, CSc. Léto 2017 3. Výpočty ve frekvenční oblasti 1 Pro analýzu ve frekvenční oblasti předpokládáme zdroje se sinusovými

Bardziej szczegółowo

DFT. verze:

DFT. verze: Výpočet spektra signálu pomocí DFT kacmarp@fel.cvut.cz verze: 009093 Úvod Signály můžeme rozdělit na signály spojité v čase nebo diskrétní v čase. Další možné dělení je na signály periodické nebo signály

Bardziej szczegółowo

Matematika 2, vzorová písemka 1

Matematika 2, vzorová písemka 1 Matematika 2, vzorová písemka Pavel Kreml 9.5.20 Přesun mezi obrazovkami Další snímek: nebo Enter. Zpět: nebo Shift + Enter 2 3 4 Doporučení Pokuste se vyřešit zadané úlohy samostatně. Pokud nebudete vědět

Bardziej szczegółowo

Aproximace funkcí 1,00 0,841 1,10 0,864 1,20 0,885. Body proložíme lomenou čarou.

Aproximace funkcí 1,00 0,841 1,10 0,864 1,20 0,885. Body proložíme lomenou čarou. Příklad Známe následující hodnoty funkce Φ: u Φ(u) 1,00 0,841 1,10 0,864 1,20 0,885 Odhadněte přibližně hodnoty Φ(1,02) a Φ(1,16). Možnosti: Vezmeme hodnotu v nejbližším bodě. Body proložíme lomenou čarou.

Bardziej szczegółowo

Numerické metody 8. května FJFI ČVUT v Praze

Numerické metody 8. května FJFI ČVUT v Praze Obyčejné diferenciální rovnice Numerické metody 8. května 2018 FJFI ČVUT v Praze 1 Úvod Úvod Základní metody Pokročilejší metody Soustava Vyšší řád Program 1 Úvod Úvod - Úloha Základní úloha, kterou řešíme

Bardziej szczegółowo

Komplexní analýza. Martin Bohata. Katedra matematiky FEL ČVUT v Praze Martin Bohata Komplexní analýza Mocninné řady 1 / 18

Komplexní analýza. Martin Bohata. Katedra matematiky FEL ČVUT v Praze Martin Bohata Komplexní analýza Mocninné řady 1 / 18 Komplexní analýza Mocninné řady Martin Bohata Katedra matematiky FEL ČVUT v Praze bohata@math.feld.cvut.cz Martin Bohata Komplexní analýza Mocninné řady 1 / 18 Posloupnosti komplexních čísel opakování

Bardziej szczegółowo

Laplaceova transformace

Laplaceova transformace Laplaceova transformace Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 5. přednáška 11MSP 219 verze: 219-3-17

Bardziej szczegółowo

Kapitola 4: Soustavy diferenciálních rovnic 1. řádu

Kapitola 4: Soustavy diferenciálních rovnic 1. řádu Sbírka příkladů Matematika II pro strukturované studium Kapitola 4: Soustavy diferenciálních rovnic 1 řádu Chcete-li ukončit prohlížení stiskněte klávesu Esc Chcete-li pokračovat stiskněte klávesu Enter

Bardziej szczegółowo

1 Soustava lineárních rovnic

1 Soustava lineárních rovnic Soustavy lineárních rovnic Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Soustava lineárních rovnic 2 Řešitelnost soustavy lineárních rovnic 3 Gaussova eliminační metoda 4 Jordanova eliminační

Bardziej szczegółowo

Kristýna Kuncová. Matematika B2 18/19

Kristýna Kuncová. Matematika B2 18/19 (6) Určitý integrál Kristýna Kuncová Matematika B2 18/19 Kristýna Kuncová (6) Určitý integrál 1 / 28 Newtonův integrál Zdroj: https://kwcalculus.wikispaces.com/integral+applications Kristýna Kuncová (6)

Bardziej szczegółowo

Funkce zadané implicitně. 4. března 2019

Funkce zadané implicitně. 4. března 2019 Funkce zadané implicitně 4. března 2019 Parciální derivace druhého řádu Parciální derivace druhého řádu funkce z = f (x, y) jsou definovány: Parciální derivace 2 f 2 = ( ) f 2 f 2 = ( ) f 2 f a 2 f 2 f

Bardziej szczegółowo

Edita Pelantová, katedra matematiky / 16

Edita Pelantová, katedra matematiky / 16 Edita Pelantová, katedra matematiky seminář současné matematiky, září 2010 Axiomy reálných čísel Axiomy tělesa Axiom 1. x + y = y + x a xy = yx (komutativní zákon). Axiom 2. x + (y + z) = (x + y) + z a

Bardziej szczegółowo

MATEMATIKA 3. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci

MATEMATIKA 3.   Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci MATEMATIKA 3 Dana Černá http://www.fp.tul.cz/kmd/ Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci Osnova: Komplexní funkce - definice, posloupnosti, řady Vybrané komplexní funkce

Bardziej szczegółowo

Rovnice proudění Slapový model

Rovnice proudění Slapový model do oceánského proudění Obsah 1 2 3 Co způsobuje proudění v oceánech? vyrovnávání rozdílů v teplotě, salinitě, tlaku, ρ = ρ(p, T, S) vítr - wind stress F wind = ρ air C D AU 2 10 slapy produkují silné proudy,

Bardziej szczegółowo

5. a 12. prosince 2018

5. a 12. prosince 2018 Integrální počet Neurčitý integrál Seminář 9, 0 5. a. prosince 08 Neurčitý integrál Definice. Necht funkce f (x) je definovaná na intervalu I. Funkce F (x) se nazývá primitivní k funkci f (x) na I, jestliže

Bardziej szczegółowo

Periodický pohyb obecného oscilátoru ve dvou dimenzích

Periodický pohyb obecného oscilátoru ve dvou dimenzích Periodický pohyb obecného ve dvou dimenzích Autor: Šárka Petříčková (A05221, sarpet@students.zcu.cz) Vedoucí: Ing. Petr Nečesal, Ph.D. Matematické metody v aplikovaných vědách a ve vzdělávání, Fakulta

Bardziej szczegółowo

Fakulta biomedic ınsk eho inˇzen yrstv ı Teoretick a elektrotechnika Prof. Ing. Jan Uhl ıˇr, CSc. L eto 2019

Fakulta biomedic ınsk eho inˇzen yrstv ı Teoretick a elektrotechnika Prof. Ing. Jan Uhl ıˇr, CSc. L eto 2019 Fakulta biomedicínského inženýrství Teoretická elektrotechnika Prof. Ing. Jan Uhlíř, CSc. Léto 2019 2. Základní výpočty 1 Orientace obvodových veličin Napětí i proud musíme identifikovat nejen hodnotami

Bardziej szczegółowo

(1) Derivace. Kristýna Kuncová. Matematika B2 17/18. Kristýna Kuncová (1) Derivace 1 / 35

(1) Derivace. Kristýna Kuncová. Matematika B2 17/18. Kristýna Kuncová (1) Derivace 1 / 35 (1) Derivace Kristýna Kuncová Matematika B2 17/18 Kristýna Kuncová (1) Derivace 1 / 35 Růst populací Zdroj : https://www.tes.com/lessons/ yjzt-cmnwtvsq/noah-s-ark Kristýna Kuncová (1) Derivace 2 / 35 Růst

Bardziej szczegółowo

Fakulta biomedic ınsk eho inˇzen yrstv ı Teoretick a elektrotechnika Prof. Ing. Jan Uhl ıˇr, CSc. L eto 2019

Fakulta biomedic ınsk eho inˇzen yrstv ı Teoretick a elektrotechnika Prof. Ing. Jan Uhl ıˇr, CSc. L eto 2019 Fakulta biomedicínského inženýrství Teoretická elektrotechnika Prof. Ing. Jan Uhlíř, CSc. Léto 2019 8. Nelineární obvody nesetrvačné dvojpóly 1 Obvodové veličiny nelineárního dvojpólu 3. 0 i 1 i 1 1.5

Bardziej szczegółowo

kontaktní modely (Winklerův, Pasternakův)

kontaktní modely (Winklerův, Pasternakův) TÉMA 7: Pružný poloprostor, modely podloží pružný poloprostor základní předpoklady pružný poloprostor Boussinesqueovo řešení kontaktní modely (Winklerův, Pasternakův) 1 Pružný poloprostor (1) vychází z

Bardziej szczegółowo

Základní elektrotechnická terminologie,

Základní elektrotechnická terminologie, Přednáška č. 1: Základní elektrotechnická terminologie, veličiny a zákony Obsah 1 Terminologie 2 2 Veličiny 6 3 Kirchhoffovy zákony 11 4 Literatura 14 OBSAH Strana 1 / 14 1 TERMINOLOGIE Strana 2 / 14 1

Bardziej szczegółowo

Necht je funkce f spojitá v intervalu a, b a má derivaci v (a, b). Pak existuje bod ξ (a, b) tak, že f(b) f(a) b a. Geometricky

Necht je funkce f spojitá v intervalu a, b a má derivaci v (a, b). Pak existuje bod ξ (a, b) tak, že f(b) f(a) b a. Geometricky Monotónie a extrémy funkce Diferenciální počet - průběh funkce Věta o střední hodnotě (Lagrange) Necht je funkce f spojitá v intervalu a, b a má derivaci v (a, b). Pak existuje bod ξ (a, b) tak, že f (ξ)

Bardziej szczegółowo

Cauchyova úloha pro obyčejnou diferenciální rovnici

Cauchyova úloha pro obyčejnou diferenciální rovnici Řešení ODR v MATLABu Přednáška 3 15. října 2018 Cauchyova úloha pro obyčejnou diferenciální rovnici y = f (x, y), y(x 0 ) = y 0 Víme, že v intervalu a, b existuje jediné řešení. (f (x, y) a f y jsou spojité

Bardziej szczegółowo

Matematika (KMI/PMATE)

Matematika (KMI/PMATE) Matematika (KMI/PMATE) Úvod do matematické analýzy Limita a spojitost funkce Matematika (KMI/PMATE) Osnova přednášky lineární funkce y = kx + q definice lineární funkce význam (smysl) koeficientů lineární

Bardziej szczegółowo

Kristýna Kuncová. Matematika B2

Kristýna Kuncová. Matematika B2 (3) Průběh funkce Kristýna Kuncová Matematika B2 Kristýna Kuncová (3) Průběh funkce 1 / 26 Monotonie (x 2 ) = 2x (sin x) = cos x Jak souvisí derivace funkce a fakt, zda je funkce rostoucí nebo klesající?

Bardziej szczegółowo

Geometrická nelinearita: úvod

Geometrická nelinearita: úvod Geometrická nelinearita: úvod Opakování: stabilita prutů Eulerovo řešení s využitím teorie 2. řádu) Stabilita prutů Ritzovou metodou Stabilita tenkých desek 1 Geometrická nelinearita Velké deformace průhyby,

Bardziej szczegółowo

Fakulta biomedic ınsk eho inˇzen yrstv ı Teoretick a elektrotechnika Prof. Ing. Jan Uhl ıˇr, CSc. L eto 2019

Fakulta biomedic ınsk eho inˇzen yrstv ı Teoretick a elektrotechnika Prof. Ing. Jan Uhl ıˇr, CSc. L eto 2019 Fakulta biomedicínského inženýrství Teoretická elektrotechnika Prof. Ing. Jan Uhlíř, CSc. Léto 2019 7 Elektromagnetické vlny 1 Dlouhé půlvlné vedení v harmonickém ustáleném stavu se sinusovým buzením a

Bardziej szczegółowo

Co nám prozradí derivace? 21. listopadu 2018

Co nám prozradí derivace? 21. listopadu 2018 Co nám prozradí derivace? Seminář sedmý 21. listopadu 2018 Derivace základních funkcí Tečna a normála Tečna ke grafu funkce f v bodě dotyku T = [x 0, f (x 0 )]: y f (x 0 ) = f (x 0 )(x x 0 ) Normála: y

Bardziej szczegółowo

GEM a soustavy lineárních rovnic, část 2

GEM a soustavy lineárních rovnic, část 2 GEM a soustavy lineárních rovnic, část Odpřednesenou látku naleznete v kapitole 6 skript Abstraktní a konkrétní lineární algebra. Jiří Velebil: B6B0LAG 8.3.09: GEM a soustavy, část / Minulá přednáška Gaussova

Bardziej szczegółowo

Vybrané kapitoly z matematiky

Vybrané kapitoly z matematiky Vybrané kapitoly z matematiky VŠB-TU Ostrava 2018-2019 Vybrané kapitoly z matematiky 2018-2019 1 / 11 Křivkový integrál Vybrané kapitoly z matematiky 2018-2019 2 / 11 Parametricky zadaná křivka v R 3 :

Bardziej szczegółowo

Obwody prądu zmiennego

Obwody prądu zmiennego Obwody prądu zmiennego Prąd stały ( ) ( ) i t u t const const ( ) u( t) i t Prąd zmienny, dowolne funkcje czasu i( t) t t u ( t) t t Natężenie prądu i umowny kierunek prądu Prąd stały Q t Kierunek poruszania

Bardziej szczegółowo

(2) Funkce. Kristýna Kuncová. Matematika B2. Kristýna Kuncová (2) Funkce 1 / 25

(2) Funkce. Kristýna Kuncová. Matematika B2. Kristýna Kuncová (2) Funkce 1 / 25 (2) Funkce Kristýna Kuncová Matematika B2 Kristýna Kuncová (2) Funkce 1 / 25 Sudá a lichá funkce Určete, které funkce jsou sudé a které liché: liché: A, D, E sudé: B Kristýna Kuncová (2) Funkce 2 / 25

Bardziej szczegółowo

Komplexní analýza. Martin Bohata. Katedra matematiky FEL ČVUT v Praze Martin Bohata Komplexní analýza Úvod 1 / 32

Komplexní analýza. Martin Bohata. Katedra matematiky FEL ČVUT v Praze Martin Bohata Komplexní analýza Úvod 1 / 32 Komplexní analýza Úvod Martin Bohata Katedra matematiky FEL ČVUT v Praze bohata@math.feld.cvut.cz Martin Bohata Komplexní analýza Úvod 1 / 32 Základní informace Stránky předmětu: http://math.feld.cvut.cz/bohata/kan.html

Bardziej szczegółowo

Určitý (Riemannův) integrál a aplikace. Nevlastní integrál. 19. prosince 2018

Určitý (Riemannův) integrál a aplikace. Nevlastní integrál. 19. prosince 2018 Určitý (Riemnnův) integrál plikce. Nevlstní integrál Seminář 9. prosince 28 Určitý integrál Existence: Necht funkce f (x) je definovná n uzvřeném intervlu, b. Necht je splněn n tomto intervlu kterákoliv

Bardziej szczegółowo

Elementární funkce. Edita Pelantová. únor FJFI, ČVUT v Praze. katedra matematiky, FJFI, ČVUT v Praze

Elementární funkce. Edita Pelantová. únor FJFI, ČVUT v Praze. katedra matematiky, FJFI, ČVUT v Praze Elementární funkce Edita Pelantová FJFI, ČVUT v Praze Seminář současné matematiky katedra matematiky, FJFI, ČVUT v Praze únor 2013 c Edita Pelantová (FJFI) Elementární funkce únor 2013 1 / 19 Polynomiální

Bardziej szczegółowo

Numerické metody minimalizace

Numerické metody minimalizace Numerické metody minimalizace Než vám klesnou víčka - Stříbrnice 2011 12.2. 16.2.2011 Emu (Brkos 2011) Numerické metody minimalizace 12.2. 16.2.2011 1 / 19 Obsah 1 Úvod 2 Základní pojmy 3 Princip minimalizace

Bardziej szczegółowo

Matematická analýza II pro kombinované studium. Konzultace první a druhá. RNDr. Libuše Samková, Ph.D. pf.jcu.cz

Matematická analýza II pro kombinované studium. Konzultace první a druhá. RNDr. Libuše Samková, Ph.D.   pf.jcu.cz Učební texty ke konzultacím předmětu Matematická analýza II pro kombinované studium Konzultace první a druhá RNDr. Libuše Samková, Ph.D. e-mail: lsamkova@ pf.jcu.cz webová stránka: home.pf.jcu.cz/ lsamkova/

Bardziej szczegółowo

Zadání: Vypočítejte hlavní momenty setrvačnosti a vykreslete elipsu setrvačnosti na zadaných

Zadání: Vypočítejte hlavní momenty setrvačnosti a vykreslete elipsu setrvačnosti na zadaných Příklad k procvičení : Průřeové charakteristik Zadání: Vpočítejte hlavní moment setrvačnosti a vkreslete elipsu setrvačnosti na adaných obracích. Příklad. Zadání: Rokreslení na jednoduché obrace: 500 T

Bardziej szczegółowo

Plyny v dynamickém stavu. Jsou-li ve vakuovém systému různé teploty, nebo tlaky dochází k přenosu energie, nebo k proudění plynu.

Plyny v dynamickém stavu. Jsou-li ve vakuovém systému různé teploty, nebo tlaky dochází k přenosu energie, nebo k proudění plynu. Plyny v dynamickém stavu Jsou-li ve vakuovém systému různé teploty, nebo tlaky dochází k přenosu energie, nebo k proudění plynu. Difuze plynu Mechanismus difuze závisí na podmínkách: molekulární λ L viskózně

Bardziej szczegółowo

Jednoduchá zobrazení. Podpořeno z projektu FRVŠ 584/2011.

Jednoduchá zobrazení. Podpořeno z projektu FRVŠ 584/2011. Podpořeno z projektu FRVŠ 584/2011. Obsah 1 2 Obsah 1 2 Společné vlastnosti jednoduchých zobrazení: Zobrazovací ref. plocha je rovina - souřadnice X, Y, případně ρ, ɛ Zobrazovaná ref. plocha je eliposid

Bardziej szczegółowo

Obsah. 1.2 Integrály typu ( ) R x, s αx+β

Obsah. 1.2 Integrály typu ( ) R x, s αx+β Sbírka úloh z matematické analýzy. Čížek Jiří Kubr Milan. prosince 006 Obsah Neurčitý integrál.. Základní integrály...................................... Integrály typu ) R, s α+β γ+δ d...........................

Bardziej szczegółowo

Úvodní informace. 18. února 2019

Úvodní informace. 18. února 2019 Úvodní informace Funkce více proměnných Cvičení první 18. února 2019 Obsah 1 Úvodní informace. 2 Funkce více proměnných Definiční obor Úvodní informace. Komunikace: e-mail: olga@majling.eu nebo olga.majlingova@fs.cvut.cz

Bardziej szczegółowo

Diferenciální rovnice základní pojmy. Rovnice se

Diferenciální rovnice základní pojmy. Rovnice se Diferenciální rovnice základní pojmy. Rovnice se separovanými proměnnými. Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské

Bardziej szczegółowo

Matematika III Stechiometrie stručný

Matematika III Stechiometrie stručný Matematika III Stechiometrie stručný matematický úvod Miroslava Dubcová, Drahoslava Janovská, Daniel Turzík Ústav matematiky Přednášky LS 2015-2016 Obsah 1 Zápis chemické reakce 2 umožňuje jednotný přístup

Bardziej szczegółowo

Linea rnı (ne)za vislost

Linea rnı (ne)za vislost [1] Lineární (ne)závislost Skupiny, resp. množiny, vektorů mohou být lineárně závislé nebo lineárně nezávislé... a) zavislost, 3, b) P. Olšák, FEL ČVUT, c) P. Olšák 2010, d) BI-LIN, e) L, f) 2009/2010,

Bardziej szczegółowo

Jednoduchá zobrazení. Podpořeno z projektu FRVŠ 584/2011.

Jednoduchá zobrazení. Podpořeno z projektu FRVŠ 584/2011. Podpořeno z projektu FRVŠ 584/2011. Obsah 1 2 Obsah 1 2 Společné vlastnosti jednoduchých zobrazení: Zobrazovací ref. plocha je rovina - souřadnice X, Y, případně ρ, ɛ Zobrazovaná ref. plocha je eliposid

Bardziej szczegółowo

Průvodce studiem V této kapitole se budeme zabývat diferenciálním počtem pro funkce více

Průvodce studiem V této kapitole se budeme zabývat diferenciálním počtem pro funkce více 5 Diferenciální počet funkcí více proměnných Průvodce studiem V této kapitole se budeme zabývat diferenciálním počtem pro funkce více proměnných, především budeme pracovat s funkcemi dvou proměnných Ukážeme

Bardziej szczegółowo

Anna Kratochvílová Anna Kratochvílová (FJFI ČVUT) PDR ve zpracování obrazu / 17

Anna Kratochvílová Anna Kratochvílová (FJFI ČVUT) PDR ve zpracování obrazu / 17 Parciální diferenciální rovnice ve zpracování obrazu Anna Kratochvílová FJFI ČVUT 10. 6. 2009 Anna Kratochvílová (FJFI ČVUT) PDR ve zpracování obrazu 10. 6. 2009 1 / 17 Obsah 1 Motivace 2 Vyšetření pomocí

Bardziej szczegółowo

Podstawy fizyki sezon 2 7. Układy elektryczne RLC

Podstawy fizyki sezon 2 7. Układy elektryczne RLC Podstawy fizyki sezon 2 7. Układy elektryczne RLC Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Układ RC

Bardziej szczegółowo

x2 + 2x 15 x 2 + 4x ) f(x) = x 2 + 2x 15 x2 + x 12 3) f(x) = x 3 + 3x 2 10x. x 3 + 3x 2 10x x 2 + x 12 10) f(x) = log 2.

x2 + 2x 15 x 2 + 4x ) f(x) = x 2 + 2x 15 x2 + x 12 3) f(x) = x 3 + 3x 2 10x. x 3 + 3x 2 10x x 2 + x 12 10) f(x) = log 2. Příklady k 1 zápočtové písemce Definiční obor funkce Určete definiční obor funkce: x + x 15 1 f(x x + x 1 ( x + x 1 f(x log x + x 15 x + x 1 3 f(x x 3 + 3x 10x ( x 3 + 3x 10x f(x log x + x 1 x3 + 5x 5

Bardziej szczegółowo

x y (A)dy. a) Určete a načrtněte oblasti, ve kterých je funkce diferencovatelná. b) Napište diferenciál funkce v bodě A = [x 0, y 0 ].

x y (A)dy. a) Určete a načrtněte oblasti, ve kterých je funkce diferencovatelná. b) Napište diferenciál funkce v bodě A = [x 0, y 0 ]. II.4. Totální diferenciál a tečná rovina Značení pro funkci z = f,: totální diferenciál funkce f v bodě A = 0, 0 ]: dfa = A 0+ A 0 Označme d = 0, d = 0. Pak dfa = A d+ A d Příklad91.Je dána funkce f, =.

Bardziej szczegółowo

Kapitola 2. Nelineární rovnice

Kapitola 2. Nelineární rovnice Kapitola. Nelineární rovnice Formulace: Je dána funkce f : R! R definovaná na intervalu ha; bi. Hledáme x ha; bi tak, aby f(x) = 0. (x... kořen rovnice) Poznámka: Najít přesné řešení analyticky je možné

Bardziej szczegółowo

1 Předmluva Značení... 3

1 Předmluva Značení... 3 Sbírka příkladů k předmětu Lineární systémy Jan Krejčí, korektura Martin Goubej 07 Obsah Předmluva. Značení..................................... 3 Lineární obyčejné diferenciální rovnice s konstantními

Bardziej szczegółowo

Podstawy Automatyki. Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne Instytut Automatyki i Robotyki Warszawa, 2017 cz.1: Charakterystyki częstotliwościowe Wstęp Charakterystyki częstotliwościowe

Bardziej szczegółowo

TGH01 - Algoritmizace

TGH01 - Algoritmizace TGH01 - Algoritmizace Jan Březina Technical University of Liberec 28. února 2017 Co je to algoritmus? Porovnávání algoritmů Porovnávání algoritmů Co je to algoritmus? Který algoritmus je lepší? Záleží

Bardziej szczegółowo

Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky

Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky bakalářská práce vícebodové okrajové úlohy Plzeň, 18 Hana Levá Prohlášení Prohlašuji, že jsem tuto bakalářskou práci vypracovala

Bardziej szczegółowo

Podstawy Automatyki. Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne Instytut Automatyki i Robotyki Warszawa, 2015 cz.1: Charakterystyki częstotliwościowe Wstęp Charakterystyki częstotliwościowe

Bardziej szczegółowo

Petr Beremlijski, Marie Sadowská

Petr Beremlijski, Marie Sadowská Počítačová cvičení Petr Beremlijski, Marie Sadowská Katedra aplikované matematiky Fakulta elektrotechniky a informatiky VŠB - Technická univerzita Ostrava Cvičení : Matlab nástroj pro matematické modelování

Bardziej szczegółowo

Systemy liniowe i stacjonarne

Systemy liniowe i stacjonarne Systemy liniowe i stacjonarne Układ (np.: dwójnik) jest liniowy wtedy i tylko wtedy gdy: Spełnia własność skalowania (jednorodność): T [a x (t )]=a T [ x (t)]=a y (t ) Jeśli wymuszenie zostanie przeskalowane

Bardziej szczegółowo

Energetické principy a variační metody ve stavební mechanice

Energetické principy a variační metody ve stavební mechanice Energetické principy a variační metody ve stavební mechanice Přetvárná práce vnějších sil Přetvárná práce vnitřních sil Potenciální energie Lagrangeův princip Variační metody Ritzova metoda 1 Přetvárná

Bardziej szczegółowo

Podstawy Automatyki. Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne Instytut Automatyki i Robotyki Warszawa, 2017 część 1: Charakterystyki częstotliwościowe Wstęp Charakterystyki częstotliwościowe

Bardziej szczegółowo

Teorie plasticity. Varianty teorie plasticity. Pružnoplastická matice tuhosti materiálu

Teorie plasticity. Varianty teorie plasticity. Pružnoplastická matice tuhosti materiálu Teorie plasticity Varianty teorie plasticity Teorie plastického tečení Přehled základních vztahů Pružnoplastická matice tuhosti materiálu 1 Pružnoplastické chování materiálu (1) Pracovní diagram pro případ

Bardziej szczegółowo

Metody, s nimiž se seznámíme v této kapitole, lze použít pro libovolnou

Metody, s nimiž se seznámíme v této kapitole, lze použít pro libovolnou 2. Řešení nelineárních rovnic Průvodce studiem Budeme se zabývat výpočtem reálných kořenů nelineární rovnice f(x) =0, (2.0.1) kde f je v jistém smyslu rozumná reálná funkce. Pro některé funkce (kvadratické,

Bardziej szczegółowo

Powyższe reguły to tylko jedna z wersji gry. Istnieje wiele innych wariantów, można też ustalać własne zasady. Miłej zabawy!

Powyższe reguły to tylko jedna z wersji gry. Istnieje wiele innych wariantów, można też ustalać własne zasady. Miłej zabawy! Krykiet W krykieta może grać od 2 do 4 osób, którzy albo grają każdy przeciw każdemu, albo dzielą się na dwie drużyny. Bramki oraz palik startowy i powrotne umieszcza się tak, jak pokazano na rysunku.

Bardziej szczegółowo

Podstawy Automatyki. Wykład 3 - Charakterystyki częstotliwościowe, podstawowe człony dynamiczne. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 3 - Charakterystyki częstotliwościowe, podstawowe człony dynamiczne. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki Wykład 3 -, podstawowe człony dynamiczne Instytut Automatyki i Robotyki Warszawa, 2019 Wstęp określają zachowanie się elementu (układu) pod wpływem ciągłych sinusoidalnych sygnałów wejściowych. W analizie

Bardziej szczegółowo

Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava

Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava Lineární algebra 5. přednáška: Báze a řešitelnost soustav Dalibor Lukáš Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://www.am.vsb.cz/lukas/la1 Text

Bardziej szczegółowo

K SAMOSTATNÉ MODULOVÉ SCHODY MONTÁŽI. asta

K SAMOSTATNÉ MODULOVÉ SCHODY MONTÁŽI. asta N O V I N K A K SAMOSTATNÉ MODULOVÉ SCHODY MONTÁŽI asta MODULOVÉ SCHODY asta...jsou nejnovějším výrobkem švédsko-polského koncernu, který se již 10 let specializuje na výrobu schodů různého typu. Jednoduchá

Bardziej szczegółowo

Sb ırka pˇr ıklad u z matematick e anal yzy II Petr Tomiczek

Sb ırka pˇr ıklad u z matematick e anal yzy II Petr Tomiczek Sbírka příkladů z matematické analýzy II Petr Tomiczek Obsah 0 Diferenciální rovnice. řádu 0. Separace proměnných Příklad : Najděte obecné řešení (obecný integrál) diferenciální rovnice y = tg x tg y.

Bardziej szczegółowo

NÁVOD K POUŽITÍ KEZELÉSI KÉZIKÖNYV INSTRUKCJA OBSŁUGI NÁVOD NA POUŽÍVANIE. Česky. Magyar. Polski. Slovensky

NÁVOD K POUŽITÍ KEZELÉSI KÉZIKÖNYV INSTRUKCJA OBSŁUGI NÁVOD NA POUŽÍVANIE. Česky. Magyar. Polski. Slovensky CANON INC. 30-2 Shimomaruko 3-chome, Ohta-ku, Tokyo 146-8501, Japan Europe, Africa & Middle East CANON EUROPA N.V. PO Box 2262, 1180 EG Amstelveen, The Netherlands For your local Canon office, please refer

Bardziej szczegółowo

Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava

Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava Lineární algebra 8. přednáška: Kvadratické formy Dalibor Lukáš Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://www.am.vsb.cz/lukas/la Text byl vytvořen

Bardziej szczegółowo

Fakulta elektrotechnická

Fakulta elektrotechnická České vysoké učení technické v Praze Fakulta elektrotechnická DIPLOMOVÁ PRÁCE Ladění regulátorů v pokročilých strategiích řízení Praha, 21 Autor: Bc. Petr Procházka Prohlášení Prohlašuji, že jsem svou

Bardziej szczegółowo

Fyzika laserů. Kvantová teorie laseru. 22. dubna Katedra fyzikální elektroniky.

Fyzika laserů. Kvantová teorie laseru. 22. dubna Katedra fyzikální elektroniky. Fyzika laserů Kvantová teorie laseru Kvazidistribuční funkce. Zobecněné uspořádání. Fokkerova-Planckova rovnice. Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické jan.sulc@fjfi.cvut.cz

Bardziej szczegółowo

ROBUST January 19, Zdeněk Fabián Ústav informatiky AVČR Praha

ROBUST January 19, Zdeněk Fabián Ústav informatiky AVČR Praha ROBUST 2014 Zdeněk Fabián Ústav informatiky AVČR Praha January 19, 2014 Starověk x 1,..., x n data průměry Starověk x 1,..., x n data průměry aritm., geom., harm. Novověk Model F a skórová funkce Ψ F inferenční

Bardziej szczegółowo

Induktor i kondensator. Warunki początkowe. oraz ciągłość warunków początkowych

Induktor i kondensator. Warunki początkowe. oraz ciągłość warunków początkowych Termin AREK73C Induktor i kondensator. Warunki początkowe Przyjmujemy t, u C oraz ciągłość warunków początkowych ( ) u ( ) i ( ) i ( ) C L L Prąd stały i(t) R u(t) u( t) Ri( t) I R RI i(t) L u(t) u() t

Bardziej szczegółowo

Speciální funkce, Fourierovy řady a Fourierova transformace

Speciální funkce, Fourierovy řady a Fourierova transformace 1 Speciální funkce, Fourierovy řady a Fourierova transformace Při studiu mnoha přírodních jevů se setkáváme s veličinami, které jsou všude nulové s výjimkou malého časového intervalu I, ale jejich celková

Bardziej szczegółowo

Statistika (KMI/PSTAT)

Statistika (KMI/PSTAT) Statistika (KMI/PSTAT) Cvičení deváté aneb Důležitá rozdělení pravděpodobnosti spojité náhodné veličiny Statistika (KMI/PSTAT) 1 / 15 Spojitá náhodná veličina Spojitá náhodná veličina Spojitá náhodná veličina

Bardziej szczegółowo

Design of Experiment (DOE) Petr Misák. Brno 2016

Design of Experiment (DOE) Petr Misák. Brno 2016 Design of Experiment (DOE) Petr Misák Vysoké učení technické v Brně, Fakulta stavební, Ústav stavebního zkušebnictví Brno 2016 Úvod - Experiment jako nástroj hledání slavné vynálezy - žárovka, antibiotika

Bardziej szczegółowo

Internetová matematická olympiáda 8. ročník, Baví se student Fakulty strojního inženýrství VUT v Brně (FSI) s kamarádem:

Internetová matematická olympiáda 8. ročník, Baví se student Fakulty strojního inženýrství VUT v Brně (FSI) s kamarádem: Internetová matematická olympiáda 8. ročník, 24. 11. 2015 1. Baví se student Fakulty strojního inženýrství VUT v Brně (FSI) s kamarádem: Kamarád: Co jsi tak veselý? Něco slavíš? Student FSI: Já přímo ne,

Bardziej szczegółowo

(a). Pak f. (a) pro i j a 2 f

(a). Pak f. (a) pro i j a 2 f Připomeň: 1. Necht K R n. Pak 1. Funkce více proměnných II 1.1. Parciální derivace vyšších řádů K je kompaktní K je omezená a uzavřená. 2. Necht K R n je kompaktní a f : K R je spojitá. Pak f nabývá na

Bardziej szczegółowo

TERAZ O SYGNAŁACH. Przebieg i widmo Zniekształcenia sygnałów okresowych Miary sygnałów Zasady cyfryzacji sygnałów analogowych

TERAZ O SYGNAŁACH. Przebieg i widmo Zniekształcenia sygnałów okresowych Miary sygnałów Zasady cyfryzacji sygnałów analogowych TERAZ O SYGNAŁACH Przebieg i widmo Zniekształcenia sygnałów okresowych Miary sygnałów Zasady cyfryzacji sygnałów analogowych Sygnał sinusoidalny Sygnał sinusoidalny (także cosinusoidalny) należy do podstawowych

Bardziej szczegółowo

Komplexní analýza. Příklad Body. Nepište obyčejnou tužkou ani červeně, jinak písemka nebude přijata. Soupis vybraných vzorců. 4a.

Komplexní analýza. Příklad Body. Nepište obyčejnou tužkou ani červeně, jinak písemka nebude přijata. Soupis vybraných vzorců. 4a. Komplexí aalýa Písemá část koušky (XX.XX.XXXX) Jméo a příjmeí:... Podpis:... Příklad.. 3.. 5. Body Před ahájeím práce Vyplňte čitelě rubriku Jméo a příjmeí a podepište se. Během písemé koušky smíte mít

Bardziej szczegółowo

Návod k obsluze 2 Ďäçăßĺň ńţóçň 10 Instrukcja obsugi 18 Kullanma Kýlavuzu 26

Návod k obsluze 2 Ďäçăßĺň ńţóçň 10 Instrukcja obsugi 18 Kullanma Kýlavuzu 26 Návod k obsluze 2 Ďäçăßĺň ńţóçň 10 Instrukcja obsugi 18 Kullanma Kýlavuzu 26 9241 ESKY Dkujeme Vám, že jste se rozhodli pro tento výrobek firmy SOEHNLE PROFESSIONAL. Tento výrobek je vybaven všemi znaky

Bardziej szczegółowo

Wzmacniacze. Klasyfikacja wzmacniaczy Wtórniki Wzmacniacz różnicowy Wzmacniacz operacyjny

Wzmacniacze. Klasyfikacja wzmacniaczy Wtórniki Wzmacniacz różnicowy Wzmacniacz operacyjny Wzmacniacze Klasyfikacja wzmacniaczy Wtórniki Wzmacniacz różnicowy Wzmacniacz operacyjny Zasilanie Z i I we I wy E s M we Wzmacniacz wy Z L Masa Wzmacniacze 2 Podział wzmacniaczy na klasy Klasa A ηmax

Bardziej szczegółowo

Paradoxy geometrické pravděpodobnosti

Paradoxy geometrické pravděpodobnosti Katedra aplikované matematiky 1. června 2009 Úvod Cíle práce : Analýza Bertrandova paradoxu. Tvorba simulačního softwaru. Osnova 1 2 3 4 Osnova 1 2 3 4 Osnova 1 2 3 4 Osnova 1 2 3 4 V rovině je zadán kruh

Bardziej szczegółowo

Obsah. Limita posloupnosti a funkce. Petr Hasil. Limita posloupnosti. Pro a R definujeme: Je-li a < 0, pak a =, a ( ) =. vlastní body.

Obsah. Limita posloupnosti a funkce. Petr Hasil. Limita posloupnosti. Pro a R definujeme: Je-li a < 0, pak a =, a ( ) =. vlastní body. Obsah a funkce Petr Hasil Přednáška z Matematické analýzy I Úvod 2 c Petr Hasil (MUNI) a funkce Matematická analýza / 90 c Petr Hasil (MUNI) a funkce Matematická analýza 2 / 90 Úvod Úvod Pro a R definujeme:

Bardziej szczegółowo

FIZYKA 2. Janusz Andrzejewski

FIZYKA 2. Janusz Andrzejewski FIZYKA wykład 7 Janusz Andrzejewski Niedoceniany geniusz Nikola Tesla Nikola Tesla wynalazł (lub znakomicie ulepszył) większość urządzeń, które spowodowały to, że prąd zmienny wyparł z naszych domów prąd

Bardziej szczegółowo

WYKŁAD 2 Pojęcia podstawowe obwodów prądu zmiennego

WYKŁAD 2 Pojęcia podstawowe obwodów prądu zmiennego Pracownia Wstępna - - WYKŁAD 2 Pojęcia podstawowe obwodów prądu zmiennego Układy złożone z elementów biernych Bierne elementy elektroniczne to : opór R: u ( = Ri( indukcyjność L: di( u( = L i pojemność

Bardziej szczegółowo

Elektronika (konspekt)

Elektronika (konspekt) Elektronika (konspekt) Franciszek Gołek (golek@ifd.uni.wroc.pl) www.pe.ifd.uni.wroc.pl Wykład 04 Filtry RLC Filtrem nazywamy urządzenie, które przepuszczając (transmitując) sygnał wejściowy może zmieniać

Bardziej szczegółowo

Vlastnosti. Příprava. Czech - 2 -

Vlastnosti. Příprava. Czech - 2 - Obsah Vlastnosti... 2 Úvod... 2 Příprava... 2 Bezpečnostní opatření... 3 Obsah balení... 4 Informace o životním prostředí... 5 Tlačítka dálkového ovládání... 6 LCD TV a Ovládací tlačítka... 7 Přehled zapojení

Bardziej szczegółowo

7. Aplikace derivace

7. Aplikace derivace 7. Aplikace derivace 7A. Taylorův polynom 7. Aplikace derivace Verze 20. července 207 Derivace funkce se využívá při řešení úloh technické prae i teorie. Uvedeme několik z nich: vyčíslení hodnot funkce,

Bardziej szczegółowo

Příručka k rychlé instalaci: NWD2105. Základní informace. 1. Instalace softwaru

Příručka k rychlé instalaci: NWD2105. Základní informace. 1. Instalace softwaru Příručka k rychlé instalaci: NWD2105 Základní informace NWD2105 je bezdrátový USB adaptér určený pro použití s počítačem. NWD2105 je kompatibilní s technologií WPS (Wi-Fi Protected Setup). A: LED kontrolka

Bardziej szczegółowo

Charakterystyki częstotliwościowe elementów pasywnych

Charakterystyki częstotliwościowe elementów pasywnych Charakterystyki częstotliwościowe elementów pasywnych Parametry elementów pasywnych; reaktancji indukcyjnej (XLωL) oraz pojemnościowej (XC1/ωC) zależą od częstotliwości. Ma to istotne znaczenie w wielu

Bardziej szczegółowo

Matematická analýza 2. Kubr Milan

Matematická analýza 2. Kubr Milan Matematická analýza. Kubr Milan. února 008 Obsah Vektorové funkce jedné reálné proměnné. 3. Základní pojmy...................................... 3. Křivky v R n........................................

Bardziej szczegółowo

Ústav anorganické technologie: Aplikovaná reakční kinetika - cvičení 6. Tok E do. + tupním proudem N N. i=1

Ústav anorganické technologie: Aplikovaná reakční kinetika - cvičení 6. Tok E do. + tupním proudem N N. i=1 6 Bilance energie Bilanci energie (E) je možno formulovat následovně Množství Rychlost Tok E do akumulace = systému z vyko- nané práce E v systému okolí systémem Množství dodané E vs- Množství + tupním

Bardziej szczegółowo

LABORATORIUM OBWODÓW I SYGNAŁÓW

LABORATORIUM OBWODÓW I SYGNAŁÓW POLITECHNIKA WARSZAWSKA Instytut Radioelektroniki Zakład Radiokomunikacji WIECZOROWE STUDIA ZAWODOWE LABORATORIUM OBWODÓW I SYGNAŁÓW Ćwiczenie Temat: OBWODY PRĄDU SINUSOIDALNIE ZMIENNEGO Opracował: mgr

Bardziej szczegółowo

Różniczkowanie numeryczne

Różniczkowanie numeryczne Różniczkowanie numeryczne Przyjmijmy, że funkcja ciągła y = f(x) = 4sin(3x)e -x/2, gdzie x 0,2π, dana jest w postaci dyskretnej jako ciąg wartości y odpowiadających zmiennej niezależnej x, również danej

Bardziej szczegółowo