Metody, s nimiž se seznámíme v této kapitole, lze použít pro libovolnou

Wielkość: px
Rozpocząć pokaz od strony:

Download "Metody, s nimiž se seznámíme v této kapitole, lze použít pro libovolnou"

Transkrypt

1 2. Řešení nelineárních rovnic Průvodce studiem Budeme se zabývat výpočtem reálných kořenů nelineární rovnice f(x) =0, (2.0.1) kde f je v jistém smyslu rozumná reálná funkce. Pro některé funkce (kvadratické, goniometrické atp.) umíme kořeny vypočítat pomocí (uzavřených) vzorců, pro drtivou většinu funkcí však žádné takové vzorce neexistují. Metody, s nimiž se seznámíme v této kapitole, lze použít pro libovolnou funkci f. Patřídotřídy metod iteračních, kterépočítají posloupnost {x k } konvergující prok ke kořenu x. Obecně platí, že konvergence nastane, pokud je počáteční aproximacex 0 zvolena dostatečně blízko u hledaného kořene. Jednotlivé iterační metodysepaklišírychlostí konvergence Separace kořenů Cíle Ukážeme několik možností, jak provést rozbor rovnice f(x) = 0,jehož výsledkem je separace kořenů v dostatečně krátkých intervalech. Předpokládané znalosti Spojitost funkce, grafy elementárních funkcí. Výklad a) Grafická separace 1. Z grafu funkce f najdeme polohu průsečíků sx-ovou osou. b) Grafická separace 2. Rovnici f(x) = 0 převedeme na ekvivalentní rovnici h(x) = g(x) anakreslíme grafy funkcí g a h. Průsečíky těchto grafů promítneme -21-

2 2. ŘEŠENÍ NELINEÁRNÍCH ROVNIC Numerické metody do x-ové osy,čímž zjistíme polohu kořenů. c) Separace tabelací. Sestavíme tabulku funkčních hodnot funkce f apodlezna- ménkových změn určíme intervaly obsahující kořeny. Využíváme přitomnásledující větu. Věta Necht f je spojitá funkce na intervalu a, b, pronižplatí f(a)f(b) < 0. (2.1.1) Pak uvnitř intervalu(a, b) ležíaspoň jeden kořen rovnice f(x) =0. Jinými slovy věta říká, že ze znaménkové změny u funkčních hodnot v krajních bodech intervalu a, b můžeme rozpoznat výskyt kořene uvnitř tohoto intervalu. Příklad Pro rovnici 10 cos (x 1) x 2 +2x 1=0 určete intervaly délky nejvýše 0.1 obsahující kořeny. Řešení: Z grafu funkce f(x) =10cos(x 1) x 2 +2x 1 naobrázku a lze usoudit, že existují dvakořeny x 1 a x 2,kteréležívvintervalu 5, 5. Zadanou rovnici přepíšeme do tvaru 10 cos (x 1) = x 2 2x +1. Grafy funkcí g(x) =10cos(x 1) a h(x) =x 2 2x +1jsouznázorněny na obrázku b. Odtud plyne, že x 1 1, 0 a x 2 2, 3. Dalšízpřesnění polohy kořenů provedeme pomocí tabelace. Z Tabulky je patrné, že kořeny leží vintervalech x 1 0.4, 0.3 a x 2 2.3,

3 a b Obrázek 2.1.1: a) Graf funkce f; b) Grafy funkcí g a h. Tabulka 2.1.1: Tabelace funkce f. x f(x) x f(x) Kontrolní otázky Otázka 1. Jak se provádí separace kořenů rovnic? Otázka 2. Jaký jegrafickýsmyslvěty ? Úlohy k samostatnému řešení 1. Proved te separaci kořenů rovnicex 2 x 6 ln x =0. 7 Výsledky úloh k samostatnému řešení 1. Dva kořeny: x 1 (0.9, 0.91), x 2 =

4 2. ŘEŠENÍ NELINEÁRNÍCH ROVNIC Numerické metody 2.2. Nejjednoduššímetody Cíle Seznámíme se s nejjednoduššími iteračními metodami pro výpočet kořenůrovnice f(x) = 0. Jsou založeny na postupném zkracování intervalu,který obsahuje kořen. Tato strategie zaručuje konvergenci pro každou spojitou funkci, výpočet je však pomalý. Předpokládané znalosti Určení polohykořene pomocí znaménkových změn, věta Rovnice přímky. Výklad Princip zkracování intervalu použijemeudvoumetod.začněme proto nejdříve jeho obecným popisem. Budeme přitom předpokládat, že f je spojitá funkce na intervalu a 0,b 0,pronižplatíf(a 0 )f(b 0 ) < 0. Zvolíme bod x 1 (a 0,b 0 ), kterým rozdělíme původní intervalnadvěčásti, a jako nový interval a 1,b 1 vezmeme tu část, v níž ležíkořen x. Rozhodujeme se takto: je-li f(x 1 )=0,potomx 1 je kořen, tj. x = x 1 ; je-li f(a 0 )f(x 1 ) < 0, položíme a 1,b 1 = a 0,x 1 ; je-li f(x 1 )f(b 0 ) < 0, položíme a 1,b 1 = x 1,b 0. Pokud nastane první případ, jsme hotovi. V opačném případě zopakujeme celý postup na intervalu a 1,b 1,tj.zvolíme bod x 2 (a 1,b 1 ), který bud to je kořenem, nebo s jeho pomocí určíme dalšíinterval a 2,b 2 kořen obsahující atd.. Uvedeným postupem tedy vytvoříme posloupnosti {a k }, {b k } a {x k } takové, že kořen x ležíuvnitřkaždého z intervalů a k,b k. Abychom byli schopni určit číselnou hodnotu kořene x, musíkněmu konvergovat posloupnost {x k }.Tozajistíme vhodnou konkrétní volboubodů x k. -24-

5 Metoda půlení intervalu Bod x k+1 určíme jako střed intervalu a k,b k podle vzorce x k+1 = ak + b k. (2.2.1) 2 Intervaly tedy postupněpůlíme a jejich středy tvořící posloupnost {x k } konvergují ke kořenu x. Výpočet ukončíme při dosažení zadané přesnosti ɛ, tj.kdyžplatí x x k+1 ɛ. Otázkou je, jak takovou situaci rozpoznat, jelikož x neznáme. Musí však platit x x k+1 bk a k, 2 protože kořen x ležící v intervalu a k,b k se od středu x k+1 nemůže lišit víc než opolovinudélky intervalu. Pro ukončení výpočtu proto použijeme kritérium b k a k ɛ (2.2.2) 2 aposlednístřed x k+1 je pak aproximací kořene x spřeností ɛ. Algoritmus (Metoda půlení intervalu) Vstup: f, a 0, b 0, ɛ. Pro k =0, 1,... opakuj: x k+1 := (a k + b k )/2; je-li f(x k+1 ) = 0, potom jdi na Výstup; je-li f(a k )f(x k+1 ) < 0, potom a k+1 := a k,b k+1 := x k+1 ; je-li f(x k+1 )f(b k ) < 0, potom a k+1 := x k+1,b k+1 := b k ; dokud b k+1 a k+1 >ɛ. Výstup: poslední hodnota x k+1. Příklad Metodou půlení intervalu vypočtěte kořen rovnice f(x) 10 cos (x 1) x 2 +2x 1=0, který leží v intervalu 2.3, 2.4 spřesností ɛ =

6 2. ŘEŠENÍ NELINEÁRNÍCH ROVNIC Numerické metody Řešení: Na začátku je a 0 = 2.3, b 0 = 2.4 aprvnístřed je x 1 = Tabulka ukazuje průběh výpočtu. Symbolem + nebo za číslem zaznamenáváme znaménko funkční hodnoty funkce f vtomtobodě. Všimněme si, že x k+1 nahrazuje a k nebo b k tak, aby byla zachována znaménková změna. Aproximace kořene s přesností ɛ je posledníčíslo ve sloupci x k+1. Proto x =2.378±10 3. Tabulka 2.2.1: Metoda půlení intervalu. k a k b k x k+1 (b k a k )/ < 10 3 = ɛ Metoda regula falsi Vintervalu a k,b k zvolíme bod x k+1 jako kořen přímky p, kteráprocházíkrajními body grafu funkce f, viz obrázek α. Uvažovaná přímka je dána předpisem p(x) =f(a k )+ f(bk ) f(a k ) b k a k (x a k ) ajejíkořen je určen rovností p(x k+1 ) = 0. Odtud lze snadno odvodit vzorec který sepoužívá při výpočtu. x k+1 = a k b k a k f(b k ) f(a k ) f(ak ), (2.2.3) Geometrický smysl metody regula falsi je patrný z obrázku β. Ukončení iterací se provádí podle kritéria x k+1 x k ɛ, (2.2.4) -26-

7 x k+1 a k x b k x 1 x 2 x 3 a 0 x b 0 α β Obrázek 2.2.1: Metoda regula falsi. kde ɛ>0jedanémaléčíslo. Algoritmus (Metoda regula falsi) Vstup: f, a 0, b 0, ɛ, x 0 := a 0. Pro k =0, 1,... opakuj: x k+1 := a k (b k a k )/(f(b k ) f(a k ))f(a k ); je-li f(x k+1 ) = 0, potom jdi na Výstup; je-li f(a k )f(x k+1 ) < 0, potom a k+1 := a k,b k+1 := x k+1 ; je-li f(x k+1 )f(b k ) < 0, potom a k+1 := x k+1,b k+1 := b k ; dokud x k+1 x k >ɛ. Výstup: poslední hodnota x k+1. Příklad Metodou regula falsi vypočtěte kořen rovnice z příkladu Řešení: Na začátku je a 0 =2.3, b 0 =2.4 apoložíme ještě x 0 = a 0.Vprvní iteraci vypočítáme x 1 := 2.3 ( )f(2.3)/(f(2.4) f(2.3)). = , x 1 x 0 = = Tabulka zachycuje celývýpočet, kterýseřídípodobnými pravidly jako u me- -27-

8 2. ŘEŠENÍ NELINEÁRNÍCH ROVNIC Numerické metody tody půlení intervalu.výsledná aproximacekořene je x =2.379 ± Tabulka 2.2.2: Metoda regula falsi. k a k b k x k+1 x k+1 x k < 10 3 = ɛ Poznámka Ukončovací kritérium (2.2.4) říká, že poslední dvě aproximace kořene se lišíméně než ɛ. Může se ovšem stát, že obě jsouodskutečné hodnotykořene vzdálené více než ɛ. Poznáme to tak, že u funkčních hodnot f(x k ɛ),f(x k ),f(x k + ɛ) nedojde ke znaménkové změně. V takovém případě jemožno provést doplňující výpočet funkčních hodnot...,f(x k 2ɛ),f(x k ɛ),f(x k ),f(x k + ɛ),f(x k +2ɛ),... který zastavíme, když dojde ke znaménkové změně. Kontrolní otázky Otázka 1. V čem se shodují avčem se liší metodapůlení intervalu a metoda regula falsi? Která z nich je rychlejší? Otázka 2. Podrobně odvod te vzorec (2.2.3). Otázka 3. Proč nelze metodu regula falsi ukončovat podle kritéria (2.2.2)? Úlohy k samostatnému řešení 1. Vypočtěte kořeny rovnice x 2 x 6 ln x =0metodoupůleníintervalu,ɛ 7 = Vypočtěte kořeny rovnice z předchozí úlohy metodou regula falsi. Výsledky úloh k samostatnému řešení 1. Začneme-li na intervalu (0.9, 0.91), bude ve čtvrté iteraci x = ± Začneme-li na stejném intervalu, bude ve druhé iteraci x = ±

9 2.3. Newtonova metoda Cíle Odvodíme Newtonovu metodu, která kromě funkčních hodnot používá také hodnoty první derivace. Důsledkem je vyšší řád metody a rychlejší konvergence. Nevýhodou je nutnost zvolit počáteční aproximaci blízko kořene tak, aby byly splněny předpoklady zaručující konvergenci. Předpokládané znalosti Spojitost funkce. Výpočty derivací. Taylorův rozvoj. Výklad Budeme předpokládat, že známe aproximaci x k kořene x rovnice f(x) =0 a chceme určit další(přesnější) aproximaci x k+1.zapíšeme-li danou rovnici pomocí Taylorova polynomu prvního stupně v okolí bodux k,dostaneme f(x k )+(x x k )f (x k )+(x x k ) 2 f (ξ) 2 =0, kde ξ je blíže neurčené číslo mezi x a x k. V tomto tvaru rovnice provedeme linearizaci, při níž vypustíme kvadratický člen na levé straně. Řešením linearizované rovnice určíme aproximaci x k+1,tj. f(x k )+(x k+1 x k )f (x k )=0. Odtud snadno vyjádříme vzorec x k+1 = x k f(xk ) f (x k ). (2.3.1) Všimněme si ještě, že t(x) =f(x k )+(x x k )f (x k )jerovnicetečny ke grafu funkce f vbodě x k,jejíž kořen je aproximace x k+1,vizobrázek α. Geometrický smyslnewtonovymetodyjeznázorněn na obrázku β. -29-

10 2. ŘEŠENÍ NELINEÁRNÍCH ROVNIC Numerické metody Pro zahájení výpočtu podle vzorcem (2.3.1) musíme zadat počáteční aproximaci x 0.Oukončení iterací rozhodujeme pomocí vhodného kritéria, budeme používat opět kritérium (2.2.4). x x x k+1 x k x 3 x 2 x 1 x 0 α β Obrázek 2.3.1: Newtonova metoda. Algoritmus (Newtonova metoda) Vstup: f, f, x 0, ɛ. Pro k =0, 1,... opakuj: x k+1 := x k f(x k )/f (x k ); dokud x k+1 x k >ɛ. Výstup: poslední hodnota x k+1. Příklad Newtonovou metodou vypočtěte kořen rovnice z příkladu spřesností ɛ =10 6. Řešení: Derivace funkce f(x) =10cos(x 1) x 2 +2x 1mátvarf (x) = 10 sin (x 1) 2x + 2. Newtonova metoda je proto dána vzorcem x k+1 = x k 10 cos (xk 1) (x k ) 2 +2x k sin (x k 1) 2x k +2 Počáteční aproximacizvolíme například x 0 =2.4 adostaneme x 1 = cos (2.4 1) = sin (2.4 1)

11 Celý průběh výpočtu je zachycen v tabulce Výsledná aproximacekořene je x = ± Tabulka 2.3.1: Newtonova metoda. k x k x k x k Vpříkladu jsme měli možnost si všimnout velice rychlé konvergence Newtonovy metody. Následující analýza ukazuje, že se nejednalo o náhodu. Věta Necht f je spojitá, f nenulová na a, b anecht {x k } je posloupnost na a, b počítaná podle vzorce (2.3.1), která konvergujekčíslu x. Potom x je kořenem rovnice f(x) = 0aplatí x x k+1 C x x k 2 pro k =0, 1, 2,..., (2.3.2) kde konstanta C 0 nezávisí nak. Důkaz: Limitním přechodem ve vzorci (2.3.1) dostaneme f( x) = 0, čili x je kořen. Protože předpokládáme, že f je spojitá funkce, můžeme f( x) =0zapsat pomocí Taylorova rozvoje ve tvaru f(x k )+( x x k )f (x k )+( x x k ) 2 f (ξ) =0, 2 kde ξ je bod mezi x k a x. Vydělíme derivací f (x k )adosadímezevzorce(2.3.1), čímž dostaneme x x k+1 +( x x k ) 2 f (ξ) 2f (x k ) =0. Označíme-li C =max ξ,x a,b f (ξ)/2f (x), můžeme psát x x k+1 = f (ξ) 2f (x k ) x xk 2 C x x k

12 2. ŘEŠENÍ NELINEÁRNÍCH ROVNIC Numerické metody Poznámka Nerovnost (2.3.2) dokazuje, že Newtonova metoda je druhého řádu. Důsledkem tohoto faktu je velmi rychlá konvergence, při níž sepočet správných číslic za desetinnou tečkou v každé iteraci přibližně zdvojnásobí. Následující věta říká, za jakých předpokladů konvergence nastane. Věta Necht jsou splněny následující předpoklady: a) f je nenulová naintervalu a, b ; b) f nemění znaménko v intervalu (a, b); c) platí f(a)f(b) < 0; d) platí f(a)/f (a) <b a a f(b)/f (b) <b a. Potom posloupnost {x k } počítaná podle vzorce (2.3.1) konverguje pro libovolnou počáteční aproximacix 0 a, b. Příklad Ukažte, že pro rovnici z příkladu jsou na intervalu 2.3, 2.4 splněny předpoklady věty Řešení: Rovnice je zadaná funkcí f(x) =10cos(x 1) x 2 +2x 1, jejiž první a druhá derivacemajítvarf (x) = 10 sin (x 1) 2x +2 a f (x) = 10 cos (x 1) 2. V tabulce jsou vypočteny hodnoty f, f,znichžmůžeme usoudit, že jsou splněny předpoklady a) a b). Výpočtem dostáváme f(2.3)f(2.4). = < 0, f(2.3)/f (2.3). = < 0.1 a f(2.4)/f (2.4). = < 0.1, což znamená, že jsou splněny také předpoklady c) a d). Počátečníaproximacix 0 je proto možné zvolit libovolněna 2.3,

13 Tabulka 2.3.2: Tabelace první a druhé derivace. x f (x) f (x) Kontrolní otázky Otázka 1. Jak se odvozuje vzorec (2.3.1)? Jaký jejehografickýsmysl? Otázka 2. Zkuste nakreslit situace, kdy Newtonova metoda diverguje. Otázka 3. Jakého řádu je Newtonova metoda a jak se to projeví při výpočtu? Úlohy k samostatnému řešení 1. Ověřte, že pro rovnici x 2 x 6 ln x = 0 jsou na intervalu 0.9, 0.91 splněny 7 předpoklady a) d) z věty Vypočtěte kořen z předchozí úlohy pomocí Newtonovy metody, ɛ =10 6. Výsledky úloh k samostatnému řešení 1. Z tabelace f (x) =2x 1 6 a f (x) =2+ 6 zjistíme, že na uvedeném 7x 7x 2 intervalu je první derivacezáporná a druhá derivace kladná. Přímým výpočtem dostaneme f(0.9)f(0.91). = < 0, f(0.9)/f (0.9). = < 0.01 a f(0.91)/f (0.91). = < Začneme-li z x 0 =0.9, dostaneme ve třetí iteraci x = ±

14 2. ŘEŠENÍ NELINEÁRNÍCH ROVNIC Numerické metody 2.4. Metoda prosté iterace počtu. Předpokládané znalosti Spojitost funkce. Výpočty derivací. Věta o střední hodnotě diferenciálního Výklad Rovnici f(x) = 0převedeme na ekvivalentní rovnicix g(x) = 0,kdeg je vhodná spojitá funkce. Místo původní rovnice budeme řešit rovnici v iteračním tvaru: x = g(x). (2.4.1) Číslo x, kteréjeřešením rovnice (2.4.1), se nazývá pevný bodfunkceg. Věta (Brouwerova věta o pevném bodu) Necht g je spojitá funkce na intervalu a, b, pronižplatí g(x) a, b x a, b. (2.4.2) Pak na intervalu a, b existuje pevný bod funkce g. Důkaz: Položme f(x) = x g(x). Pokud f(a) = 0 resp. f(b) = 0, pak je bevným bodem a, resp.b. Necht f(a) 0af(b) 0. Protože g(a) a, b, platí f(a) =a g(a) < 0. Podobně lzeukázat f(b) > 0. Dohromady dostáváme Cíle Seznámíme se s obecnou metodu pro výpočet pevného bodu funkce. Metody z předchozích odstavců můžeme chápat jako její speciální varianty.pojem pevného bodu hraje důležitou roli v různých oblastech matematického modelování. -34-

15 f(a)f(b) < 0, takže existence pevného bodu plyne z věty O funkci g, která splňuje (2.4.2), říkáme, že zobrazuje interval a, b do sebe. Necht x 0 a, b je počáteční aproximace. Metodou prostých iterací nazýváme výpočet podle předpisu: x k+1 = g(x k ), k =0, 1, 2,... (2.4.3) Jestliže posloupnost {x k } počítaná tímto postupem konverguje k číslu x, pak limitním přechodem v (2.4.3) dostaneme, že x je pevným bodem funkce g. Výchozí rovnicif(x) = 0můžeme převést na iterační tvarrůznými způsoby, ale jen některé vedou ke konvergentnímu výpočtu. Příklad Rovnici f(x) e x x 2 +1=0, (2.4.4) převed te na iterační tvar a počítejte kořen, který leží v intervalu 1.2, 1.1. Řešení: Navrhneme tři iterační tvary: x = e x +1 g a (x); x = x +(e x x 2 +1) g b (x); x = x ex x 2 +1 e x 2x g c (x). Průběh výpočtů prox 0 = 1.1 ukazuje tabulka Pro g a výpočet konverguje pomalu, pro g b výpočet diverguje a pro g c výpočet konverguje rychle. -35-

16 2. ŘEŠENÍ NELINEÁRNÍCH ROVNIC Numerické metody Tabulka 2.4.1: Metoda prosté iterace. k x k+1 = g a (x k ) x k+1 = g b (x k ) x k+1 = g c (x k ) Při studiu konvergence metody prostých iterací sepoužívá pojem kontrakce. Definice Funkce g se nazývá kontrakce na intervalu a, b, jestliže existuje konstanta L, 0 <L<1, taková, že g(x) g(y) L x y x, y a, b. (2.4.5) Věta Necht g je spojitá kontrakce na a, b, která zobrazuje tento interval do sebe. Pak na intervalu a, b existuje jediný pevnýbod x funkce g. Navíc posloupnost {x k } vypočítaná podlepředpisu (2.4.3) konverguje k x pro každou počáteční aproximaci x 0 a, b. Důkaz: Existence pevného bodu plyne z věty Jednoznačnost dokážeme sporem. Necht x je dalšípevnýbodg. Pomocí (2.4.5) dostaneme x x = g( x) g( x) L x x, odkud (1 L) x x 0. Protože 1 L>0, dostáváme x = x. Zbývádokázat, že posloupnost {x k } vypočítanápodlepředpisu (2.4.3) konverguje -36-

17 k x. Podle (2.4.5) je x k x = g(x k 1 ) g( x) L x k 1 x, odkud plyne x k x L k x 0 x. (2.4.6) Protože L (0, 1), je lim k L k = 0, a proto lim k x k x =0. V konkrétních situacích je zpravidla nesnadné dokázat, že daná funkce g je kontrakce. Jednodušší je ověřovat následující silnější předpoklad: necht g má v(a, b) derivacia L (0, 1) tak, že g (η) L η (a, b). (2.4.7) Věta Necht g je spojitá funkce na a, b, která zobrazuje tento interval do sebe a splňuje (2.4.7). Pak platí tvrzení věty Důkaz: Pomocí věty o střední hodnotě diferenciálního počtu dostáváme g(x) g(y) = g (η) x y L x y, kde η (x, y). Funkce g je proto kontrakce na intervalu a, b avěta je tak důsledkem věty Následující poznámka dává návod, jak rozhodnout o konvergenci metody prostých iterací. Poznámka Je-li číslo M g = max x (a,b) g (x) menšínežjedna,pakmůžeme položit L = M g afunkceg bude kontrakce na intervalu a, b. Rychlost konvergence lze posoudit podle velikosti L. Vztah (2.4.6) totiž ukazuje,že výpočet bude konvergovat rychleji pro menšíhodnotyl. -37-

18 2. ŘEŠENÍ NELINEÁRNÍCH ROVNIC Numerické metody Příklad Rozhodněte o konvergenci metody prostých iterací u iteračních tvarů zpříkladu Řešení: Derivováním g a, g b a g c dostaneme g a (x) = e x 2 e x +1, g b (x) = 1+ex 2x, g c (x) = (ex x 2 +1)(e x 2). (e x 2x) 2 Tabulka obsahuje absolutní hodnoty těchto derivací naintervalu 1.2, 1.1. Odtud M ga. =0.1442, Mgb. = a Mgc. = Protože Mgb > 1 iterační tvar b) diverguje. Pro iterační tvary a) resp. c) můžeme položit L ga = M ga resp. L gc = M gc,takže funkce g a a g b jsou kontrakce a metoda prostých iterací konverguje. Protože L gc <L ga, je konvergence rychlejšíuiteračního tvaru c). Tabulka 2.4.2: Posouzení rychlosti konvergence metody prosté iterace. x g a (x) g b (x) g c (x) Kontrolní otázky Otázka 1. Co nazýváme pevným bodem funkce? Jak se pevný bodpočítá? Otázka 2. Čím je zaručena konvergence metody prostých iterací? Otázka 3. Jaký je vztah mezi metodou prosté iterace a Newtonovou metodou? -38-

19 Úlohy k samostatnému řešení 1. Pro rovnici x 2 x 6 ln x =0uvažujte iterační tvarx = 7 x2 6 log x g(x). 7 Vypočítejte hodnotu konstanty M g na intervalu 0.9, U iteračního tvaru z předchozí úlohy vypočítejte pevný bod s přesností ɛ = Výsledky úloh k samostatnému řešení 1. Z tabelace g (x) =2x 6 zjistíme, že M 7x g = L = Začneme-li z x 0 =0.9, dostaneme ve 38-mé iteraci x 38. = a platí x 38 x 37. = <ɛ. Shrnutí lekce Probrali jsem základní metodyprořešení nelineárních rovnic a ukázali jsme jak tyto metody souvisí s vlastnostmi funkce, která rovnici popisuje. Metoda půlení intervalu a metoda regula falsi konvergují prokaždou spojitou funkci. Rychlejší Newtonova metoda vyžaduje spojitost druhé derivace a splnění dalších předpokladů. Metoda prosté iterace zahrnuje ostatní iterační metody jako speciální případ. -39-

Necht je funkce f spojitá v intervalu a, b a má derivaci v (a, b). Pak existuje bod ξ (a, b) tak, že f(b) f(a) b a. Geometricky

Necht je funkce f spojitá v intervalu a, b a má derivaci v (a, b). Pak existuje bod ξ (a, b) tak, že f(b) f(a) b a. Geometricky Monotónie a extrémy funkce Diferenciální počet - průběh funkce Věta o střední hodnotě (Lagrange) Necht je funkce f spojitá v intervalu a, b a má derivaci v (a, b). Pak existuje bod ξ (a, b) tak, že f (ξ)

Bardziej szczegółowo

Komplexní analýza. Martin Bohata. Katedra matematiky FEL ČVUT v Praze Martin Bohata Komplexní analýza Mocninné řady 1 / 18

Komplexní analýza. Martin Bohata. Katedra matematiky FEL ČVUT v Praze Martin Bohata Komplexní analýza Mocninné řady 1 / 18 Komplexní analýza Mocninné řady Martin Bohata Katedra matematiky FEL ČVUT v Praze bohata@math.feld.cvut.cz Martin Bohata Komplexní analýza Mocninné řady 1 / 18 Posloupnosti komplexních čísel opakování

Bardziej szczegółowo

Aproximace funkcí 1,00 0,841 1,10 0,864 1,20 0,885. Body proložíme lomenou čarou.

Aproximace funkcí 1,00 0,841 1,10 0,864 1,20 0,885. Body proložíme lomenou čarou. Příklad Známe následující hodnoty funkce Φ: u Φ(u) 1,00 0,841 1,10 0,864 1,20 0,885 Odhadněte přibližně hodnoty Φ(1,02) a Φ(1,16). Možnosti: Vezmeme hodnotu v nejbližším bodě. Body proložíme lomenou čarou.

Bardziej szczegółowo

(1) Derivace. Kristýna Kuncová. Matematika B2 17/18. Kristýna Kuncová (1) Derivace 1 / 35

(1) Derivace. Kristýna Kuncová. Matematika B2 17/18. Kristýna Kuncová (1) Derivace 1 / 35 (1) Derivace Kristýna Kuncová Matematika B2 17/18 Kristýna Kuncová (1) Derivace 1 / 35 Růst populací Zdroj : https://www.tes.com/lessons/ yjzt-cmnwtvsq/noah-s-ark Kristýna Kuncová (1) Derivace 2 / 35 Růst

Bardziej szczegółowo

Funkce zadané implicitně. 4. března 2019

Funkce zadané implicitně. 4. března 2019 Funkce zadané implicitně 4. března 2019 Parciální derivace druhého řádu Parciální derivace druhého řádu funkce z = f (x, y) jsou definovány: Parciální derivace 2 f 2 = ( ) f 2 f 2 = ( ) f 2 f a 2 f 2 f

Bardziej szczegółowo

Kapitola 4: Soustavy diferenciálních rovnic 1. řádu

Kapitola 4: Soustavy diferenciálních rovnic 1. řádu Sbírka příkladů Matematika II pro strukturované studium Kapitola 4: Soustavy diferenciálních rovnic 1 řádu Chcete-li ukončit prohlížení stiskněte klávesu Esc Chcete-li pokračovat stiskněte klávesu Enter

Bardziej szczegółowo

Numerické metody minimalizace

Numerické metody minimalizace Numerické metody minimalizace Než vám klesnou víčka - Stříbrnice 2011 12.2. 16.2.2011 Emu (Brkos 2011) Numerické metody minimalizace 12.2. 16.2.2011 1 / 19 Obsah 1 Úvod 2 Základní pojmy 3 Princip minimalizace

Bardziej szczegółowo

Kristýna Kuncová. Matematika B2 18/19

Kristýna Kuncová. Matematika B2 18/19 (6) Určitý integrál Kristýna Kuncová Matematika B2 18/19 Kristýna Kuncová (6) Určitý integrál 1 / 28 Newtonův integrál Zdroj: https://kwcalculus.wikispaces.com/integral+applications Kristýna Kuncová (6)

Bardziej szczegółowo

Kapitola 2. Nelineární rovnice

Kapitola 2. Nelineární rovnice Kapitola. Nelineární rovnice Formulace: Je dána funkce f : R! R definovaná na intervalu ha; bi. Hledáme x ha; bi tak, aby f(x) = 0. (x... kořen rovnice) Poznámka: Najít přesné řešení analyticky je možné

Bardziej szczegółowo

Numerické metody 8. května FJFI ČVUT v Praze

Numerické metody 8. května FJFI ČVUT v Praze Obyčejné diferenciální rovnice Numerické metody 8. května 2018 FJFI ČVUT v Praze 1 Úvod Úvod Základní metody Pokročilejší metody Soustava Vyšší řád Program 1 Úvod Úvod - Úloha Základní úloha, kterou řešíme

Bardziej szczegółowo

1 Soustava lineárních rovnic

1 Soustava lineárních rovnic Soustavy lineárních rovnic Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Soustava lineárních rovnic 2 Řešitelnost soustavy lineárních rovnic 3 Gaussova eliminační metoda 4 Jordanova eliminační

Bardziej szczegółowo

Matematika (KMI/PMATE)

Matematika (KMI/PMATE) Matematika (KMI/PMATE) Úvod do matematické analýzy Limita a spojitost funkce Matematika (KMI/PMATE) Osnova přednášky lineární funkce y = kx + q definice lineární funkce význam (smysl) koeficientů lineární

Bardziej szczegółowo

MATEMATIKA 3. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci

MATEMATIKA 3.   Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci MATEMATIKA 3 Dana Černá http://www.fp.tul.cz/kmd/ Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci Osnova: Komplexní funkce - definice, posloupnosti, řady Vybrané komplexní funkce

Bardziej szczegółowo

Vybrané kapitoly z matematiky

Vybrané kapitoly z matematiky Vybrané kapitoly z matematiky VŠB-TU Ostrava 2018-2019 Vybrané kapitoly z matematiky 2018-2019 1 / 11 Křivkový integrál Vybrané kapitoly z matematiky 2018-2019 2 / 11 Parametricky zadaná křivka v R 3 :

Bardziej szczegółowo

Co nám prozradí derivace? 21. listopadu 2018

Co nám prozradí derivace? 21. listopadu 2018 Co nám prozradí derivace? Seminář sedmý 21. listopadu 2018 Derivace základních funkcí Tečna a normála Tečna ke grafu funkce f v bodě dotyku T = [x 0, f (x 0 )]: y f (x 0 ) = f (x 0 )(x x 0 ) Normála: y

Bardziej szczegółowo

Průvodce studiem V této kapitole se budeme zabývat diferenciálním počtem pro funkce více

Průvodce studiem V této kapitole se budeme zabývat diferenciálním počtem pro funkce více 5 Diferenciální počet funkcí více proměnných Průvodce studiem V této kapitole se budeme zabývat diferenciálním počtem pro funkce více proměnných, především budeme pracovat s funkcemi dvou proměnných Ukážeme

Bardziej szczegółowo

Matematika 2, vzorová písemka 1

Matematika 2, vzorová písemka 1 Matematika 2, vzorová písemka Pavel Kreml 9.5.20 Přesun mezi obrazovkami Další snímek: nebo Enter. Zpět: nebo Shift + Enter 2 3 4 Doporučení Pokuste se vyřešit zadané úlohy samostatně. Pokud nebudete vědět

Bardziej szczegółowo

5. a 12. prosince 2018

5. a 12. prosince 2018 Integrální počet Neurčitý integrál Seminář 9, 0 5. a. prosince 08 Neurčitý integrál Definice. Necht funkce f (x) je definovaná na intervalu I. Funkce F (x) se nazývá primitivní k funkci f (x) na I, jestliže

Bardziej szczegółowo

x2 + 2x 15 x 2 + 4x ) f(x) = x 2 + 2x 15 x2 + x 12 3) f(x) = x 3 + 3x 2 10x. x 3 + 3x 2 10x x 2 + x 12 10) f(x) = log 2.

x2 + 2x 15 x 2 + 4x ) f(x) = x 2 + 2x 15 x2 + x 12 3) f(x) = x 3 + 3x 2 10x. x 3 + 3x 2 10x x 2 + x 12 10) f(x) = log 2. Příklady k 1 zápočtové písemce Definiční obor funkce Určete definiční obor funkce: x + x 15 1 f(x x + x 1 ( x + x 1 f(x log x + x 15 x + x 1 3 f(x x 3 + 3x 10x ( x 3 + 3x 10x f(x log x + x 1 x3 + 5x 5

Bardziej szczegółowo

Elementární funkce. Edita Pelantová. únor FJFI, ČVUT v Praze. katedra matematiky, FJFI, ČVUT v Praze

Elementární funkce. Edita Pelantová. únor FJFI, ČVUT v Praze. katedra matematiky, FJFI, ČVUT v Praze Elementární funkce Edita Pelantová FJFI, ČVUT v Praze Seminář současné matematiky katedra matematiky, FJFI, ČVUT v Praze únor 2013 c Edita Pelantová (FJFI) Elementární funkce únor 2013 1 / 19 Polynomiální

Bardziej szczegółowo

Diferenciální rovnice základní pojmy. Rovnice se

Diferenciální rovnice základní pojmy. Rovnice se Diferenciální rovnice základní pojmy. Rovnice se separovanými proměnnými. Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské

Bardziej szczegółowo

Inverzní Z-transformace

Inverzní Z-transformace Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 9. přednáška 11MSP úterý 16. dubna 2019 verze: 2019-04-15 12:25

Bardziej szczegółowo

Kristýna Kuncová. Matematika B2

Kristýna Kuncová. Matematika B2 (3) Průběh funkce Kristýna Kuncová Matematika B2 Kristýna Kuncová (3) Průběh funkce 1 / 26 Monotonie (x 2 ) = 2x (sin x) = cos x Jak souvisí derivace funkce a fakt, zda je funkce rostoucí nebo klesající?

Bardziej szczegółowo

kontaktní modely (Winklerův, Pasternakův)

kontaktní modely (Winklerův, Pasternakův) TÉMA 7: Pružný poloprostor, modely podloží pružný poloprostor základní předpoklady pružný poloprostor Boussinesqueovo řešení kontaktní modely (Winklerův, Pasternakův) 1 Pružný poloprostor (1) vychází z

Bardziej szczegółowo

Úvodní informace. 18. února 2019

Úvodní informace. 18. února 2019 Úvodní informace Funkce více proměnných Cvičení první 18. února 2019 Obsah 1 Úvodní informace. 2 Funkce více proměnných Definiční obor Úvodní informace. Komunikace: e-mail: olga@majling.eu nebo olga.majlingova@fs.cvut.cz

Bardziej szczegółowo

Cauchyova úloha pro obyčejnou diferenciální rovnici

Cauchyova úloha pro obyčejnou diferenciální rovnici Řešení ODR v MATLABu Přednáška 3 15. října 2018 Cauchyova úloha pro obyčejnou diferenciální rovnici y = f (x, y), y(x 0 ) = y 0 Víme, že v intervalu a, b existuje jediné řešení. (f (x, y) a f y jsou spojité

Bardziej szczegółowo

Obsah. 1.2 Integrály typu ( ) R x, s αx+β

Obsah. 1.2 Integrály typu ( ) R x, s αx+β Sbírka úloh z matematické analýzy. Čížek Jiří Kubr Milan. prosince 006 Obsah Neurčitý integrál.. Základní integrály...................................... Integrály typu ) R, s α+β γ+δ d...........................

Bardziej szczegółowo

Obsah. Limita posloupnosti a funkce. Petr Hasil. Limita posloupnosti. Pro a R definujeme: Je-li a < 0, pak a =, a ( ) =. vlastní body.

Obsah. Limita posloupnosti a funkce. Petr Hasil. Limita posloupnosti. Pro a R definujeme: Je-li a < 0, pak a =, a ( ) =. vlastní body. Obsah a funkce Petr Hasil Přednáška z Matematické analýzy I Úvod 2 c Petr Hasil (MUNI) a funkce Matematická analýza / 90 c Petr Hasil (MUNI) a funkce Matematická analýza 2 / 90 Úvod Úvod Pro a R definujeme:

Bardziej szczegółowo

Geometrická nelinearita: úvod

Geometrická nelinearita: úvod Geometrická nelinearita: úvod Opakování: stabilita prutů Eulerovo řešení s využitím teorie 2. řádu) Stabilita prutů Ritzovou metodou Stabilita tenkých desek 1 Geometrická nelinearita Velké deformace průhyby,

Bardziej szczegółowo

Stochastické modelování v ekonomii a financích Konzistence odhadu LWS. konzistence OLS odhadu. Předpoklady pro konzistenci LWS

Stochastické modelování v ekonomii a financích Konzistence odhadu LWS. konzistence OLS odhadu. Předpoklady pro konzistenci LWS Whitův pro heteroskedasticitě pro heteroskedasticitě Stochastické modelování v ekonomii a financích 7. 12. 2009 Obsah Whitův pro heteroskedasticitě pro heteroskedasticitě 1 Whitův 2 pro 3 heteroskedasticitě

Bardziej szczegółowo

Petr Hasil. c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 1 / 187

Petr Hasil. c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 1 / 187 Nekonečné řady Petr Hasil Přednáška z Matematické analýzy III c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 1 / 187 Obsah 1 Nekonečné číselné řady Základní pojmy Řady s nezápornými členy Řady s libovolnými

Bardziej szczegółowo

Sb ırka pˇr ıklad u z matematick e anal yzy II Petr Tomiczek

Sb ırka pˇr ıklad u z matematick e anal yzy II Petr Tomiczek Sbírka příkladů z matematické analýzy II Petr Tomiczek Obsah 0 Diferenciální rovnice. řádu 0. Separace proměnných Příklad : Najděte obecné řešení (obecný integrál) diferenciální rovnice y = tg x tg y.

Bardziej szczegółowo

Komplexní analýza. Martin Bohata. Katedra matematiky FEL ČVUT v Praze Martin Bohata Komplexní analýza Úvod 1 / 32

Komplexní analýza. Martin Bohata. Katedra matematiky FEL ČVUT v Praze Martin Bohata Komplexní analýza Úvod 1 / 32 Komplexní analýza Úvod Martin Bohata Katedra matematiky FEL ČVUT v Praze bohata@math.feld.cvut.cz Martin Bohata Komplexní analýza Úvod 1 / 32 Základní informace Stránky předmětu: http://math.feld.cvut.cz/bohata/kan.html

Bardziej szczegółowo

7. Aplikace derivace

7. Aplikace derivace 7. Aplikace derivace 7A. Taylorův polynom 7. Aplikace derivace Verze 20. července 207 Derivace funkce se využívá při řešení úloh technické prae i teorie. Uvedeme několik z nich: vyčíslení hodnot funkce,

Bardziej szczegółowo

Linea rnı (ne)za vislost

Linea rnı (ne)za vislost [1] Lineární (ne)závislost Skupiny, resp. množiny, vektorů mohou být lineárně závislé nebo lineárně nezávislé... a) zavislost, 3, b) P. Olšák, FEL ČVUT, c) P. Olšák 2010, d) BI-LIN, e) L, f) 2009/2010,

Bardziej szczegółowo

GEM a soustavy lineárních rovnic, část 2

GEM a soustavy lineárních rovnic, část 2 GEM a soustavy lineárních rovnic, část Odpřednesenou látku naleznete v kapitole 6 skript Abstraktní a konkrétní lineární algebra. Jiří Velebil: B6B0LAG 8.3.09: GEM a soustavy, část / Minulá přednáška Gaussova

Bardziej szczegółowo

Lineární algebra - iterační metody

Lineární algebra - iterační metody Lineární algebra - iterační metody Numerické metody 7. dubna 2018 FJFI ČVUT v Praze 1 Úvod Úvod Rozdělení Metody Zastavení SOR Programy 1 Úvod Úvod - LAR Mějme základní úlohu A x = b, (1) kde A R n,n je

Bardziej szczegółowo

Edita Pelantová, katedra matematiky / 16

Edita Pelantová, katedra matematiky / 16 Edita Pelantová, katedra matematiky seminář současné matematiky, září 2010 Axiomy reálných čísel Axiomy tělesa Axiom 1. x + y = y + x a xy = yx (komutativní zákon). Axiom 2. x + (y + z) = (x + y) + z a

Bardziej szczegółowo

Obsah. 1 Konstrukce (definice) Riemannova integrálu Výpočet Newtonova Leibnizova věta Aplikace výpočet objemů a obsahů 30

Obsah. 1 Konstrukce (definice) Riemannova integrálu Výpočet Newtonova Leibnizova věta Aplikace výpočet objemů a obsahů 30 Určitý integrál Robert Mřík 6. září 8 Obsh 1 Konstrukce (definice) Riemnnov integrálu. Výpočet Newtonov Leibnizov vět. 18 3 Numerický odhd Lichoběžníkové prvidlo 19 4 Aplikce výpočet objemů obshů 3 c Robert

Bardziej szczegółowo

Petr Beremlijski, Marie Sadowská

Petr Beremlijski, Marie Sadowská Počítačová cvičení Petr Beremlijski, Marie Sadowská Katedra aplikované matematiky Fakulta elektrotechniky a informatiky VŠB - Technická univerzita Ostrava Cvičení : Matlab nástroj pro matematické modelování

Bardziej szczegółowo

DFT. verze:

DFT. verze: Výpočet spektra signálu pomocí DFT kacmarp@fel.cvut.cz verze: 009093 Úvod Signály můžeme rozdělit na signály spojité v čase nebo diskrétní v čase. Další možné dělení je na signály periodické nebo signály

Bardziej szczegółowo

(2) Funkce. Kristýna Kuncová. Matematika B2. Kristýna Kuncová (2) Funkce 1 / 25

(2) Funkce. Kristýna Kuncová. Matematika B2. Kristýna Kuncová (2) Funkce 1 / 25 (2) Funkce Kristýna Kuncová Matematika B2 Kristýna Kuncová (2) Funkce 1 / 25 Sudá a lichá funkce Určete, které funkce jsou sudé a které liché: liché: A, D, E sudé: B Kristýna Kuncová (2) Funkce 2 / 25

Bardziej szczegółowo

Určitý (Riemannův) integrál a aplikace. Nevlastní integrál. 19. prosince 2018

Určitý (Riemannův) integrál a aplikace. Nevlastní integrál. 19. prosince 2018 Určitý (Riemnnův) integrál plikce. Nevlstní integrál Seminář 9. prosince 28 Určitý integrál Existence: Necht funkce f (x) je definovná n uzvřeném intervlu, b. Necht je splněn n tomto intervlu kterákoliv

Bardziej szczegółowo

Numerické metody KI/NME. Doc. RNDr. Jiří Felcman, CSc. RNDr. Petr Kubera, Ph.D.

Numerické metody KI/NME. Doc. RNDr. Jiří Felcman, CSc. RNDr. Petr Kubera, Ph.D. Numerické metody KI/NME Doc. RNDr. Jiří Felcman, CSc. RNDr. Petr Kubera, Ph.D. RNDr. Jiří Škvor, Ph.D. Ústí nad Labem 2016 Kurz: Obor: Klíčová slova: Anotace: Numerické metody Informační systémy, Informatika

Bardziej szczegółowo

Teorie. kuncova/ Definice 1. Necht f je reálná funkce a a R. Jestliže existuje.

Teorie.   kuncova/ Definice 1. Necht f je reálná funkce a a R. Jestliže existuje. 8. cvičení http://www.karlin.mff.cuni.cz/ kuncova/ kytaristka@gmail.com Teorie Definice. Necht f je reálná funkce a a R. Jestliže eistuje h 0 fa + h) fa), h pak tuto itu nazýváme derivací funkce f v bodě

Bardziej szczegółowo

Matematická analýza 2. Kubr Milan

Matematická analýza 2. Kubr Milan Matematická analýza. Kubr Milan. února 008 Obsah Vektorové funkce jedné reálné proměnné. 3. Základní pojmy...................................... 3. Křivky v R n........................................

Bardziej szczegółowo

Operace s funkcemi [MA1-18:P2.1] funkční hodnota... y = f(x) (x argument)

Operace s funkcemi [MA1-18:P2.1] funkční hodnota... y = f(x) (x argument) KAPITOLA : Funkce - úvod [MA-8:P.] reálná funkce (jedné) reálné proměnné... f : A R...... zobrazení množin A R do množin reálných čísel R funkční hodnota... = f() ( argument) ( tj. reálná funkce f : A

Bardziej szczegółowo

Funkce více proměnných: limita, spojitost, derivace

Funkce více proměnných: limita, spojitost, derivace Matematika III 2. přednáška Funkce více proměnných: limita, spojitost, derivace Michal Bulant Masarykova univerzita Fakulta informatiky 22. 9. 2014 Obsah přednášky 1 Literatura 2 Zobrazení a funkce více

Bardziej szczegółowo

Stavový popis Stabilita spojitých systémů (K611MSAP) Katedra aplikované matematiky Fakulta dopravní ČVUT. čtvrtek 20. dubna 2006

Stavový popis Stabilita spojitých systémů (K611MSAP) Katedra aplikované matematiky Fakulta dopravní ČVUT. čtvrtek 20. dubna 2006 Modelování systémů a procesů (K611MSAP) Přednáška 4 Katedra aplikované matematiky Fakulta dopravní ČVUT Pravidelná přednáška K611MSAP čtvrtek 20. dubna 2006 Obsah 1 Laplaceova transformace Přenosová funkce

Bardziej szczegółowo

Matematická analýza II pro kombinované studium. Konzultace první a druhá. RNDr. Libuše Samková, Ph.D. pf.jcu.cz

Matematická analýza II pro kombinované studium. Konzultace první a druhá. RNDr. Libuše Samková, Ph.D.   pf.jcu.cz Učební texty ke konzultacím předmětu Matematická analýza II pro kombinované studium Konzultace první a druhá RNDr. Libuše Samková, Ph.D. e-mail: lsamkova@ pf.jcu.cz webová stránka: home.pf.jcu.cz/ lsamkova/

Bardziej szczegółowo

Matematická analýza pro učitele (text je v pracovní verzi)

Matematická analýza pro učitele (text je v pracovní verzi) Matematická analýza pro učitele (text je v pracovní verzi) Martina Šimůnková 6. června 208 2 Obsah Úvod 7. Co je to funkce.......................... 7.2 Co budeme na funkcích zkoumat................. 9.2.

Bardziej szczegółowo

(a). Pak f. (a) pro i j a 2 f

(a). Pak f. (a) pro i j a 2 f Připomeň: 1. Necht K R n. Pak 1. Funkce více proměnných II 1.1. Parciální derivace vyšších řádů K je kompaktní K je omezená a uzavřená. 2. Necht K R n je kompaktní a f : K R je spojitá. Pak f nabývá na

Bardziej szczegółowo

Funkce více proměnných: limita, spojitost, parciální a směrové derivace, diferenciál

Funkce více proměnných: limita, spojitost, parciální a směrové derivace, diferenciál Matematika III 2. přednáška Funkce více proměnných: limita, spojitost, parciální a směrové derivace, diferenciál Michal Bulant Masarykova univerzita Fakulta informatiky 29. 9. 2010 Obsah přednášky 1 Literatura

Bardziej szczegółowo

Internetová matematická olympiáda 8. ročník, Baví se student Fakulty strojního inženýrství VUT v Brně (FSI) s kamarádem:

Internetová matematická olympiáda 8. ročník, Baví se student Fakulty strojního inženýrství VUT v Brně (FSI) s kamarádem: Internetová matematická olympiáda 8. ročník, 24. 11. 2015 1. Baví se student Fakulty strojního inženýrství VUT v Brně (FSI) s kamarádem: Kamarád: Co jsi tak veselý? Něco slavíš? Student FSI: Já přímo ne,

Bardziej szczegółowo

fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu (reg. č. CZ.1.07/2.2.00/28.

fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu   (reg. č. CZ.1.07/2.2.00/28. Extrémy Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného

Bardziej szczegółowo

MATEMATIKA 1 ALEŠ NEKVINDA. + + pokud x < 0; x. Supremum a infimum množiny.

MATEMATIKA 1 ALEŠ NEKVINDA. + + pokud x < 0; x. Supremum a infimum množiny. MATEMATIKA ALEŠ NEKVINDA DIFERENCIÁLNÍ POČET Přednáška Označíme jako na střední škole N, Z, Q, R a C postupně množinu přirozených, celých, racionálních, reálných a komplexních čísel R = R { } { } Platí:

Bardziej szczegółowo

Matematika I (KMI/PMATE) Co se naučíme? x = a a x = b. rozumět pojmu střední hodnota funkce na daném intervalu. Obrázek 1.

Matematika I (KMI/PMATE) Co se naučíme? x = a a x = b. rozumět pojmu střední hodnota funkce na daném intervalu. Obrázek 1. Mtemtik I (KMI/PMATE). Integrální počet funkcí jedné proměnné.. Co se nučíme? Po sérii přednášek věnovných integrálům byste měli být schopni: rozumět definici pojmu neurčitý integrál používt metodu přímé

Bardziej szczegółowo

Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky

Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky bakalářská práce vícebodové okrajové úlohy Plzeň, 18 Hana Levá Prohlášení Prohlašuji, že jsem tuto bakalářskou práci vypracovala

Bardziej szczegółowo

podle přednášky doc. Eduarda Fuchse 16. prosince 2010

podle přednášky doc. Eduarda Fuchse 16. prosince 2010 Jak souvisí plochá dráha a konečná geometrie? L ubomíra Balková podle přednášky doc. Eduarda Fuchse Trendy současné matematiky 16. prosince 2010 (FJFI ČVUT v Praze) Konečná geometrie 16. prosince 2010

Bardziej szczegółowo

Obsah. Petr Hasil. (konjunkce) (disjunkce) A B (implikace) A je dostačující podmínka pro B; B je nutná podmínka pro A A B: (A B) (B A) A (negace)

Obsah. Petr Hasil. (konjunkce) (disjunkce) A B (implikace) A je dostačující podmínka pro B; B je nutná podmínka pro A A B: (A B) (B A) A (negace) Množiny, číselné obory, funkce Petr Hasil Přednáška z Matematické analýzy I c Petr Hasil (MUNI) Množiny, číselné obory, funkce Matematická analýza / 5 Obsah Množinové operace Operace s funkcemi Definice

Bardziej szczegółowo

Teorie plasticity. Varianty teorie plasticity. Pružnoplastická matice tuhosti materiálu

Teorie plasticity. Varianty teorie plasticity. Pružnoplastická matice tuhosti materiálu Teorie plasticity Varianty teorie plasticity Teorie plastického tečení Přehled základních vztahů Pružnoplastická matice tuhosti materiálu 1 Pružnoplastické chování materiálu (1) Pracovní diagram pro případ

Bardziej szczegółowo

Matematika 1 Jiˇr ı Fiˇser 24. z aˇr ı 2013 Jiˇr ı Fiˇser (KMA, PˇrF UP Olomouc) KMA MAT1 24. z aˇr ı / 52

Matematika 1 Jiˇr ı Fiˇser 24. z aˇr ı 2013 Jiˇr ı Fiˇser (KMA, PˇrF UP Olomouc) KMA MAT1 24. z aˇr ı / 52 í150doc-start í251doc-start Jiří Fišer (KMA, PřF UP Olomouc) KMA MAT1 24. září 2013 1 / 52 Matematika 1 Jiří Fišer 24. září 2013 Jiří Fišer (KMA, PřF UP Olomouc) KMA MAT1 24. září 2013 1 / 52 Zimní semestr

Bardziej szczegółowo

Statistika (KMI/PSTAT)

Statistika (KMI/PSTAT) Statistika (KMI/PSTAT) Cvičení deváté aneb Důležitá rozdělení pravděpodobnosti spojité náhodné veličiny Statistika (KMI/PSTAT) 1 / 15 Spojitá náhodná veličina Spojitá náhodná veličina Spojitá náhodná veličina

Bardziej szczegółowo

Škola matematického modelování 2017

Škola matematického modelování 2017 Počítačová cvičení Škola matematického modelování 2017 Petr Beremlijski, Rajko Ćosić, Marie Sadowská Počítačová cvičení Škola matematického modelování Petr Beremlijski, Rajko Ćosić, Marie Sadowská Katedra

Bardziej szczegółowo

Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost.

Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost. Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost. Vyšší matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU

Bardziej szczegółowo

Okrajový problém podmínky nejsou zadány v jednom bodu nejčastěji jsou podmínky zadány ve 2 bodech na okrajích, ale mohou být

Okrajový problém podmínky nejsou zadány v jednom bodu nejčastěji jsou podmínky zadány ve 2 bodech na okrajích, ale mohou být Obyčejné diferenciální rovnice 1 Úvod Obyčejnou diferenciální rovnici N-tého řádu f ( x,y,y,y,...,y (N)) = g(x) převádíme na soustavu N diferenciálních rovnic 1. řádu. Provedeme substituce y z 1 y z 2...

Bardziej szczegółowo

Fakulta elektrotechnická. Algoritmy pro

Fakulta elektrotechnická. Algoritmy pro České vysoké učení technické v Praze Fakulta elektrotechnická Katedra řídicí techniky DIPLOMOVÁ PRÁCE Algoritmy pro nelineární prediktivní řízení Praha, 2006 Miroslav Čermák Prohlášení Prohlašuji, že jsem

Bardziej szczegółowo

1 Derivace funkce a monotonie

1 Derivace funkce a monotonie MA 10. cvičení intervaly monotonie a lokální extrémy Lukáš Pospíšil,2012 1 Derivace funkce a monotonie Jelikož derivace funkce v daném bodě je de-facto směrnice tečny (tangens úhlu, který svírá tečna s

Bardziej szczegółowo

Energetické principy a variační metody ve stavební mechanice

Energetické principy a variační metody ve stavební mechanice Energetické principy a variační metody ve stavební mechanice Přetvárná práce vnějších sil Přetvárná práce vnitřních sil Potenciální energie Lagrangeův princip Variační metody Ritzova metoda 1 Přetvárná

Bardziej szczegółowo

Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava

Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava Lineární algebra 5. přednáška: Báze a řešitelnost soustav Dalibor Lukáš Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://www.am.vsb.cz/lukas/la1 Text

Bardziej szczegółowo

1 Definice. A B A B vlastní podmnožina. 4. Relace R mezi množinami A a B libovolná R A B. Je-li A = B relace na A

1 Definice. A B A B vlastní podmnožina. 4. Relace R mezi množinami A a B libovolná R A B. Je-li A = B relace na A 1 Definice 1. Množiny: podmnožina: A B x(x A x B) průnik: A B = {x A x B} sjednocení: A B = {x x A x B} rozdíl: A B = {x A x B} A B A B vlastní podmnožina 2. uspořádaná dvojice: (x, y) = {{x}, {x, y}}

Bardziej szczegółowo

x y (A)dy. a) Určete a načrtněte oblasti, ve kterých je funkce diferencovatelná. b) Napište diferenciál funkce v bodě A = [x 0, y 0 ].

x y (A)dy. a) Určete a načrtněte oblasti, ve kterých je funkce diferencovatelná. b) Napište diferenciál funkce v bodě A = [x 0, y 0 ]. II.4. Totální diferenciál a tečná rovina Značení pro funkci z = f,: totální diferenciál funkce f v bodě A = 0, 0 ]: dfa = A 0+ A 0 Označme d = 0, d = 0. Pak dfa = A d+ A d Příklad91.Je dána funkce f, =.

Bardziej szczegółowo

MATEMATIKA 3 NUMERICKÉ METODY. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci

MATEMATIKA 3 NUMERICKÉ METODY.   Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci MATEMATIKA 3 NUMERICKÉ METODY Dana Černá http://kmd.fp.tul.cz Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci INFORMACE O PŘEDMĚTU Konzultační hodiny: ÚT 11:00-12:00, budova G,

Bardziej szczegółowo

TGH01 - Algoritmizace

TGH01 - Algoritmizace TGH01 - Algoritmizace Jan Březina Technical University of Liberec 31. března 2015 Metainformace materiály: jan.brezina.matfyz.cz/vyuka/tgh (./materialy/crls8.pdf - Introduction to algorithms) SPOX: tgh.spox.spoj.pl

Bardziej szczegółowo

TGH01 - Algoritmizace

TGH01 - Algoritmizace TGH01 - Algoritmizace Jan Březina Technical University of Liberec 28. února 2017 Co je to algoritmus? Porovnávání algoritmů Porovnávání algoritmů Co je to algoritmus? Který algoritmus je lepší? Záleží

Bardziej szczegółowo

Pojem množiny nedefinujeme, pouze připomínáme, že množina je. Nejprve shrneme pojmy a fakta, které znáte ze střední školy.

Pojem množiny nedefinujeme, pouze připomínáme, že množina je. Nejprve shrneme pojmy a fakta, které znáte ze střední školy. 1 Kapitola 1 Množiny 1.1 Základní množinové pojmy Pojem množiny nedefinujeme, pouze připomínáme, že množina je souhrn, nebo soubor navzájem rozlišitelných objektů, kterým říkáme prvky. Pro známé množiny

Bardziej szczegółowo

FAKULTA STAVEBNÍ. Stavební statika. Telefon: WWW:

FAKULTA STAVEBNÍ. Stavební statika. Telefon: WWW: VYSOKÁ ŠKOA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA AKUTA STAVEBNÍ Stavební statika Pohyblivé zatížení Jiří Brožovský Kancelář: P H 406/3 Telefon: 597 32 32 E-mail: jiri.brozovsky@vsb.cz WWW: http://fast0.vsb.cz/brozovsky

Bardziej szczegółowo

Jednoduchá zobrazení. Podpořeno z projektu FRVŠ 584/2011.

Jednoduchá zobrazení. Podpořeno z projektu FRVŠ 584/2011. Podpořeno z projektu FRVŠ 584/2011. Obsah 1 2 Obsah 1 2 Společné vlastnosti jednoduchých zobrazení: Zobrazovací ref. plocha je rovina - souřadnice X, Y, případně ρ, ɛ Zobrazovaná ref. plocha je eliposid

Bardziej szczegółowo

Logika V. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12

Logika V. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12 Logika V. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı České vysoké učení technické v Praze c Kateřina Trlifajová, 2010 BI-MLO, ZS 2011/12 Evropský sociální

Bardziej szczegółowo

Nekomutativní Gröbnerovy báze

Nekomutativní Gröbnerovy báze Univerzita Karlova v Praze Matematicko-fyzikální fakulta DIPLOMOVÁ PRÁCE Bc. Zuzana Požárková Nekomutativní Gröbnerovy báze Katedra algebry Vedoucí diplomové práce: RNDr. Jan Št ovíček, Ph.D. Studijní

Bardziej szczegółowo

1 Předmluva Značení... 3

1 Předmluva Značení... 3 Sbírka příkladů k předmětu Lineární systémy Jan Krejčí, korektura Martin Goubej 07 Obsah Předmluva. Značení..................................... 3 Lineární obyčejné diferenciální rovnice s konstantními

Bardziej szczegółowo

Laplaceova transformace

Laplaceova transformace Laplaceova transformace Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 5. přednáška 11MSP 219 verze: 219-3-17

Bardziej szczegółowo

Přijímací zkouška na navazující magisterské studium 2018

Přijímací zkouška na navazující magisterské studium 2018 Přijímací zkouška na navazující magisterské studium 28 Studijní program: Studijní obory: Fyzika FFUM Varianta A Řešení příkladů pečlivě odůvodněte. Příklad 25 bodů Nechť {x n } je posloupnost, f : R R

Bardziej szczegółowo

Jednoduchá zobrazení. Podpořeno z projektu FRVŠ 584/2011.

Jednoduchá zobrazení. Podpořeno z projektu FRVŠ 584/2011. Podpořeno z projektu FRVŠ 584/2011. Obsah 1 2 Obsah 1 2 Společné vlastnosti jednoduchých zobrazení: Zobrazovací ref. plocha je rovina - souřadnice X, Y, případně ρ, ɛ Zobrazovaná ref. plocha je eliposid

Bardziej szczegółowo

Karel Vostruha. evolučních rovnic hyperbolického typu

Karel Vostruha. evolučních rovnic hyperbolického typu Univerzita Karlova v Praze Matematicko-fyzikální fakulta Diplomová práce Karel Vostruha Asymptotické chování nelineárních evolučních rovnic hyperbolického typu Katedra matematické analýzy Vedoucí diplomové

Bardziej szczegółowo

Mendelova univerzita v Brně user.mendelu.cz/marik

Mendelova univerzita v Brně user.mendelu.cz/marik INŽNÝRSKÁ MATMATIKA Robert Mařík Mendelova univerzita v Brně marik@mendelu.cz user.mendelu.cz/marik ABSTRAKT. Učební text k mým přednáškám z předmětu Inženýrská matematika. Text je poměrně hutný a není

Bardziej szczegółowo

algebrou úzce souvisí V druhém tematickém celku se předpokládá základní znalosti z matematické analýzy

algebrou úzce souvisí V druhém tematickém celku se předpokládá základní znalosti z matematické analýzy 1 Úvodem Prezentace předmětu VMP je vytvořena pro nový předmět, který si klade za cíl seznámit studenty se základy lineární algebry a se základy numerické matematiky. Zejména v prvním tématu budeme pracovat

Bardziej szczegółowo

Slabá formulace rovnic proudění tekutin

Slabá formulace rovnic proudění tekutin Univerzita Karlova v Praze Matematicko-fyzikální fakulta BAKALÁŘSKÁ PRÁC Mark Dostalík Slabá formulace rovnic proudění tekutin Matematický ústav UK Vedoucí bakalářské práce: Studijní program: Studijní

Bardziej szczegółowo

Rovnice proudění Slapový model

Rovnice proudění Slapový model do oceánského proudění Obsah 1 2 3 Co způsobuje proudění v oceánech? vyrovnávání rozdílů v teplotě, salinitě, tlaku, ρ = ρ(p, T, S) vítr - wind stress F wind = ρ air C D AU 2 10 slapy produkují silné proudy,

Bardziej szczegółowo

Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava

Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava Lineární algebra 8. přednáška: Kvadratické formy Dalibor Lukáš Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://www.am.vsb.cz/lukas/la Text byl vytvořen

Bardziej szczegółowo

Matematika III Stechiometrie stručný

Matematika III Stechiometrie stručný Matematika III Stechiometrie stručný matematický úvod Miroslava Dubcová, Drahoslava Janovská, Daniel Turzík Ústav matematiky Přednášky LS 2015-2016 Obsah 1 Zápis chemické reakce 2 umožňuje jednotný přístup

Bardziej szczegółowo

Kombinatorika a grafy I

Kombinatorika a grafy I Kombinatorika a grafy I Martin Balko 1. přednáška 19. února 2019 Základní informace Základní informace úvodní kurs, kde jsou probrány základy kombinatoriky a teorie grafů ( pokračování diskrétní matematiky

Bardziej szczegółowo

Periodický pohyb obecného oscilátoru ve dvou dimenzích

Periodický pohyb obecného oscilátoru ve dvou dimenzích Periodický pohyb obecného ve dvou dimenzích Autor: Šárka Petříčková (A05221, sarpet@students.zcu.cz) Vedoucí: Ing. Petr Nečesal, Ph.D. Matematické metody v aplikovaných vědách a ve vzdělávání, Fakulta

Bardziej szczegółowo

Obsah. Zobrazení na osmistěn. 1 Zobrazení sféry po částech - obecné vlastnosti 2 Zobrazení na pravidelný konvexní mnohostěn

Obsah. Zobrazení na osmistěn. 1 Zobrazení sféry po částech - obecné vlastnosti 2 Zobrazení na pravidelný konvexní mnohostěn Obsah 1 2 3 Použití Zobrazení rozsáhlého území, ale hodnoty zkreslení nesmí přesáhnout určitou hodnotu Rozdělením území na menší části a ty pak zobrazíme zvlášť Nevýhodou jsou však samostatné souřadnicové

Bardziej szczegółowo

Kvalitativní analýza nelineárních rovnic typu reakce-difuze

Kvalitativní analýza nelineárních rovnic typu reakce-difuze Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky Diplomová práce Kvalitativní analýza nelineárních rovnic typu reakce-difuze Plzeň, 2018 Bc. Martin Kaisler cistylist listzadani1

Bardziej szczegółowo

Komplexní analýza. Příklad Body. Nepište obyčejnou tužkou ani červeně, jinak písemka nebude přijata. Soupis vybraných vzorců. 4a.

Komplexní analýza. Příklad Body. Nepište obyčejnou tužkou ani červeně, jinak písemka nebude přijata. Soupis vybraných vzorců. 4a. Komplexí aalýa Písemá část koušky (XX.XX.XXXX) Jméo a příjmeí:... Podpis:... Příklad.. 3.. 5. Body Před ahájeím práce Vyplňte čitelě rubriku Jméo a příjmeí a podepište se. Během písemé koušky smíte mít

Bardziej szczegółowo

FAKULTA STAVEBNÍ NUMERICKÉ METODY II

FAKULTA STAVEBNÍ NUMERICKÉ METODY II VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ JOSEF DALÍK, JIŘÍ VALA, OTO PŘIBYL NUMERICKÉ METODY II STUDIJNÍ MATERIÁL Tento studijní materiál byl zpracován s podporou projektu OPVK ESF Rozvoj a modernizace

Bardziej szczegółowo

FAKULTA STAVEBNÍ JOSEF DALÍK NUMERICKÉ METODY II

FAKULTA STAVEBNÍ JOSEF DALÍK NUMERICKÉ METODY II VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ JOSEF DALÍK NUMERICKÉ METODY II STUDIJNÍ MATERIÁL Tento studijní materiál byl zpracován s podporou projektu OPVK ESF Rozvoj a modernizace doktorského studijního

Bardziej szczegółowo

návod k použití instrukcja obsługi

návod k použití instrukcja obsługi návod k použití instrukcja obsługi Pračka Pralka EWS 106540 W EWS 126540 W 2 electrolux Obsah Electrolux. Thinking of you. Více o nás naleznete na adrese www.electrolux.com Bezpečnostní informace 2 Popis

Bardziej szczegółowo

návod k použití instrukcja obsługi

návod k použití instrukcja obsługi návod k použití instrukcja obsługi Pračka Pralka EWF 106510 W 2 electrolux OBSAH Electrolux. Thinking of you. Více o nás naleznete na adrese www.electrolux.com Bezpečnostní informace 2 Popis spotřebiče

Bardziej szczegółowo