Sterowanie napędów maszyn i robotów

Wielkość: px
Rozpocząć pokaz od strony:

Download "Sterowanie napędów maszyn i robotów"

Transkrypt

1 Wykład 7 - Układy sterowania. Ocena jakości układów sterowania. Instytut Automatyki i Robotyki Warszawa, 2016

2 Realizacje układów sterowania zwykłego Realizacje układów sterowania zwykłego układy jednoobwodowe, układy kaskadowe, układy wieloobwodowe ze sprzężeniem od zmiennych stanu: fizykalnych lub fazowych.

3 Układy jednoobwodowe Układy jednoobwodowe Są to proste układy regulacji, z wykorzystaniem regulatorów z konwencjonalnym działaniem typu P, PD, PI, PID, lub z odpowiednio zmodyfikowanymi działaniami. W wersji dyskretnej wyróżnia się dwie realizacje tego rodzaju układu regulacji pozycyjną, przyrostową.

4 Układy jednoobwodowe Wersja pozycyjna (rzadko stosowana) - PID 1 k 1 e s (k) e s (k 1) u(k) = α P k P e s (k) + α I [e s (i)t p ] + α D T D (1) T I T p i=1 Ze względu na całkowanie wersja ta wymaga pamiętania informacji o odchyłce e s (k) od początku sterowania, aż do chwili bieżącej i = k.

5 Układy jednoobwodowe u(k) u(k 1) = k P [ w wersji rekursywnej gdzie: Wersja przyrostowa ] e s(k) e s(k 1) + Tp e s(k) 2e s(k 1) + e s(k 2) e s(k 1) + T D T I T p u(k) = u(k 1) + q 0 e s (k) + q 1 e s (k 1) + q 2 e s (k 2) (3) q 0 = k p [ 1 + T D T p ] [, q 1 = k p 1 T p + 2T ] D T D, q 2 = k p (4) T I T p T p Transmitancję dyskretną działania regulacyjnego opisuje zależność G PID (z) = u(z) e s (z) = q 0 + q 1 z 1 + q 2 z 2 1 z 1 (5) (2)

6 Układy jednoobwodowe UWAGI w wersji dyskretnej inaczej niż w ciągłej można wprowadzić różniczkowanie quasi-idealne przez zastąpienie go operatorem różnicy, którego wartości są skończone nawet w przypadku skokowej zmiany wartości zadanej s 0 (k) dla doboru nastaw można stosować różne podejścia, w praktyce np. wymuszanie przy pomocy sterowania proporcjonalnego k P drgań niegasnących układu napędowego o okresie T kr (k P = k kr ) i dobór nastaw na podstawie oferowanych tablic (np. Ziegler, Nichols, 1942) lub innych zależności.

7 Układy kaskadowe Układy kaskadowe stosowane są powszechnie w układach napędowych osi ruchu maszyn i robotów przemysłowych w postaci obwodów sterowania: położenia (P), prędkości obrotowej (PI), prądu (PI),

8 Równanie dynamiki silnika DC Układ równań wiążących zależności elektryczne i mechaniczne silnika DC di w U z = R w i w + L w dt + k eω s k m i w = J dω (6) s + Bω s + M obc dt stosując przekształcenie Laplace a { Uz (s) = R w i w (s) + L w i w (s)s + k e ω s (s) k m i w (s) = Jω s (s)s + Bω s (s) + M obc (7) a następnie określając zmienną wiążącą jako i w (s) i w (s) = U z(s) k e ω s (s) R w + L w s i w (s) = Jω s(s)s + Bω s (s) + M (8) obc k m czyli U z (s) k e ω s (s) R w + L w s = Jω s(s)s + Bω s (s) + M obc k m (9)

9 Równanie dynamiki silnika DC mając U z (s) k e ω s (s) R w + L w s = Jω s(s)s + Bω s (s) + M obc k m (10) można zapisać zależność wiążącą napięcie zasilające silnik i prędkość kątową wirnika k m U z (s) k m k e ω s (s) = (R w + L w s)(jω s (s)s + Bω s (s) + M obc ) (11) Rysunek : Schemat blokowy silnika prądu stałego, sprowadzonego do obwodu wirnika

10 Równanie dynamiki silnika DC Do wyznaczenia transmitancji silnika elektrycznego prądu stałego z magnesem trwałym, należy przyjąć zerowe obciążenie, czyli: co daje transmitancję operatorową postaci M obc = 0 (12) G(s) = ω s(s) U s (s) = k m L w Js 2 + (R w J + L w B)s + (k m k e + R w B) (13) Tak więc otrzymujemy układ liniowy, stacjonarny, mający charakter układu oscylacyjnego.

11 Transmitancje układu regulacji Transmitancja - wejściem jest napięcie zasilania U z (s) (przy M obc = 0) ω s (s) U s (s) = k m L w Js 2 + (R w J + L w B)s + (k m k e + R w B) (14) Transmitancja zakłóceniowa - wejściem jest moment obciążający (przy U z (s) = 0) ω s (s) M obc (s) = L w s + R w L w Js 2 + (R w J + L w B)s + (k m k e + R w B) (15)

12 Sterowanie feedforward silnika DC Równanie regulatora Rysunek : Schemat blokowy sterowania feedforward G R (s) = L w Js 2 + (R w J + L w B)s + (k m k e + R w B) k m (16) UWAGA: Równanie regulatora zawiera parametry silnika, które mogą, i zwykle są, wyznaczone niedokładnie - mogą też ulec zmianie w trakcie pracy silnika. Ponieważ w układzie nie ma sprzężenia zwrotnego, sygnał wyjściowy może się znacznie różnić od sygnału referencyjnego.

13 Układ jednoobwodowy - sterowanie prędkością silnika DC Rysunek : Schemat blokowy jednoobwodowego układu regulacji prędkości silnika DC Regulator P G R (s) = k ωp (17) Regulator PI ( G R (s) = k ωp ) T ωi s (18)

14 Jakość układu regulacji Zadaniem układu regulacji jest minimalizacja odchyłki regulacji. gdzie e z (t) - odchyłka wywołana zakłóceniem, e(t) = e z (t) + e w (t), (19) e w (t) - odchyłka wywołana wymuszeniem. (zmianą wartości zadanej) Przy ocenie jakości układu regulacji analizuje się oddzielnie obydwa składniki odchyłki regulacji, przy założeniu że układ jest liniowy i spełnia zasadę superpozycji.

15 Odchyłka zakłóceniowa Transmitancja odchyłkowa układu względem zakłócenia G z (s) = y m(s) z(s) = e z(s) z(s) = ±G z(s)g ob (s) 1 + G ob (s)g r (s) (20) e z (s) = y m (s) = Odchyłka statyczna względem zakłócenia: ±G z(s)g ob (s) z(s) (21) 1 + G ob (s)g r (s) e zst. = lim t e z(t) = lim s 0 s e z (s) (22) ±G z (s)g ob (s) e zst. = lim s z(s) (23) s G ob (s)g r (s)

16 Odchyłka nadążania Transmitancja odchyłkowa układu względem wartości zadanej G ew (s) = e w (s) w(s) = G ob (s)g r (s) (24) e w (s) = Odchyłka statyczna względem wartości zadanej 1 w(s) (25) 1 + G ob (s)g r (s) e wst. = lim t e w (t) = lim s 0 s e w (s) (26) 1 e wst. = lim s w(s) (27) s G ob (s)g r (s)

17 Odchyłka nadążania - sterowanie prędkością silnika DC Odchyłka statyczna względem wartości zadanej - regulator P, wymuszenie skokowe (ω s (s) = 1 s ω st) e wst. = lim ω k m k st (28) ωp 1 + L w Js 2 + (R w J + L w B)s + (k m k e + R w B) s e wst. = ω k m k st (29) ωp 1 + (k m k e + R w B)

18 Odchyłka nadążania - sterowanie prędkością silnika DC Odchyłka statyczna względem wartości zadanej - regulator PI, wymuszenie skokowe (ω s (s) = 1 s ω st) e wst. = lim ( k m k ωp ) ω st (30) T ωi s 1 + L w Js 2 + (R w J + L w B)s + (k m k e + R w B) s 0 1 e wst. = 0 (31)

19 Układ kaskadowy - sterowanie prędkością i położeniem silnika DC Rysunek : Schemat blokowy kaskadowego układu regulacji prędkości i położenia silnika DC

20 Odchyłka nadążania - sterowanie prędkością i położeniem silnika DC Odchyłka statyczna położenia względem wartości zadanej - regulator P położenia, regulator P prędkości, wymuszenie skokowe (θ = θ st s ) gdzie 1 e wst. = lim s k θ st (32) θp s G ω(s) G ω (s) = k m k ωp L w Js 2 + (R w J + L w B)s + (k m k e + R w B + k m k ωp ) (33) tak więc odchyłka statyczna położenia w stanie ustalonym ma wartość: e wst. = 0 (34)

21 Układ kaskadowy - sterowanie prędkością, położeniem i prądem Rysunek : Schemat blokowy kaskadowego układu regulacji prędkości, położenia i prądu silnika DC UWAGA: W większości komercyjnie dostępnych silników DC pętla sprzężenia od prądu wykorzystywana jest do kompensacji wpływu momentu obciążenia silnika i regulacji przepływu prądu przez silnik.

22 Układy kaskadowe Przyczyny powszechności zastosowań układów kaskadowych dobór nastaw regulatorów i optymalizacja są bardzo proste - od wewnątrz na zewnątrz kaskady, ograniczona liczba nastaw podstawowym parametrem jest współczynnik wzmocnienia prędkościowego k v, obliczany z warunku żądanego stosunku prędkości (rzeczywistej) do odchyłki położenia w ruchu ustalonym (odchyłki nadążania, śledzenia) dla ruchu postępowego k v = v s ruch ustalony (35) dla ruchu obrotowego k ω = ω θ ruch ustalony (36) prosta i tania realizacja sprzętowa i/lub programowa.

23 Kryteria oceny jakości sterowania Kryteria oceny jakości sterowania Standardowe miary jakości sterowania Modyfikacje standardowych miar jakości sterowania Niestandardowe kryteria i wskaźniki oceny Wskaźniki sumowe (całkowe) Wskaźniki sumowe modyfikowane

24 Kryteria oceny jakości sterowania Miary jakości sterowania współczesnych napędów opierają się na kryteriach oceny bezpośredniej przebiegu w czasie odpowiedzi na skokową zmianę wartości sygnału zadającego

25 Standardowe kryteria oceny jakości sterowania minimalizacja ustalonej (statycznej) odchyłki procesu sterowania (e su ): I esu = α es s(k u ) s o min (37) minimalizacja maksymalnej odchyłki przejściowej (dynamiczna: przeregulowania lub nadwyżki) e sp o kierunku przeciwnym do odchyłki początkowej, określanej w procedurze o schemacie: { } I esp = α esp max 0, max [(s(k) s 0 )sgn(s 0 s pocz )] min (38) 0<k<k u minimalizacja czasu zakończenia (traktowanego alternatywnie jako czas ustalania, pozycjonowania lub doregulowania) procesu pozycjonowania wyrażony przez czas dyskretny k konc lub (w praktyce wygodniejsze) przez czas ciągły t = k konc T p : I t = α t k konc T p min (39) gdzie: α es, α esp i α t są wagami oceny, s 0 i s pocz położeniem zadanym i początkowym ocenianego procesu.

26 Dodatkowe standardowe kryteria oceny jakości sterowania W praktyce oceny prowadzone są według opcjonalnych w stosunku do podanych zależności, dodatkowych warunków i żądań np. w sterowaniu pozycyjnym, dla zadania przestawiania: dla odchyłki ustalonej e su z warunkami zatrzymania ruchu lub osiągnięcia czasu oceny I esu dla ˆv(k u ) â(k u ) = 0 lub gdy k k oc, z reguły k oc < k u (40) dla przeregulowania nadwyżki e sp : nieprzekroczenia określonej krotności odchyłki ustalonej, w praktyce κ < 2, 5 > e su κe sdop (41)

27 Dodatkowe standardowe kryteria oceny jakości sterowania dla czasu zakończenia procesu pozycjonowania k konc traktowanego jako: czas ustalania k u(t u, I tu) - z warunkiem zatrzymania ruchu (jak poprzednio) czas pozycjonowania k p(t p, I tp) z warunkiem osiągnięcia dopuszczalnej wartości odchyłki położenia, e s e sdop czas doregulowania k ur (t ur, I tur ) z warunkiem postoju w strefie dopuszczalnej I tur gdy [ˆv(k u) â(k u) = 0] [ e s e sdop ] (42) i oceną w czasie k oc, 0 < k u, k p, k ur k oc, ograniczonym przez długość taktu pracy napędzanego urządzenia.

28 Standardowe kryteria oceny jakości sterowania Ocena jakości w oparciu o wymienione wskaźniki, jest łatwa w praktycznej realizacji, jednak pojawiają się następujące problemy: wzajemna sprzeczność kryteriów w odniesieniu do zadań sterowania - np. żądanie większej dokładności (zmniejszenie e sdop ) prowadzi do wydłużenia czasu ustalania (t u ). obecność przeregulowania w warunkach przemysłowych: w części zadań pozycjonowania w zakresie ruchów roboczych wykluczone jest pojawienie się tej odchyłki i to bez względu na pogorszenie innych wskaźników w innych zadaniach takich jak np. ruchy dobiegowe, celowość skrócenia czasu ruchu pozwala na pewne przekroczenie wartości zadanej przeregulowanie, będące następstwem oscylacji słabo tłumionego układu napędowego, może być wykorzystane w trakcie uruchomieniowego (startowego), iteracyjnego strojenia nastaw,

29 standardowe kryteria oceny jakości sterowania Rysunek : Ilustracja niejednoznaczności oceny jakości i optymalizacji sterowania pozycyjnego pneumatycznego napędu dławieniowego na przykładzie zależności: a) czas ustalania t u od dopuszczalnej wartości odchyłki ustalonej e sdop i obciążenia masowego m obc, b) liczba przełączeń rozdzielacza u rprze od wartości odchyłki e sdop.

30 Standardowe kryteria oceny jakości sterowania zróżnicowane wymagania odnośnie pracy układu napędowego w urządzeniach automatyki i robotyki żądania o charakterze ogólnym, na przykład: określonej powtarzalności zachowań dokładnościowych i czasowych - w warunkach zmieniających się obciążeń masowych, siłowych itd. likwidacji pełzania - stabilizacji położenia po (chwilowym) ustaniu ruchu zadanej podatności obciążeniowej statycznej i dynamicznej minimalizacji wpływu zmieniających się obciążeń na odchyłkę sterowania w warunkach postoju i ruchu żądania o charakterze funkcjonalnym, związane ze specyfiką realizacji w konkretnej technice napędowej zadań pozycyjnych (przestawianie, nadążania), siłowych, momentowych, przyspieszeniowych itp.

31 Niestandardowe kryteria i wskaźniki oceny W opisanej sytuacji różnorodności uniwersalnych kryteriów oceny jakości układu pozycyjnego, warto rozważyć zastosowanie kryteriów niestandardowych - uwzględniające specyfikę układu. Np. dla pneumatycznego dławieniowego układu pozycyjnego można stosować wskaźniki jakości pozycjonowania rozszerzone o liczbę przełączeń rozdzielacza proporcjonalnego.

32 Niestandardowe kryteria i wskaźniki oceny Wskaźniki sumowe (całkowe) W technice płynowej oparto się na minimalizacji dwóch konwencjonalnych kryteriów ITAE (ang. Integral of Time Multipled with Absolute Error) k oc I ITAE = [k e s (k) ] min (43) k=0 ITSE (ang. Integral of Time with Square Error) k oc I ITSE = [kes 2 (k)] min (44) k=0

33 Niestandardowe kryteria i wskaźniki oceny Cechy wspólne wskaźników ITAE i ITSE pożądane uwzględnienie podstawowych parametrów procesu sterowania napędu, tzn. czasu i odchyłki bardzo silne dowartościowanie początkowej fazy procesu, w której wartość odchyłki jest zbliżona do wartości zadanej Druga własność prowadzi do oceny końcowej niekorzystnej w stosunku do najbardziej istotnej dla przebiegu procesu fazy zbliżania się do wartości zadanej. W zakresie pracy liniowej (modelu) układu napędowego znalezienie minimum ITAE i ITSE jest proste i odpowiada też spełnieniu innych kryteriów (odchyłki ustalonej, maksymalnej odchyłki przejściowej, czasu zakończenia) w przypadku pracy nieliniowej rzeczywistego napędu związek wartości wskaźników ITAE i ITSE z minimalizacją wartości parametrów czasowych i dokładnościowych sterowania przestaje być oczywisty.

34 Niestandardowe kryteria i wskaźniki oceny Wskaźniki sumowe modyfikowane zmodyfikowany wskaźnik I ITAE mod1 - Roth I ITAE mod1 = k oc mod k=0 k s(k) + k oc k=k oc mod k e s (k) min (45) Czas podziału k oc mod jest wyliczany ze wzmocnienia w torze głównym układu sterowania pozycyjnego: k oc mod = 1/(k s C m ) (k s = k x1 w przypadku sterowania ze sprzężeniem zwrotnym od zmiennych stanu) Wskaźnik I ITAE mod1 sprawdza się tylko w przypadku obiektów o dużym czasie opóźnienia i silnie aperiodycznym zachowaniu.

35 Niestandardowe kryteria i wskaźniki oceny Wskaźniki sumowe modyfikowane zmodyfikowany wskaźnik I ITAE mod2 - Enger I ITAE mod2 = k oc k=k oc mod (k k oc mod ) 2 e s (k) min (46) Z całkowitym wycięciem fazy początkowej przebiegu i liczeniem wartości wskaźnika wg przyjętego funkcjonału dopiero po czasie k oc mod (k oc mod < k oc ) osiągnięcia przez odpowiedź skokową układu pozycyjnego maksymalnej wartości przemieszczenia (s o + e sp max ) Wskaźnik I ITAE mod2 ograniczony jest do przypadku słabo tłumionych zachowań układu napędowego i wyraźnym przeregulowaniu, będącym warunkiem rozpoczęcia liczenia (mija się z wymaganiami praktycznymi).

36 Niestandardowe kryteria i wskaźniki oceny Rysunek : Optymalizacja układu pozycyjnego z wykorzystaniem wskaźników sumowych (na przykładzie sterowania pozycyjnego pneumatycznego napędu dławieniowego).

37 Niestandardowe kryteria i wskaźniki oceny Wskaźniki sumowe - nowe modyfikacje wskaźnik jednokryterialny I IAED - w postaci różnicy wartości odpowiedzi układu regulowanego (zamkniętego) i układu nieregulowanego (otwartego) e s(o z) (k) - dla początkowej fazy przebiegu procesu sterowania, tzn. aż do czasu k oc otw określonego osiągnięciem wartości zadanej (np. przemieszczenia s o ) przez odpowiedź układu napędowego przy pełnym wysterowaniu k oc otw : s otw s o = 0 (47) i następnie - aż do czasu oceny k oc - przez wskaźnik I IAED = k oc otw k=0 k e s(o z) (k) + k oc k=k oc otw k e s (k) min (48)

38 Niestandardowe kryteria i wskaźniki oceny Rysunek : Ilustracja oceny jakości układu pozycyjnego z wykorzystaniem wskaźnika I IAED (na przykładzie sterowania pozycyjnego pneumatycznego napędu dławieniowego) - a) odpowiedź z przeregulowaniem i oscylacjami, b) odpowiedź aperiodyczna.

39 Niestandardowe kryteria i wskaźniki oceny Istotą kryterium IAED (ang. Integral of Absolute Real and Standard Error Difference) jest ocena zachowania zamkniętego układu pozycyjnego względem standaryzowanego - przez ograniczenie jego przemieszczenia do wartości zadanej s o - zachowania układu otwartego (odniesienia); kryterium spełnia podstawowe wymagania praktyczne dotyczące oceny jakości sterowania pozycyjnego układów napędowych : pozwala oceniać zachowanie regulowanego układu napędowego względem równoważnego napędu standardowego (przełączalnego), uwzględnia ograniczenia energetyczne wykorzystywanego napędu i prowadzi do optymalnego - w danej realizacji - działania układu pozycyjnego, różnicuje oceny jakości dla różnych wariantów i nastaw sterowania, przebieg odniesienia (zachowanie układu nieregulowanego, otwartego) może być tworzony zarówno analitycznie (symulacyjnie), jak i poprzez eksperyment uruchomieniowy.

40 Niestandardowe kryteria i wskaźniki oceny Wskaźniki sumowe - nowe modyfikacje wskaźnik wielokryterialny I SETOC - w postaci ważonej sumy wskaźników np. (odchyłki ustalonej, maksymalnej odchyłki przejściowej, czasu zakończenia) z ewentualnymi funkcjonalnymi wskaźnikami uzupełniającymi charakterystycznymi dla danego napędu, np. dla napędu pneumatycznego I SETOC = α esu I esu + α esp I esp + α tu I tu + α ur prze I ur prze min (49) Zapewnia to proporcjonalny, zróżnicowany przez poszczególne współczynniki wagowe, wpływ poszczególnych kryteriów na końcową ocenę; wymaga doboru wartości wag, np. dla napędu pneumatycznego pomyślne wyniki optymalizacji uzyskano po przyjęciu wartości wag: α esu = 1, 0/µm, α esp = 0, 2/µm, α tu = 0, 1/ms oraz α ur prze = 2, 0.

41 Wykład 7 - Układy sterowania. Ocena jakości układów sterowania. Instytut Automatyki i Robotyki Warszawa, 2016

Sterowanie napędów maszyn i robotów

Sterowanie napędów maszyn i robotów Wykład 7 - układy sterowania zwykłego Instytut Automatyki i Robotyki Warszawa, 2014 Kryteria oceny jakości sterowania Kryteria oceny jakości sterowania Standardowe miary jakości sterowania Modyfikacje

Bardziej szczegółowo

Sterowanie mechanizmów wieloczłonowych

Sterowanie mechanizmów wieloczłonowych Wykład 6 - Modelowanie napędów złączy Instytut Automatyki i Robotyki Warszawa, 2019 Modelowanie napędu złączy - silniki DC Silniki elektryczne prądu stałego są bardzo często stosowanymi elementami wykonawczymi

Bardziej szczegółowo

Podstawy Automatyki. Wykład 7 - Jakość układu regulacji. Dobór nastaw regulatorów PID. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 7 - Jakość układu regulacji. Dobór nastaw regulatorów PID. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki Wykład 7 - Jakość układu regulacji. Dobór nastaw regulatorów PID Instytut Automatyki i Robotyki Warszawa, 2015 Jakość układu regulacji Oprócz wymogu stabilności asymptotycznej, układom regulacji stawiane

Bardziej szczegółowo

Sterowanie napędów maszyn i robotów

Sterowanie napędów maszyn i robotów Wykład 7b - Układy wieloobwodowe ze sprzężeniem od zmiennych stanu Instytut Automatyki i Robotyki Warszawa, 2014 Układy wieloobwodowe ze sprzężeniem od zmiennych stanu Zadanie przestawiania Postać modalna

Bardziej szczegółowo

Sterowanie Napędów Maszyn i Robotów

Sterowanie Napędów Maszyn i Robotów Wykład 4 - Model silnika elektrycznego prądu stałego z magnesem trwałym Instytut Automatyki i Robotyki Warszawa, 2017 Wstęp Silniki elektryczne prądu stałego są bardzo często stosowanymi elementami wykonawczymi

Bardziej szczegółowo

Sterowanie Napędów Maszyn i Robotów

Sterowanie Napędów Maszyn i Robotów Wykład 4 - Model silnika elektrycznego prądu stałego z magnesem trwałym Instytut Automatyki i Robotyki Warszawa, 2017 Wstęp Silniki elektryczne prądu stałego są bardzo często stosowanymi elementami wykonawczymi

Bardziej szczegółowo

Podstawy Automatyki. Wykład 6 - Miejsce i rola regulatora w układzie regulacji. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 6 - Miejsce i rola regulatora w układzie regulacji. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 6 - Miejsce i rola regulatora w układzie regulacji Instytut Automatyki i Robotyki Warszawa, 2015 Regulacja zadajnik regulator sygnał sterujący (sterowanie) zespół wykonawczy przetwornik pomiarowy

Bardziej szczegółowo

Ćwiczenie 1. Badanie aktuatora elektrohydraulicznego. Sterowanie Napędów Maszyn i Robotów Przemysłowych - laboratorium. Instrukcja laboratoryjna

Ćwiczenie 1. Badanie aktuatora elektrohydraulicznego. Sterowanie Napędów Maszyn i Robotów Przemysłowych - laboratorium. Instrukcja laboratoryjna Sterowanie Napędów Maszyn i Robotów Przemysłowych - laboratorium Ćwiczenie 1 Badanie aktuatora elektrohydraulicznego Instrukcja laboratoryjna Opracował : mgr inż. Arkadiusz Winnicki Warszawa 2010 Badanie

Bardziej szczegółowo

11. Dobór rodzaju, algorytmu i nastaw regulatora

11. Dobór rodzaju, algorytmu i nastaw regulatora 205 11. Dobór rodzaju, algorytmu i nastaw regulatora 11.1 Wybór rodzaju i algorytmu regulatora Poprawny wybór rodzaju regulatora i jego algorytmu uzależniony jest od znajomości (choćby przybliżonej) właściwości

Bardziej szczegółowo

1. POJĘCIA PODSTAWOWE I RODZAJE UKŁADÓW AUTOMATYKI

1. POJĘCIA PODSTAWOWE I RODZAJE UKŁADÓW AUTOMATYKI Podstawy automatyki / Józef Lisowski. Gdynia, 2015 Spis treści PRZEDMOWA 9 WSTĘP 11 1. POJĘCIA PODSTAWOWE I RODZAJE UKŁADÓW AUTOMATYKI 17 1.1. Automatyka, sterowanie i regulacja 17 1.2. Obiekt regulacji

Bardziej szczegółowo

Sterowanie Napędów Maszyn i Robotów

Sterowanie Napędów Maszyn i Robotów Wykład 3 - Metodyka projektowania sterowania. Opis bilansowy Instytut Automatyki i Robotyki Warszawa, 2015 Metodyka projektowania sterowania Zrozumienie obiektu, możliwości, ograniczeń zapoznanie się z

Bardziej szczegółowo

Automatyka i Regulacja Automatyczna Laboratorium Zagadnienia Seria II

Automatyka i Regulacja Automatyczna Laboratorium Zagadnienia Seria II Automatyka i Regulacja Automatyczna Laboratorium Zagadnienia Seria II Zagadnienia na ocenę 3.0 1. Podaj transmitancję oraz naszkicuj teoretyczną odpowiedź skokową układu całkującego z inercją 1-go rzędu.

Bardziej szczegółowo

Podstawy Automatyki. Wykład 9 - Dobór regulatorów. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 9 - Dobór regulatorów. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 9 - Dobór regulatorów. Instytut Automatyki i Robotyki Warszawa, 2017 Dobór regulatorów Podstawową przesłanką przy wyborze rodzaju regulatora są właściwości dynamiczne obiektu regulacji. Rysunek:

Bardziej szczegółowo

Prowadzący(a) Grupa Zespół data ćwiczenia Lp. Nazwisko i imię Ocena LABORATORIUM 4. PODSTAW 5. AUTOMATYKI

Prowadzący(a) Grupa Zespół data ćwiczenia Lp. Nazwisko i imię Ocena LABORATORIUM 4. PODSTAW 5. AUTOMATYKI Instytut Automatyki i Robotyki Prowadzący(a) Grupa Zespół data ćwiczenia Lp. Nazwisko i imię Ocena 1. 2. 3. LABORATORIUM 4. PODSTAW 5. AUTOMATYKI Ćwiczenie PA7b 1 Badanie jednoobwodowego układu regulacji

Bardziej szczegółowo

Automatyka i robotyka

Automatyka i robotyka Automatyka i robotyka Wykład 5 - Stabilność układów dynamicznych Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 43 Plan wykładu Wprowadzenie Stabilność modeli

Bardziej szczegółowo

Politechnika Warszawska Instytut Automatyki i Robotyki. Prof. dr hab. inż. Jan Maciej Kościelny PODSTAWY AUTOMATYKI

Politechnika Warszawska Instytut Automatyki i Robotyki. Prof. dr hab. inż. Jan Maciej Kościelny PODSTAWY AUTOMATYKI Politechnika Warszawska Instytut Automatyki i Robotyki Prof. dr hab. inż. Jan Maciej Kościelny PODSTAWY AUTOMATYKI 1. Dobór rodzaju i nastaw regulatorów PID Rodzaje regulatorów 2 Regulatory dwustawne (2P)

Bardziej szczegółowo

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Stabilność O układzie możemy mówić, że jest stabilny gdy układ ten wytrącony ze stanu równowagi

Bardziej szczegółowo

Automatyka i sterowanie w gazownictwie. Regulatory w układach regulacji

Automatyka i sterowanie w gazownictwie. Regulatory w układach regulacji Automatyka i sterowanie w gazownictwie Regulatory w układach regulacji Wykładowca : dr inż. Iwona Oprzędkiewicz Nazwa wydziału: WIMiR Nazwa katedry: Katedra Automatyzacji Procesów AGH Ogólne zasady projektowania

Bardziej szczegółowo

Sterowanie napędów maszyn i robotów

Sterowanie napędów maszyn i robotów Sterowanie napędów maszyn i robotów dr inż. Jakub Możaryn Wykład 3 Instytut Automatyki i Robotyki Wydział Mechatroniki Politechnika Warszawska, 2014 Projekt współfinansowany przez Unię Europejską w ramach

Bardziej szczegółowo

1. Regulatory ciągłe liniowe.

1. Regulatory ciągłe liniowe. Laboratorium Podstaw Inżynierii Sterowania Ćwiczenie: Regulacja ciągła PID 1. Regulatory ciągłe liniowe. Zadaniem regulatora w układzie regulacji automatycznej jest wytworzenie sygnału sterującego u(t),

Bardziej szczegółowo

Politechnika Warszawska Instytut Automatyki i Robotyki. Prof. dr hab. inż. Jan Maciej Kościelny PODSTAWY AUTOMATYKI

Politechnika Warszawska Instytut Automatyki i Robotyki. Prof. dr hab. inż. Jan Maciej Kościelny PODSTAWY AUTOMATYKI Politechnika Warszawska Instytut Automatyki i Robotyki Prof. dr hab. inż. Jan Maciej Kościelny PODSTAWY AUTOMATYKI 12. Regulacja dwu- i trójpołożeniowa (wg. Holejko, Kościelny: Automatyka procesów ciągłych)

Bardziej szczegółowo

Sposoby modelowania układów dynamicznych. Pytania

Sposoby modelowania układów dynamicznych. Pytania Sposoby modelowania układów dynamicznych Co to jest model dynamiczny? PAScz4 Modelowanie, analiza i synteza układów automatyki samochodowej równania różniczkowe, różnicowe, równania równowagi sił, momentów,

Bardziej szczegółowo

Ćwiczenie: "Silnik prądu stałego"

Ćwiczenie: Silnik prądu stałego Ćwiczenie: "Silnik prądu stałego" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: Zasada

Bardziej szczegółowo

Dla naszego obiektu ciągłego: przy czasie próbkowania T p =2.

Dla naszego obiektu ciągłego: przy czasie próbkowania T p =2. 1. Celem zadania drugiego jest przeprowadzenie badań symulacyjnych układu regulacji obiektu G(s), z którym zapoznaliśmy się w zadaniu pierwszym, i regulatorem cyfrowym PID, którego parametry zostaną wyznaczone

Bardziej szczegółowo

Sterowanie napędów maszyn i robotów

Sterowanie napędów maszyn i robotów Sterowanie napędów maszyn i robotów dr inż. Jakub Możaryn Wykład 1 Instytut Automatyki i Robotyki Wydział Mechatroniki Politechnika Warszawska, 2014 Projekt współfinansowany przez Unię Europejską w ramach

Bardziej szczegółowo

UKŁAD AUTOMATYCZNEJ REGULACJI SILNIKA SZEREGOWEGO PRĄDU STAŁEGO KONFIGUROWANY GRAFICZNIE

UKŁAD AUTOMATYCZNEJ REGULACJI SILNIKA SZEREGOWEGO PRĄDU STAŁEGO KONFIGUROWANY GRAFICZNIE UKŁAD AUOMAYCZNEJ REGULACJI SILNIKA SZEREGOWEGO PRĄDU SAŁEGO KONFIGUROWANY GRAFICZNIE Konrad Jopek (IV rok) Opiekun naukowy referatu: dr inż. omasz Drabek Streszczenie: W pracy przedstawiono układ regulacji

Bardziej szczegółowo

Rys. 1 Otwarty układ regulacji

Rys. 1 Otwarty układ regulacji Automatyka zajmuje się sterowaniem, czyli celowym oddziaływaniem na obiekt, w taki sposób, aby uzyskać jego pożądane właściwości. Sterowanie często nazywa się regulacją. y zd wartość zadana u sygnał sterujący

Bardziej szczegółowo

REGULATORY W UKŁADACH REGULACJI AUTOMATYCZNEJ. T I - czas zdwojenia (całkowania) T D - czas wyprzedzenia (różniczkowania) K p współczynnik wzmocnienia

REGULATORY W UKŁADACH REGULACJI AUTOMATYCZNEJ. T I - czas zdwojenia (całkowania) T D - czas wyprzedzenia (różniczkowania) K p współczynnik wzmocnienia REGULATORY W UKŁADACH REGULACJI AUTOMATYCZNEJ Y o (s) - E(s) B(s) /T I s K p U(s) Z(s) G o (s) Y(s) T I - czas zdwojenia (całkowania) T D - czas wyprzedzenia (różniczkowania) K p współczynnik wzmocnienia

Bardziej szczegółowo

Układ regulacji ze sprzężeniem zwrotnym: - układ regulacji kaskadowej - układ regulacji stosunku

Układ regulacji ze sprzężeniem zwrotnym: - układ regulacji kaskadowej - układ regulacji stosunku Układ regulacji ze sprzężeniem zwrotnym: - układ regulacji kaskadowej - układ regulacji stosunku Przemysłowe Układy Sterowania PID Opracowanie: dr inż. Tomasz Rutkowski Katedra Inżynierii Systemów Sterowania

Bardziej szczegółowo

Instrukcja do ćwiczeń laboratoryjnych Napęd hydrauliczny

Instrukcja do ćwiczeń laboratoryjnych Napęd hydrauliczny Instrukcja do ćwiczeń laboratoryjnych Napęd hydrauliczny Sterowanie układem hydraulicznym z proporcjonalnym zaworem przelewowym Opracowanie: Z. Kudźma, P. Osiński, M. Stosiak 1 Proporcjonalne elementy

Bardziej szczegółowo

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki http://www.ipbm.simr.pw.edu.pl/ Teoria maszyn i podstawy automatyki semestr zimowy 207/208

Bardziej szczegółowo

Napędy urządzeń mechatronicznych - projektowanie. Ćwiczenie 1 Dobór mikrosilnika prądu stałego z przekładnią do pracy w warunkach ustalonych

Napędy urządzeń mechatronicznych - projektowanie. Ćwiczenie 1 Dobór mikrosilnika prądu stałego z przekładnią do pracy w warunkach ustalonych Napędy urządzeń mechatronicznych - projektowanie Dobór mikrosilnika prądu stałego z przekładnią do pracy w warunkach ustalonych Miniaturowy siłownik liniowy (Oleksiuk, Nitu 1999) Śrubowy mechanizm zamiany

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Automatyka zastosowania, metody i narzędzia, perspektywy Synteza systemów sterowania z wykorzystaniem regulatorów

Bardziej szczegółowo

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki http://www.ipbm.simr.pw.edu.pl/ Teoria maszyn i podstawy automatyki semestr zimowy 207/208

Bardziej szczegółowo

Dobór parametrów regulatora - symulacja komputerowa. Najprostszy układ automatycznej regulacji można przedstawić za pomocą

Dobór parametrów regulatora - symulacja komputerowa. Najprostszy układ automatycznej regulacji można przedstawić za pomocą Politechnika Świętokrzyska Wydział Mechatroniki i Budowy Maszyn Centrum Laserowych Technologii Metali PŚk i PAN Zakład Informatyki i Robotyki Przedmiot:Podstawy Automatyzacji - laboratorium, rok I, sem.

Bardziej szczegółowo

INSTRUKCJA Regulacja PID, badanie stabilności układów automatyki

INSTRUKCJA Regulacja PID, badanie stabilności układów automatyki Opracowano na podstawie: INSTRUKCJA Regulacja PID, badanie stabilności układów automatyki 1. Kaczorek T.: Teoria sterowania, PWN, Warszawa 1977. 2. Węgrzyn S.: Podstawy automatyki, PWN, Warszawa 1980 3.

Bardziej szczegółowo

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki http://www.ipbm.simr.pw.edu.pl/ Teoria maszyn i podstawy automatyki semestr zimowy 206/207

Bardziej szczegółowo

PRZED PRZYSTĄPIENIEM DO ZAJĘĆ PROSZĘ O BARDZO DOKŁADNE

PRZED PRZYSTĄPIENIEM DO ZAJĘĆ PROSZĘ O BARDZO DOKŁADNE ĆWICZENIE 5) BADANIE REGULATORA PI W UKŁADZIE STEROWANIA PRĘDKOŚCIĄ OBROTOWĄ SILNIKA PRĄDU STAŁEGO PRZED PRZYSTĄPIENIEM DO ZAJĘĆ PROSZĘ O BARDZO DOKŁADNE ZAPOZNANIE SIĘ Z TREŚCIĄ INSTRUKCJI CEL ĆWICZENIA:

Bardziej szczegółowo

Politechnika Warszawska Instytut Automatyki i Robotyki. Prof. dr hab. inż. Jan Maciej Kościelny PODSTAWY AUTOMATYKI

Politechnika Warszawska Instytut Automatyki i Robotyki. Prof. dr hab. inż. Jan Maciej Kościelny PODSTAWY AUTOMATYKI Politechnika Warszawska Instytut Automatyki i Robotyki Prof. dr hab. inż. Jan Maciej Kościelny PODSTAWY AUTOMATYKI 12. Regulacja dwu- i trójpołożeniowa (wg. Holejko, Kościelny: Automatyka procesów ciągłych)

Bardziej szczegółowo

Automatyka i robotyka

Automatyka i robotyka Automatyka i robotyka Wykład 8 - Regulator PID Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 29 Plan wykładu regulator PID 2 z 29 Kompensator wyprzedzająco-opóźniający

Bardziej szczegółowo

Sterowanie napędów maszyn i robotów

Sterowanie napędów maszyn i robotów Wykład 8 - zaawansowane układy sterowania Instytut Automatyki i Robotyki Warszawa, 2014 adaptacyjne (ang. adaptive control) z dostosowaniem się do aktualnych warunków pracy napędu - koncepcje: ze wstępnie

Bardziej szczegółowo

Automatyka i pomiary wielkości fizykochemicznych. Instrukcja do ćwiczenia VI Dobór nastaw regulatora typu PID metodą Zieglera-Nicholsa.

Automatyka i pomiary wielkości fizykochemicznych. Instrukcja do ćwiczenia VI Dobór nastaw regulatora typu PID metodą Zieglera-Nicholsa. Automatyka i pomiary wielkości fizykochemicznych Instrukcja do ćwiczenia VI Dobór nastaw regulatora typu PID metodą Zieglera-Nicholsa. 1. Wprowadzenie Regulator PID (regulator proporcjonalno-całkująco-różniczkujący,

Bardziej szczegółowo

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Stabilność - definicja 1 O układzie możemy mówić, że jest stabilny gdy wytrącony ze stanu równowagi

Bardziej szczegółowo

Technika regulacji automatycznej

Technika regulacji automatycznej Technika regulacji automatycznej Wykład 3 Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 32 Plan wykładu Wprowadzenie Układ pierwszego rzędu Układ drugiego

Bardziej szczegółowo

Rozszerzony konspekt preskryptu do przedmiotu Sterowanie napędów i serwonapędów elektrycznych

Rozszerzony konspekt preskryptu do przedmiotu Sterowanie napędów i serwonapędów elektrycznych Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Rozszerzony konspekt preskryptu do przedmiotu Sterowanie napędów i serwonapędów elektrycznych prof. dr hab. inż.

Bardziej szczegółowo

Podstawy Automatyki. Wykład 7 - obiekty regulacji. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 7 - obiekty regulacji. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 7 - obiekty regulacji Instytut Automatyki i Robotyki Warszawa, 2018 Obiekty regulacji Obiekt regulacji Obiektem regulacji nazywamy proces technologiczny podlegający oddziaływaniu zakłóceń, zachodzący

Bardziej szczegółowo

Ćwiczenie PAR2. Badanie jednoobwodowego układu regulacji poziomu cieczy w zbiorniku otwartym

Ćwiczenie PAR2. Badanie jednoobwodowego układu regulacji poziomu cieczy w zbiorniku otwartym INSTYTUT AUTOMATYKI i ROBOTYKI WYDZIAŁ MECHATRONIKI LABORATORIUM AUTOMATYKI i ROBOTYKI Ćwiczenie PAR2 Badanie jednoobwodowego układu regulacji poziomu cieczy w zbiorniku otwartym Instrukcja laboratoryjna

Bardziej szczegółowo

Inteligentnych Systemów Sterowania

Inteligentnych Systemów Sterowania Laboratorium Inteligentnych Systemów Sterowania Mariusz Nowak Instytut Informatyki Politechnika Poznańska ver. 200.04-0 Poznań, 2009-200 Spis treści. Układ regulacji automatycznej z regulatorami klasycznymi

Bardziej szczegółowo

UWAGA 2. Wszystkie wyniki zapisywać na dysku Dane E: (dotyczy symulacji i pomiarów rzeczywistych)

UWAGA 2. Wszystkie wyniki zapisywać na dysku Dane E: (dotyczy symulacji i pomiarów rzeczywistych) Cel ćwiczenia: Zapoznanie się z budową i zasadą działania regulatorów ciągłych oraz ocena jakości regulacji ciągłej na przykładzie obiektu rzeczywistego (mikrotermostat) i badań symulacyjnych. Pytania

Bardziej szczegółowo

Laboratorium z podstaw automatyki

Laboratorium z podstaw automatyki Wydział Inżynierii Mechanicznej i Mechatroniki Laboratorium z podstaw automatyki Dobór parametrów układu regulacji, Identyfikacja parametrów obiektów dynamicznych Kierunek studiów: Transport, Stacjonarne

Bardziej szczegółowo

PODSTAWY AUTOMATYKI. Analiza w dziedzinie czasu i częstotliwości dla elementarnych obiektów automatyki.

PODSTAWY AUTOMATYKI. Analiza w dziedzinie czasu i częstotliwości dla elementarnych obiektów automatyki. WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI Katedra Inżynierii Systemów Sterowania PODSTAWY AUTOMATYKI Analiza w dziedzinie czasu i częstotliwości dla elementarnych obiektów automatyki. Materiały pomocnicze do

Bardziej szczegółowo

Napędy elektromechaniczne urządzeń precyzyjnych - projektowanie. Ćwiczenie 3 Dobór mikrosilnika prądu stałego do układu pozycjonującego

Napędy elektromechaniczne urządzeń precyzyjnych - projektowanie. Ćwiczenie 3 Dobór mikrosilnika prądu stałego do układu pozycjonującego Napędy elektromechaniczne urządzeń precyzyjnych - projektowanie Dobór mikrosilnika prądu stałego do układu pozycjonującego Precyzyjne pozycjonowanie robot chirurgiczny (2009) 39 silników prądu stałego

Bardziej szczegółowo

Z-ZIP-103z Podstawy automatyzacji Basics of automation

Z-ZIP-103z Podstawy automatyzacji Basics of automation KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 01/013 Z-ZIP-103z Podstawy automatyzacji Basics of automation A. USYTUOWANIE MODUŁU

Bardziej szczegółowo

Obiekt. Obiekt sterowania obiekt, który realizuje proces (zaplanowany).

Obiekt. Obiekt sterowania obiekt, który realizuje proces (zaplanowany). SWB - Systemy wbudowane w układach sterowania - wykład 13 asz 1 Obiekt sterowania Wejście Obiekt Wyjście Obiekt sterowania obiekt, który realizuje proces (zaplanowany). Fizyczny obiekt (proces, urządzenie)

Bardziej szczegółowo

Ćwiczenie 1b. Silnik prądu stałego jako element wykonawczy Modelowanie i symulacja napędu CZUJNIKI POMIAROWE I ELEMENTY WYKONAWCZE

Ćwiczenie 1b. Silnik prądu stałego jako element wykonawczy Modelowanie i symulacja napędu CZUJNIKI POMIAROWE I ELEMENTY WYKONAWCZE Politechnika Łódzka Katedra Mikroelektroniki i Technik Informatycznych 90-924 Łódź, ul. Wólczańska 221/223, bud. B18 tel. 42 631 26 28 faks 42 636 03 27 e-mail secretary@dmcs.p.lodz.pl http://www.dmcs.p.lodz.pl

Bardziej szczegółowo

Procedura modelowania matematycznego

Procedura modelowania matematycznego Procedura modelowania matematycznego System fizyczny Model fizyczny Założenia Uproszczenia Model matematyczny Analiza matematyczna Symulacja komputerowa Rozwiązanie w postaci modelu odpowiedzi Poszerzenie

Bardziej szczegółowo

WYDZIAŁ ELEKTRYCZNY KATEDRA AUTOMATYKI I ELEKTRONIKI. Badanie układu regulacji dwustawnej

WYDZIAŁ ELEKTRYCZNY KATEDRA AUTOMATYKI I ELEKTRONIKI. Badanie układu regulacji dwustawnej POLITECHNIKA BIAŁOSTOCKA WYDZIAŁ ELEKTRYCZNY KATEDRA ATOMATYKI I ELEKTRONIKI ĆWICZENIE Nr 8 Badanie układu regulacji dwustawnej Dobór nastaw regulatora dwustawnego Laboratorium z przedmiotu: ATOMATYKA

Bardziej szczegółowo

Badanie kaskadowego układu regulacji na przykładzie serwomechanizmu

Badanie kaskadowego układu regulacji na przykładzie serwomechanizmu Badanie kaskadowego układu regulacji na przykładzie serwomechanizmu 1. WSTĘP Serwomechanizmy są to przeważnie układy regulacji położenia. Są trzy główne typy zadań serwomechanizmów: - ruch point-to-point,

Bardziej szczegółowo

Ćwiczenie PA8a. Badanie jednoobwodowego układu regulacji poziomu cieczy w zbiorniku otwartym

Ćwiczenie PA8a. Badanie jednoobwodowego układu regulacji poziomu cieczy w zbiorniku otwartym INSTYTUT AUTOMATYKI i ROBOTYKI WYDZIAŁ MECHATRONIKI - laboratorium Badanie jednoobwodowego układu regulacji poziomu cieczy w zbiorniku otwartym Instrukcja laboratoryjna Opracowanie : dr inż. Danuta Holejko

Bardziej szczegółowo

Regulatory o działaniu ciągłym P, I, PI, PD, PID

Regulatory o działaniu ciągłym P, I, PI, PD, PID Regulatory o działaniu ciągłym P, I, PI, PD, PID Regulatory o działaniu ciągłym (analogowym) zmieniają wartość wielkości sterującej obiektem w sposób ciągły, tzn. wielkość ta może przyjmować wszystkie

Bardziej szczegółowo

Sterowanie Napędów Maszyn i Robotów

Sterowanie Napędów Maszyn i Robotów Wykład 4 - Model w przestrzeni stanów Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Do zaprojektowania układu regulacji pozycji siłownika pneumatycznego, poszukiwany jest model dynamiki układu w

Bardziej szczegółowo

4. Właściwości eksploatacyjne układów regulacji Wprowadzenie. Hs () Ys () Ws () Es () Go () s. Vs ()

4. Właściwości eksploatacyjne układów regulacji Wprowadzenie. Hs () Ys () Ws () Es () Go () s. Vs () 4. Właściwości eksploatacyjne układów regulacji 4.1. Wprowadzenie Zu () s Zy ( s ) Ws () Es () Gr () s Us () Go () s Ys () Vs () Hs () Rys. 4.1. Schemat blokowy układu regulacji z funkcjami przejścia 1

Bardziej szczegółowo

Kompensacja wyprzedzająca i opóźniająca fazę. dr hab. inż. Krzysztof Patan, prof. PWSZ

Kompensacja wyprzedzająca i opóźniająca fazę. dr hab. inż. Krzysztof Patan, prof. PWSZ Kompensacja wyprzedzająca i opóźniająca fazę dr hab. inż. Krzysztof Patan, prof. PWSZ Kształtowanie charakterystyki częstotliwościowej Kształtujemy charakterystykę układu otwartego aby uzyskać: pożądane

Bardziej szczegółowo

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2018 Wstęp Stabilność O układzie możemy mówić, że jest stabilny jeżeli jego odpowiedź na wymuszenie (zakłócenie)

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Mechatronika Rodzaj przedmiotu: obowiązkowy Rodzaj zajęć: wykład, laboratorium Automatyka Automatics Forma studiów: studia stacjonarne Poziom kwalifikacji: I stopnia Liczba

Bardziej szczegółowo

Podstawy Automatyki. Wykład 4 - algebra schematów blokowych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 4 - algebra schematów blokowych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 4 - algebra schematów blokowych Instytut Automatyki i Robotyki Warszawa, 2017 Wstęp Schemat blokowy Schemat blokowy (strukturalny): przedstawia wzajemne powiązania pomiędzy poszczególnymi zespołami

Bardziej szczegółowo

Serwomechanizmy sterowanie

Serwomechanizmy sterowanie Serwomechanizmy sterowanie Tryby pracy serwonapędu: - point-to-point, - śledzenie trajektorii (często znanej), - regulacja prędkości. Wymagania: - odpowiedź aperiodyczna, - możliwość ograniczania przyspieszenia

Bardziej szczegółowo

Automatyka w inżynierii środowiska. Wykład 1

Automatyka w inżynierii środowiska. Wykład 1 Automatyka w inżynierii środowiska Wykład 1 Wstępne informacje Podstawa zaliczenia wykładu: kolokwium 21.01.2012 Obecność na wykładach: zalecana. Zakres tematyczny przedmiotu: (10 godzin wykładów) Standardowe

Bardziej szczegółowo

Transmitancje układów ciągłych

Transmitancje układów ciągłych Transmitancja operatorowa, podstawowe człony liniowe Transmitancja operatorowa (funkcja przejścia, G(s)) stosunek transformaty Laplace'a sygnału wyjściowego do transformaty Laplace'a sygnału wejściowego

Bardziej szczegółowo

Zasady doboru mikrosilników prądu stałego

Zasady doboru mikrosilników prądu stałego Jakub Wierciak Zasady doboru Człowiek- najlepsza inwestycja Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Typowy profil prędkości w układzie napędowym (Wierciak

Bardziej szczegółowo

2. Wyznaczenie parametrów dynamicznych obiektu na podstawie odpowiedzi na skok jednostkowy, przy wykorzystaniu metody Küpfmüllera.

2. Wyznaczenie parametrów dynamicznych obiektu na podstawie odpowiedzi na skok jednostkowy, przy wykorzystaniu metody Küpfmüllera. 1. Celem projektu jest zaprojektowanie układu regulacji wykorzystującego regulator PI lub regulator PID, dla określonego obiektu składającego się z iloczynu dwóch transmitancji G 1 (s) i G 2 (s). Następnym

Bardziej szczegółowo

Podstawy Automatyki. Wykład 4 - algebra schematów blokowych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 4 - algebra schematów blokowych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 4 - algebra schematów blokowych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Schemat blokowy Schemat blokowy (strukturalny): przedstawia wzajemne powiązania pomiędzy poszczególnymi zespołami

Bardziej szczegółowo

Matematyczne modele mikrosilników elektrycznych - silniki prądu stałego

Matematyczne modele mikrosilników elektrycznych - silniki prądu stałego Jakub Wierciak Matematyczne modele mikrosilników elektrycznych - silniki prądu stałego Człowiek- najlepsza inwestycja Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Bardziej szczegółowo

Automatyka i sterowania

Automatyka i sterowania Automatyka i sterowania Układy regulacji Regulacja i sterowanie Przykłady regulacji i sterowania Funkcje realizowane przez automatykę: regulacja sterowanie zabezpieczenie optymalizacja Automatyka i sterowanie

Bardziej szczegółowo

3. WRAŻLIWOŚĆ I BŁĄD USTALONY. Podstawowe wzory. Wrażliwość Wrażliwość transmitancji względem parametru. parametry nominalne

3. WRAŻLIWOŚĆ I BŁĄD USTALONY. Podstawowe wzory. Wrażliwość Wrażliwość transmitancji względem parametru. parametry nominalne 3. WRAŻLIWOŚĆ I BŁĄD USTALONY Podstawowe wzory Wrażliwość Wrażliwość transmitancji względem parametru (3.1a) parametry nominalne (3.1b) Wrażliwość układu zamkniętego (3.2a) (3.2b) Uwaga. Dla Zmiana odpowiedzi

Bardziej szczegółowo

Technika regulacji automatycznej

Technika regulacji automatycznej Technika regulacji automatycznej Wykład 2 Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 56 Plan wykładu Schematy strukturalne Podstawowe operacje na schematach

Bardziej szczegółowo

Podstawy Automatyki. Wykład 4 - algebra schematów blokowych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 4 - algebra schematów blokowych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 4 - algebra schematów blokowych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Schemat blokowy Schemat blokowy (strukturalny): przedstawia wzajemne powiązania pomiędzy poszczególnymi zespołami

Bardziej szczegółowo

Eliminacja drgań w układach o słabym tłumieniu przy zastosowaniu filtru wejściowego (Input Shaping Filter)

Eliminacja drgań w układach o słabym tłumieniu przy zastosowaniu filtru wejściowego (Input Shaping Filter) Eliminacja drgań w układach o słabym tłumieniu przy zastosowaniu filtru wejściowego (Input Shaping Filter) 1. WSTĘP W wielu złożonych układach mechanicznych elementy występują połączenia elastyczne (długi

Bardziej szczegółowo

przy warunkach początkowych: 0 = 0, 0 = 0

przy warunkach początkowych: 0 = 0, 0 = 0 MODELE MATEMATYCZNE UKŁADÓW DYNAMICZNYCH Podstawową formą opisu procesów zachodzących w członach lub układach automatyki jest równanie ruchu - równanie dynamiki. Opisuje ono zależność wielkości fizycznych,

Bardziej szczegółowo

Projektowanie układów regulacji w dziedzinie częstotliwości. dr hab. inż. Krzysztof Patan, prof. PWSZ

Projektowanie układów regulacji w dziedzinie częstotliwości. dr hab. inż. Krzysztof Patan, prof. PWSZ Projektowanie układów regulacji w dziedzinie częstotliwości dr hab. inż. Krzysztof Patan, prof. PWSZ Wprowadzenie Metody projektowania w dziedzinie częstotliwości mają wiele zalet: stabilność i wymagania

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Podstawy Automatyki Badanie i synteza kaskadowego adaptacyjnego układu regulacji do sterowania obiektu o

Bardziej szczegółowo

REGULATOR PI W SIŁOWNIKU 2XI

REGULATOR PI W SIŁOWNIKU 2XI REGULATOR PI W SIŁOWNIKU 2XI Wydanie 1 lipiec 2012 r. 1 1. Regulator wbudowany PI Oprogramowanie sterownika Servocont-03 zawiera wbudowany algorytm regulacji PI (opcja). Włącza się go poprzez odpowiedni

Bardziej szczegółowo

Podstawy Automatyki Zbiór zadań dla studentów II roku AiR oraz MiBM

Podstawy Automatyki Zbiór zadań dla studentów II roku AiR oraz MiBM Aademia GórniczoHutnicza im. St. Staszica w Kraowie Wydział Inżynierii Mechanicznej i Robotyi Katedra Automatyzacji Procesów Podstawy Automatyi Zbiór zadań dla studentów II rou AiR oraz MiBM Tomasz Łuomsi

Bardziej szczegółowo

SIMATIC S Regulator PID w sterowaniu procesami. dr inż. Damian Cetnarowicz. Plan wykładu. I n t e l i g e n t n e s y s t e m y z e

SIMATIC S Regulator PID w sterowaniu procesami. dr inż. Damian Cetnarowicz. Plan wykładu. I n t e l i g e n t n e s y s t e m y z e Plan wykładu I n t e l i g e n t n e s y s t e m y z e s p r zężeniem wizyjnym wykład 6 Sterownik PID o Wprowadzenie o Wiadomości podstawowe o Implementacja w S7-1200 SIMATIC S7-1200 Regulator PID w sterowaniu

Bardziej szczegółowo

Ćwiczenie 1 Dobór mikrosilnika prądu stałego do napędu bezpośredniego przy pracy w warunkach ustalonych

Ćwiczenie 1 Dobór mikrosilnika prądu stałego do napędu bezpośredniego przy pracy w warunkach ustalonych Napędy elektromechaniczne urządzeń mechatronicznych - projektowanie Dobór mikrosilnika prądu stałego do napędu bezpośredniego przy pracy w warunkach ustalonych Przykłady napędów bezpośrednich - twardy

Bardziej szczegółowo

Napędy urządzeń mechatronicznych

Napędy urządzeń mechatronicznych 1. Na rysunku przedstawiono schemat blokowy układu wykonawczego z napędem elektrycznym. W poszczególne bloki schematu wpisać nazwy jego elementów oraz wskazanych sygnałów. Napędy urządzeń mechatronicznych

Bardziej szczegółowo

Teoria sterowania - studia niestacjonarne AiR 2 stopień

Teoria sterowania - studia niestacjonarne AiR 2 stopień Teoria sterowania - studia niestacjonarne AiR stopień Kazimierz Duzinkiewicz, dr hab. Inż. Katedra Inżynerii Systemów Sterowania Wykład 4-06/07 Transmitancja widmowa i charakterystyki częstotliwościowe

Bardziej szczegółowo

PAiTM. materiały uzupełniające do ćwiczeń Wydział Samochodów i Maszyn Roboczych studia inżynierskie prowadzący: mgr inż.

PAiTM. materiały uzupełniające do ćwiczeń Wydział Samochodów i Maszyn Roboczych studia inżynierskie prowadzący: mgr inż. PAiTM materiały uzupełniające do ćwiczeń Wydział Samochodów i Maszyn Roboczych studia inżynierskie prowadzący: mgr inż. Sebastian Korczak Poniższe materiały tylko dla studentów uczęszczających na zajęcia.

Bardziej szczegółowo

Technika regulacji automatycznej

Technika regulacji automatycznej Technika regulacji automatycznej Wykład 5 Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 38 Plan wykładu Kompensator wyprzedzający Kompensator opóźniający

Bardziej szczegółowo

WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA

WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA PRZEDMIOT : : LABORATORIUM PODSTAW AUTOMATYKI 9. Dobór nastaw

Bardziej szczegółowo

Podstawy Automatyki. Wykład 2 - podstawy matematyczne. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 2 - podstawy matematyczne. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 2 - podstawy matematyczne Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Rzeczywiste obiekty regulacji, a co za tym idzie układy regulacji, mają właściwości nieliniowe, n.p. turbulencje, wiele

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: ENERGETYKA Rodzaj przedmiotu: kierunkowy ogólny Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE C1. Zapoznanie studentów z własnościami

Bardziej szczegółowo

REGULATORY W UKŁADACH REGULACJI AUTOMATYCZNEJ

REGULATORY W UKŁADACH REGULACJI AUTOMATYCZNEJ REGULATORY W UKŁADACH REGULACJI AUTOMATYCZNEJ 1 1. Zadania regulatorów w układach regulacji automatycznej Do podstawowych zadań regulatorów w układach regulacji automatycznej należą: porównywanie wartości

Bardziej szczegółowo

SILNIK INDUKCYJNY KLATKOWY

SILNIK INDUKCYJNY KLATKOWY SILNIK INDUKCYJNY KLATKOWY 1. Budowa i zasada działania silników indukcyjnych Zasadniczymi częściami składowymi silnika indukcyjnego są nieruchomy stojan i obracający się wirnik. Wewnętrzną stronę stojana

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Automatyka zastosowania, metody i narzędzia, perspektywy Synteza systemów sterowania z wykorzystaniem regulatorów

Bardziej szczegółowo

Temat /6/: DYNAMIKA UKŁADÓW HYDRAULICZNYCH. WIADOMOŚCI PODSTAWOWE.

Temat /6/: DYNAMIKA UKŁADÓW HYDRAULICZNYCH. WIADOMOŚCI PODSTAWOWE. 1 Temat /6/: DYNAMIKA UKŁADÓW HYDRAULICZNYCH. WIADOMOŚCI PODSTAWOWE. Celem ćwiczenia jest doświadczalne określenie wskaźników charakteryzujących właściwości dynamiczne hydraulicznych układów sterujących

Bardziej szczegółowo

Ćwiczenie 2 Dobór mikrosilnika prądu stałego z przekładnią do pracy w warunkach ustalonych

Ćwiczenie 2 Dobór mikrosilnika prądu stałego z przekładnią do pracy w warunkach ustalonych Napędy elektromechaniczne urządzeń precyzyjnych - projektowanie Dobór mikrosilnika prądu stałego z przekładnią do pracy w warunkach ustalonych Miniaturowy siłownik liniowy (Oleksiuk, Nitu 1999) Śrubowy

Bardziej szczegółowo

Dobór typu regulatora i jego nastaw w procesie syntezy układu regulacji automatycznej Ćwiczenia Laboratoryjne Podstawy Automatyki i Robotyki

Dobór typu regulatora i jego nastaw w procesie syntezy układu regulacji automatycznej Ćwiczenia Laboratoryjne Podstawy Automatyki i Robotyki WOJSKOWA AKADEMIA TECHNICZNA im. Jarosława Dąbrowskiego Dobór typu regulatora i jego nastaw w procesie syntezy układu regulacji automatycznej Ćwiczenia Laboratoryjne Podstawy Automatyki i Robotyki mgr

Bardziej szczegółowo

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki http://www.ipbm.simr.pw.edu.pl/ Teoria maszyn i podstawy automatyki semestr zimowy 2017/2018

Bardziej szczegółowo

Automatyka i robotyka ETP2005L. Laboratorium semestr zimowy

Automatyka i robotyka ETP2005L. Laboratorium semestr zimowy Automatyka i robotyka ETP2005L Laboratorium semestr zimowy 2017-2018 Liniowe człony automatyki x(t) wymuszenie CZŁON (element) OBIEKT AUTOMATYKI y(t) odpowiedź Modelowanie matematyczne obiektów automatyki

Bardziej szczegółowo