Niegaussowskie procesy stochastyczne w oceanotechnice



Podobne dokumenty
Informacja o przestrzeniach Hilberta

Ważne rozkłady i twierdzenia

VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa.

13 Równanie struny drgającej. Równanie przewodnictwa ciepła.

Zaawansowane metody numeryczne

1 Gaussowskie zmienne losowe

RÓWNANIA RÓŻNICZKOWE WYKŁAD 2

Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe

II. RÓŻNICZKOWANIE I CAŁKOWANIE NUMERYCZNE Janusz Adamowski

2. P (E) = 1. β B. TSIM W3: Sygnały stochastyczne 1/27

Matematyka dyskretna. Andrzej Łachwa, UJ, /15

Prawa wielkich liczb, centralne twierdzenia graniczne

Przykład 1 W przypadku jednokrotnego rzutu kostką przestrzeń zdarzeń elementarnych

Metoda rozdzielania zmiennych

0 + 0 = 0, = 1, = 1, = 0.

Zakładamy, że są niezależnymi zmiennymi podlegającymi (dowolnemu) rozkładowi o skończonej wartości oczekiwanej i wariancji.

Drugie kolokwium z Rachunku Prawdopodobieństwa, zestaw A

5 Równania różniczkowe zwyczajne rzędu drugiego

Funkcja tworząca Funkcja charakterystyczna. Definicja i własności Funkcja tworząca momenty

Funkcja kwadratowa. f(x) = ax 2 + bx + c,

Z52: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania, zagadnienie brzegowe.

Modelowanie zależności. Matematyczne podstawy teorii ryzyka i ich zastosowanie R. Łochowski

Wykład 3 Momenty zmiennych losowych.

Literatura. Leitner R., Zacharski J., Zarys matematyki wyŝszej dla studentów, cz. III.

Wykład 3 Momenty zmiennych losowych.

Rozdział 1. Zmienne losowe, ich rozkłady i charakterystyki. 1.1 Definicja zmiennej losowej

Prawdopodobieństwo i statystyka

Obliczanie długości łuku krzywych. Autorzy: Witold Majdak

Prognozowanie i Symulacje. Wykład I. Matematyczne metody prognozowania

Funkcja kwadratowa. f(x) = ax 2 + bx + c = a

Ważne rozkłady i twierdzenia c.d.

Wykład 14 i 15. Równania różniczkowe. Równanie o zmiennych rozdzielonych. Definicja 1. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie

Równania różniczkowe. Notatki z wykładu.

Rozkłady i ich dystrybuanty 16 marca F X (t) = P (X < t) 0, gdy t 0, F X (t) = 1, gdy t > c, 0, gdy t x 1, 1, gdy t > x 2,

zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych

VI. Równania różniczkowe liniowe wyższych rzędów

POSTULATY MECHANIKI KWANTOWEJ cd i formalizm matematyczny

Pochodna i różniczka funkcji oraz jej zastosowanie do obliczania niepewności pomiarowych

II. Równania autonomiczne. 1. Podstawowe pojęcia.

Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne.

Centralne twierdzenie graniczne

Wykład z równań różnicowych

RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 3.

Układy równań i równania wyższych rzędów

1. Wykład NWD, NWW i algorytm Euklidesa.

1 Podstawy rachunku prawdopodobieństwa

1 Równania różniczkowe zwyczajne

Wykład 5. Zagadnienia omawiane na wykładzie w dniu r

Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna.

AKADEMIA GÓRNICZO-HUTNICZA Wydział Matematyki Stosowanej ROZKŁAD NORMALNY ROZKŁAD GAUSSA

Układy stochastyczne

Całkowanie numeryczne

Równanie przewodnictwa cieplnego (I)

Zadanie 1. Liczba szkód N w ciągu roku z pewnego ryzyka ma rozkład geometryczny: k =

- prędkość masy wynikająca z innych procesów, np. adwekcji, naprężeń itd.

Proces Poissona. Proces {N(t), t 0} nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t.

Matematyka dyskretna. Andrzej Łachwa, UJ, /10

Kolokwium ze statystyki matematycznej

Rozkłady zmiennych losowych

IX. MECHANIKA (FIZYKA) KWANTOWA

Przestrzenie wektorowe

Lista zadania nr 7 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie

Spacery losowe generowanie realizacji procesu losowego

Jednowymiarowa zmienna losowa

F t+ := s>t. F s = F t.

Iloczyn skalarny. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. 10. wykład z algebry liniowej Warszawa, grudzień 2013

Ciała i wielomiany 1. przez 1, i nazywamy jedynką, zaś element odwrotny do a 0 względem działania oznaczamy przez a 1, i nazywamy odwrotnością a);

Układy równań i nierówności liniowych

Aproksymacja. funkcji: ,a 2. ,...,a m. - są funkcjami bazowymi m+1 wymiarowej podprzestrzeni liniowej X m+1

Matematyka ubezpieczeń majątkowych r.

Prawdopodobieństwo i statystyka

1 + x 1 x 1 + x + 1 x. dla x 0.. Korzystając z otrzymanego wykresu wyznaczyć funkcję g(m) wyrażającą liczbę pierwiastków równania.

Fizyka statystyczna, elementy termodynamiki nierównowagowej Cele, zakres zagadnień

Prawdopodobieństwo i statystyka

EGZAMIN MAGISTERSKI, 18 września 2013 Biomatematyka

Konrad Słodowicz sk30792 AR22 Zadanie domowe satelita

3a. Wstęp: Elementarne równania i nierówności

Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne.

Wybrane rozkłady zmiennych losowych. Statystyka

Lista 6. Kamil Matuszewski 13 kwietnia D n =

1 Wykład 4. Proste Prawa wielkich liczb, CTG i metody Monte Carlo

Fale biegnące w równaniach reakcji-dyfuzji

Zagadnienia brzegowe dla równań eliptycznych

I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji.

Teoria miary. WPPT/Matematyka, rok II. Wykład 5

Funkcje charakterystyczne zmiennych losowych, linie regresji 1-go i 2-go rodzaju

Analiza szeregów czasowych: 5. Liniowe modele stochastyczne

5. Równania różniczkowe zwyczajne pierwszego rzędu

Wykład z równań różnicowych

Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe.

KADD Metoda najmniejszych kwadratów funkcje nieliniowe

III. Wstęp: Elementarne równania i nierówności

Całka nieoznaczona, podstawowe wiadomości

Wykład 3 Równania rózniczkowe cd

Rachunek prawdopodobieństwa i statystyka

Własności statystyczne regresji liniowej. Wykład 4

Rozdział 2. Liczby zespolone

5 Reprezentacje połozeniowa i pedowa

Pochodna i różniczka funkcji oraz jej zastosowanie do rachunku błędów pomiarowych

Wybrane rozkłady zmiennych losowych. Statystyka

Transkrypt:

Niegaussowskie procesy stochastyczne w oceanotechnice Joanna Dys 29 listopada 2009 Streszczenie Referat na podstawie artykułu Michela K. Ochi, Non-Gaussian random processes in ocean engineering, Probabilistic Engineering Mechanics, 986 Wstępne przypomnienia Definicja. Funkcją charakterystyczną zmiennej losowej X nazwiemy funkcję wyrażającą się wzorem: φ(t = E(e itx = e itx f(xdx Definicja 2 (Kumulanta. Kumulantami κ n rozkładu nazwiemy wielkości spełniające: ( κn φ(t = exp (itn Funkcją generującą kumulanty nazwiemy logarytm funkcji charakterystycznej: (it j ψ(t = ln φ(t = κ j j! Kumulanty są powiązane z momentami zwykłymi wzorami wielomianowymi (których nie będę tu przytaczać. Innymi słowy, znając kumulanty, możemy wyznaczyć momenty i na odwrót. Zapamiętajmy tylko, że: m = κ m 2 = κ 2 + κ 2 zatem κ 2 = σ 2 2 Fala jako proces niegaussowski Falowanie jest to oscylacyjny ruch cząstek wody po orbitach kołowych lub eliptycznych. Aby uniknąć niejasności, w tym referacie będę mówić wyłącznie o za: Wikipedia

falach generowanych przez wiatr. Ponieważ wiatr jest zjawiskiem losowym, losowa jest także fala. Na wielkość i strukturę fali wpływa kilka czynników: przede wszystkim prędkość wiatru, jak wielki jest obszar na którym wieje (tzw. rozbieg fal i jak długo wieje, a także głębokość wody. W szczególności, na wodach oceanicznych, gdzie woda ma dużą głębokość, ruch cząsteczek wody jest kolisty, podczas gdy bliżej brzegu orbity ulegają spłaszczeniu do elipsoid. Modelowanie fal jest zatem kwestią złożoną i wymaga pewnych upraszczających założeń. W początkowych badaniach procesów stochastycznych niemal zawsze zakładano więc, że proces fal jest stacjonarny i ergodyczny 2 oraz że odchylenie od średniej ma rozkład normalny. Te założenia sprawdziły się w wielu przypadkach, okazało się jednak, że pewne sytuacje nie dają się wymodelować w ten sposób. Przykładem może być właśnie fala na wodzie o skończonej (w domyśle: niewielkiej głębokości. Liczne obserwacje wykazują, że na wodzie o skończonej głębokości występuje przewaga wysokich grzbietów i płytkich dołów fali, podczas gdy w wodzie głębokiej takie zależności nie występują (patrz: wykres. Innym przykładem niegaussowskiego procesu w oceanotechnice jest zachowanie wody w odpowiedzi na instalacje przybrzeżne np. plafrotmy wiertnicze. Jeśli taka struktura ma mocno nieliniową charakterystykę np. platformę cięgnową. W takim wypadku, nawet jeśli morze/ocean jest procesem gaussowskim, to po takim nieliniowym zaburzeniu fala może być niegaussowska. Przykłady takich niegaussowskich rozkładów zaprezentuję później, gdy już poznamy sposoby konstruowania takich rozkładów. 3 Rozkłady prawdopodobieństwa dla niegaussowskich procesów stochastycznych Będziemy rozważać aproksymację funkcji gęstości prawdopodobieństwa. Generalnie, funkcje gęstości, które znajdują zastosowanie w rezprezentacji niegaussowskich procesów w oceanotechnice możemy podzielić na dwie grupy: te powstale na drodze rozważań probabilistycznych i te wyprowadzone przy użyciu teorii fal Stokesa. Pierwsze podejście jest zapewne nam, matematykom, bliższe, jako, że korzysta wyłącznie z teorii prawdopodobieństwa. 3. Rozkłady oparte na teorii prawdopodobieństwa 3.. Rozkład ciągu Grama-Charliera Wyprowadzanie funkcji gęstości Grama-Charliera opiera się na następującej idei: nie znamy dokładnego rozkładu fal, ale możemy przybliżać pewne momenty tego 2 tzn. lim T E{ T t 0 +T t 0 X(tdt m x}] 2 = 0 2

rozkładu. Następnie, możemy rozwinąć funkcję w szereg w pewnej bazie wielomianowej, tak, by współczynniki rozwinięcia oparte były właśnie na wyliczonych momentach (a dokładniej ich estymatorach. Funkcja gęstości Grama-Charliera opiera się zatem na wielomianach ortogonalnych względem funkcji gęstości. Konkretniej rzecz biorąc, będziemy wykorzystywać wielomiany Hermite a. Aby móc spokojnie zająć się konstrukcją, wyprowadźmy i przedstawmy najpierw kilka podstawowych faktów o wielomianach Hermite a. Definicja 3 (Wielomian Hermite a. 3 Wielomianem Hermite a stopnia n, ozn. H n (z nazywamy funkcję, która spełnia następujące równanie: d n 2 dz n e z /2 = ( n H n (z e z2 /2 Z powyższego równania możemy wyznaczyć kolejne wielomiany Hermite a. H 0 (z = H (z = z H 2 (z = z 2 H 3 (z = z 3 3z H 4 (z = z 4 6z 2 + 3 H 5 (z = z 5 0z 3 + 5z H 6 (z = z 6 5z 4 + 45z 2 5, itd. Obserwacja (Różniczkowanie wielomianów Hermite a. Dla wielomianów Hermite a zachodzi następująca własność: ( d dz H n(z = n H n (z (2 Niech α(z będzie gęstością rozkładu normalnego: Pokażemy następujące twierdzenie: α(z = e z2 /2 Twierdzenie (Ortogonalność wielomianów Hermite a. Wielomiany postaci (/ H n (z są ortonormalne, z funkcją wagową będącą gęstością rozkładu normalnego α(z. Zatem: H m (z ] H n (z α(zdz = m! 3 Jest to definicja tzw. probabilistycznych wielomianów Hermite a. Fizycy wolą postać: H n(z = ( n e z2 d n dz n e z2 { 0 (3 3

Dokładniej mówiąc, wielomiany Hermite a tworzą bazę ortogonalną przestrzeni Hilberta funkcji, dla których: z iloczynem skalarnym: f(z 2 α(zdz < f(z g(zα(zdz < Dowód. (Dla przypadku rzeczywistego Zacznijmy od przecałkowania wyrażenia bez stałych: H m (xh n (xα(xdx = ( n H m (x dn dx n α(xdx= części = ( n H m (x dn dx ] α(x n + d dx H m(x dn α(xdx dxn Pierwsza część jest równa zero (dlaczego?, do drugiej zastosujemy obserwację (2. Stosując powyższą metodę różniczkowania m-krotnie, otrzymujemy w końcu: = H m (xh n (xα(xdx = ( n m m! { jeśli m = n 0 jeśli m n α(xdx = m! n m d n m dx H n m α(xdx = Zatem ostatecznie otrzymujemy pożądaną własność (3 Biorąc pod uwagę tan fakt, rozważmy dowolną z góry zadaną standaryzowaną 4 funkcję gęstości prawdopodobieństwa f(x i rozwińmy ją w szereg postaci: f(x = a 0 α(x + a α ( (x + a 2 α (2 (x + a 3 α (3 (x +..., gdzie a n to pewne nieznane stałe, a α (n (x = dn dx n α(x Z definicji wielomianów Hermite a możemy wyrazić f w bazie wyznaczonej przez te wielomiany: f(x = α(x (a 0 H 0 (x a H (x + a 2 H 2 (x a 3 H 3 (x +..., 4 standaryzowana zmienna, to taka, dla której m = 0, m 2 = 4

( H 0 (x H = α(x c 0 (x H c 2 (x H + c 2 3 (x a 3 +..., 0!! 2! 3! = α(x ( n H n (x c n, gdzie c = n a n nieznane. Aby wyznaczyć nieznane wielkości c n, możey pomnożyć f(x przez H n (x/ i odcałkować po przedziale od do. Ponieważ wielomiany {H n (x/ } n są ortonormalne względem funkcji wagowej α(x, mamy: Zatem mamy: H n (x f(xdx = ( n c n c n = ( n H 2 n(x α(xdx = ( n c n H n (xf(xdx Pamiętając o tym, że funkcja gęstości jest standaryzowana, możemy wyliczyć współczynniki c n : c 0 (x = H 0 (xf(xdx = c (x = c 2 (x = 2! c 3 (x = 3! m 3 c 4 (x = 4! (m 4 3 c 5 (x = 5! (m 5 0m 3, H (xf(xdx = m = 0 H 2 (xf(xdx = 2! (m 2 c 6 (x = 6! (m 6 5m 4 + 30, itd. Gdzie oczywiście m j oznacza j-ty moment standaryzowanej zmiennej losowej. Zatem ostatecznie, możemy zapisać naszą funkcję gęstości w postaci: f(x = e x2 /2 + m3 3! H 3(x + m 4 3 H 4 (x + m ] 5 0m 3 H 5 (x +... 4! 5! (4 Powyższa forma nazywana jest szeregiem Grama-Charliera typu A dla funkcji gęstości prawdopodobieństwa. Zapiszmy to jeszcze z wykorzystaniem kumulant zamiast momentów (wyprowadzenia sobie oszczędzę: f(x = e x2 2σ 2 + κ 3 σ 3!σ 3 H 3 ( x µ σ + κ 4 4!σ 4 H 4 ( x µ σ + κ 5 5!σ 5 H 5 ( ] x µ +... 5 σ (5 5

Równoważnie, podstawiając λ j = κ j /σ j : f(x = e x2 2σ 2 + λ ( 3 x σ 3! H 3 + λ ( 4 x σ 4! H 4 + λ ( ] 5 x σ 5! H 5 +... σ (6 3..2 Szereg Edgeworthe a Edgeworth zaproponował podobne rozwinięcie w szereg funkcji gęstości, jako poprawkę do CTG. Niech zmienna losowa X będzie sumą losowej próbki rozmiaru n, (x,..., x n. Wielkości x n reprezentują tu błędy związane z każdą z n obserwacji. Stąd, są one parami niezależne i możemy zakładać, że wszystkie mają ten sam rozkład (niekoniecznie normalny, o średniej m r i wariancji σr. 2 oznaczmy funkcję charakterystyczną zmiennej losowej x r m r jako φ r (t 6. Wówczas dla zestandaryzowanej zmiennej Z = (X r m r /σ r funkcja charakterystyczna ma postać φ r (t/σ r. Zatem po przesumowaniu otrzymujemy funkcję charakterystyczną standaryzacji zmiennej X, oznaczonej przez Z = (X nm r /( nσ r : ( ] t φ(t = φ r (7 nσr Będziemy teraz przekształcać to równanie. Zauważmy, że jeśli przez f(x oznaczymy gęstość funkcji Z, to z definicji funkcji charakterystycznej mamy: e t2 /2 φ(t = e t2 /2+itx f(xdx (8 A z drugiej strony, mamy następującą formułę wielomianową: H n (z t n = e t2 /2+tz A zatem, podstawiając it w miejsce t, mamy: H n (z (it n = e t2 /2+itz (9 (0 I podstawiając do to równania (8 otrzymujemy: e t2 /2 φ(t = = (it n H n (x (it n f(xdx = H n (xf(xdx = ( c n (it n 6 Edgworth używa funkcji generującej momenty zamiast funkcji charakterystycznej 6

Gdzie c n jest tym samym parametrem, co powyżej, przy metodzie Grama- Charliera. W tym momencie jednak wartości c n wciąż nie są znane. Aby je obliczyć, wróćmy do równania funkcji charakterystycznej phi r (t Wiemy, że, oznaczając wartośc j-tej kumulanty zmiennej (X r m r przez κ rj, mamy: φ r (t = exp (it j κ rj j! Zatem biorąc pod uwagę relację (7, funkcja charakterystyczna zmiennej Z wygląda następująco: ( j κ rj it φ(t = exp n j! n Należy odnotować, że λ r = 0, więc możemy sumować od j = 2. Ponadto λ r2 =, gdyż zmienna X r m r jest scentrowana, o zerowej średniej i wartości oczekiwanej σr 2 = κ r2. Po wymnożeniu obu stron przez e t2 /2 mamy: e t2 /2 φ(t = exp n = exp n n (it2 j=2 λ rj j! ( j it + n (it2 n 2!n + t2 = exp n 2 ( λ j r(j+2 it = (j + 2! n (it 2s s! s=0 λ rj j! ( j it = n s ( λ j r(j+2 it (j + 2! n Po zauważeniu, że σ 2 = nσr 2 oraz κ = nκ r, oznaczając λ = κ j /σ j, mamy: λ = Stąd możemy przepisać nasze równanie w postaci: λrj n j/2 e t2 /2 φ(t = (it 2s λ j+2 s! (j + 2! (itj s=0 s (2 Porównując teraz wyrazy rozwinięcia w ( i (2 mamy: c 0 = c = c 2 = 0 c 3 = λ3 3! c 4 = λ4 4!, itd. Ostatecznie: f(x = σ e x2 2σ 2 ( n c ( n x H n σ (3 Czyli to samo, co w rozwinięciu Grama-Charliera, kompletnie inną metodą. 7

3..3 Szereg Longuet-Higginsa Longuet-Higgins wyprowadził swój szereg funkcji gęstości w oparciu o funkcję generującą kumulanty. Wykorzystamy ją w odwrotnej transformacie Fouriera. Wiemy, że funkcja gęstości da się przedstawić jako: f(x = exp itx φ(tdt = exp (ψ(t itx dt = = ( exp (κ xit + κ 2 2! (it2 + κ 3 3! (it3 +... dt Teraz unormujemy (ustandaryzujemy zmienną X zgodnie z konwencją: Z = X κ k2 t = s/ κ 2 λ j = κ j /(κ 2 j/2 7 Używając ten notacji, możemy zapisać funkcję gęstości wystandaryzowanej zmiennej Z jako: f(x = exp ] 2 (s2 + 2ixs exp j! λ j(is j ds Drugi czynnnik możemy rozwinąć w szereg: 2 exp j! λ j(is j = + j! λ j(is j + 2! j! λ j(is j +... = = + 3! λ 3(is 3 + 4! λ 4(is 4 + 5! λ 5(is 5 + 6! λ 6 + ] 2!(3! 2 λ2 3 (is 6 +... Ponadto, możemy napisać w ogólności: exp ] 2 (s2 + 2ixs (is n ds = ( n d n dx n F ourier = ( n dn 2 dx n e x /2 = H n (xe x2 /2 (4 exp ] 2 (s2 + 2ixs ds = 7 Zauważmy przy okazji, że λ 3 i λ 4 są, odpowiednio, skośnością i kurtozą zmiennej (5 8

Zatem, biorąc pod uwagę (4 i (5, standaryzowaną gęstość prawdopodobieńtwa możemy zapisać jako: f(x = = e x2 /2 exp ] 2 (s2 + 2ixs + λ 3 3! (is3 + λ 4 + λ 3 3! H 3(x + λ 4 4! H 4(x + λ 5 5! H 5(x + ] 4! (is4 +... ( λ6 6! + λ2 3 2!(3! 2 ds = ] H 6 (x +... ds Zatem dla zmiennej losowej scentrowanej (średnia= 0 i wariancji σ 2 otrzymujemy znowu ten sam wzór, co w dwóch poprzednich wyprowadzeniach. Jednak wyprowadzenie Longueta-Higginsa jest bardziej zwięzłe i wprost. Warto wspomnieć, że Longuet-Higgins posłużył się tym samym wyprowadzeniem dla funkcji łącznej gęstości dwóch zmiennych. 4 Zastosowanie do analizy fal wiatrowych (omówienie wykresów (6 9