Temperatura mieszanki oddechowej za pierwszym stopniem automatu

Podobne dokumenty
Rozdział 22 Pole elektryczne

Ciepło i pierwsza zasada termodynamiki.

W8 40. Para. Równanie Van der Waalsa Temperatura krytyczna ci Przemiany pary. Termodynamika techniczna

WYKŁAD 2 TERMODYNAMIKA. Termodynamika opiera się na czterech obserwacjach fenomenologicznych zwanych zasadami

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Podstawowe prawa opisujące właściwości gazów zostały wyprowadzone dla gazu modelowego, nazywanego gazem doskonałym (idealnym).

Seria 2, ćwiczenia do wykładu Od eksperymentu do poznania materii

Przemiany termodynamiczne

Termodynamika Techniczna dla MWT, wykład 7. AJ Wojtowicz IF UMK

Ćwiczenie N 13 ROZKŁAD CIŚNIENIA WZDŁUś ZWĘśKI VENTURIEGO

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku

GAZ DOSKONAŁY. Brak oddziaływań między cząsteczkami z wyjątkiem zderzeń idealnie sprężystych.

Termodynamika Techniczna dla MWT, wykład 4. AJ Wojtowicz IF UMK

1. 1 J/(kg K) nie jest jednostką a) entropii właściwej b) indywidualnej stałej gazowej c) ciepła właściwego d) pracy jednostkowej

Wykład 1 i 2. Termodynamika klasyczna, gaz doskonały

C V dla róŝnych gazów. Widzimy C C dla wszystkich gazów jest, zgodnie z przewidywaniami równa w

Układ termodynamiczny Parametry układu termodynamicznego Proces termodynamiczny Układ izolowany Układ zamknięty Stan równowagi termodynamicznej

100 29,538 21,223 38,112 29, ,118 24,803 49,392 41,077

Wykład 7 Entalpia: odwracalne izobaryczne rozpręŝanie gazu, adiabatyczne dławienie gazu dla przepływu ustalonego, nieodwracalne napełnianie gazem

Gaz rzeczywisty zachowuje się jak modelowy gaz doskonały, gdy ma małą gęstość i umiarkowaną

Rozwiązanie: Rozwiązanie najlepiej rozpocząć od sporządzenia szkicu, który jest pierwszym stopniem zrozumienia opisywanego procesu (serii przemian).

Podstawowe pojęcia Masa atomowa (cząsteczkowa) - to stosunek masy atomu danego pierwiastka chemicznego (cząsteczki związku chemicznego) do masy 1/12

INFORMATYKA SYSTEMÓW AUTONOMICZNYCH

Podstawy termodynamiki

Ćwiczenie 14. Maria Bełtowska-Brzezinska KINETYKA REAKCJI ENZYMATYCZNYCH

TERMODYNAMIKA I TERMOCHEMIA

Materiały pomocnicze do laboratorium z przedmiotu Metody i Narzędzia Symulacji Komputerowej

PROFIL PRĘDKOŚCI W RURZE PROSTOLINIOWEJ

Czym jest prąd elektryczny

= = Budowa materii. Stany skupienia materii. Ilość materii (substancji) n - ilość moli, N liczba molekuł (atomów, cząstek), N A

Stany materii. Masa i rozmiary cząstek. Masa i rozmiary cząstek. m n mol. n = Gaz doskonały. N A = 6.022x10 23

K raków 26 ma rca 2011 r.

3. Przyrost temperatury gazu wynosi 20 C. Ile jest równy ten przyrost w kelwinach?

A B. Modelowanie reakcji chemicznych: numeryczne rozwiązywanie równań na szybkość reakcji chemicznych B: 1. da dt. A v. v t

3. Przejścia fazowe pomiędzy trzema stanami skupienia materii:

Temperatura jest wspólną własnością dwóch ciał, które pozostają ze sobą w równowadze termicznej.

Termodynamika Część 7 Trzecia zasada termodynamiki Metody otrzymywania niskich temperatur Zjawisko Joule'a Thomsona Chłodzenie magnetyczne

TERMODYNAMIKA FENOMENOLOGICZNA

Techniki niskotemperaturowe w medycynie

Wykład FIZYKA I. 14. Termodynamika fenomenologiczna cz.ii. Dr hab. inż. Władysław Artur Woźniak

Atomy wieloelektronowe

Termodynamika Techniczna dla MWT, wykład 5. AJ Wojtowicz IF UMK

Podstawowe narzędzia do pomiaru prędkości przepływu metodami ciśnieniowymi

INSTRUKCJA MONTAśU I UśYTKOWANIA POJEMNOŚCIOWE PODGRZEWACZE WODY BSV

TERMODYNAMIKA. przykłady zastosowań. I.Mańkowski I LO w Lęborku

Kaskadowe urządzenia do skraplania gazów

LABORATORIUM TECHNOLOGII NAPRAW

WYDZIAŁ LABORATORIUM FIZYCZNE

TECHNIKI NISKOTEMPERATUROWE W MEDYCYNIE

ELEMENTARZ TERMODYNAMIKI Wprowadzenie

Wykład 3. Diagramy fazowe P-v-T dla substancji czystych w trzech stanach. skupienia. skupienia

Fizyka statystyczna Fenomenologia przejść fazowych. P. F. Góra

POLITECHNIKA RZESZOWSKA

Spis treści. Przedmowa WPROWADZENIE DO PRZEDMIOTU... 11

TERMODYNAMIKA Zajęcia wyrównawcze, Częstochowa, 2009/2010 Ewa Mandowska

25P3 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - III POZIOM PODSTAWOWY

Funkcja liniowa - podsumowanie

Drgania. W Y K Ł A D X Ruch harmoniczny prosty. k m

Termodynamika Techniczna dla MWT, wykład 3. AJ Wojtowicz IF UMK Izobaryczne wytwarzanie pary wodnej; diagram T-v przy stałym ciśnieniu

Przemiana izochoryczna. Prawo Charlesa

AKADEMIA GÓRNICZO HUTNICZA Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Katedra Elektroniki

OBLICZENIA SILNIKA TURBINOWEGO ODRZUTOWEGO (rzeczywistego) PRACA W WARUNKACH STATYCZNYCH. Opracował. Dr inż. Robert Jakubowski

WYBRANE ZAGADNIENIA Z TERMODYNAMIKI TECHNICZNEJ

Wykład 7: Przekazywanie energii elementy termodynamiki

Para wodna najczęściej jest produkowana w warunkach stałego ciśnienia.

Definicja pochodnej cząstkowej

Wykład FIZYKA I. 15. Termodynamika statystyczna. Dr hab. inż. Władysław Artur Woźniak

4. 1 bar jest dokładnie równy a) Pa b) 100 Tr c) 1 at d) 1 Atm e) 1000 niutonów na metr kwadratowy f) 0,1 MPa

WYZNACZANIE STOSUNKU c p /c v

Techniki Niskotemperaturowe w Medycynie. Skraplarka Claude a i skraplarka Heylandta (budowa, działanie, bilans cieplny, charakterystyka techniczna).

REGATOWA ŁÓDŹ PODWODNA NAPĘDZANA MECHANICZNIE

Wykład 3 Zjawiska transportu Dyfuzja w gazie, przewodnictwo cieplne, lepkość gazu, przewodnictwo elektryczne

1 CIŚNIENIA; ATMOSFERYCZNE, HYDROSTATYCZNE, ABSOLUTNE. Ciśnienie w nurkowaniu - zależność między ciśnieniem a objętością

Potencjalne pole elektrostatyczne. Przypomnienie

00516 Termodynamika D Część 1

S ścianki naczynia w jednostce czasu przekazywany

Wykład 1. Anna Ptaszek. 5 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Chemia fizyczna - wykład 1. Anna Ptaszek 1 / 36

DRUGA ZASADA TERMODYNAMIKI

Model wiązania kowalencyjnego cząsteczka H 2

URZĄD MARSZAŁKOWSKI WOJEWÓDZTWA OPOLSKIEGO DEPARTAMENT POLITYKI REGIONALNEJ I PRZESTRZENNEJ Referat Ewaluacji

POLITECHNIKA GDAŃSKA WYDZIAŁ MECHANICZNY Katedra Energetyki i Aparatury Przemysłowej PRACA SEMINARYJNA

Wykład 4 Gaz doskonały, gaz półdoskonały i gaz rzeczywisty Równanie stanu gazu doskonałego uniwersalna stała gazowa i stała gazowa Odstępstwa gazów

SORPCJA WILGOCI SORPCJA WILGOCI

Elektrostatyka ŁADUNEK. Ładunek elektryczny. Dr PPotera wyklady fizyka dosw st podypl. n p. Cząstka α

Skraplarki Claude a oraz Heylandta budowa, działanie, bilans cieplny oraz charakterystyka techniczna

Ciepło właściwe. Autorzy: Zbigniew Kąkol Bartek Wiendlocha

Temperatura, ciepło, oraz elementy kinetycznej teorii gazów

Rozdział 21 Ładunek elektryczny

FIZYKA STATYSTYCZNA. d dp. jest sumaryczną zmianą pędu cząsteczek zachodzącą na powierzchni S w

Termodynamika Techniczna dla MWT, wykład 6. AJ Wojtowicz IF UMK

KRYTERIA OCEN Z FIZYKI DLA KLASY II GIMNAZJUM. ENERGIA I. NIEDOSTATECZNY - Uczeń nie opanował wiedzy i umiejętności niezbędnych w dalszej nauce.

Przegląd termodynamiki II

Ćw.6. Badanie własności soczewek elektronowych

Czytanie wykresów to ważna umiejętność, jeden wykres zawiera więcej informacji, niż strona tekstu. Dlatego musisz umieć to robić.

KARTOTEKA TESTU I SCHEMAT OCENIANIA - gimnazjum - etap wojewódzki. Rodzaj/forma zadania. Max liczba pkt. zamknięte 1 1 p. poprawna odpowiedź

POWODZENIA! ZDANIA ZAMKNIĘTE. WOJEWÓDZKI KONKURS FIZYCZNY [ETAP SZKOLNY] ROK SZKOLNY 2009/2010 Czas trwania: 90 minut KOD UCZESTNIKA KONKURSU.

lim Np. lim jest wyrażeniem typu /, a

1 K A T E D R A F I ZYKI S T O S O W AN E J

Elementy teorii powierzchni metali

Prawa gazowe- Tomasz Żabierek

Transkrypt:

Temperatura mieszanki oddechowej za pierwszym stopniem automatu Celem niniejszego artykułu jest pokazanie praktycznego sposobu na wyznaczanie temperatury mieszanki oddechowej po rozpręŝeniu na pierwszym stopniu automatu. Niepokojące moŝe się jednak wydawać to, Ŝe zjawisko to jest owiane pewnym nimbem tajemniczości, który wynika z szeregu niedomówień. Nie naleŝy tego zjawiska demonizować, trzeba natomiast dokładnie i prosto wyjaśnić jego termodynamiczne podstawy. Na wstępie przypomnijmy jeszcze raz, kluczową dla zrozumienia zjawiska Joule'a-Thomsona, róŝnicę pomiędzy gazem doskonałym a rzeczywistym. Cząsteczki gazu idealnego traktujemy jako punkty materialne, które zderzają się między sobą w sposób spręŝysty. Ponadto, co najwaŝniejsze, pomiędzy cząsteczkami gazu doskonałego nie zachodzą Ŝadne oddziaływania, to znaczy te cząsteczki ani się nie przyciągają ani nie odpychają. Dla większości przemian termodynamicznych, opis za pomocą gazu doskonałego daje wystarczająco dobre przybliŝenie. Niemniej jednak są zjawiska, dla których to nie wystarcza. Do takich zjawisk naleŝy właśnie efekt Joule'a Thomsona. W gazie rzeczywistym cząsteczek nie moŝna juŝ traktować jak punkty materialne. W zaleŝności od odległości w jakiej się znajdują, dwie cząsteczki gazu mogą się odpychać lub przyciągać. Skąd biorą się takie oddziaływania? Obecność sił odpychających moŝna wyobrazić sobie na podstawie eksperymentu myślowego. Niech cząsteczki gazu będą piłkami tenisowymi. Jeśli worek z takimi piłkami ściśniemy wystarczająco mocno, to zmniejszymy odległości miedzy nimi do tego stopnia, Ŝe ich powierzchnie ugną się i piłeczki będą odpychały się. Powstaje siła odpychająca. Te siły są odpowiedzialne za obecność energii potencjalnej w gazie. OtóŜ jeŝeli spręŝamy (adiabatycznie) gaz doskonały, to cała energia przekazana w tym procesie do gazu przechodzi w energie kinetyczną cząsteczek (związaną z ruchem), co odczuwamy jako wzrost temperatury. Natomiast jeŝeli spręŝamy gaz rzeczywisty, to tylko pewna część energii zostanie przekazana na zwiększenie prędkości ruchu cząsteczek. Pozostała energia zostanie zuŝyta na ugięcie "powierzchni piłeczek". Tak więc energia zgromadzona w gazie rzeczywistym składa się z energii kinetycznej i potencjalnej cząsteczek. Przyciąganie się cząsteczek w gazie rzeczywistym jest moŝe mniej oczywiste. Atomy gazu naleŝy rozumieć jako chmury ujemnie naładowanych elektronów otaczających małe dodatnie jądra. Rozkład ładunku elektrycznego w powłoce elektronowej nie jest równomierny. Powoduje to polaryzację atomów, a co za tym idzie ich wzajemne przyciąganie. Rys. 1. Krzywa Lennarda-Jonesa. W zaleŝności od tego w jakiej odległości od siebie są cząsteczki gazu, przewaŝa albo odpychanie albo przyciąganie. JeŜeli cząsteczki są blisko siebie (co dopowiada duŝym ciśnieniom) to przewaŝa odpychanie. Natomiast jeŝeli cząsteczki są daleko od siebie (niskie ciśnienia) to przewaŝa przyciąganie. Tę zaleŝność opisuje krzywa Lennarda- Jonesa pokazana na rysunku 1. Na osi poziomej podano odległość między cząsteczkami. Na osi pionowej pokazano wartość energii potencjalnej, którą posiadają cząsteczki znajdujące się w odległości r. Oznacza to, Ŝe jeśli zbliŝymy do siebie cząsteczki, to wtedy zaczynają się gwałtownie odpychać. W większej odległości cząsteczki mają juŝ na tyle miejsca, Ŝe się juŝ nie odpychają. Do głosu zaczynają dochodzić przyciągające siły elektryczne. Energia

potencjalna staje się ujemna. Gdy cząsteczki odsuniemy od siebie do nieskończoności, to jakiekolwiek oddziaływania miedzy nimi zanikną do zera. Uzbrojeni w tę wiedzę moŝemy przeanalizować zjawiska zachodzące w gazie przepływającym przez I stopień automatu (rysunek 2). Podstawą do analizy jest wykonanie bilansu energii, ciepła i pracy w obszarze obejmującym zawór. Do tego obszaru dopływa gaz o temperaturze T0 i ciśnieniu p0. Zawór pierwszego stopnia jest z punktu widzenia mechaniki płynów przeszkodą miejscową, w której następuje spadek ciśnienia do wartości p1. Interesuje nas to, co się będzie działo z temperaturą T1. Rys. 2. Schemat przepływu gazu przez zawór w pierwszym stopniu automatu. Linią przerywaną oznaczono obszar bilansowy. Przepływ gazu przez zawór jest na tyle szybki, Ŝe nie zachodzi w tym czasie wymiana ciepła z otoczeniem. Ponadto przepływający gaz nie wykonuje Ŝadnej pracy, ani teŝ siły zewnętrzne nie wykonują Ŝadnej pracy nad gazem. Zatem energia dostarczona z dopływającym gazem do omawianego obszaru musi być równa energii wyprowadzanej z wypływającym gazem. Energia doprowadzana z przepływającym gazem nosi nawę: entalpia (patrz Magazyn Nurkowanie 62, 12/2000). Mamy tu do czynienia z procesem, w którym entalpia jest stała. Wobec tego nazywa się go dławieniem izentalpowym. Przeanalizujemy teraz jak przebiega przemiana izentalpowa. Ciśnienie spadło z wartości p0 do wartości p1, co spowodowało wzrost odległości między cząsteczkami gazu. Energia (entalpia) gazu przed i po rozpręŝeniu musi być taka sama. W gazie doskonałym nie ma energii potencjalnej, czyli cała energia jest zawarta w energii kinetycznej cząsteczek. W tym procesie nie moŝe ona ulec zmianie, czyli efekt Joule'a-Thomsona dla gazu doskonałego jest zerowy. Natomiast w gazie rzeczywistym wraz ze zmianą odległości cząsteczek zachodzi zmiana energii potencjalnej. PoniewaŜ sumaryczna energia musi być stała, więc zmiana energii potencjalnej musi być skompensowana zmianą energii kinetycznej - co odczujemy jako zmianę temperatury. Ten fakt stanowi kwintesencję efektu Joule'a Thomsona. JeŜeli gaz przed rozpręŝeniem znajduje się na prawo od punktu r0, to w wyniku rozpręŝenia jego energia potencjalna wzrasta, zatem jego energia kinetyczna musi zmaleć, co spowoduje spadek temperatury gazu. Takie zjawisko obserwujemy dla powietrza. Przeciwna sytuacja ma miejsce dla helu. W praktyce nurkowej interesujące jest określenie temperatury, którą osiągnie gaz po przepłynięciu przez pierwszy stopień automatu. Entalpia właściwa jest termodynamiczną zmienną stanu. Efekt Joule'aThomsona moŝna analizować na wykresie entalpia-ciśnienie, na którym naniesiono izotermy odpowiadające interesującym nas temperaturom. PoniŜej zamieszczono takie wykresy dla kilku czynników oddechowych. Wykresy te zostały wygenerowane za pomocą obliczeń termodynamicznych w programie PROMIX v 1.02a. Osoby, które nie chcą wnikać w termodynamiczną istotę procesu, mogą się skoncentrować tylko na mnemotechnicznym wykorzystaniu tych wykresów. Na kaŝdym z nich pokazano za pomocą czarnych strzałek sposób odczytywania temperatury gazu po zdławieniu izentalpowym. Weźmy dla przykładu powietrze. Nurkujemy w wodzie o temperaturze 5 st.c. Wyszukujemy izotermę o tej temperaturze. Ciśnienie początkowe w butli wynosi 200 bar. Na izotermie 5 st.c wyszukujemy punkt, w którym przecina się ona z wartością 200 bar. To miejsce jest zaznaczone czarną kropką. Jest to punkt, w którym zaczyna się przemiana gazu. PoniewaŜ przemiana jest izentalpowa, to na tym wykresie będzie odbywała wzdłuŝ linii poziomej. Przemiana kończy się w momencie, gdy osiągniemy ciśnienie końcowe - w tym przypadku 10 bar. Końcowy punkt, zaznaczony strzałką, znajduje się pomiędzy izotermami -30 st.c i -35 st.c. MoŜna przyjąć, Ŝe temperatura końcowa będzie wynosiła -34 st.c. Podobna analizę moŝna przeprowadzić, gdy ciśnienie w butli będzie odpowiednio 150 bar i 100 bar. Temperatura powietrza po rozpręŝeniu będzie wówczas wynosiła odpowiednio -25 st.c oraz -15 st.c. Natomiast jeśli weźmie się pod uwagę trimix 16/20, to okaŝe się, Ŝe izotermy są prawie poziome. W tej mieszaninie prawie wcale nie następuje zmiana temperatury przy przepływie przez pierwszy stopień. Analizując w podobny sposób pozostałe wykresy moŝna wyciągnąć następujące wnioski: Im wyŝsze jest ciśnienie początkowe powietrza w butli, tym niŝsza jest jego temperatura po rozpręŝeniu.

Izotermy dla nitroxu są bardziej strome, zatem przy tych samych warunkach otrzymuje się niŝsze temperatury po rozpręŝeniu niŝ dla powietrza. Zwiększanie ilości tlenu w mieszance oddechowej powoduje zwiększenie efektu Joule'a Thomsona. Dekompresja na tlenie podczas nurkowania podlodowego moŝe się łatwo zakończyć zamarznięciem automatu. UŜycie nitroxu przy nurkowaniu podlodowym powoduje, Ŝe automat jest bardziej podatny na zamarzanie Stosując trimix 16/20 nie ma moŝliwości zamarznięcia automatu, niezaleŝnie od temperatury wody i ciśnienia w butli - izotermy są prawie poziome Dla trimixu 12/40 izotermy są nachylone przeciwnie niŝ dla powierza, temperatura mieszanki po przepłynięciu przez pierwszy stopień zwiększa się. PoniŜej przedstawione są wykresy entalpia-ciśnienie dla kilku róŝnych gazów uŝywanych w nurkowaniu. Wykres dla tlenu

Wykres dla powietrza Wykres dla nitroksu 36

Wykres dla trimiksu 16/20 Wykres dla trimiksu 12/40 Wiktor Bolek