Key words:isolation, investigation, purification, pig hypophysis, isohormons, prolactin

Podobne dokumenty
CEL ĆWICZENIA: Zapoznanie się z przykładową procedurą odsalania oczyszczanych preparatów enzymatycznych w procesie klasycznej filtracji żelowej.

Deproteinizacja jako niezbędny etap przygotowania próbek biologicznych

- oznaczenia naukowo-badawcze. - jedna z podstawowych technik. - oznaczenia laboratoryjnodiagnostyczne. Elektroforeza. badawczych.

Sposób otrzymywania białek o właściwościach immunoregulatorowych. Przedmiotem wynalazku jest sposób otrzymywania fragmentów witellogeniny.

SKUTECZNOŚĆ IZOLACJI JAK ZMIERZYĆ ILOŚĆ KWASÓW NUKLEINOWYCH PO IZOLACJI? JAK ZMIERZYĆ ILOŚĆ KWASÓW NUKLEINOWYCH PO IZOLACJI?

Oznaczanie mocznika w płynach ustrojowych metodą hydrolizy enzymatycznej

EKSTRAHOWANIE KWASÓW NUKLEINOWYCH JAK ZMIERZYĆ ILOŚĆ KWASÓW NUKLEINOWYCH PO IZOLACJI? JAK ZMIERZYĆ ILOŚĆ KWASÓW NUKLEINOWYCH PO IZOLACJI?

ROZPORZĄDZENIE MINISTRA ŚRODOWISKA 1)

JAK ZMIERZYĆ ILOŚĆ KWASÓW NUKLEINOWYCH PO IZOLACJI? JAK ZMIERZYĆ ILOŚĆ KWASÓW NUKLEINOWYCH PO IZOLACJI?

BADANIE WŁASNOŚCI KOENZYMÓW OKSYDOREDUKTAZ

ĆWICZENIE 5 Barwniki roślinne. Ekstrakcja barwników asymilacyjnych. Rozpuszczalność chlorofilu

Słowa kluczowe: prolaktyna, izomer, hiperprolaktynemia, modyfikacja posttranslacyjna

KREW: 1. Oznaczenie stężenia Hb. Metoda cyjanmethemoglobinowa: Zasada metody:

Obliczenia chemiczne. Zakład Chemii Medycznej Pomorski Uniwersytet Medyczny

1. PRZYGOTOWANIE ROZTWORÓW KOMPLEKSUJĄCYCH

Adsorpcja błękitu metylenowego na węglu aktywnym w obecności acetonu

PL B1. Preparat o właściwościach przeciwutleniających oraz sposób otrzymywania tego preparatu. POLITECHNIKA ŁÓDZKA, Łódź, PL

SPIS TREŚCI OD AUTORÓW... 5

Spis treści. Aparatura

Spektrofotometryczne wyznaczanie stałej dysocjacji czerwieni fenolowej

Zakład Biologii Molekularnej Materiały do ćwiczeń z przedmiotu: BIOLOGIA MOLEKULARNA

Chromatogramy Załącznik do instrukcji z Technik Rozdzielania Mieszanin

KARTA KURSU. Metody biologii molekularnej w ochronie środowiska. Molecular biological methods in environmental protection. Kod Punktacja ECTS* 2

LEKI CHEMICZNE A LEKI BIOLOGICZNE

XXIV KONKURS CHEMICZNY DLA GIMNAZJALISTÓW ROK SZKOLNY 2016/2017

6. ph i ELEKTROLITY. 6. ph i elektrolity

Kuratorium Oświaty w Lublinie ZESTAW ZADAŃ KONKURSOWYCH Z CHEMII DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2016/2017 ETAP TRZECI

Roztwory buforowe (bufory) (opracowanie: dr Katarzyna Makyła-Juzak)

1. Stechiometria 1.1. Obliczenia składu substancji na podstawie wzoru

Oznaczanie żelaza i miedzi metodą miareczkowania spektrofotometrycznego

PathogenFree DNA Isolation Kit Zestaw do izolacji DNA Instrukcja użytkownika

(12) TŁUMACZENIE PATENTU EUROPEJSKIEGO (19) PL (11) PL/EP (96) Data i numer zgłoszenia patentu europejskiego:

PODSTAWY STECHIOMETRII

Scenariusz lekcji pokazowej z chemii

Zastosowanie metody Lowry ego do oznaczenia białka w cukrze białym

Elementy enzymologii i biochemii białek. Skrypt dla studentów biologii i biotechnologii

RÓWNOWAGI REAKCJI KOMPLEKSOWANIA

g % ,3%

ĆWICZENIE 4. Oczyszczanie ścieków ze związków fosforu

Podstawy toksykologiczne

Laboratorium Podstaw Biofizyki

ELEKTROFOREZA BIAŁEK W ŻELU POLIAKRYLAMIDOWYM W WARUNKACH DENATURUJĄCYCH

Zakład Biologii Molekularnej Materiały do ćwiczeń z przedmiotu: BIOLOGIA MOLEKULARNA

ĆWICZENIE 5 MECHANIZMY PROMUJĄCE WZROST ROŚLIN

PODSTAWOWE TECHNIKI PRACY LABORATORYJNEJ: WAŻENIE, SUSZENIE, STRĄCANIE OSADÓW, SĄCZENIE

Opracowanie metodyk METODYKA OZNACZANIA KWASU ASKORBINOWEGO,

ANALIZA TŁUSZCZÓW WŁAŚCIWYCH CZ II

Making the impossible possible: the metamorphosis of Polish Biology Olympiad

ĆWICZENIE 2. Usuwanie chromu (VI) z zastosowaniem wymieniaczy jonowych

ĆWICZENIE 1. Aminokwasy

Spektroskopia molekularna. Ćwiczenie nr 1. Widma absorpcyjne błękitu tymolowego

Szkoła Letnia STC Łódź 2013 Oznaczanie zabarwienia cukru białego, cukrów surowych i specjalnych w roztworze wodnym i metodą MOPS przy ph 7,0

spektropolarymetrami;

Metody badania ekspresji genów

S YLABUS MODUŁU (PRZEDMIOTU) I nformacje ogólne

Inżynieria Środowiska

Instrukcja do ćwiczeń laboratoryjnych

Metody analizy białek - opis przedmiotu

Wpływ oczyszczania soków z oddzieleniem osadu po defekacji wstępnej na wybraneparametrysokurzadkiego

009 Ile gramów jodu i ile mililitrów alkoholu etylowego (gęstość 0,78 g/ml) potrzeba do sporządzenia 15 g jodyny, czyli 10% roztworu jodu w alkoholu e

Próba kontrolna (PK) 1000 l 1000 l

OZNACZANIE ŻELAZA METODĄ SPEKTROFOTOMETRII UV/VIS

Trichlorek fosforu. metoda oznaczania dr EWA GAWĘDA Centralny Instytut Ochrony Pracy Państwowy Instytut Badawczy Warszawa ul.

PL B1. FRYDRYCHOWSKI ANDRZEJ, Gdańsk, PL BUP 08/05. ANDRZEJ FRYDRYCHOWSKI, Gdańsk, PL WUP 09/10

Laboratorium 8. Badanie stresu oksydacyjnego jako efektu działania czynników toksycznych

PROJEKT WSPÓŁFINANSOWANY PRZEZ UNIĘ EUROPEJSKĄ Z EUROPEJSKIEGO FUNDUSZU ROZWOJU REGIONALNEGO 1 z 7

K02 Instrukcja wykonania ćwiczenia

Walidacja metod analitycznych Raport z walidacji

STRESZCZENIE PRACY DOKTORSKIEJ

OZNACZANIE ZAWARTOŚCI MANGANU W GLEBIE

TECHNIKI SEPARACYJNE ĆWICZENIE. Temat: Problemy identyfikacji lotnych kwasów tłuszczowych przy zastosowaniu układu GC-MS (SCAN, SIM, indeksy retencji)

Cystatin C as potential marker of Acute Kidney Injury in patients after Abdominal Aortic Aneurysms Surgery preliminary study

Ocena rozprawy doktorskiej lek. wet. Dagmary Winiarczyk. Przydatność proteomiki w rozpoznawaniu nefropatii różnego pochodzenia u psów

Wpływ ilości modyfikatora na współczynnik retencji w technice wysokosprawnej chromatografii cieczowej

etyloamina Aminy mają właściwości zasadowe i w roztworach kwaśnych tworzą jon alkinowy

d[a] = dt gdzie: [A] - stężenie aspiryny [OH - ] - stężenie jonów hydroksylowych - ] K[A][OH

VI. OCENA NARAŻENIA ZAWODOWEGO I ŚRODOWISKOWEGO NA DZIAŁANIE KSENOBIOTYKÓW

ALGALTOXKIT F Procedura testu

Chemia kryminalistyczna

Wrocław, 17/12/2012 Strona 1/7 RAPORT Z BADAŃ

ĆWICZENIE NR 12. Th jest jednym z produktów promieniotwórczego rozpadu uranu. Próbka

WYMAGANIA DO KOLOKWIUM

Zad: 5 Oblicz stężenie niezdysocjowanego kwasu octowego w wodnym roztworze o stężeniu 0,1 mol/dm 3, jeśli ph tego roztworu wynosi 3.

Laboratorium 5. Wpływ temperatury na aktywność enzymów. Inaktywacja termiczna

Oznaczanie SO 2 w powietrzu atmosferycznym

Instrukcja do ćwiczeń laboratoryjnych

Reakcje charakterystyczne aminokwasów

Konkurs przedmiotowy z chemii dla uczniów gimnazjów 6 marca 2015 r. zawody III stopnia (wojewódzkie)

ĆWICZENIE II Kinetyka reakcji akwatacji kompleksu [Co III Cl(NH 3 ) 5 ]Cl 2 Wpływ wybranych czynników na kinetykę reakcji akwatacji

Utylizacja i neutralizacja odpadów Międzywydziałowe Studia Ochrony Środowiska

3. Badanie kinetyki enzymów

ĆWICZENIE I - BIAŁKA. Celem ćwiczenia jest zapoznanie się z właściwościami fizykochemicznymi białek i ich reakcjami charakterystycznymi.

WYZNACZANIE STAŁEJ DYSOCJACJI p-nitrofenolu METODĄ SPEKTROFOTOMETRII ABSORPCYJNEJ

Biochemia Ćwiczenie 4

Otrzymany w pkt. 8 osad, zawieszony w 2 ml wody destylowanej rozpipetować do 4 szklanych probówek po ok. 0.5 ml do każdej.

ANALIZA ŚLADOWYCH ZANIECZYSZCZEŃ ŚRODOWISKA I ROK OŚ II

Pytania z Wysokosprawnej chromatografii cieczowej

ZADANIA Z KONKURSU POLITECHNIKI WARSZAWSKIEJ (RÓWNOWAGI W ROZTWORZE) Opracował: Kuba Skrzeczkowski (Liceum Akademickie w ZS UMK w Toruniu)

POLITECHNIKA POZNAŃSKA ZAKŁAD CHEMII FIZYCZNEJ ĆWICZENIA PRACOWNI CHEMII FIZYCZNEJ

Transkrypt:

Streszczenie Celem badań było opracowanie metody otrzymywania prolaktyny i jej izohormonów nieglikozylowanej prolaktyny (ngprl) i glikozylowanej (GPRL) oraz zbadanie ich właściwości fizykochemicznych, biologicznych i immunologicznych. Stosując metodę Box a matematycznego planowania eksperymentu opracowano sposób otrzymywania kwaśnego proszku acetonowego (KPA) z liofilizowanych przysadek świńskich, zawierający obie formy prolaktyny. Oddzielono białka balastowe poprzez rozpuszczenie KPA w 0,1M rrze CH 3 COOH i strącenie surowej prolaktyny doprowadzając ph roztworu do 5,0. Uzyskany osad oddzielano i rozpuszczano w 0,05M rrze buforu fosforanowego, ph 7,50 i adsorbowano na kolumnie wypełnionej DEAESefadeksem A25. Prolaktynę nieglikozylowaną (ngprl) eluowano przy stężeniu NaCl 0,09 0,16M, a glikozylowaną prolaktynę (GPRL) w zakresie stężeń 0,19 0,25M. Stosując sączenie żelowe na kalibrowanej kolumnie wypełnionej Sefadeksem G100 określono, że GPRL rozdziela się na frakcje: 1a o masie cząsteczkowej 25,2 kda, a 2ga o masie 17,4 kda. ngprl miała natomiast masę cząsteczkową 23 kda. Czystość izohormonów została potwierdzona metodą elektroforezy w żelu poliakrylamidowym zawierającym SDS. Analiza glikozylowanej PRL wykazała obecność mannozy i fukozy. Obie formy PRL wykazały wysoką aktywność biologiczną testem na pseudociężarnych samicach szczura, a uzyskane przeciwciała królicze wykazały silne miano ngprl. Miano przeciwciał dla GPRL było znacznie niższe. Opracowano metodę otrzymywania nieglikozylowanej prolaktyny (ngprl) i glikozylowanej (GPRL). Wykazano znaczące różnice w badanych ich właściwościach. Abstract The aim of this study was to develop a method for obtaining prolactin and her isohormonsglycosylated form (GPRL) and to study their physicochemical, biological and immunological properties. Using the method of Box `a mathematical experiment planning method was developed for obtaining the acid acetone powder (KPA) from freezedried pig hypophyses containing both forms of prolactin. Ballast proteins separated by dissolving KPA in 0,1M solution CH 3 COOH and precipitation of crude prolactin bring the solution ph to 5.0. The resulting precipitate separated and melt in 0.05 M phosphate buffer solution, ph 7.50, and absorbed on the column filled with DEAESephadexem A25. Prolactin not glycosylated (ngprl) eluate at 0,090,16 M NaCl concentration, and glycosylated prolactin (GPRL) in the concentration range 0,190,25 M. Applying gel filtration on a column calibrated Sephadex G100 states that GPRL in the fractions are separated: the first molecular mass of 25.2 kda and the other with a mass of 17.4 kda, ngprl had a molecular mass of 23 kda. Purity of the isohormons was confirmed using gel electrophoresis in SDS containing polyacrylamide. Glycosylatet analysis showed the presence of PRL mannose and fucose. Both forms of PRL showed high biological activity test for pseudopregnant female rat, and rabbit antibodies obtained showed a strong antibody titres to the ngprl. The titre of antibodies to GPRL was significantly lower, however. Developed a method of receiving not glycosylated prolactin (ngprl) and glycosylated (GPRL). Shown significant differences in the test properties. Key words:isolation, investigation, purification, pig hypophysis, isohormons, prolactin Słowa kluczowe: Otrzymywanie, oczyszczanie, przysadki świńskie, izohormony, prolaktyna * Praca naukowa finansowana ze środków na naukę w latach 2006 2008 jako projekt badawczy własny Nr N405 002 31/0124

Prolaktyna (PRL) jest hormonem polipeptydowym przysadki mózgowej. Zbudowana jest z 200 reszt aminokwasowych i posiada 3 mostki di siarczkowe. Jest jednym z najstarszych hormonów, gdyż wykryto ją nawet u owadów. Jest jednocześnie jednym z najwszechstronniejszych hormonów. U człowieka powoduje ponad trzysta efektów metabolicznych [1,2]. Większość poznanych funkcji PRL związana jest przede wszystkim z utrzymaniem homeostazy organizmu i rozmnażaniem [3]. Prolaktyna jest przedmiotem obszernych badań, a jej właściwości opisano w licznych pracach poglądowych i przeglądowych [1,2,4,5]. Badania ostatnich lat pozwoliły wykazać, że różnorodność form prolaktyny związana jest z licznymi modyfikacjami posttranslacyjnymi: proteolizą, glikozylacją, fosforylacją, sulfatacją, deamidacją, polimeryzacją oraz z kompleksowaniem z innymi białkami [1,2]. Poza badaniami nad rolą prolaktyny w ustroju oraz jej znaczeniem diagnostycznym [5,6], zwróciliśmy uwagę na możliwości jej zastosowania jako substancji leczniczej w kardiologii [711], ortopedii w celu zwiększenia gęstości kości [12,13] oraz jako składnik płynów do przechowywania narządów w transplantacji [1416]. Interesujące wydaje się także jej zastosowanie dla stymulacji laktacji u loch [17] oraz dla stymulacji wzrostu i rozwoju prosiąt [18]. Ze względu na praktyczne aspekty stosowania prolaktyny (ngprl) i jej glikozylowanego izohormonu (GPRL) celem badań była modyfikacja metody otrzymywania obu form prolaktyny oraz określenie wybranych ich właściwości [20,21]. Otrzymywanie kwaśnego proszku acetonowego (KPA) Nr doświadczenia 1 2 3 4 5 6 7 8 Wartość czynnika w bezwzględnym układzie współrzędnych Wartość czynnika w naturalnym układzie współrzędnych Z1 Z2 Z3 1 1 1 15 2 20 1 1 +1 15 2 +20 1 +1 1 15 4 20 1 +1 +1 15 4 +20 +1 1 1 45 2 20 +1 1 +1 45 2 +20 +1 +1 1 45 4 20 +1 +1 +1 45 4 +20 9 30 3 0 Tabela I. Macierz planowania eksperymentu 23 (Metoda Box a) Przysadki świńskie liofilizowane ekstrahowano 70% zakwaszonym acetonem o ph 1,3. Objętość ekstrahenta była stała i wynosiła 10 objętości na jednostkę masy surowca (10:1). Eksperyment przeprowadzono zgodnie z zastosowaniem matematycznego planowania eksperymentu w układzie 2 3 (metoda Box a). Badano wpływ 3 czynników: czasu ekstrakcji (15 i 45 minut), objętości acetonu do strącania (2 i 4 litry) oraz temperatury strącania (20 o C i +20 o C) na zmienne zależne: masa osadu KPA (Y1) oraz zawartość w nim białka (Y2). Plan eksperymentu przedstawiono w tabeli I. Czynnik A czas ekstrakcji surowca; Czynnik B objętości acetonu zużytego do strącania białek z ekstraktu; Czynnik C temperatura strącania białek ekstraktu. W planie eksperymentu doświadczenie nr 9 odpowiada poziomowi podstawowemu. Jednostkowy przedział zmian dla czasu ekstrakcji () = 30 min.; objętości acetonu () =3 l; temperatury strącania () = 20 o C. Otrzymywanie surowej prolaktyny (P2) 10g osadu KPA otrzymany według wariantu 7 zawieszano w 1 litrze 0,1M roztworu kwasu octowego. Część nierozpuszczalną oddzielano wirowaniem, a nadsącz doprowadzano do wartości ph 5,0 za pomocą 2M roztworu amoniaku. Strącanie prolaktyny prowadzono w temperaturze od 2 do 6 o C. Sformowany osad surowej prolaktyny oddzielano wirowaniem. Otrzymany osad zawieszano w wodzie i liofilizowano, a nadsącz wylewano [20]. Oczyszczanie surowej prolaktyny (P2) 1g osadu surowej prolaktyny (P2) rozpuszczano w 200 ml 0,05M roztworu buforu fosforanowego, ph 7,5 i wnoszono na kolumnę chromatograficzną o wymiarach 20 x 4,2 cm, która wypełniona była DEAESefadeksem A25, który zrównoważono tym samym buforem. Zaadsorbowane substancje eluowano w gradiencie stężenia NaCl od 0,00 do 0,40M w buforze fosforanowym, ph 7,5. Zawartość białka w otrzymanych eluatach oznaczano spektrofotometrycznie przy długości fali λ=278 nm. Uzyskane zeluowane frakcje białek, od 12 do 16 i od 28 do 36, łączono ze sobą i strącano 50% etanolem w temperaturze 2 4 o C. Otrzymane osady zawieszano w wodzie i liofilizowano. Uzyskano 2 frakcje: P4 i P5. Frakcję P5 rozpuszczano w 0,1M roztworze kwasu octowego i wnoszono na kolumnę wypełnioną Sefadeksem G100, który zrównoważono 0,1M roztworem kwasu octowego. Uzyskano 2 frakcje: P6 i P7. Badania analityczne W procesie izolacji i oczyszczania białek określano następujące ich właściwości: Zawartość białka Metodą spektrofotometryczną mierząc ekstynkcję 0,05% roztworu białka przy długości fali λ=278 nm. Pomiarów absorbancji dokonywano w kuwetach kwarcowych o grubości 1 cm przy użyciu spektrofotometru UVVIS Cecil 3021 (Anglia). Dokładność fotometryczna spektrofotometru wynosiła + 0,005 A. Współczynnik optyczny [K] Mierzono ekstynkcję 0,05% roztworu białka przy długości fali λ=250 nm i λ=278 nm. Współczynnik [K] obliczano jako stosunek ekstynkcji przy długości fali λ=278 nm/λ=250 nm.

Stosunek tyrozyny [Tyr] do tryptofanu [Trp] Mierzono ekstynkcję 0,05% roztworu białka w 0,1 M roztworze NaOH przy długości fali λ=280 nm i λ=294 nm. Wartość stosunku wyliczono ze wzoru: [Tyr]/[Trp] = [0,592 x E(294) 0,263 x E(280)] / [0,263 x E(280)] 0,170 x E(294)], gdzie: E wartość absorbancji przy odpowiedniej długości fali [22]. Zawartość cukrów fukozy i mannozy. Zawartość fukozy oznaczano metodą w obecności cysteiny i kwasu siarkowego, a zawartość mannozy metodą orcynolową [23]. Masę cząsteczkową Określano wobec wzorca Molecular weight markers 12.300 78.000 firmy Sigma metodą elektroforezy w żelu poliakrylamidowym z dodatkiem SDS [24]. Oznaczanie aktywności biologicznej Badanie przeprowadzono wobec II Międzynarodowego Wzorca PRL na 22dniowych pseudociężarnych szczurzycach szczepu Wistar o masie ciała 44 52 g. Badania przeprowadzono za zgodą Komisji Etycznej Śl.A.M. [25]. Metody immunologiczne Do badań nad uzyskaniem przeciwciał użyto po 6 młodych królików o masie ciała około 6 kg [26]. Każdemu królikowi podano 500 μg prolaktyny rozpuszczonej w 1 ml 0,9% roztworu NaCl oraz 250 μl zhomogenizowanego pełnego adiuwanta Freuda. Dawki przypominające podawano po 100 μg hormonu. Szczepienie prowadzono do uzyskania miana ngprl około 40.000/ml surowicy. Po uzyskaniu odpowiedniego miana pobierano u królików krew z żyły brzeżnej ucha na skrzep lub heparynę i uzyskiwano surowicze przeciwciała, które przechowywano w zamrażarce. Przeciwciała na GPRL uzyskiwały miano na poziomie 10.000/ml surowicy. Oznaczanie zawartości PRL metodą RIA Do oznaczenia zawartości PRL zastosowano królicze przeciwciała oraz jodowaną czystą PRL (ngprl). Swoiste wiązanie ngprl było na poziomie 30% co odpowiadało wymaganiom. Obliczenia matematyczne i statystyczne Wyniki przedstawiono jako średnią (x). Obliczono odchylenie standardowe (Sd). Otrzymywanie kwaśnego proszku acetonowego (KPA) Kwaśny proszek acetonowy otrzymywano z 200 g przysadek świńskich liofilizowanych według schematu 2 3. Uzyskane wyniki zestawiono w tabeli II. Największą wydajność KPA uzyskano gdy czas ekstrakcji wynosił 45 minut, do strącenia białek użyto 4 objętości acetonu, a temperatura strącania wynosiła: 20 o C. Największa zawartość białka w 1 g KPA uzyskano w wariancie 3 Wariant 1 2 3 4 5 6 7 8 Kwaśny proszek acetonowy (KPA) Masa [g/kg] Zawartość białka [mg/g] 19,8 + 4,3 662,5 + 143,8 17,6 + 2,9 678,1 + 111,7 23,9 + 5,2 752,2 + 163,7 23,8 + 4,8 631,6 + 126,8 20,7 + 2,3 627,1 + 69,7 19,7 + 3,9 670,3 + 132,7 25,5 + 4,1 627,0 + 100,8 22,5 + 1,9 593,3 + 50,1 9 18,8 + 2,9 629,3 + 97,1 Poziom istotności 0.002 Korelacja cząstkowa (r) 0,362 0,838 0,149 gdzie ekstrakcję prowadzono tylko 15 minut i strącano 4 objętościami acetonu w temperaturze 20 o C. Czynnikiem warunkującym wydajność KPA było stężenie acetonu przy strącaniu. Zawartość białka w KPA związana natomiast była z temperaturą strącania. Otrzymywanie surowej PRL Osad prolaktyny frakcja (P1) otrzymany w optymalnym wariancie (Tabela 2, pozycja 7) rozpuszczano w 0,1M roztworze kwasu octowego i doprowadzano do ph 5,0. Osad oddzielano wirowaniem, zawieszano w wodzie i liofilizowano frakcja (P2). Z 10 g frakcji (P1) o aktywności 14,5 j.m./mg otrzymywano 2,4 g osadu frakcja (P2) o aktywności 21,1 j.m./mg z wydajnością 40,5%. Właściwości frakcji (P1) zestawiono w tabeli III. Izolacja izohormonów PRL 0,182 0,092 0,564 Tabela II. Wpływ warunków otrzymywania kwaśnego proszku acetonowego (KPA) na jego masę i zawartość białka. nieistotne statystycznie Osad (P2) rozpuszczano w 0,05M roztworze buforu fosforanowego, ph 7,5 i wnoszono na kolumnę wypełnioną DEAESefadeksem A25. Niezaadsorbowana frakcja białka (P3) była nieaktywna. Aktywne frakcje eluowano przy stężeniu NaCl 0,09 0,16M frakcja (P4) i 0,19 0,25M frakcja (P5). Wykonywano sączenie żelowe otrzymanych frakcji na kolumnie wypełnionej Sefadeksem G100 w 0,1M roztworze kwasu octowego. Frakcja (P4) eluowała się w postaci 1go szczytu i jej masa cząsteczkowa wynosiła ~ 23 kda. Frakcję (P5) rozdzielono na 2 frakcje: (P6) o masie cząsteczkowej 25 kda i (P7) o masie cząsteczkowej 17,4 kda. Wybrane właściwości poszczególnych frakcji przedstawiono w tabeli IV. 1/ μg/mg białka; 2/ maksymalna aktywność biologiczna 40,0 j.m./mg; Każdy etap oczyszczania frakcji (P1) i (P2) zwiększa zawartość białka oraz aktywność biologiczną o około 50%. Również zwiększa się stosunek tyrozyny do tryptofanu, któ

Wariant 1 2 3 4 5 6 7 8 Masa [g/kg] Aktywność biologiczna [j.m./mg] 3,7 + 1,0 6,2 + 1,9 8,4 + 2,0 8,7 + 0,8 9,2 + 1,3 14,2 + 1,9 12,7 + 1,1 14,5 + 1,2 Surowa prolaktyna (P1) Współczynnik optyczny [K] Wydajność [j.m./kg] 2,92 + 1,11 3,81 + 1,21 2,70 + 0,70 3,71 + 0,90 3,58 + 1,78 3,01 + 1,11 3,90 + 1,00 3,20 + 1,62 0,99 1,34 1,37 1,38 1,40 1,56 1,80 1,57 10,804 23,622 22,680 32,277 32,936 42,742 49,530 46,400 9 2,96 + 0,51 8,9 + 1,3 1,26 26,344 0,947 0,956 0,871 0.013 0,602 0,349 0,749 Poziom istotności 0.046 Korelacja cząstkowa (r) 0,658 0,460 0,693 0,011 0,796 0,917 0,961 Tabela III. Wpływ warunków otrzymywania kwaśnego proszku acetonowego (KPA) na właściwości surowej prolaktyny (P1) Właściwości P1 P2 Zawartość białka [%] 54,6 + 2,9 60,2 + 3,0 Stosunek [Tyr]/[Trp] 2,63 + 0,81 2,93 + 1,00 Współczynnik optyczny [K] 1,39 + 0,06 1,28 + 0,03 Aktywność biologiczna [j.m./ 14,5 + 2,5 21,1 + 3,1 mg] 2/ 1560 1545 Masa cząsteczkowa [kda] 10,2 2,4 Masa osadu [g] Tabela IV. Właściwości prolaktyny na etapach jej oczyszczania ry świadczy o zmniejszeniu się ilości białek balastowych. Frakcja (P3) była nieaktywna, a jej obraz w elektroforezie nie odpowiadał czystej PRL. Aktywność biologiczna frakcji (P4) wynosiła 25 j.m./mg, a masa cząsteczkowa 23 kda. Odpowiada to właściwościom nieglikozylowanej prolaktyny (ngprl). Inne badane właściwości odpowiadały czystej PRL. Współczynnik optyczny [K] wynosił 1,50, a stosunek [Tyr]/[Trp] 3,51. Odpowiadało to zawartości tych reszt aminokwasowych w cząsteczce ngprl. Nie stwierdzono obecności fukozy, a tylko śladowe ilości mannozy. Frakcje (P5) oczyszczano za pomocą sączenia żelowego na Sefadeksie G100. Pozwoliło to otrzymać jednorodną frakcję (P6) odpowiadającą glikozylowanej PRL (GPRL) oraz frakcję (P7). Masa cząsteczkowa GPRL określona metodą sączenia żelowego na kolumnie wypełnionej Sefadeksem G100 oraz elektroforezą w żelu PAA z dodatkiem SDS wynosiła 25,4 + 0,6 kda. Aktywność biologiczna GPRL wynosiła 38 j.m./mg. Zawartość mannozy odpowiadała 15 resztom, a fukozy 1 reszcie na cząsteczkę glikozylowanej PRL. Stosunek [Tyr]/[Trp] wynosił 3,12, a współczynnik [K] 1,54. Otrzymana frakcja (P5) jest więc glikozylowanym izohormonem PRL. Właściwości otrzymanych izohormonów prolaktyny zestawiono w tabeli V. Frakcja (P7) jest stosunkowo niskocząsteczkowa 17,4 kda. Jej niska aktywność biologiczna 12,2 j.m./mg sugeruje, że może być fragmentem GPRL, o czym świadczy zawartość 2 reszt mannozy. Charakterystyczny jest natomiast wysoki współczynnik optyczny [K] 1,75. Frakcja ta będzie przedmiotem specjalnych badań, ze względu na jej możliwe nowe właściwości biologiczne i perspektywę zastosowania. Badania immunologiczne Immunizacja królików ngprl pozwoliła otrzymać przeciwciała o zadawalającym mianie około 40.000/ml, a także dobry stopień wiązania 30%. W badanych warunkach GPRL wykazała niskie zdolności wytworzenia przeciwciał, co może sugerować o możliwościach jej stosowania u ludzi. Przeciwciała anty ngprl zostały wykorzystane do oznaczania zawartości PRL na etapach jej oczyszczania. Właściwości Zawartość białka Stosunek [Tyr]/[Trp] Współczynnik optyczny [K] Zawartość fukozy [μg/mg] 1/ Zawartość mannozy [μg/mg] 1/ Aktywność biologiczna [j.m./mg] 2/ Masa cząsteczkowa [kda] Tabela V. Właściwości izohormonów prolaktyny (ngprl), (GPRL) i P7 1/ μg/mg białka; 2/ maksymalna aktywność biologiczna 40,0 j.m./mg; Frakcje prolaktyny ngprl GPRL P7 81,5 + 2,7 90,0 + 1,4 86,2 + 1,5 3,51 + 0,26 3,12 + 0,2 3,4 + 1,1 1,48 + 0,02 1,51 + 0,10 1,75 + 0,88 ślady 1,5 + 0,4 0,91 + 0,02 <0,3 48,5 + 2,1 22,5 + 2,4 25,8 + 2,9 38,2 + 3,9 17,4 + 1,0 23,0 25,4 17,4

Frakcje PRL P1 P2 P3 P4 (ngprl) P5 P6 (GPRL) P7 CPM równoległe 5.513 5.681 4.473 4.353 12.277 12.499 2.549 2.445 10.198 10.442 11.799 12.089 12.204 11.978 Średnia Wartość netto (TK) Tabela VI. Zawartość prolaktyny we frakcjach oznaczona metodą RIA % wiązania Zawartość PRL [ng/ml] [%] 5.597 5.166 35 64 32 4.416 3.985 27 85 42,5 12.388 11.957 81 7 3,5 2.497 2.066 14 190 95 10.320 9.889 67 15 7,5 11.944 11.513 78 9 4,5 12.091 11.600 79 10 5 Wyniki zestawiono w tabeli VI. Tabela VI. Zawartość prolaktyny we frakcjach oznaczona metodą RIA Na początkowych etapach oczyszczania zawartość PRL we frakcjach (P4) i (P5) jest znaczna do 40%. Frakcja (P3) praktycznie nie zawiera PRL. Wysoką zawartość PRL stwierdzono natomiast we frakcji (P4) do 90%. Glikozylowana PRL wykazuje słabe właściwości antygenowe co z punktu widzenia jej możliwości stosowania u ludzi jest zjawiskiem pozytywnym. Duże podobieństwo w budowie cząsteczek PRL pochodzących od różnych gatunków zwierząt i ludzi daje możliwość stosowania tego hormonu pochodzenia zwierzęcego w medycynie. Tym bardziej, że zawartość PRL w przysadkach mózgowych świń, krów i owiec jest około 50 razy wyższa niż w przysadce człowieka 2550 μg/g. Długi czas uważano, że polifunkcjonalność prolaktyny, podobnie jak innych hormonów białkowopeptydowych, związana jest z budową samego hormonu. Następnie stwierdzono, że PRL może istnieć w postaci monomeru, dimeru lub w postaci zagregowanej lub częściowo jako prolaktyna sfragmentowana o różnej masie cząsteczkowej [13]. Następnym etapem było wykrycie glikozylowanej prolaktyny (GPRL) u różnych gatunków zwierząt [1,2]. Stwierdzono, że glikozylacja ma różny wpływ na aktywność biologiczną hormonu [1,2]. Zwiększa lub zmniejsza jego aktywność. Ostatnio stwierdzono, że różnorodność cząsteczek PRL związana jest z posttranslacją. Jednym z najciekawszych kierunków badania frakcji PRL jest jej immunogenność, jak i angiogenność. Te właściwości związane są z glikozylacją oraz z fragmentacją cząsteczki PRL [1,2]. Stosując metodę ekstrakcji świeżych przysadek, wykryto w przysadkach świń glikozylowaną prolaktynę (GPRL) o masie cząsteczkowej 25 kda [27]. Wśród węglowodanów stwierdzono obecność heksozamin, mannozy, galaktozy oraz fukozy. W naszych badaniach zastosowaliśmy ekstrakcję przysadek liofilizowanych zakwaszonym acetonem z następowym oczyszczaniem osadu białek poprzez strącenie ich w punkcie izoelektrycznym przy ph=5,0. Metodą chromatografii jonowymiennej na DEAESefadeksie A25 otrzymaliśmy nieglikozylowaną (ngprl) oraz glikozylowaną prolaktynę (GPRL). Sączenie żelowe GPRL na kolumnie z Sefadeksem G100 pozwoliło uzyskać 2 frakcje istotnie różniące się między sobą masą cząsteczkową, ruchliwością elektroforetyczną oraz właściwościami fizykochemicznymi. Pierwsza frakcja o masie cząsteczkowej 25 kda, zawierała około 15 reszt mannozy oraz 1 resztę fukozy, a jej aktywność biologiczna wynosiła około 38,2 j.m/mg. Druga frakcja niskocząsteczkowa o masie cząsteczkowej 17,4 kda posiadała znacznie niższą aktywność biologiczną 16,0 j.m./mg i mniejszą zawartość węglowodanów. Uzyskane wyniki wskazują na istnienie różnych izoform prolaktyny, co byłoby istotnym uzasadnieniem polifunkcjonalności tego hormonu, w tym jego różnorodnym działaniem oraz możliwością szerszego stosowania nie tylko w weterynarii [17,18, ale również w badaniach klinicznych i zastosowaniu praktycznym [911,15]. Opracowano metodę izolacji izohormonów prolaktyny nieglikozylowanej (nprl) i glikozylowanej (GPRL) z przysadek świńskiich i wykazano ich różnice we właściwościach. Piśmiennictwo 1. Ryszka F, Dolińska B, Leszczyńska L. Izomery prolaktyny i ich funkcja biologiczna. Farm. Przegląd Naukowy 2008; 78: 4953. 2. Michalik J, Bartoszewicz Z. Prolaktyna (PRL) wielofunkcyjny hormon peptydowy. Postępy Biochemii 2002; 4: 296305. 3. Endocrinology Basic and Clinical Principles. Reds. Melmed S, Conn P.M. Humana Pres, New Jersey 2005, 204206. 4. ParataTurska J. Prolaktyna w układach chorobowych tkanki łącznej. Postępy Hig Med Dośw 2006; 60: 278285. 5. Kałużny M, Bolanowski M. Hiperprolaktynemia: Przyczyny, objawy kliniczne i możliwości terapeutyczne. Postępy Hig Med Dośw 2005; 59: 2027.

6. Vonderhaar B. K. Prolactin involvement in breast cancer. Endocrinerelated Cancer 1999; 6: 389404. 7. Ryszka F, Chylak M, Dolińska B. et al. Uptake of prolactin and tyroliberin by the heart. Int J Tissue React 2000; 4: 101104. 8. Ryszka F, Dolińska B, SuszkaŚwitek A. Distribution of prolactin in selected rats organs and tissues. Int J Tissue React 2002; 1: 99109. 9. Ryszka F, Dolińska B, SuszkaŚwitek A. The effect multiple doses of Biolactin (PRL) on the systolic blood pressure in rats with spontaneous arterial hypertension. Die Pharmazie 1998; 53: 886889. 10. Maciejewska I, Wieczorek M, Ryszka F. Effect of prolactin upon changes in the functioning and structure of the heart after adrenaline. Ann Acad Med Siles 1995; 29: 1926. 11. Ryszka F, Dolińska B. Wpływ prolaktyny na wybrane wskaźniki gazometryczne i biochemiczne krwi konserwowanej płynem ACD. Ann Aced Med Siles 1995; 29: 2733. 12. Ryszka F, Dolińska B. Innitial studies on the administration route of prolactin. Boll Chim Farm 2001; 3: 169171. 13. Ryszka F, Dolińska B, SuszkaŚwitek A. The influence of prolactin upon bones mineral density (BMD) and some biochemical marker sow rat females after ovariectomy. Acta Pol Bioch 2008; 3: 9799. 14. SzulcMusioł B. i wsp. The influence of prolactin on the chosen biochemical parameters of the rabbit liver in ischemia. Acta Pol Pharm 2004; 6: 477482. 15. Ryszka F. i wsp. Effect of prolactin on release of selected enzymes from the isolated rabbit liver. Transplant Proc 2004; 36: 25832585. 16. Ryszka F. i wsp. Effect of prolactin on microsomal cytochrom P450 system diuring warm ischemia injures. Pol J Pharmacol Suppl 2004; 56: 205206. 17. Dusza L, Murdza A, Dolińska B, Ryszka F. Effect of exogenous prolactin (PRL) on primaparous sows with agalactia. Endocrinol Farm Animals 1989; 2: 237241. 18. Ryszka F. Sposób przyspieszenia rozwoju prosiąt ssących. Zgłoszenie Patentowe RP nr P386294, 2008. Zgłoszenie Europejskie EP09460028, 13.07.2009. 19. Ryszka F. i wsp. Wpływ warunków otrzymywania kwaśnego proszku acetonowego (KPA) na parametry surowej prolaktyny. Ann Acad Med Siles 2003; 4: 5657. 20. Ryszka F, Dolińska B. Sposób otrzymywania prolaktyny. Zgłoszenie Patentowe RP nr P376248; 2005. 21. Ryszka F, Dolińska B. Isolation and properties of glucosylated pig prolactin (GPRL). Boll Chim Farm 2004: 4: 166169. 22. Ryszka F. Badania nad izolacją i właściwościami wybranych hormonów przysadki mózgowej. Rozprawa habilitacyjna, Zabrze 1981. 23. KłyszejkoStefanowicz I. Ćwiczenia z biochemii. PWN, Warszawa 1999,191210, 103110. 24. Lambin P, Rodin D, Fine J. A new method for determination of molecular weights of proteins by electrophoresis cross a sodium dodecyl sulfate PAGE. Animals Biochem 1973; 74: 567575. 25. Ryszka F. i wsp. Wpływ prolaktyny na masę macic szczurzych. Ann Acad Med Siles. 2003; 5657: 3942. 26. Kokot F, Strupnicki R. Metody radioimmunologiczne i radiokompetencyjne stosowane w klinice. PZWL, Warszawa 1985. 27. Lewis U. Chemistry of prolactin In Compative endocrinology of prolactin:. Eds. By Dellman h.d., Johnson I.A., Klubko D.M., Plenum Press New York 1997. Adres do korespondencji: Dr hab. n. farm. Barbara Dolińska Farmaceutyczny Zakład NaukowoProdukcyjny Biochefa, 41205 Sosnowiec, Kasztanowa 3 tel.: (32) 291 69 68 email: b.dolinska@biochefa.pl