Ważne rozkłady i twierdzenia Rozkład dwumianowy i wielomianowy Częstość. Prawo wielkich liczb Rozkład hipergeometryczny Rozkład Poissona Rozkład normalny i rozkład Gaussa Centralne twierdzenie graniczne Model Laplace'a błędów pomiarowych Funkcja charakterystyczna rozkładu 1
Rozkład dwumianowy Rozważmy doświadczenie, w którym możemy uzyskać dwie wykluczające się wartości (np. rzut monetą). Ich prawdopodobieństwa to: P A = p E=A A P A =1 p=q Definiujemy zmienną losową X, która przyjmuje wartości 1 i 0 dla zdarzeń A i A. Powtarzamy zdarzenie n razy i badamy rozkład zmiennej X = i=1 Prawdopodobieństwo zajścia najpierw k zdarzeń A i reszty A to: n X i p k q n k 2
Własności rozkładu dwumianowego Ostatecznie, przy dowolnej kolejności zdarzeń: P k =W n n! k = k! n k! pk q n k Jest to rozkład dwumianowy Możemy obliczyć wartość średnią i wariancję X i : E { X i }=1 p 0 q= p Podobnie dla ciągu n zdarzeń: Dla przykładu mamy wariancję ciągu 2 zdarzeń: 2 X = 2 2 p2 2 2 p 2 2 X i =E { x i p 2 }= 1 p 2 p 0 p 2 q= pq n E { X }= i=1 p=np 2 1 pq 1 2 2 p 2 0 q2 0 2 p 2 = 2 p 2 4 8 p 4 p 2 2 p 2 p 2 1 2 p p 2 4 p 2 =2 p 1 p =2 pq Ogólnie mamy: 2 X =npq 3
R. dwumianowy rysunki p=0.3 n=10 p=0.6 np=3.0 4
Rozkład wielomianowy Rozszerzając definicję na wiele możliwych zdarzeń: które się wzajemnie wykluczają: Mamy prawd. zajścia zdarzenia A j k razy: n W k 1, k 2,..., k l = E=A 1 A 2 A 3 A n P A j = p j, j=1 Jest to rozkład wielomianowy. Definiujemy X ij =1, gdy wynikiem i-tego pomiaru jest A j i 0 w przeciwnym razie oraz n! l j=1 Wtedy wartość średnia i kowariancja to: E { X j }= x j =n p j k j! j=1 l l p j =1 p j k j, j=1 l k j =n n X j = i=1 c ij =np i ij p j X ij 5
Częstość. Prawo Wielkich Liczb Częstość występowania zdarzenie A j to: n H j = 1 n i=1 X ij = 1 n X j Jest to zmienna losowa, dla której (przy n próbch): E {H j }= h j =E { x j n } = p j 2 H j = 2 X j n = 1 n 2 2 X j = 1 n p j 1 p j Wartość oczekiwana częstości jest równa jego prawdopodobieństwu. Iloczyn p j (1-p j ) jest zawsze mniejszy od 1/4, więc standardowe odchylenie częstości jest mniejsze niż 1/ n. Jest to prawo wielkich liczb. Przeprowadzenie n prób umożliwia pomiar prawdopodobieństwa zdarzenia A j, kwadrat błędu jest wtedy odwrotnie proporcjonalny do n. Jest to tzw. błąd statystyczny. 6
Rozkład hipergeomeryczny W urnie jest N kul K białych i N-K czarnych. W n próbach wyciągamy (bez zwracania) k kul białych i n-k=l czarnych. Kolejne próby są skorelowane. Prawdopodobieństwo takiego zdarzenia wynosi: K L k l W k = N n Definiujemy zmienną losową X = n i i=1 X i, gdzie X i przyjmuje wartość 1 dla białych i 0 dla czarnych. Można udowodnić, że E { X }=n K N Dla n«n przybliżamy rozkład dwumianowy: p= K N 2 nk K N N n X = N 2 N 1 N K, q= N, E { X }=n K N =np, 2 X = npq N n N 1 7
Przykłady rozkł. hipergeometrycznego Można uogólnić rozkład hipergeometryczny na kilka spsobów: Więcej własności niż dwie (podobne do przejścia od rozkładu dwu- do wielomianowego. Rozkład Polyi po każdym wylosowaniu dorzucamy m kulek danego koloru 8
Rozkład Poissona Rozkład dwumianowy, dla n ale przy stałym np=λ dąży do ściśle określonego rozkładu: lim n W n k= f k = k k! e Jest to rozkład Poissona. Badamy normalizację: k=0 f k = k=0 wartość oczekiwaną: E {K }= k=0 wariancję: i skośność: k k k k! e =e k! e = j=0 W k n = n k pk 1 2 j j! e = q n k 2! 3 3! =e e =1 E {K 2 }= 1 2 K =E {K 2 } [ E {K }] 2 = 1 2 = 3 =E { k k 3 }= = 3 3= 3 /2= 1/2 9
Rozkład Poissona - rysunek Stosuje się go, gdy mamy dużą liczbę niezależnych zdarzeń, z których tylko nieliczne mają interesującą nas własność. 10
Rozkład Poissona przykład Mamy jądro promieniotwórcze o czasie życia τ. Obserwujemy je w czasie T«τ. Prawdopodobieństwo rozpadu jądra w tym czasie W«1. Dzielimy czas T na n przedziałów. p=w/n. Obserwujemy na raz wiele jąder N. Zliczamy ilość przypadków n k, gdy w danym przedziale zaobserwowano k=0, 1, 2, 3 itd. rozpadów. Obliczamy częstość h(k) = n k /n. Doświadczalnie zaobserwowano, że dla N i dużych n rozkład h(k) dąży do rozkładu Poissona, co stanowi bezpośredni dowód na niezależność i statystyczny charakter rozpadów promieniotwórczych. 11
Rozkład normalny standardowy Rozkład normalny standardowy opisuje wzór: f x = 1 Jego dystrybuanta nie ma postaci analitycznej Jest on poprawnie unormowany: 2 2 e x /2 Z symetrii i parzystości rozkładu mamy: x= 1 2 e x 2 /2 dx= 2 x e x 2 /2 dx=0 12
Parametry rozkładu normalnego Całkując przez części otrzymujemy wariancję: 2 = 1 2 x 2 e x2 /2 dx= 1 { [ xe x 2 Zauważmy, że rozkład normalny ma takie same własności, jak standaryzowana zmienna u. Zastąpmy X w rozkładzie normalnym uogólnioną zmienną (X-a)/b. Otrzymamy rozkład Gausa: f x = 1 2 b exp { 2 x a } 2 b 2 Jego wartość średnia wynosi x=a Zaś jego wariancja 2 X =b 2 Czynnik b powoduje rozszerzenie/zwężenie rozkładu, zaś a przesunięcie wzdłuż osi x. 2 /2 ] e x 2 /2 dx }=1 13
Własności rozkładu normalnego Rozkład normalny ma punkty przegięcia w x=±1, a r. Gaussa w x=a±b. Mamy dystrybuantę F 0 (x). Szukamy: P X x =2 F 0 x =2 {1 F 0 x } Możemy też odwrócić wzór, otrzymując: P X x =2 F 0 x 1 Zależności można uogólnić na r. Gaussa: F x =F 0 x a b 14
Rozkład Gaussa własności Szczególnie interesujące jest obliczenie P X a n =2 F 0 dla całkowitych wartości n, czyli dla wielokrotności odchylenia standardowego: P X a =68,3 % P X a 2 =95,4 % P X a 3 =99,8 % Dyspersja σ rozkładu Gaussa nosi nazwę odchylenia standardowego lub błędu standardowego. Utożsamiając σ z błędem pomiarowym widzimy, że wartość prawdziwa mieści się w przedziale ±σ z prawd. 68,3 %. Rozkład kwantyli to odwrotna dystrybuanta nb b 1 =2 F 0 n 1 P X a =31,7 % P X a 2 =4,6 % P X a 3 =0,2 % 15
Centralne twierdzenie graniczne Jeżeli zmienne losowe X i są zmiennymi niezależnymi o wartościach średnich a i wariancjach b 2, to zmienna: X = lim n n i=1 ma rozkład normalny z E{X}=na oraz σ 2 (X)=nb 2 Ponadto zmienna = 1 n X = lim n też ma rozkład normalny z: X i 1 n n i=1 E { }=a 2 =b 2 /n X i 16
Centralne tw. graniczne przykład Załóżmy, że X i to proste zmienne przybierające wartość 1 z prawd. p i 0 z prawd. 1-p. Jak wiemy E{X i }=p oraz σ 2 (X i )=p(1-p). Zmienna ma więc rozkład dwumianowy. P(X (n) =k) = W kn. Wprowadzimy zmienną unormowaną: n u n = i=1 X = lim n n i=1 Prawdopodobieństwo wynosi: Badamy rozkład zmiennej skokowej: P(u (n) )/Δu (n) dla n gdize Δu (n) to odległość między kolejnymi wartościami X i X i p p 1 p = 1 n p 1 p i=1 X i np P X =k =P u n = k np / np 1 p =W k n 17
n=5 p=0.1 n=10 Przykład ilustracja n=50 n=151 18
Model Laplace'a błędów pom. Załóżmy, iż istnieje wilekość prawdziwa m 0. Jej pomiar zakłóca wiele (n) niezależnych czynników, z których każdy powoduje zakłócenie ε, z równym prawd. dodatnie jak i ujemne. Błąd pomiarowy jest wtedy sumą pojedynczych zakłóceń. W oczywisty sposób dostajemy w wyniku rozkład dwumianowy z p=1/2. (który w tym szczególnym przypadku ma bezpośredni związek z trójkątem Pascala). Stosując wzór z CTG i przechodząc z n do nieskończoności mamy wielkość n u n =2 i=1 X i n /2 / n która ma rozkład normalny z wartością oczekiwaną równą 0 i odchyleniem stand. n /2 19
Model Laplace'a ilustracja n=5 p=0.5 n=10 n=50 n=151 20
Funkcja charakterystyczna rozkładu Mamy zmienną losową X o dystrybuancie F(x) i funkcji gęstości prawdopodobieństwa f(x). Jej funkcję charakterystyczną definiujemy jako: Czyli jest ona transformatą Fouriera gęstości f(x): Obliczmy momenty względem początku układu: Można je otrzymać przez n-krotne różniczkowanie funkcji charakterystycznej w punkcie t=0: Czyli t =E {exp itx } t = n =E { X n }= n t = d n t =i n dt n n 0 =i n n exp itx f x dx x n f x dx x n exp itx f x dx 21
Funkcja charakterystyczna c.d. Wprowadzamy przesuniętą zmienną y=x-e{x} i jej funkcję charakterystyczną: Wtedy n-ta pochodna jest równa n-temu momentowi względem wartości średniej: a w szczególności: y t = exp {it x x } f x dx= t exp it x y n 0 =i n n =i n E { X x n } 2 x = y ' ' 0 Odwracając transformatę Fouriera można z funkcji charakterystycznej uzyskać gęstość prawd.: f x = 1 2 exp itx t dt 22
Funkcja charakterystyczna wyniki Istnieje jednoznaczny związek pomiędzy dystrybuantą i jej funkcją charakterystyczną. Stąd można ich używać zamiennie i przechodzić od jednej do drugiej w miarę potrzeb i konieczności. Przykłady własności otrzymanych przez rachunki z funkcją charakterystyczną: Rozkład Poissona: t =exp { e it 1 } Suma rozkładów: sum t =exp { 1 2 e it 1 } jest również r. Poissona o λ równej sumie λ 1 i λ 2. F. charakterystyczna rozkładu normalnego: t =exp ita exp b 2 t 2 /2 ma postać rozkładu normalnego. Iloczyn ich wariancji wynosi 1. 23