Logika 1. Czy następujące sformułowania są zdaniami: (a) Wszystkie koty w Polsce są czarne. (b) Jak to udowodnić? (c) x + y = 7. (d) Jeśli x 2 = y 2, to x = y. (e) Jeśli x = y, to x 2 = y 2. (f) 2 n + n jest liczbą pierwszą dla nieskończenie wielu n naturalnych. 2. Niech p, q i r będą odpowiednio zdaniami: Pada deszcz, Nie ma chmur na niebie, Na drodze są kałuże. (a) Zapisać przy pomocy funktorów zdaniotwórczych zdania: i. Pada deszcz i na drodze są kałuże. ii. Jeśli pada deszcz, to na niebie są chmury. iii. Jeśli na drodze są kałuże, to pada deszcz i na niebie są chmury. iv. Deszcz nie pada wtedy i tylko wtedy, gdy nie ma chmur na niebie. (b) Przetłumaczyć następujące zdania na język polski: (p q) r, p (q r), (p q r), (p r) q, (p q) r. 3. Sprawdzić, czy następujące wyrażenia są tautologiami: (a) [(p q) p] q; (b) () [(p r) q]; (c) () [p (q r)]; (d) p [( p) q]; (e) [(p q) ()] (q p); (f) [(p q) r] [(p r) (q r)]; (m) [( p q) (p q)] {[p (q r)] (p r)}. (g) () [(p q) p]; (h) p [( p q) ( p q)]; (i) [p ( p q)]; (j) p [( q q) r]; (k) [() (q p)] (p q); (l) [() (r s)] [(p s) (q r)]; 4. Matka powiedziała synowi: Jeśli nie zjesz kolacji, nie będziesz mógł dłużej oglądać telewizji. Syn zjadł kolację, po czym został natychmiast wysłany do łóżka. Przedyskutować tę sytuację. 5. Czy prawdziwe są zdania: (a) Jeżeli liczba naturalna a > 1 jest liczbą pierwszą, to jeżeli a jest liczbą złożoną, to a równa się 16. (b) Jeżeli liczba całkowita a dzieli się przez 11 i dzieli się przez 17, to z faktu, że a nie dzieli się przez 17 wynika, że a nie dzieli się przez 11. (c) Jerzy zna Logikę wtedy i tylko wtedy, gdy nie jest prawdą, że nie jest prawdą, że Jerzy zna Logikę. (d) Jeżeli Jerzy nie zna Logiki, to jeśli Jerzy zna Logikę, to Jerzy jest blondynem. 6. Czy prawdziwe są zdania? (a) Jeżeli a i b są liczbami całkowitymi takimi, że a b 0 oraz b a 0, to a = b. (b) Jeżeli a i b są liczbami całkowitymi takimi, że a b > 0 oraz b a > 0, to a = b. 1
7. (a) Zapisać koniunkcję za pomocą alternatywy i negacji. (b) Zapisać alternatywę za pomocą koniunkcji i negacji. (c) Zapisać alternatywę za pomocą implikacji i negacji. 8. Podać uzasadnienie dla każdej równoważności w poniższym ciągu: (a) (p s) ( s t) ( p s) (s t) [( p s) s] t [ p (s s)] t ( p s) t p (s t) p (s t). (b) [(a p) p] p [(a p) p] p [ (a p) p] p [( a p) p] p p [( a p) p] [p ( a p)] (p p] [( a p) p] 1 ( a p) p a ( p p) a 1 1. 9. Znaleźć formułę o możliwie najkrótszej długości równoważną danej formule: (a) p q; (b) (q r s q) (p q p) (r s); (c) (p q s) (p q r) (p q s) (p r q); (d) () [(p q) (p q)]; (e) (p q) ( ); (f) ( p (q r)) (p ()). 10. Każde zdanie złożone jest równoważne ze zdaniem, w którym występują tylko spójniki i (odpowiednio i ). Znaleźć zdania logiczne równoważne z następującymi, w których występować będą tylko spójniki i (odpowiednio i ). (a) p q, (b) (p q) ( q r), (c) [( p r) q] (r q), (d) () (q r), (e) p q. 11. Zdania p q,, p q, (p q) ( r), (p r) q, () (p s) zapisać przy pomocy kreski Sheffera (binegacji). 12. Czy zdanie: Liczba naturalna n jest podzielna przez 3 jest warunkiem: koniecznym, wystarczającym (dostatecznym), WKW (warunkiem koniecznym i wystarczającym) dla zdań: (a) Liczba n jest podzielna przez 6. (b) Liczba n jest podzielna przez 1. (c) Liczba n jest większa od 1. (d) Suma cyfr liczby n jest podzielna przez 3. (e) Liczba n jest sumą dwóch kwadratów liczb naturalnych. 13. Niech x, y, a, b R. Podać zdanie odwrotne, przeciwne i przeciwstawne dla każdego ze zdań. Określ ich prawdziwość. (a) Jeśli x + y 1, to x 2 + y 2 1; (b) Jeśli 10 + 3 = 30, to 3 + 5 = 8; (c) Jeśli x > 0, to x 2 > 0; (d) x 2 = 1 x = ±1; (e) ab = 0 a = 0 b = 0; (f) ABC jest prostokątny AB 2 + BC 2 = AC 2. 2
14. Dane jest zdanie: Trójmian kwadratowy nie posiada pierwiastków, jeśli jego wyróżnik nie jest nieujemny. Zbudować zdanie odwrotne, przeciwne oraz zdanie przeciwstawne. Określić ich prawdziwość. 15. (a) Napisać zdanie złożone, które jest prawdziwe (fałszywe) wtedy i tylko wtedy, gdy żadne z trzech zdań p, q, r nie jest prawdziwe. (b) Napisać zdanie złożone, które jest prawdziwe (fałszywe) wtedy i tylko wtedy, gdy dokładnie jedno z trzech zdań p, q, r jest prawdziwe. 16. Następujące zdania zapisać w postaci normalnej alternatywno-koniunkcyjnej oraz koniunkcyjno-alternatywnej. (a) p q, (b) (p q) ( q r), (c) [( p r) q] (r q), (d) () (q r), (e) p (q r), (f) p q. 17. Udowodnić każde z następujących stwierdzeń lub wykazać, że jest ono nieprawdziwe. (a) Iloczyn dwóch liczb parzystych jest liczbą podzielną przez 4. (b) Iloczyn liczby parzystej i nieparzystej jest liczbą parzystą. (c) Liczba 3 jest niewymierna. (d) Suma dwóch liczb nieparzystych jest liczbą nieparzystą. (e) Suma dwóch liczb pierwszych nigdy nie jest liczbą pierwszą. (f) Suma trzech kolejnych liczb całkowitych jest podzielna przez 3. (g) Suma czterech kolejnych liczb całkowitych jest podzielna przez 4. (h) 2x 2 + 3y 2 > 0 dla każdych dwóch liczb rzeczywistych x i y. (i) Jeżeli a jest parzystą liczbą całkowitą to 1 2a jest liczbą parzystą. (j) Dla każdej liczby rzeczywistej x istnieje liczba rzeczywista y taka, że xy = 1. (k) Jeżeli a i b są liczbami rzeczywistymi oraz a + b jest liczbą wymierną, to a i b są liczbami wymiernymi. (l) Jeżeli a i b są liczbami rzeczywistymi oraz ab jest liczbą wymierną, to a i b są liczbami wymiernymi. (m) Liczba całkowita n jest parzysta wtedy i tylko wtedy, gdy n 2 jest parzysta. 18. Zbadać prawdziwość każdego z poniższych rozumowań: (a) Jeżeli późno pójdę spać, będę zmęczony. Poszedłem późno spać. Jestem rano zmęczony. (b) Jeżeli ciężko pracuję, to dużo zarabiam. Jeżeli dużo zarabiam, to płacę wysokie podatki. Jeżeli płacę wysokie podatki, to ciężko pracuję. (c) Jeżeli lubię matematykę, to chcę studiować. Nie chcę studiować. Lubię matematykę lub lubię grę w kręgle. Lubię grę w kręgle. 3
(d) p (q r) q p r; (g) (q r) (p s) s r q; (e) q r r r; (h) r q r p; (f) p q () r s r s; (i) p q p r r s q s. 19. Weźmy pod uwagę zdanie (m): Malaria zabiła podróżnika. (A) Które z podanych niżej zdań wynika logicznie ze zdania (m)? (B) Z którego z poniższych zdań wynika logicznie zdanie (m)? (a) Malaria zabiła podróżnika lub upał zabił podróżnika. (b) Jeżeli malaria zabiła podróżnika, to upał nie zabił podróżnika. (c) Malaria zabiła podróżnika a upał nie zabił podróżnika. (d) Jeżeli malaria nie zabiła podróżnika, to upał zabił podróżnika. (e) Jeżeli upał nie zabił podróżnika, to malaria zabiła podróżnika. 20. Rozważmy założenia: Jeśli pojadę autobusem lub metrem to spóźnię się na spotkanie. Jeśli pojadę taksówką, to nie spóźnię się na spotkanie, ale zbankrutuję. Nie spóźnię się na spotkanie. Które z poniższych wniosków mogą być wyprowadzone z założeń? Odpowiedź uzasadnić. (a) Pojadę taksówką. (b) Zbankrutuję. (c) Nie pojadę metrem. 21. Znaleźć kontrprzykłady na następujące stwierdzenia: (a) 2 n 1 jest liczbą pierwszą dla każdego n 2. (b) 2 n + 3 n jest liczbą pierwszą dla każdego n N. (c) (x + 1) 2 x 2 dla każdego x R. (d) Jeśli zbankrutowałem, to pojechałem metrem. (e) Jeśli pojadę autobusem, to nie zbankrutuję. (d) 2 n + n jest liczbą pierwszą dla każdej nieparzystej dodatniej liczby n N. 22. Napisać negacje następujących zdań nie używając spójnika negacji: (a) a 2 > 0 a / R; (e) x>0 y R (x 2 + y 2 > 0); (b) x R x 2 + 1 = 0; (f) x R y R z R (z > y z < x 2 ); (c) x = ±1; (g) x 0 y< 1 [y > 0 z 1 (x = yz)]; (d) x R n Z (n > x); (h) x R y R z R [z > y (x > yz y > xz)]. 23. Zakładając, że x, y, z R, określić prawdziwość następujących funkcji zdaniowych: (a) x (x 2 + x + 1 = 0); (g) x,y (x 2 + y 2 1); (b) x y (x 2 + y 2 4); (h) x y,z (x + y + z = 9); (c) x,y,z (x 2 + y 2 + z 2 = 1); ( (d) x y x 6 + 1 < 2y ) (i) x,y [(x + 2y = 4) (2x y = 2)]; ; (j) x y (xy = 1); (e) x y (x 2 + y 2 = 1); (k) y x (x + y = 22); (f) x y,z (x < z) (z < y); (l) x y (x 2 + y 2 = 0 y < x < y). 4
24. Pokazać, że następujące wyrażenia nie są tautologiami. Możesz to zrobić pokazując odpowiednie kontrprzykłady. (a) x [Φ(x) Ψ(x)] x Φ(x) x Ψ(x); (b) x Φ(x) x Ψ(x) x [Φ(x) Ψ(x)]; (c) y x Φ(x, y) x y Φ(x, y); (d) x y Φ(x, y) x Φ(x, x). 25. Napisać zaprzeczenie zdania x y [x < y z (x < z < y)] bez użycia spójnika negacji. Zbadać jego wartość logiczną gdy: x, y, z N x, y, z Q x, y, z R. 26. Niech Φ(x, y), x, y N będzie funkcją zdaniową określoną następująco: Φ(x, y) x y. Zbadać prawdziwość zdań: (a) x y Φ(x, y); (b) x y Φ(x, y); (c) y x Φ(x, y); (d) x y Φ(x, y) y x Φ(x, y); (e) y x Φ(x, y) y x Φ(x, y); (f) x [ y Φ(x, y) y Φ(x, y)]. 27. Niech Φ(a, b), a, b N będzie funkcją zdaniową określoną następująco: Φ(a, b) ab 4a > 0. Zbadać prawdziwość zdań: (a) a b Φ(a, b); (b) a b Φ(a, b); (c) a b Φ(a, b); (d) b a Φ(a, b); (e) a b Φ(a, b) a b Φ(a, b); (f) b a Φ(a, b) b a Φ(a, b). 28. Niech Φ(a, x), a, x R będzie funkcją zdaniową określoną następująco: Φ(a, x) ax 2 + x 3 < 0. Zbadać prawdziwość zdań: (a) a x Φ(a, x); (b) a x Φ(a, x); (c) a x Φ(a, x); (d) x a Φ(a, x); (e) a x Φ(a, x) a x Φ(a, x); (f) x a Φ(a, x) x a Φ(a, x). 29. Zapisać za pomocą funktorów i kwantyfikatorów Wielkie twierdzenie Fermata: Jeżeli n jest liczbą naturalną większą od 2, to nie istnieją liczby naturalne x, y, z takie, że x n +y n = z n. 5