LOGIKA MATEMATYCZNA, ZBIORY, LICZBY RZECZYWISTE

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "LOGIKA MATEMATYCZNA, ZBIORY, LICZBY RZECZYWISTE"

Transkrypt

1 LOGIKA MATEMATYCZNA, ZBIORY, LICZBY RZECZYWISTE POJĘCIE PIERWOTNE, AKSJOMAT, TWIERDZENIE Pojęcie pierwotne jest to pojęcie, którego nie definiujemy, a mimo to przyjmujemy za oczywiste np.: liczba, punkt, prosta, płaszczyzna. Pojęcie, które nie są pierwotne należy zdefiniować za pomocą pojęć pierwotnych. Aksjomat (pewnik) jest to twierdzenie, które przyjmujemy za prawdziwe bez dowodu np.: Do prostej należy nieskończenie wiele punktów." Albo: "Przez 2 różne punkty przechodzi zawsze tylko jedna prosta." Twierdzenie, które nie są aksjomatami wymagają dowodu opartego na aksjomatach. ZDANIA W LOGICE Zdaniem nazywamy w logice wypowiedź twierdzącą, której można przypisać jedną z dwóch ocen: prawdę lub fałsz. Zdanie zaczynające się np. od "czy" nie będzie zatem zdaniem w sensie logiki matematycznej. Wartość logiczną zdania prawdziwego przyjmujemy umownie 1, zdania fałszywego zaś 0. Zdania na ogół oznaczamy małymi literami: Na przykład zdanie: 13 jest liczbą pierwszą jest (w arytmetyce) zdaniem prawdziwym (wartość logiczna 1), zaś zdanie 13 jest liczbą parzystą jest zdaniem fałszywym (wartość logiczna 0). Zdanie: Czy kwadrat jest czworokątem? nie jest twierdzące, zatem nie ma wartości logicznej. Zdanie: Prosta jednym ruchem gałki ocznej niszczy galaktyki jest wprawdzie twierdzące, ale zarówno w ramach geometrii jak i astronomii bezsensowne. Logika nie ustala wartości logicznych zdań. Czyni to odpowiednia nauka. Na przykład zdanie: Istnieje liczba będąca ilorazem 13 i 5 jest fałszywe w arytmetyce liczb naturalnych (bo ułamek nie jest liczbą naturalną), ale prawdziwe w arytmetyce liczb wymiernych czy też rzeczywistych. Oczywiście to samo zdanie nie posiada wartości logicznej na przykład w etyce czy biologii. DZIAŁANIA NA ZDANIACH Negację (zaprzeczenie) zdania p, czyli zdanie nieprawda, że p oznaczamy: Na przykład jeżeli oznacza zdanie: 3 jest liczbą parzystą to oznacza zdanie: Nieprawda, że 3 jest liczbą parzystą. W tym przykładzie zdanie jest fałszywe, a zdanie nie jest prawdziwe. Zdania: i nie nazywamy sprzecznymi. Koniunkcję zdań i czyli zdanie p i q oznaczamy:. Koniunkcja dwóch zdań jest zdaniem prawdziwym tylko gdy oba zdania są prawdziwe. Na przykład zdanie: Kwadrat jest czworokątem i 7 jest liczbą pierwszą jest prawdziwe, natomiast zdanie Kwadrat nie jest czworokątem i 7 jest liczbą parzystą jest fałszywe. Alternatywę zdań i czyli zdanie p lub q oznaczamy Alternatywa dwóch zdań jest zdaniem fałszywym tylko w przypadku gdy oba zdania są fałszywe. Na przykład zdanie: Kwadrat jest czworokątem lub 7 jest liczbą parzystą jest prawdziwe, natomiast zdanie Kwadrat nie jest czworokątem lub 7 jest liczbą parzystą jest fałszywe. Podobnie zdanie 6 jest liczbą parzystą lub 6 jest liczbą nieparzystą jest prawdziwe, natomiast zdanie 7 jest podzielne przez 2 lub 7 jest podzielne przez 3 jest fałszywe. 1

2 Implikację (wynikanie) zdań i czyli zdanie jeśli p, to q oznaczamy: Zdanie nazywamy poprzednikiem implikacji, a zdanie następnikiem implikacji. Implikacja dwóch zdań jest zdaniem fałszywym tylko w przypadku gdy poprzednik jest prawdziwy a następnik fałszywy. Implikacja jest najciekawszym przypadkiem rachunku zdań. Przeczy ona bowiem niekiedy zdrowemu rozsądkowi. W mowie potocznej nie używamy słowa "wynika" w tak szerokim znaczeniu. Na przykład nie mówimy o wynikaniu gdy zarówno poprzednik jak i następnik są fałszywe. Tymczasem w logice matematycznej takie zdanie jest prawdziwe! Równoważność zdań i czyli zdanie p wtedy i tylko wtedy, gdy q oznaczamy: Równoważność jest prawdziwa, gdy po obu stronach stoją zdania o tej samej wartości logicznej. Inaczej mówiąc, jeżeli równoważność jest prawdziwa, to zdania p i q nazywamy zdaniami równoważnymi. Na przykład:. Równoważność jest uogólnieniem równości, stąd nieprzypadkowe podobieństwo symboli. Tabela wartości logicznych negacji, koniunkcji, alternatywy, implikacji i równoważności: TAUTOLOGIA Tautologia to zdanie złożone, które jest zawsze prawdziwe, niezależnie od wartości logicznych zdań prostych, z których się składa. Na przykład prawdziwe jest zawsze zdanie: Jest mróz i jeżeli jest mróz, to woda w jeziorze zamarza, zatem woda w jeziorze zamarza. Prawdziwe jest też zdanie: Jeżeli Jan wygrał w totka lub Piotr wygrał w totka, to jeżeli Jan nie wygrał w totka, to Piotr wygrał w totka. Najbardziej znanymi tautologiami są podane niżej prawa: 1. Prawo wyłączonego środka: 2. Prawo transpozycji: 3. Reguła odrywania: 4. I prawo de Morgana: 5. II prawo de Morgana: KWADRAT LOGICZNY TWIERDZEŃ Twierdzenia matematyczne na ogół mają postać implikacji. Jeżeli implikacja jest twierdzeniem, to jego poprzednik nazywamy założeniem twierdzenia, następnik zaś tezą twierdzenia. Dla danej implikacji którą nazywamy prostą, implikację nazywamy odwrotną. Prawdziwość jednej z nich na ogół nie pociąga za sobą prawdziwości drugiej. Dla każdej implikacji prostej implikację nazywamy przeciwstawną, a implikację przeciwną. Implikacja prosta i przeciwstawna są równoważne oraz równoważne są implikacje odwrotna i przeciwna. Zależności te można przedstawić na tzw. kwadracie logicznym twierdzeń. 2

3 Przy wierzchołkach kwadratu położonych wzdłuż na samej przekątnej znajdują się implikacje równoważne. Każda z par implikacji: prosta i przeciwna oraz odwrotna i przeciwstawna stanowi tzw. zamknięty układ implikacji Dla dowodu twierdzenia postaci, wystarczy udowodnić implikację prostą i odwrotną. Z kwadratu logicznego wynika, że dla dowodu twierdzenia wystarczy udowodnić jedną z par implikacji występujących w tym kwadracie przy wspólnym boku. Przykład. Oto cztery twierdzenia tworzące kwadrat logiczny twierdzeń. Twierdzenie proste: Jeżeli liczba naturalna dzieli się przez 25, to dzieli się przez 5. Twierdzenie odwrotne: Jeżeli liczba naturalna dzieli się przez 5, to dzieli się przez 25. Twierdzenie przeciwstawne: Jeżeli liczba naturalna nie dzieli się przez 5, to nie dzieli się przez 25. Twierdzenie przeciwne: Jeżeli liczba naturalna nie dzieli się przez 25, to nie dzieli się przez 5. KWANTYFIKATORY OGÓLNY I SZCZEGÓŁOWY Ważną rolę w formułowaniu twierdzeń i definicji, odgrywają wyrażenia dla każdego i istnieje. Wyrażenia te oznaczane są specjalnymi symbolami i. Zdanie: Dla każdej liczby rzeczywistej zachodzi zapisujemy: Zdanie: Istnieje taka liczba rzeczywista, że zapisujemy:. Znaki i nazywamy odpowiednio kwantyfikatorem ogólnym i szczegółowym. Czasem zamiast i używane są znaki i. ZBIÓR, ELEMENT, NALEŻENIE Pojęcie zbioru jest jednym z podstawowych pojęć matematycznych. Jest to pojęcie pierwotne. Zbiór będziemy rozumieć jako pewną całość złożoną z pojedynczych obiektów, nazywanych elementami tego zbioru. Elementy zbioru mogą być zupełnie dowolne. Zbiory oznaczamy wielkimi literami, np., lub itd. Elementy zbioru oznaczamy zaś literami małymi, np., lub itd. Jeśli element należy do zbioru A zapisujemy to symbolicznie. Symbol oznacza należy do. Elementami zbioru mogą być inne zbiory. Na przykład zbiór {{ } } zawiera dwa elementy: { } i. Element { } sam jest zbiorem (dwuelementowym), ale uwaga, jego elementy nie należą do zbioru. Zbiór zawierający n elementów: zapisujemy symbolicznie umieszczając elementy w nawiasach klamrowych: { } Zbiór można określić również wymieniając własność, którą posiadają jego elementy, na przykład zapis { } oznacza zbiór liczb naturalnych mniejszych od 7 czyli zbiór { }. 3

4 ZBIÓR SKOŃCZONY, ZBIÓR NIESKOŃCZONY, ZBIÓR PUSTY, MOC ZBIORU Zbiór zawierający skończenie wiele elementów nazywamy zbiorem skończonym. W otaczającej nas rzeczywistości mamy do czynienia tylko z takimi zbiorami. Liczbę elementów zbioru oznaczamy i nazywamy mocą zbioru. Zbiór, który nie jest skończony (a z takimi mamy często do czynienia w matematyce) nazywamy zbiorem nieskończonym. Przykład: zbiór punktów na prostej, zbiór ułamków, zbiór funkcji liniowych itd. Moc zbioru skończonego to po prostu liczba jego elementów. Może to wydawać się dziwne ale również zbiory nieskończone, podobnie jak zbiory skończone, mogą mieć różne moce. Zbiór nie zawierający żadnego elementu nazywa się zbiorem pustym, oznaczamy. Istnieje tylko jeden zbiór pusty (jest to jeden z tzw. aksjomatów teorii zbiorów mnogości). RÓWNOŚĆ ZBIORÓW, ZAWIERANIE SIĘ ZBIORÓW Zbiory i są równe, wtedy i tylko wtedy gdy każdy element zbioru jest elementem zbioru i każdy element zbioru jest elementem zbioru. Jeżeli każdy element należący do należy jednocześnie do zbioru, to zbiór nazywa się podzbiorem zbioru. Mówimy też, że zbiór zawiera się w zbiorze. Każdy zbiór jest swoim własnym podzbiorem (tak zwanym podzbiorem niewłaściwym). Zbiór pusty jest podzbiorem każdego zbioru. Przykład: zbiór kwadratów zawiera się w zbiorze prostokątów, z kolei zbiór prostokątów zawiera się w zbiorze równoległoboków, ten zawiera się w zbiorze trapezów, a ten z kolei zawiera się w zbiorze czworokątów. W zbiorze czworokątów, zawiera się też na przykład zbiór deltoidów, którego podzbiorem jest zbiór rombów. Zawieranie się zbioru w zbiorze oznaczamy, co ilustruje symboliczny rysunek obok. Z prawej ilustracja wzajemnego położenia zbiorów liczbowych (o których dalej). DZIAŁANIA NA ZBIORACH Na zbiorach, podobnie jak na liczbach można wykonywać działania. Mają one podobne nazwy, ale ich rezultat jest nieco inny niż w przypadku działań na liczbach. I tak po kolei: Suma zbiorów: Suma zbiorów i jest to zbiór elementów należących do zbioru lub do zbioru i tylko do nich. W istocie suma to po prostu obydwa zbiory połączone w jeden. Sumę zbiorów i zapisujemy: Przykłady: Sumą zbiorów { } i { } jest zbiór { }. Sumą zbioru liczb wymiernych i niewymiernych jest zbiór liczb rzeczywistych. Iloczyn zbiorów: Iloczyn zbiorów i jest to zbiór elementów należących i do zbioru i do zbioru. Iloczyn zbiorów to po prostu ich część wspólna. Iloczyn zbiorów i zapisujemy: Przykłady: Iloczynem zbiorów { } i { } jest zbiór { }. Iloczynem zbioru liczb naturalnych i zbioru liczb całkowitych parzystych jest zbiór liczb naturalnych parzystych. 4

5 Różnica zbiorów: Różnica zbiorów i jest to zbiór elementów należących do zbioru ale nie należących do zbioru. Po prostu ze zbioru "wyrzucamy" wszystko co nie należy do zbioru. Różnicę zbiorów i zapisujemy: Przykład: Różnicą zbioru liczb naturalnych i zbioru liczb całkowitych parzystych jest zbiór liczb naturalnych nieparzystych. Przestrzeń i dopełnienie zbioru: Jeżeli rozpatrywane przez nas zbiory są podzbiorami ustalonego zbioru to zbiór nazywamy przestrzenią. Dopełnieniem zbioru w przestrzeni nazywamy zbiór tych elementów przestrzeni, które nie należą do zbioru. Dopełnienie zbioru oznaczamy. Dopełnienie zbioru zapisujemy jako: Przykład: Dopełnieniem zbioru liczb wymiernych (w przestrzeni liczb rzeczywistych) jest zbiór liczb niewymiernych. PRAWA DZIAŁAŃ NA ZBIORACH (PRAWA DE MORGANA) Dla dowolnych zbiorów zachodzą następujące prawa: 1. (prawo łączności sumy) 2. (prawo łączności iloczynu) 3. (prawo rozdzielności sumy względem iloczynu) 4. (prawo rozdzielności iloczynu względem sumy) 5. (I prawo de Morgana) 6. (II prawo de Morgana) * ILOCZYN KARTEZJAŃSKI ZBIORÓW Iloczyn kartezjański zbiorów i to zbiór wszystkich par uporządkowanych dla których, zaś. Zbiór ten oznaczamy symbolem. Nazwa iloczyn kartezjański pochodzi od Kartezjusza, francuskiego filozofa i matematyka. Przykład: jeśli i będzie zbiorem liczb rzeczywistych, wówczas zbiór będzie zbiorem wszystkich par liczb rzeczywistych, który możemy utożsamiać ze zbiorem punktów na płaszczyźnie (stąd określenie kartezjański układ współrzędnych). Z kolei iloczyn kartezjański dwóch przedziałów liczbowych można utożsamić z pewnym prostokątem na płaszczyźnie. ZBIORY LICZBOWE Zbiory liczbowe to zbiory, których elementami są liczby. Zbiory liczbowe odgrywają wielką rolę w matematyce. Do najważniejszych zbiorów liczbowyuch zaliczamy: 5 1. zbiór liczb naturalnych, oznaczany jako 2. zbiór liczb całkowitych, oznaczany jako 3. zbiór liczb wymiernych, oznaczany jako 4. zbiór liczb niewymiernych, oznaczany jako 5. zbiór liczb rzeczywistych, oznaczany jako ZBIÓR LICZB NATURALNYCH Najważniejszym zbiorem liczbowym, zbiorem na bazie którego zbudowana jest cała matematyka jest zbiór liczb naturalnych { }. Liczba naturalna to każda z liczb, do której możemy doliczyć, poczynając od. Zbiór liczb naturalnych jest zbiorem nieskończonym gdyż nie istnieje największa liczba

6 naturalna (można liczyć bez końca). Liczbą naturalną jest zatem czy. Matematyk niemiecki Leopold Kronecker ( ) uważał, że liczby naturalne stworzył Bóg, a wszystko inne jest dziełem człowieka. LICZBY PIERWSZE I ZŁOŻONE Ważnym podzbiorem zbioru liczb naturalnych jest zbiór liczb pierwszych. Liczba naturalna jest liczbą pierwszą, jeśli i dzieli się tylko przez i przez samą siebie (inaczej: ma tylko dwa różne dzielniki). Zbiór liczb pierwszych jest nieskończony (nie istnieje największa liczba pierwsza) największa znana dzisiaj liczba pierwsza liczy ponad 17 milionów cyfr. Liczba ta to. Każdą liczbę naturalną daje się przedstawić jako iloczyn liczb pierwszych (mogą one się powtarzać) tylko na 1 sposób. Na przykład. Liczbę, która nie jest liczbą pierwszą nazywamy liczbą złożoną. Liczby pierwsze mają fundamentalne znaczenie w teorii liczb. Jeśli zbiór liczb naturalnych porównalibyśmy do materii to liczby pierwsze są odpowiednikiem pierwiastków chemicznych, a liczby złożone związków. Oto kilkanaście początkowych liczb pierwszych: ZBIÓR LICZB CAŁKOWITYCH Zbiór liczb jest całkowitych powstaje poprzez dołączenie do zbioru liczb naturalnych liczb do nich przeciwnych i zera. { }. ZBIÓR LICZB WYMIERNYCH Liczby wymierne to po prostu ułamki, czyli ilorazy dwóch liczb całkowitych, z których górną nazywamy licznikiem, a dolną mianownikiem, przy czym ponieważ dzielenie przez zero jest niewykonalne, mianownik musi być różny od zera. Oczywiście każda liczba całkowita jest ułamkiem (o mianowniku 1). Liczby wymierne to:. Liczbami wymiernymi nie będą,, o czym dalej. Zatem zbiór liczb wymiernych zapisujemy symbolicznie: { }. ZBIÓR LICZB NIEWYMIERNYCH Liczba niewymierna to liczba, której nie da się przedstawić w postaci ułamka. Na przykład liczbami niewymiernymi są pierwiastki dowolnego stopnia z liczb całkowitych, które same nie są liczbami całkowitymi (np. ) Inną, znaną nam już liczbą niewymierną jest (czyli stosunek długości okręgu do jego średnicy), a także nieznana nam jeszcze, ale bardzo ważna w matematyce liczba (tzw. liczba Eulera). ZBIÓR LICZB RZECZYWISTYCH Pojęcie liczby rzeczywistej jest obejmuje wszystkie rodzaje liczb: liczby naturalne, całkowite, ułamki, oraz liczby niewymierne. Zbiór liczb rzeczywistych oznaczamy symbolem. Zbiór liczb rzeczywistych dodatnich oznaczać będziemy a zbiór liczb rzeczywistych ujemnych. 6

7 DZIAŁANIA WYKONALNE W ZBIORACH LICZBOWYCH Znamy cztery podstawowe działania na liczbach: dodawanie, odejmowanie, mnożenie i dzielenie. Działanie jest wykonalne w danym zbiorze liczbowym, jeżeli rezultat działania na liczbach z tego zbioru również należy do tego zbioru. Wykonalność działań w danym zbiorze przedstawia tabelka: Zbiór Dodawanie Odejmowanie Mnożenie Dzielenie tak nie tak nie tak tak tak nie tak tak tak tak (oprócz dzielenia przez 0) tak tak nie tak tak tak tak UŁAMKI DZIESIĘTNE SKOŃCZONE, NIESKOŃCZONE OKRESOWE, NIESKOŃCZONE NIEOKRESOWE tak (oprócz dzielenia przez 0) Ułamkiem dziesiętnym skończonym nazywamy ułamek, którego mianownik jest pewną potęgą (o wykładniku naturalnym) liczby 10. Ułamki dziesiętne zapisuje się stosując przecinek, który oddziela część całkowitą od części ułamkowej. Pierwsze miejsce po przecinku oznacza części dziesiąte, drugie setne, trzecie tysiączne, itd. Jeżeli ciąg cyfr po przecinku jest skończony wówczas mamy do czynienia z ułamkiem dziesiętnym skończonym. Na ułamek dziesiętny skończony można przekształcić każdy ułamek zwykły, którego mianownik jest postaci (w rozkładzie na czynniki pierwsze mianownika występuje iloczyn wyłącznie potęg liczby 2 i potęg liczby 5). Przykład: Ułamkiem dziesiętnym okresowym nazywamy ułamek dziesiętny, w zapisie którego od pewnego miejsca określony zestaw cyfr powtarza się w nieskończoność. Dzieje się tak jeżeli w mianowniku ułamka zwykłego występują potęgi innych liczb niż 2 lub 5. Przekształcenie takiego ułamka zwykłego do postaci ułamka dziesiętnego okresowego polega na wykonaniu pisemnego dzielenia licznika przez mianownik, do momentu w którym cyfry po przecinku zaczną się powtarzać. I odwrotnie, aby przekształcić ułamek dziesiętny okresowy na zwykły postępujemy jak w przykładzie. Przykład: Przekształcić ułamek okresowy na ułamek zwykły. Oznaczmy, mamy zatem. Odejmując stronami obie równości dostajemy równość, skąd natychmiast otrzymujemy. Ułamkiem dziesiętnym nieskończonym nieokresowym nazywamy ułamek dziesiętny, w zapisie którego po przecinku występuje nieskończenie wiele cyfr, pośród których żaden ich ciąg nie powtarza się. Na przykład: (po przecinku występują kolejne liczby naturalne) lub (między kolejnymi jedynkami zwiększa się liczba zer). Takie ułamki dziesiętne nieskończone nieokresowe reprezentują liczby niewymierne. 7

8 OŚ LICZBOWA Zbiór liczb rzeczywistych można przedstawić w postaci tzw. osi liczbowej. Jest to prosta, na której ustalono punkty odpowiadające liczbie 0 i liczbie 1. Gdzie są pozostałe liczby? Położenie liczb całkowitych widać od razu. Liczby wymierne (ułamki) też łatwo znaleźć. Punkty, które nie odpowiadają żadnej liczbie wymiernej reprezentują liczby niewymierne. Znalezienie położenia liczby niewymiernej na osi liczbowej jest niekiedy trudnym zadaniem. Dzięki temu modelowi każdej liczba rzeczywistej odpowiada pewien punkt na osi liczbowej i odwrotnie, każdemu punktowi na osi liczbowej odpowiada pewna liczba rzeczywista. PRZEDZIAŁY LICZBOWE Przedziałem liczbowym ograniczonym otwartym nazywamy zbiór wszystkich liczb rzeczywistych spełniających nierówność postaci:. W przedziale otwartym nie istnieje liczba największa ani najmniejsza. Przedziałem liczbowym ograniczonym domkniętym nazywamy zbiór wszystkich liczb rzeczywistych spełniających nierówność postaci:. W przedziale domkniętym istnieje liczba największa i liczba najmniejsza. Przedziałem liczbowym nieograniczonym otwartym rzeczywistych spełniających nierówność postaci:. Przedziałem liczbowym nieograniczonym domkniętym rzeczywistych spełniających nierówność postaci:. Przedziałem liczbowym nieograniczonym otwartym rzeczywistych spełniających nierówność postaci:. Przedziałem liczbowym nieograniczonym domkniętym rzeczywistych spełniających nierówność postaci:. 8 nazywamy zbiór wszystkich liczb nazywamy zbiór wszystkich liczb nazywamy zbiór wszystkich liczb nazywamy zbiór wszystkich liczb Przedział to po prostu zbiór. Oprócz powyższych istnieją również przedziały otwartodomknięte, których zdefiniowanie nie nastręcza trudności. WARTOŚĆ BEZWZGLĘDNA LICZBY (MODUŁ) Wartością bezwzględną liczby rzeczywistej nieujemnej jest ta sama liczba, wartością bezwzględną liczby rzeczywistej ujemnej, jest liczba do niej przeciwna. Fakt ten zapisujemy następująco: { W interpretacji geometrycznej wartość bezwzględna liczby to jej odległość od zera na osi liczbowej. RÓWNANIA I NIERÓWNOŚCI Z WARTOŚCIĄ BEZWZGLĘDNĄ Często wartość bezwzględna występuje w równaniach lub nierównościach. Jak sobie z nimi radzić pokazują poniższe przykłady. Przykład 1: Rozwiązać równanie: Równanie rozwiążemy metodą filozoficzną. Wartość bezwzględna jakiej liczby wynosi 1? Otóż liczby 1 i liczby 1. Zatem pod znakiem wartości bezwzględnej po lewej stronie równania musi stać liczba 1

9 lub liczba 1. Skoro tak to lub. Zatem równanie ma dwa rozwiązania: i. Przykład 2: Rozwiązać nierówność Równanie rozwiążemy również metodą filozoficzną. Jaka liczba ma wartość bezwzględną większą od 3? Otóż liczba większa od 3 lub mniejsza od 3. Zatem lub. Skoro tak to lub. Zatem rozwiązaniem nierówności są. Przykład 2: Rozwiązać nierówność I tutaj działa metoda filozoficzna. Jaka liczba ma wartość bezwzględną mniejszą od 5? Otóż liczba mniejsza od 5 ale jednocześnie większa od 5. Zatem. Skoro tak to i. Zatem rozwiązaniem nierówności są. 9

10 ZADANIA SPRAWDZAJĄCE 1. Które z zdania są zdaniami w sensie logiki matematycznej? Oceń ich wartość logiczną. 10 a) Wszystkie liczby parzyste dzielą się przez 4. b) jest liczbą dodatnią. c) Każda liczba podzielna przez 6 jest parzysta. 2. Oceń wartość logiczną następujących zdań oraz skonstruuj ich negacje: a) Jeśli, to. a) 8 jest liczbą parzystą i podzielną przez 4. b) lub. c) Jeśli to. d) Liczba 128 jest parzysta i jest potęgą liczby Udowodnij, że poniższe zdania są tautologiami: a) b) c) 4. Wypisz po 5 elementów poniższych zbiorów: d) e) f) Niektóre liczby parzyste dzielą się przez 12 e) Warszawa leży nad Wisłą lub Kraków leży nad Wisłą. f) Jeśli pies jest ssakiem, to kot ma cztery łapy. g) Pada deszcz lub nie pada deszcz. h) Jeśli 5 jest liczbą parzystą, to a) { } (zbiór liczb naturalnych podzielnych przez 3) b) { } (zbiór liczb będących kwadratem liczby naturalnej) c) { } (zbiór ułamków dodatnich o liczniku 1) d) { } (zbiór liczb wymiernych z przedziału ) e) { } (zbiór potęg o wykładniku naturalnym liczby 2) f) { } 5. Podaj określenie zbiorów zawierających następujące elementy: a) { } b) { } 6. Wypisz wszystkie elementy zbiorów: a) { } b) { } c) C = { } d) e) f) c) { } d) { } d) { }; e) { } f) { { } { } { }} 7. Niech oznacza zbiór dzielników liczby, zaś zbiór dzielników liczby. Znajdź zbiory: a) b) c) d) 8. Wypisz wszystkie podzbiory zbioru { }. 9. Które z poniższych zbiorów są równe? a) { } b) { } c) C = { } d) { } e) { }

11 10. Przez oznaczamy zbiór liczb całkowitych podzielnych przez. Dla każdej pary podanych zbiorów określ czy jeden jest zawarty w drugim. a) i b) i c) i d) i 11. W oparciu o definicję zbioru z poprzedniego zadania, wyznacz zbiory: a) b) 12. Niech będzie przestrzenią, a dowolnym jej podzbiorem. Uzupełnij puste miejsca: a) b) c) d) e) f) g) 13. Zbiory i są niepuste. Co można o nich powiedzieć, jeśli wiadomo, że: a) b) c) d) e) f) g) h) 14. Dane są trzy zbiory, takie że,,. Sporządź ilustrujący to diagram Venna. Sprawdź na osobnych rysunkach czy prawdziwe są równości: a) b) 15. Wyznacz zbiory: a) b) c) d) 16. Zaznacz na osi liczbowej przedziały: a) ( ) b) c) d) 17. Zaznacz na osi liczbowej iloczyn (część wspólną) przedziałów: a) b) c) d) e) f) h) Zaznacz na osi liczbowej sumę przedziałów: a) b) c) d) e) f) 18. Skróć ułamki: a) b) c) d) e) f) 19. Uporządkuj w kolejności rosnącej liczby: a) b) c) d) c) d) e) f) g) c) ( ) ( ) d) ( ) ( ) ( ) 11 e) f)

12 20. Znajdź 2 liczby wymierne i 2 niewymierne znajdujące się między liczbami i. 21. Porównaj liczby: a) i b) i c) i d) i e) i f) i g) i h) i 22. Zamień ułamek dziesiętny okresowy na ułamek zwykły: a) b) c) d) e) f) 2,(21) g) 3,1(45) h) 0,5(45) i) 5,(002) j) 0,412(5) 23. Zamień ułamek zwykły na dziesiętny: a) b) c) d) e) f) g) h) 24. Oblicz: a) liczby b) liczby c) liczby 25. Jakim procentem liczby jest liczba gdy: a), b), d) liczby e) liczby f) liczby c), 26. Cenę pewnego produktu obniżono najpierw o 10% a następnie o 20%. O ile procent obniżono ostatecznie cenę tego produktu? 27. Zapisz podane wyrażenia bez symbolu wartości bezwzględnej: a) c) dla b) dla d) dla 28. Do jakiego przedziału liczbowego należy jeżeli: a) d) b) c) 29. Z definicji pierwiastka arytmetycznego wynika, że, korzystając z tego wzoru uprość: a) b) 30. Wyznacz wszystkie liczby, dla których: c) gdy d) a) b) c) d) e) f) g) h) i) j) k) l) 12

LOGIKA MATEMATYCZNA, ZBIORY I LICZBY RZECZYWISTE

LOGIKA MATEMATYCZNA, ZBIORY I LICZBY RZECZYWISTE LOGIKA MATEMATYCZNA, ZBIORY I LICZBY RZECZYWISTE ZDANIA W LOGICE Zdaniem nazywamy w logice wypowiedź twierdzącą, której można przypisać jedną z dwóch ocen: prawdę lub fałsz. Zdanie zaczynające się np.

Bardziej szczegółowo

LOGIKA I TEORIA ZBIORÓW

LOGIKA I TEORIA ZBIORÓW LOGIKA I TEORIA ZBIORÓW Logika Logika jest nauką zajmującą się zdaniami Z punktu widzenia logiki istotne jest, czy dane zdanie jest prawdziwe, czy nie Nie jest natomiast istotne o czym to zdanie mówi Definicja

Bardziej szczegółowo

0.1. Logika podstawowe pojęcia: zdania i funktory, reguły wnioskowania, zmienne zdaniowe, rachunek zdań.

0.1. Logika podstawowe pojęcia: zdania i funktory, reguły wnioskowania, zmienne zdaniowe, rachunek zdań. Wykłady z Analizy rzeczywistej i zespolonej w Matematyce stosowanej Wykład ELEMENTY LOGIKI ALGEBRA BOOLE A Logika podstawowe pojęcia: zdania i funktory, reguły wnioskowania, zmienne zdaniowe, rachunek

Bardziej szczegółowo

Jest to zasadniczo powtórka ze szkoły średniej, być może z niektórymi rzeczami nowymi.

Jest to zasadniczo powtórka ze szkoły średniej, być może z niektórymi rzeczami nowymi. Logika Jest to zasadniczo powtórka ze szkoły średniej, być może z niektórymi rzeczami nowymi. Często słowu "logika" nadaje się szersze znaczenie niż temu o czym będzie poniżej: np. mówi się "logiczne myślenie"

Bardziej szczegółowo

Ziemia obraca się wokół Księżyca, bo posiadając odpowiednią wiedzę można stwierdzić, czy są prawdziwe, czy fałszywe. Zdaniami nie są wypowiedzi:

Ziemia obraca się wokół Księżyca, bo posiadając odpowiednią wiedzę można stwierdzić, czy są prawdziwe, czy fałszywe. Zdaniami nie są wypowiedzi: 1 Elementy logiki W logice zdaniem nazywamy wypowiedź oznajmującą, która (w ramach danej nauki) jest albo prawdziwa, albo fałszywa. Tak więc zdanie może mieć jedną z dwóch wartości logicznych. Prawdziwość

Bardziej szczegółowo

ZESTAW PYTAŃ SPRAWDZAJĄCYCH WIADOMOŚCI MATEMATYCZNE UCZNIÓW KLAS III GIMNAZJUM.

ZESTAW PYTAŃ SPRAWDZAJĄCYCH WIADOMOŚCI MATEMATYCZNE UCZNIÓW KLAS III GIMNAZJUM. ZESTAW PYTAŃ SPRAWDZAJĄCYCH WIADOMOŚCI MATEMATYCZNE UCZNIÓW KLAS III GIMNAZJUM. Publikacja zawiera przykłady krótkich sprawdzianów wiadomości z zakresu zbiorów liczbowych oraz praw i działań w tych zbiorach

Bardziej szczegółowo

Lista 1 (elementy logiki)

Lista 1 (elementy logiki) Podstawy nauczania matematyki 1. Zdanie Lista 1 (elementy logiki) EE I rok W logice zdaniem logicznym nazywamy wyrażenie oznajmujące o którym można powiedzieć że jest prawdziwe lub fałszywe. Zdania z reguły

Bardziej szczegółowo

1. ZBIORY PORÓWNYWANIE ZBIORÓW. WYKŁAD 1

1. ZBIORY PORÓWNYWANIE ZBIORÓW. WYKŁAD 1 WYKŁAD 1 1 1. ZBIORY. Pojęcie ZBIORU i NALEŻENIA do niego są pojęciami pierwotnymi(niedefiniowalnymi) w matematyce, reszta matematyki jest zdefiniowana lub opisana za pomocą tych pojęć. Można by, opierając

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla klasy VII

Wymagania edukacyjne z matematyki dla klasy VII Wymagania edukacyjne z matematyki dla klasy VII Szkoły Podstawowej nr 100 w Krakowie Na podstawie programu Matematyka z plusem Na ocenę dopuszczającą Uczeń: rozumie rozszerzenie osi liczbowej na liczby

Bardziej szczegółowo

4. Postęp arytmetyczny i geometryczny. Wartość bezwzględna, potęgowanie i pierwiastkowanie liczb rzeczywistych.

4. Postęp arytmetyczny i geometryczny. Wartość bezwzględna, potęgowanie i pierwiastkowanie liczb rzeczywistych. Jarosław Wróblewski Matematyka dla Myślących, 008/09. Postęp arytmetyczny i geometryczny. Wartość bezwzględna, potęgowanie i pierwiastkowanie liczb rzeczywistych. 15 listopada 008 r. Uwaga: Przyjmujemy,

Bardziej szczegółowo

WYRAŻENIA ALGEBRAICZNE

WYRAŻENIA ALGEBRAICZNE WYRAŻENIA ALGEBRAICZNE Wyrażeniem algebraicznym nazywamy wyrażenie zbudowane z liczb, liter, nawiasów oraz znaków działań, na przykład: Symbole literowe występujące w wyrażeniu algebraicznym nazywamy zmiennymi.

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla uczniów klasy VII szkoły podstawowej

Wymagania edukacyjne z matematyki dla uczniów klasy VII szkoły podstawowej Wymagania edukacyjne z matematyki dla uczniów klasy VII szkoły podstawowej Ocenę dopuszczającą otrzymuje uczeń, który: rozumie rozszerzenie osi liczbowej na liczby ujemne umie porównywać liczby wymierne,

Bardziej szczegółowo

I. Podstawowe pojęcia i oznaczenia logiczne i mnogościowe. Elementy teorii liczb rzeczywistych.

I. Podstawowe pojęcia i oznaczenia logiczne i mnogościowe. Elementy teorii liczb rzeczywistych. I. Podstawowe pojęcia i oznaczenia logiczne i mnogościowe. Elementy teorii liczb rzeczywistych. 1. Elementy logiki matematycznej. 1.1. Rachunek zdań. Definicja 1.1. Zdaniem logicznym nazywamy zdanie gramatyczne

Bardziej szczegółowo

1. Liczby wymierne. x dla x 0 (wartością bezwzględną liczby nieujemnej jest ta sama liczba)

1. Liczby wymierne. x dla x 0 (wartością bezwzględną liczby nieujemnej jest ta sama liczba) 1. Liczby wymierne. - wartość bezwzględna liczby. dla 0 (wartością bezwzględną liczby nieujemnej jest ta sama liczba) - dla < 0 ( wartością bezwzględną liczby ujemnej jest liczba do niej przeciwna) W interpretacji

Bardziej szczegółowo

WYMAGANIA NA POSZCZEGÓLNE OCENY MATEMATYKA KL.VII

WYMAGANIA NA POSZCZEGÓLNE OCENY MATEMATYKA KL.VII WYMAGANIA NA POSZCZEGÓLNE OCENY MATEMATYKA KL.VII ROZDZIAŁ I LICZBY 1. rozpoznaje cyfry używane do zapisu liczb w systemie rzymskim w zakresie do 3000 2. odczytuje liczby naturalne dodatnie zapisane w

Bardziej szczegółowo

Dlaczego nie wystarczają liczby wymierne

Dlaczego nie wystarczają liczby wymierne Dlaczego nie wystarczają liczby wymierne Analiza zajmuje się problemami, w których pojawia się przejście graniczne. Przykładami takich problemów w matematyce bądź fizyce mogą być: 1. Pojęcie prędkości

Bardziej szczegółowo

Elementy logiki matematycznej

Elementy logiki matematycznej Elementy logiki matematycznej Przedmiotem logiki matematycznej jest badanie tzw. wyrażeń logicznych oraz metod rozumowania i sposobów dowodzenia używanych w matematyce, a także w innych dziedzinach, w

Bardziej szczegółowo

Liczby rzeczywiste. Działania w zbiorze liczb rzeczywistych. Robert Malenkowski 1

Liczby rzeczywiste. Działania w zbiorze liczb rzeczywistych. Robert Malenkowski 1 Robert Malenkowski 1 Liczby rzeczywiste. 1 Liczby naturalne. N {0, 1,, 3, 4, 5, 6, 7, 8...} Liczby naturalne to liczby używane powszechnie do liczenia i ustalania kolejności. Liczby naturalne można ustawić

Bardziej szczegółowo

Powtórzenie podstawowych zagadnień. związanych ze sprawnością rachunkową *

Powtórzenie podstawowych zagadnień. związanych ze sprawnością rachunkową * Powtórzenie podstawowych zagadnień związanych ze sprawnością rachunkową * (Materiały dydaktyczne do laboratorium fizyki) Politechnika Koszalińska październik 2010 Spis treści 1. Zbiory liczb..................................................

Bardziej szczegółowo

1 Działania na zbiorach

1 Działania na zbiorach M. Beśka, Wstęp do teorii miary, rozdz. 1 1 1 Działania na zbiorach W rozdziale tym przypomnimy podstawowe działania na zbiorach koncentrując się na własnościach tych działań, które będą przydatne w dalszej

Bardziej szczegółowo

Matematyka z kluczem. Szkoła podstawowa nr 18 w Sosnowcu. Przedmiotowe zasady oceniania klasa 7

Matematyka z kluczem. Szkoła podstawowa nr 18 w Sosnowcu. Przedmiotowe zasady oceniania klasa 7 Matematyka z kluczem Szkoła podstawowa nr 18 w Sosnowcu Przedmiotowe zasady oceniania klasa 7 KlasaVII wymagania programowe- wymagania na poszczególne oceny ROZDZIAŁ I LICZBY 1. rozpoznaje cyfry używane

Bardziej szczegółowo

Zbiór liczb rzeczywistych, to zbiór wszystkich liczb - wymiernych i niewymiernych. Zbiór liczb rzeczywistych oznaczamy symbolem R.

Zbiór liczb rzeczywistych, to zbiór wszystkich liczb - wymiernych i niewymiernych. Zbiór liczb rzeczywistych oznaczamy symbolem R. Zbiór liczb rzeczywistych, to zbiór wszystkich liczb - wymiernych i niewymiernych. Zbiór liczb rzeczywistych oznaczamy symbolem R. Liczby naturalne - to liczby całkowite, dodatnie: 1,2,3,4,5,6,... Czasami

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie VII szkoły podstawowej

Wymagania edukacyjne z matematyki w klasie VII szkoły podstawowej Wymagania edukacyjne z matematyki w klasie VII szkoły podstawowej ROZDZIAŁ I LICZBY Uczeń otrzymuje ocenę dopuszczającą jeśli: 1. rozpoznaje cyfry używane do zapisu liczb w systemie rzymskim w zakresie

Bardziej szczegółowo

7. CIĄGI. WYKŁAD 5. Przykłady :

7. CIĄGI. WYKŁAD 5. Przykłady : WYKŁAD 5 1 7. CIĄGI. CIĄGIEM NIESKOŃCZONYM nazywamy funkcję określoną na zbiorze liczb naturalnych, dodatnich, a wyrazami ciągu są wartości tej funkcji. CIĄGIEM SKOŃCZONYM nazywamy funkcję określoną na

Bardziej szczegółowo

Indukcja matematyczna. Zasada minimum. Zastosowania.

Indukcja matematyczna. Zasada minimum. Zastosowania. Indukcja matematyczna. Zasada minimum. Zastosowania. Arkadiusz Męcel Uwagi początkowe W trakcie zajęć przyjęte zostaną następujące oznaczenia: 1. Zbiory liczb: R - zbiór liczb rzeczywistych; Q - zbiór

Bardziej szczegółowo

Liczby. Wymagania programowe kl. VII. Dział

Liczby. Wymagania programowe kl. VII. Dział Wymagania programowe kl. VII Dział Liczby rozpoznaje cyfry używane do zapisu liczb w systemie rzymskim w zakresie do 3000 odczytuje liczby naturalne dodatnie zapisane w systemie rzymskim w zakresie do

Bardziej szczegółowo

PYTANIA TEORETYCZNE Z MATEMATYKI

PYTANIA TEORETYCZNE Z MATEMATYKI Zbiory liczbowe: 1. Wymień znane Ci zbiory liczbowe. 2. Co to są liczby rzeczywiste? 3. Co to są liczby naturalne? 4. Co to są liczby całkowite? 5. Co to są liczby wymierne? 6. Co to są liczby niewymierne?

Bardziej szczegółowo

LOGIKA MATEMATYCZNA. Poziom podstawowy. Zadanie 2 (4 pkt.) Jeśli liczbę 3 wstawisz w miejsce x, to które zdanie będzie prawdziwe:

LOGIKA MATEMATYCZNA. Poziom podstawowy. Zadanie 2 (4 pkt.) Jeśli liczbę 3 wstawisz w miejsce x, to które zdanie będzie prawdziwe: LOGIKA MATEMATYCZNA Poziom podstawowy Zadanie ( pkt.) Która koniunkcja jest prawdziwa: a) Liczba 6 jest niewymierna i 6 jest liczbą dodatnią. b) Liczba 0 jest wymierna i 0 jest najmniejszą liczbą całkowitą.

Bardziej szczegółowo

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z obowiązkowych

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA VII

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA VII WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA VII Ocena Dopuszczający Osiągnięcia ucznia rozpoznaje cyfry używane do zapisu liczb w systemie rzymskim w zakresie do 3000 odczytuje liczby naturalne dodatnie zapisane

Bardziej szczegółowo

Liczby zespolone. x + 2 = 0.

Liczby zespolone. x + 2 = 0. Liczby zespolone 1 Wiadomości wstępne Rozważmy równanie wielomianowe postaci x + 2 = 0. Współczynniki wielomianu stojącego po lewej stronie są liczbami całkowitymi i jedyny pierwiastek x = 2 jest liczbą

Bardziej szczegółowo

Plan wynikowy z wymaganiami edukacyjnymi z przedmiotu matematyka w zakresie rozszerzonym dla klasy I liceum ogólnokształcącego

Plan wynikowy z wymaganiami edukacyjnymi z przedmiotu matematyka w zakresie rozszerzonym dla klasy I liceum ogólnokształcącego Plan wynikowy z wymaganiami edukacyjnymi z przedmiotu matematyka w zakresie rozszerzonym dla klasy I liceum ogólnokształcącego Temat (rozumiany jako lekcja) Lekcja organizacyjna I. Działania na liczbach

Bardziej szczegółowo

NaCoBeZU z matematyki dla klasy 7

NaCoBeZU z matematyki dla klasy 7 NaCoBeZU z matematyki dla klasy 7 I. LICZBY I DZIAŁANIA 1. Znam pojęcia: liczby naturalne, całkowite, wymierne, dodatnie, ujemne, niedodatnie, odwrotne, przeciwne. 2. Zaznaczam i odczytuję położenie liczby

Bardziej szczegółowo

Klasa 1 technikum. Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne:

Klasa 1 technikum. Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne: Klasa 1 technikum Przedmiotowy system oceniania wraz z wymaganiami edukacyjnymi Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i

Bardziej szczegółowo

Przykłady zdań w matematyce. Jeśli a 2 + b 2 = c 2, to trójkąt o bokach długości a, b, c jest prostokątny (a, b, c oznaczają dane liczby dodatnie),

Przykłady zdań w matematyce. Jeśli a 2 + b 2 = c 2, to trójkąt o bokach długości a, b, c jest prostokątny (a, b, c oznaczają dane liczby dodatnie), Elementy logiki 1 Przykłady zdań w matematyce Zdania prawdziwe: 1 3 + 1 6 = 1 2, 3 6, 2 Q, Jeśli x = 1, to x 2 = 1 (x oznacza daną liczbę rzeczywistą), Jeśli a 2 + b 2 = c 2, to trójkąt o bokach długości

Bardziej szczegółowo

KRYTERIA OCEN Z MATEMATYKI DLA KLASY VII

KRYTERIA OCEN Z MATEMATYKI DLA KLASY VII KRYTERIA OCEN Z MATEMATYKI DLA KLASY VII Na ocenę dopuszczającą uczeń powinien : Na ocenę dostateczną uczeń powinien: Na ocenę dobrą uczeń powinie: Na ocenę bardzo dobrą uczeń powinien: Na ocenę celującą

Bardziej szczegółowo

1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych.

1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych. Elementy logiki i teorii zbiorów. 1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych. Pojęcia pierwotne to najprostsze

Bardziej szczegółowo

Bukiety matematyczne dla gimnazjum

Bukiety matematyczne dla gimnazjum Bukiety matematyczne dla gimnazjum http://www.mat.uni.torun.pl/~kolka/ 1 X 2002 Bukiet I Dany jest prostokąt o bokach wymiernych a, b, którego obwód O i pole P są całkowite. 1. Sprawdź, że zachodzi równość

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VII SZKOŁY PODSTAWOWEJ

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VII SZKOŁY PODSTAWOWEJ WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VII SZKOŁY PODSTAWOWEJ Ocenę niedostateczną otrzymuje uczeń, jeśli nie opanował wiadomości i umiejętności na ocenę dopuszczającą, nie wykazuje chęci poprawy

Bardziej szczegółowo

Arytmetyka. Działania na liczbach, potęga, pierwiastek, logarytm

Arytmetyka. Działania na liczbach, potęga, pierwiastek, logarytm Arytmetyka Działania na liczbach, potęga, pierwiastek, logarytm Zbiory liczbowe Zbiór liczb naturalnych N = {1,2,3,4, }. Zbiór liczb całkowitych Z = {, 3, 2, 1,0,1,2,3, }. Zbiory liczbowe Zbiór liczb wymiernych

Bardziej szczegółowo

1. LICZBY DZIAŁ Z PODRĘCZNIKA L.P. NaCoBeZu kryteria sukcesu w języku ucznia

1. LICZBY DZIAŁ Z PODRĘCZNIKA L.P. NaCoBeZu kryteria sukcesu w języku ucznia L.P. DZIAŁ Z PODRĘCZNIKA NaCoBeZu kryteria sukcesu w języku ucznia 1. LICZBY 1. Znam pojęcie liczby naturalne, całkowite, wymierne, dodatnie, ujemne, niedodatnie, odwrotne, przeciwne. 2. Potrafię zaznaczyć

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla klasy I gimnazjum wg programu Matematyka z plusem

Wymagania edukacyjne z matematyki dla klasy I gimnazjum wg programu Matematyka z plusem Wymagania edukacyjne z matematyki dla klasy I gimnazjum wg programu Matematyka z plusem pojęcie liczby naturalnej, całkowitej, wymiernej rozszerzenie osi liczbowej na liczby ujemne sposób i potrzebę zaokrąglania

Bardziej szczegółowo

Klasa pierwsza: I TE 1, I TE 2, 1 TG, 1 TH, I TRA, 1TI Poziom podstawowy 3 godz. x 30 tyg.= 90 nr programu DKOS /07 I. Liczby rzeczywiste

Klasa pierwsza: I TE 1, I TE 2, 1 TG, 1 TH, I TRA, 1TI Poziom podstawowy 3 godz. x 30 tyg.= 90 nr programu DKOS /07 I. Liczby rzeczywiste Klasa pierwsza: I TE 1, I TE 2, 1 TG, 1 TH, I TRA, 1TI Poziom podstawowy 3 godz. x 30 tyg.= 0 nr programu DKOS-5002-7/07 I. Liczby rzeczywiste Liczby naturalne Liczby całkowite. Liczby wymierne. 1 Wykonalność

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI dla klasy I ba Rok szk. 2012/2013

WYMAGANIA EDUKACYJNE Z MATEMATYKI dla klasy I ba Rok szk. 2012/2013 Dział LICZBY RZECZYWISTE Uczeń otrzymuje ocenę dopuszczającą lub dostateczną, jeśli: podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i złożonych oraz przyporządkowuje

Bardziej szczegółowo

Plan wynikowy matematyka w zakresie rozszerzonym w klasie 1b, 2016/2017r.

Plan wynikowy matematyka w zakresie rozszerzonym w klasie 1b, 2016/2017r. Jolanta Pająk Plan wynikowy matematyka w zakresie rozszerzonym w klasie 1b, 016/017r. Ocena dopuszczająca: Temat lekcji Uczeń: Elementy logiki matematycznej rozpoznaje spójniki logiczne, zna wartości logiczne

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13 35. O zdaniu 1 T (n) udowodniono, że prawdziwe jest T (1), oraz że dla dowolnego n 6 zachodzi implikacja T (n) T (n+2). Czy można stąd wnioskować, że a) prawdziwe jest T (10), b) prawdziwe jest T (11),

Bardziej szczegółowo

Kryteria ocen z matematyki w klasie IV

Kryteria ocen z matematyki w klasie IV Kryteria ocen z matematyki w klasie IV odejmuje liczby w zakresie 100 z przekroczeniem progu dziesiętnego, zna kolejność wykonywania działań, gdy nie występuję nawiasy, odczytuje współrzędne punktu na

Bardziej szczegółowo

Przykładowe zadania z teorii liczb

Przykładowe zadania z teorii liczb Przykładowe zadania z teorii liczb I. Podzielność liczb całkowitych. Liczba a = 346 przy dzieleniu przez pewną liczbę dodatnią całkowitą b daje iloraz k = 85 i resztę r. Znaleźć dzielnik b oraz resztę

Bardziej szczegółowo

Elementy logiki i teorii mnogości

Elementy logiki i teorii mnogości Elementy logiki i teorii mnogości Zdanie logiczne Zdanie logiczne jest to zdanie oznajmujące, któremu można przypisać określoną wartość logiczną. W logice klasycznej zdania dzielimy na: prawdziwe (przypisujemy

Bardziej szczegółowo

MATeMAtyka 1. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony Klasa pierwsza

MATeMAtyka 1. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony Klasa pierwsza MATeMAtyka 1 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Klasa pierwsza Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe

Bardziej szczegółowo

Wymagania edukacyjne niezbędne do uzyskania rocznych ocen klasyfikacyjnych z matematyki w klasie VII.

Wymagania edukacyjne niezbędne do uzyskania rocznych ocen klasyfikacyjnych z matematyki w klasie VII. Przedmiotowy system oceniania z matematyki w klasie VII. Ocena roczna Wyróżniono następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające poza

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I GIMNAZJUM Małgorzata Janik

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I GIMNAZJUM Małgorzata Janik WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I GIMNAZJUM Małgorzata Janik DOPUSZCZAJĄCY DOSTATECZNY DOBRY BARDZO DOBRY LICZBY I DZIAŁANIA zna pojęcie liczby naturalnej, całkowitej, wymiernej. rozumie rozszerzenie

Bardziej szczegółowo

Wymagania na egzamin poprawkowy z matematyki z zakresu klasy pierwszej TECHNIKUM

Wymagania na egzamin poprawkowy z matematyki z zakresu klasy pierwszej TECHNIKUM Zespól Szkół Ogólnokształcących i Zawodowych w Ciechanowcu 3 czerwca 017r. Wymagania na egzamin poprawkowy z matematyki z zakresu klasy pierwszej TECHNIKUM Strona 1 z 8 1. Wprowadzenie do matematyki. Pojęcia

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA UCZNIÓW KLAS IV-VI

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA UCZNIÓW KLAS IV-VI WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA UCZNIÓW KLAS IV-VI Klasa IV Stopień dopuszczający otrzymuje uczeń, który potrafi: odejmować liczby w zakresie 100 z przekroczeniem progu dziesiątkowego,

Bardziej szczegółowo

Lista 2 logika i zbiory. Zad 1. Dane są zbiory A i B. Sprawdź, czy zachodzi któraś z relacji:. Wyznacz.

Lista 2 logika i zbiory. Zad 1. Dane są zbiory A i B. Sprawdź, czy zachodzi któraś z relacji:. Wyznacz. Lista 2 logika i zbiory. Zad 1. Dane są zbiory A i B. Sprawdź, czy zachodzi któraś z relacji:. Wyznacz. Na początek wypiszmy elementy obu zbiorów: A jest zbiorem wszystkich liczb całkowitych, które podniesione

Bardziej szczegółowo

Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne.

Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne. Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne. Funkcja homograficzna. Definicja. Funkcja homograficzna jest to funkcja określona wzorem f() = a + b c + d, () gdzie współczynniki

Bardziej szczegółowo

KRYTERIA WYMAGAŃ Z MATEMATYKI NA POSZCZEGÓLNE OCENY

KRYTERIA WYMAGAŃ Z MATEMATYKI NA POSZCZEGÓLNE OCENY 1 KRYTERIA WYMAGAŃ Z MATEMATYKI NA POSZCZEGÓLNE OCENY KLASA I LICZBY I DZIAŁANIA zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby ujemne umie porównywać

Bardziej szczegółowo

Mgr Kornelia Uczeń. WYMAGANIA na poszczególne oceny-klasa VII-Szkoła Podstawowa

Mgr Kornelia Uczeń. WYMAGANIA na poszczególne oceny-klasa VII-Szkoła Podstawowa Mgr Kornelia Uczeń WYMAGANIA na poszczególne oceny-klasa VII-Szkoła Podstawowa Oceny z plusem lub minusem otrzymują uczniowie, których wiadomości i umiejętności znajdują się na pograniczu wymagań danej

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE - matematyka - poziom rozszerzony Dariusz Drabczyk

WYMAGANIA EDUKACYJNE - matematyka - poziom rozszerzony Dariusz Drabczyk WYMAGANIA EDUKACYJNE - matematyka - poziom rozszerzony Dariusz Drabczyk str 1 Klasa 1d: wpisy oznaczone jako: LICZBY RZECZYWISTE, JĘZYK MATEMATYKI, FUNKCJA LINIOWA, (F) FUNKCJE, FUNKCJA KWADRATOWA. Przypisanie

Bardziej szczegółowo

SZKOŁA PODSTAWOWA NR 1 IM. ŚW. JANA KANTEGO W ŻOŁYNI. Wymagania na poszczególne oceny klasa VII Matematyka z kluczem

SZKOŁA PODSTAWOWA NR 1 IM. ŚW. JANA KANTEGO W ŻOŁYNI. Wymagania na poszczególne oceny klasa VII Matematyka z kluczem SZKOŁA PODSTAWOWA NR 1 IM. ŚW. JANA KANTEGO W ŻOŁYNI Wymagania na poszczególne oceny klasa VII Matematyka z kluczem I. Wymagania konieczne (na ocenę dopuszczającą) obejmują wiadomości i umiejętności umożliwiające

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE I GIMNAZJUM

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE I GIMNAZJUM WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE I GIMNAZJUM OCENA ŚRÓDROCZNA: NIEDOSTATECZNY ocenę niedostateczny otrzymuje uczeń, który

Bardziej szczegółowo

LICZBY - Podział liczb

LICZBY - Podział liczb 1 LICZBY - Podział liczb Liczby naturalne (N) to liczby, za pomocą których rachujemy. Podział liczb na diagramie prezentuje się następująco 0, 1, 2, 3, 4, 5,, 99, 100, 101,, 999, 1000, Liczby całkowite

Bardziej szczegółowo

Definicja i własności wartości bezwzględnej.

Definicja i własności wartości bezwzględnej. Równania i nierówności z wartością bezwzględną. Rozwiązywanie układów dwóch (trzech) równań z dwiema (trzema) niewiadomymi. Układy równań liniowych z parametrem, analiza rozwiązań. Definicja i własności

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla klasy 7 na podstawie planu wynikowego z rozkładem materiału

Wymagania edukacyjne z matematyki dla klasy 7 na podstawie planu wynikowego z rozkładem materiału Wymagania edukacyjne z matematyki dla klasy 7 na podstawie planu wynikowego z rozkładem materiału Lp. Temat lekcji Punkty z podstawy programowej z dnia 1 lutego 2017 r. Wymagania podstawowe Wymagania ponadpodstawowe

Bardziej szczegółowo

Matematyka z kluczem. Plan wynikowy z rozkładem materiału Klasa 7

Matematyka z kluczem. Plan wynikowy z rozkładem materiału Klasa 7 Matematyka z kluczem Plan wynikowy z rozkładem materiału Klasa 7 Matematyka z kluczem Plan wynikowy z rozkładem materiału Klasa 7 Temat lekcji Punkty z podstawy programowej Lp. Wymagania podstawowe Wymagania

Bardziej szczegółowo

Matematyka z kluczem. Plan wynikowy z rozkładem materiału Klasa 7

Matematyka z kluczem. Plan wynikowy z rozkładem materiału Klasa 7 Matematyka z kluczem Plan wynikowy z rozkładem materiału Klasa 7 Matematyka z kluczem Plan wynikowy z rozkładem materiału Klasa 7 Temat lekcji Punkty z podstawy programowej Lp. Wymagania podstawowe Wymagania

Bardziej szczegółowo

Kryteria oceniania z matematyki zakres podstawowy Klasa I

Kryteria oceniania z matematyki zakres podstawowy Klasa I Kryteria oceniania z matematyki zakres podstawowy Klasa I zakres Dopuszczający Dostateczny Dobry bardzo dobry Zdanie logiczne ( proste i złożone i forma zdaniowa oraz prawa logiczne dotyczące alternatywy,

Bardziej szczegółowo

1 Podstawowe oznaczenia

1 Podstawowe oznaczenia Poniżej mogą Państwo znaleźć skondensowane wiadomości z wykładu. Należy je traktować jako przegląd pojęć, które pojawiły się na wykładzie. Materiały te nie są w pełni tożsame z tym co pojawia się na wykładzie.

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE III GIMNAZJUM

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE III GIMNAZJUM WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE III GIMNAZJUM OCENA ŚRÓDROCZNA: NIEDOSTATECZNY ocenę niedostateczny otrzymuje uczeń, który

Bardziej szczegółowo

DZIAŁANIA NA UŁAMKACH DZIESIĘTNYCH.

DZIAŁANIA NA UŁAMKACH DZIESIĘTNYCH. DZIAŁANIA NA UŁAMKACH DZIESIĘTNYCH. Dodawanie,8 zwracamy uwagę aby podpisywać przecinek +, pod przecinkiem, nie musimy uzupełniać zerami z prawej strony w liczbie,8. Pamiętamy,że liczba to samo co,0, (

Bardziej szczegółowo

6. Liczby wymierne i niewymierne. Niewymierność pierwiastków i logarytmów (c.d.).

6. Liczby wymierne i niewymierne. Niewymierność pierwiastków i logarytmów (c.d.). 6. Liczby wymierne i niewymierne. Niewymierność pierwiastków i logarytmów (c.d.). 0 grudnia 008 r. 88. Obliczyć podając wynik w postaci ułamka zwykłego a) 0,(4)+ 3 3,374(9) b) (0,(9)+1,(09)) 1,() c) (0,(037))

Bardziej szczegółowo

Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k.

Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k. Funkcje wymierne Jerzy Rutkowski Teoria Przypomnijmy, że przez R[x] oznaczamy zbiór wszystkich wielomianów zmiennej x i o współczynnikach rzeczywistych Definicja Funkcją wymierną jednej zmiennej nazywamy

Bardziej szczegółowo

Skrypt 2. Liczby wymierne dodatnie i niedodatnie. 3. Obliczanie odległości między dwiema liczbami na osi liczbowej

Skrypt 2. Liczby wymierne dodatnie i niedodatnie. 3. Obliczanie odległości między dwiema liczbami na osi liczbowej Projekt Innowacyjny program nauczania matematyki dla gimnazjów współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 2 Liczby wymierne dodatnie i niedodatnie

Bardziej szczegółowo

WYMAGANIA na poszczególne oceny-klasa I Gimnazjum

WYMAGANIA na poszczególne oceny-klasa I Gimnazjum WYMAGANIA na poszczególne oceny-klasa I Gimnazjum Oceny z plusem lub minusem otrzymują uczniowie, których wiadomości i umiejętności znajdują się na pograniczu wymagań danej oceny głównej. (Znaki + i -

Bardziej szczegółowo

Elementy logiki. Zdania proste i złożone

Elementy logiki. Zdania proste i złożone Elementy logiki Zdania proste i złożone. Jaka jest wartość logiczna następujących zdań: (a) jest dzielnikiem 7 lub suma kątów wewnętrznych w trójkącie jest równa 80. (b) Jeśli sin 0 =, to 5 < 5. (c) Równanie

Bardziej szczegółowo

Zbiory, relacje i funkcje

Zbiory, relacje i funkcje Zbiory, relacje i funkcje Zbiory będziemy zazwyczaj oznaczać dużymi literami A, B, C, X, Y, Z, natomiast elementy zbiorów zazwyczaj małymi. Podstawą zależność między elementem zbioru a zbiorem, czyli relację

Bardziej szczegółowo

Przypomnienie wiadomości dla trzecioklasisty C z y p a m i ę t a s z?

Przypomnienie wiadomości dla trzecioklasisty C z y p a m i ę t a s z? Przypomnienie wiadomości dla trzecioklasisty C z y p a m i ę t a s z? Liczby naturalne porządkowe, (0 nie jest sztywno związane z N). Przykłady: 1, 2, 6, 148, Liczby całkowite to liczby naturalne, przeciwne

Bardziej szczegółowo

Lista zadań nr 15 TERMIN ODDANIA ROZWIĄZANYCH ZADAŃ 9 marca 2015

Lista zadań nr 15 TERMIN ODDANIA ROZWIĄZANYCH ZADAŃ 9 marca 2015 Lista zadań nr 5 TERMIN ODDANIA ROZWIĄZANYCH ZADAŃ 9 marca 05 Liczby rzeczywiste a) planuję i wykonuję obliczenia na liczbach rzeczywistych; w szczególności obliczam pierwiastki, w tym pierwiastki nieparzystego

Bardziej szczegółowo

Jarosław Wróblewski Matematyka Elementarna, zima 2012/13

Jarosław Wróblewski Matematyka Elementarna, zima 2012/13 Poniedziałek 12 listopada 2012 - zaczynamy od omówienia zadań z kolokwium nr 1. Wtorek 13 listopada 2012 - odbywają się zajęcia czwartkowe. 79. Uprościć wyrażenia a) 4 2+log 27 b) log 3 2 log 59 c) log

Bardziej szczegółowo

Plan wynikowy z wymaganiami edukacyjnymi z matematyki w zakresie podstawowym dla klasy 1 zsz Katarzyna Szczygieł

Plan wynikowy z wymaganiami edukacyjnymi z matematyki w zakresie podstawowym dla klasy 1 zsz Katarzyna Szczygieł Plan wynikowy z wymaganiami edukacyjnymi z matematyki w zakresie podstawowym dla klasy 1 zsz Katarzyna Szczygieł Lp. Temat Kształcone umiejętności 1 Zasady pracy na lekcjach matematyki. Dział I. LICZBY

Bardziej szczegółowo

Wymagania edukacyjne na poszczególne oceny z matematyki w klasie I poziom rozszerzony

Wymagania edukacyjne na poszczególne oceny z matematyki w klasie I poziom rozszerzony Wymagania edukacyjne na poszczególne oceny z matematyki w klasie I poziom rozszerzony Na ocenę dopuszczającą, uczeń: podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych

Bardziej szczegółowo

Wymagania na egzamin poprawkowy z matematyki dla klasy I C LO (Rok szkolny 2015/16) Wykaz zakładanych osiągnięć ucznia klasy I liceum

Wymagania na egzamin poprawkowy z matematyki dla klasy I C LO (Rok szkolny 2015/16) Wykaz zakładanych osiągnięć ucznia klasy I liceum Wymagania na egzamin poprawkowy z matematyki dla klasy I C LO (Rok szkolny 05/6) Wykaz zakładanych osiągnięć ucznia klasy I liceum (osiągnięcia ucznia w zakresie podstawowym) I. Liczby rzeczywiste. Język

Bardziej szczegółowo

Wymagania dla kl. 1. Zakres podstawowy. podaje przykłady liczb pierwszych, parzystych i nieparzystych cechy podzielności liczb naturalnych

Wymagania dla kl. 1. Zakres podstawowy. podaje przykłady liczb pierwszych, parzystych i nieparzystych cechy podzielności liczb naturalnych Wymagania dla kl. 1 Zakres podstawowy Temat lekcji Zakres treści Osiągnięcia ucznia 1. LICZBY RZECZYWISTE 1. Liczby naturalne definicja dzielnika liczby naturalnej definicja liczby pierwszej podaje przykłady

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne Klasa 7

Wymagania na poszczególne oceny szkolne Klasa 7 1 Wymagania na poszczególne oceny szkolne Klasa 7 Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane

Bardziej szczegółowo

Zadania do samodzielnego rozwiązania

Zadania do samodzielnego rozwiązania Zadania do samodzielnego rozwiązania I. Podzielność liczb całkowitych 1. Pewna liczba sześciocyfrowa a kończy się cyfrą 5. Jeśli tę cyfrę przestawimy na miejsce pierwsze ze strony lewej, to otrzymamy nową

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne z matematyki. dla uczniów klasy Ia i Ib. Gimnazjum im. Jana Pawła II w Mętowie. w roku szkolnym 2015/2016

Wymagania na poszczególne oceny szkolne z matematyki. dla uczniów klasy Ia i Ib. Gimnazjum im. Jana Pawła II w Mętowie. w roku szkolnym 2015/2016 Wymagania na poszczególne oceny szkolne z matematyki dla uczniów klasy Ia i Ib Gimnazjum im. Jana Pawła II w Mętowie w roku szkolnym 2015/2016 DZIAŁ I: LICZBY zaznacza na osi liczbowej punkty odpowiadające

Bardziej szczegółowo

Oznaczenia: K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające

Oznaczenia: K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające MATeMAtyka 1 lan wynikowy: Zakres podstawowy i rozszerzony Oznaczenia: wymagania konieczne; wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające Temat lekcji

Bardziej szczegółowo

Wymagania na ocenę dopuszczającą z matematyki klasa I Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS /02

Wymagania na ocenę dopuszczającą z matematyki klasa I Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS /02 Wymagania na ocenę dopuszczającą z matematyki klasa I Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS 4015-99/02 Temat lekcji Zakres treści Osiągnięcia ucznia 1. Liczby naturalne definicja dzielnika

Bardziej szczegółowo

Jarosław Wróblewski Matematyka Elementarna, lato 2012/13. Czwartek 28 marca zaczynamy od omówienia zadań z kolokwium nr 1.

Jarosław Wróblewski Matematyka Elementarna, lato 2012/13. Czwartek 28 marca zaczynamy od omówienia zadań z kolokwium nr 1. Czwartek 28 marca 2013 - zaczynamy od omówienia zadań z kolokwium nr 1. 122. Uprościć wyrażenia a) 4 2+log 27 b) log 3 2 log 59 c) log 6 2+log 36 9 123. Dla ilu trójek liczb rzeczywistych dodatnich a,

Bardziej szczegółowo