Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria

Podobne dokumenty
1. Równania i nierówności liniowe

WSTĘP DO ANALIZY I ALGEBRY, MAT1460

Indukcja matematyczna

1 + x 1 x 1 + x + 1 x. dla x 0.. Korzystając z otrzymanego wykresu wyznaczyć funkcję g(m) wyrażającą liczbę pierwiastków równania.

Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas II w roku szkolnym 2016/2017 w Zespole Szkół Ekonomicznych w Zielonej Górze

(a b 1 2); : ( b a + b ab 2 + c ). : a2 2ab+b 2. Politechnika Białostocka KATEDRA MATEMATYKI. Zajęcia fakultatywne z matematyki 2008

ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna

Blok III: Funkcje elementarne. e) y = 1 3 x. f) y = x. g) y = 2x. h) y = 3x. c) y = 3x + 2. d) y = x 3. c) y = x. d) y = x.

Zadania do samodzielnego rozwiązania zestaw 11

< > Sprawdzić prawdziwość poniższych zdań logicznych (odpowiedź uzasadnić) oraz podać ich zaprzeczenia:

Repetytorium z matematyki ćwiczenia

ZESTAW PRZYKŁADOWYCH ZADAŃ Z MATEMATYKI ZAKRES ROZSZERZONY

BAZA ZADAŃ KLASA 2 TECHNIKUM FUNKCJA KWADRATOWA

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale

Funkcja kwadratowa. f(x) = ax 2 + bx + c = a

ZDAJ MATMĘ NA MAKSA POZIOM PODSTAWOWY 2018/ : (2 5 ) 5 (0, 5)

ZBIÓR ZADAŃ. Matematyczne ABC maturzysty na poziomie podstawowym

ZDAJ MATMĘ NA MAKSA POZIOM ROZSZERZONY 2018/ Oblicz wartość wyrażenia: a b 1 a2 b 2. 2 log )

Uniwersytet Mikołaja Kopernika w Toruniu. Egzamin wstępny z matematyki

Funkcja kwadratowa. f(x) = ax 2 + bx + c,

ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna

Zestaw zadań przygotowujących do egzaminu maturalnego z matematyki Poziom podstawowy

ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ LICEUM OGÓLNOKSZTAŁCĄCEGO ZAKRES PODSTAWOWY

( ) Arkusz I Zadanie 1. Wartość bezwzględna Rozwiąż równanie. Naszkicujmy wykresy funkcji f ( x) = x + 3 oraz g ( x) 2x

? 14. Dana jest funkcja. Naszkicuj jej wykres. Dla jakich argumentów funkcja przyjmuje wartości dodatnie? 15. Dana jest funkcja f x 2 a x

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY. (zakres podstawowy) klasa 2

TO TRZEBA ROZWIĄZAĆ-(I MNÓSTWO INNYCH )

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO OTRZYMANIA PRZEZ UCZNIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI

ZBIÓR ZADAŃ Z MATEMATYKI - MATURA (POZIOM ROZSZERZONY)

Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 TLog

Funkcje - monotoniczność, różnowartościowość, funkcje parzyste, nieparzyste, okresowe. Funkcja liniowa.

Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 TŻiUG

PLAN WYNIKOWY (zakres podstawowy) klasa 2. rok szkolny 2015/2016

Kurs Start plus - matematyka poziom podstawowy, materiały dla prowadzących, Marcin Kościelecki. Zajęcia 1.

I. Funkcja kwadratowa

postaci kanonicznej i iloczynowej trójmiany: y = 0,5x 2. Podaj określenie ciągu arytmetycznego. Dany jest ciąg a n

Zad. 1 Liczba jest równa A B C D. Zad. 2 Liczba log16 jest równa A 3log2 + log8 B log4 + 2log3 C 3log4 log4 D log20 log4

Egzamin ustny z matematyki semestr II Zakres wymaganych wiadomości i umiejętności

Przygotowanie do poprawki klasa 1li

ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna

1. Proporcjonalnością prostą jest zależność opisana wzorem: x 5

ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI

Tematy: zadania tematyczne

WYMAGANIA WSTĘPNE Z MATEMATYKI

III. Funkcje rzeczywiste

1) 2) 3) 5) 6) 7) 8) 9) 10) 11) 12) 13) 14) 15) 16) 17) 18) 19) 20) 21) 22) 23) 24) 25)

Dział I FUNKCJE I ICH WŁASNOŚCI

Przykładowe zestawy pytań maturalnych z matematyki na egzamin ustny.

ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI

KLASA II LO Poziom rozszerzony (wrzesień styczeń)

Równania prostych i krzywych; współrzędne punktu

Zagadnienia z matematyki dla klasy II oraz przykładowe zadania

Ostatnia aktualizacja: 30 stycznia 2015 r.

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale

Matura 2011 maj. Zadanie 1. (1 pkt) Wskaż nierówność, którą spełnia liczba π A. x + 1 > 5 B. x 1 < 2 C. x D. x 1 3 3

ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II

Funkcje elementarne. Matematyka 1

I. Funkcja liniowa WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ LICEUM OGÓLNOKSZTAŁCĄCEGO ZAKRES ROZSZERZONY

Zestaw VI. Zadanie 1. (1 pkt) Wskaż nierówność, którą spełnia liczba π A. (x + 1) 2 > 18 B. (x 1) 2 < 5 C. (x + 4) 2 < 50 D.

WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI Z MATEMATYKI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY 2a zakres rozszerzony. I Przekształcenia wykresów funkcji

ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna

Geometria analityczna

WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY DRUGIEJ M. zakres rozszerzony

PLAN WYNIKOWY DLA KLASY DRUGIEJ POZIOM PODSTAWOWY I ROZSZERZONY. I. Proste na płaszczyźnie (15 godz.)

Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa druga.

PRZYKŁADOWE ZADANIA Z MATEMATYKI NA POZIOMIE PODSTAWOWYM

PRÓBNY ARKUSZ MATURALNY Z MATEMATYKI

WYMAGANIA EDUKACYJNE Rok szkolny 2018/2019

2 cos α 4. 2 h) g) tgx. i) ctgx

Zadania przygotowawcze do konkursu o tytuł NAJLEPSZEGO MATEMATYKA KLAS PIERWSZYCH I DRUGICH POWIATU BOCHEŃSKIEGO rok szk. 2017/2018.

FUNKCJA LINIOWA. A) B) C) D) Wskaż, dla którego funkcja liniowa określona wzorem jest stała. A) B) C) D)

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Funkcje Andrzej Musielak 1. Funkcje

Funkcja liniowa -zadania. Funkcja liniowa jest to funkcja postaci y = ax + b dla x R gdzie a, b R oraz

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY

LUBELSKA PRÓBA PRZED MATURĄ 2015

Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony

SYLABUS PRZEDMIOTU MATEMATYKA W RAMACH ZAJ

PRÓBNY EGZAMIN MATURALNY

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Zadanie 01 Zaznacz w układzie współrzędnych zbiory : A = { (x, y) ; x R i y R i x + y 1 } oraz. B m = { (x, y) ; x R i y R i 4x 2 + 4y 2 4x 4m+1 }

ODLEGŁOŚĆ NA PŁASZCZYŹNIE - SPRAWDZIAN

MATEMATYKA Z SENSEM. Ryszard Kalina Tadeusz Szymański Marek Lewicki. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych.

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Jarosław Wróblewski Matematyka Elementarna, zima 2011/12

MATeMAtyka klasa II poziom rozszerzony

Klasa III technikum Egzamin poprawkowy z matematyki sierpień I. CIĄGI LICZBOWE 1. Pojęcie ciągu liczbowego. b) a n =

Elementy logiki (4 godz.)

Wymagania edukacyjne matematyka klasa 1 zakres podstawowy 1. LICZBY RZECZYWISTE

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu

2) R stosuje w obliczeniach wzór na logarytm potęgi oraz wzór na zamianę podstawy logarytmu.

Blok V: Ciągi. Różniczkowanie i całkowanie. c) c n = 1 ( 1)n n. d) a n = 1 3, a n+1 = 3 n a n. e) a 1 = 1, a n+1 = a n + ( 1) n

Próbny egzamin maturalny z matematyki Poziom podstawowy

ZADANIA PRZYGOTOWUJĄCE DO SPRAWDZIANÓW W KLASIE PIERWSZEJ.

KRYTERIA OCENIANIA Z MATEMATYKI (zakres rozszerzony) klasa 2LO

3. FUNKCJA LINIOWA. gdzie ; ół,.

Badanie funkcji. Zad. 1: 2 3 Funkcja f jest określona wzorem f( x) = +

Transkrypt:

Technologia Chemiczna 008/09 Zajęcia wyrównawcze. Pokazać, że: ( )( ) n k k l = ( n l )( n l k l Zajęcia nr (h) Dwumian Newtona. Indukcja. ). Rozwiązać ( ) ( równanie: ) n n a) = 0 b) 3 ( ) n 3. Znaleźć czwarty wyraz rozwinięcia dwumianu: a) ( ) ( ) n n = 0 c) = n d) 4 n ( x ) 5 b) x 4. Udowodnić metodą indukcji: n(n + ) a) + + 3 +... + n = b) + 3 + 5 +... + (n ) = n c) n + n jest podzielne przez d) 0 n 4 jest podzielne przez 6 e) n + n f) + 3 n n + 3 ( ) n = n 3 ( ) x 7 + x ( ) n n 4 Zajęcia nr i 3 (4h) Trygonometria 5. Podane miary stopniowe kątów wyrazić w radianach: a) 360 b) 90 c) 8 d) 5 6. Określić znak każdej z liczb: sin x, cos x, tg x, ctg x, wiedząc że a) x (π, 3 π) b) x (, 3) c) x (5, 6) 7. Obliczyć cos x i tg x, jeśli sin x = 4 5 i x ( π, π) 8. Obliczyć sin x i cos x, jeśli tg x = i x ( π, 0) 9. Obliczyć sin x i cos x, jeśli sin x = 3 i x ( π, π) 0. Sprawdzić czy podana równość jest tożsamością trygonometryczną: a) cos 4 x sin 4 x = cos x sin sin x x b) + cos x + + cos x = sin x sin x. Naszkicować wykresy funkcji: a) f(x) = sin x + b) f(x) = cos(x π 4 ) c) f(x) = sin x cos x sin x d) f(x) = tg x e) f(x) = f) f(x) = sin x + sin x cos x. Uprościć wyrażenie: a) tg(3π α) b) ctg( π + α) c) cos(π α) d) sin(α 5 π) 3. Uprościć wyrażenie: a) sin x( + ctg x) + cos x( + tg x) b) sin x ctg x cos x jeśli x (π, π) 4. Rozwiązać równania: a) cos x = + cos x b) cos 3x = cos x c) 3 sin x = cos x d) sin x cos x = 0 e) tg x + ctg x = 4 sin x f) tg x = cos x g) tg x sin x = tg x sin x h) ctg x cos x = sin x i) tg x + tg x = tg 3x sin x

Technologia Chemiczna 008/09 Zajęcia wyrównawcze 5. Rozwiązać nierówności: cos x a) cos x+tg x < +sin x w przedziale (0, π) b) < w przedziale (0, π) cos x cos x + cos x c) > w przedziale (0, π) d) sin x ( cos x) w przedziale (π, π) cos x 6. Sprawdzić tożsamości: a) tg x + ctg x = sin x d) b) 4 ctg x = 4 4 cos x cos x c) cos x cos 3x sin 3x sin x = tg x sin x + sin x + cos x + cos x = tg x e) cos x( + tg x tg x) = f) tg( π 4 + x) tg( π 4 x) = tg x Zajęcia nr 4 (h) Potęgi o wykladniku rzeczywistym. Równania i nierówności kwadratowe, wzory Viete a. Dzielenie wielomianów. 7. Daną liczbę zapisać jako potęgę liczby : ( a) (6 3 4) 5 b) 8 4 d) 3 e) ) c) 8 3 4 6 8 8 8 f) 4 8. Sprowadzić do najprostszej postaci wyrażenia: a) (x8 x 3 ) 4 x 7 x 9 x 0 b) ( y 3 y) y > 0 c) 4 y 8 y 6 ( x ( x) ) 8 x 0 9. Nie obliczając pierwiastków równania x 5x 6 = 0 obliczyć: a) iloczyn pierwiastków tego równania b) sumę odwrotności pierwiastków tego równania c) sumę kwadratów pierwiastków tego równania d) sumę odwrotności kwadratów pierwiastków tego równania 0. Rozłożyć na czynniki wielomian W (x), wiedząc że liczba p jest jego pierwiastkiem a) W (x) = x 3 + x 7x 3; p = 3 b) W (x) = 9x 4 x 3 x x; p =. Sprawdzić, czy liczba jest dwukrotnym pierwiastkiem wielomianu W (x) = x 4 x 3 3x + 3x 0. Nie wykonując dzielenia, wyznaczyć resztę z dzielenia a) wielomianu x 6 + x 5 + 3x + 4 przez wielomian x b) wielomianu x 5 + x 4 + 3x + przez wielomian (x + )(x ) 3. Dla jakiej wartości parametru m przy dzieleniu wielomianu 3x 3 +mx 4x+ przez x otrzymujemy resztę równą 6? 4. Reszta z dzielenia wielomianu W (x) przez dwumian x jest równa, a reszta z dzielenia tego wielomianu przez dwumian x jest równa 4. Wyznaczyć resztę z dzielenia wielomianu W (x) przez wielomian x 3x + 5. Rozwiązać równania: a) x + 3 x = 4 x x + b) 4 + x x = x c) 9 5x = 3 x + 6 3 x

Technologia Chemiczna 008/09 Zajęcia wyrównawcze 3 6. Rozwiązać nierówności: a) x 3 + 6x + x + 6 > 0 b) x 3 + 3x 9x + 5 0 c) 3x 3 + 8x 9x < 0 d) 4x 4 + 4x 3 + 3x x 0 e) (x3 )(x )(x ) x(x + ) 0 f) 4 x 5x + 6 < 0 x 3 Zajęcia nr 5 (h) Równania i nierówności kwadratowe z parametrem. Wartość bezwzględna. Równania i nierówności wymierne. 7. Wyznaczyć takie wartości parametru m, aby równanie a) (m )x + 6x + = 0 miało dokładnie jedno rozwiązanie b) (m + )x 4x + = 0 miało dwa różne rozwiązania 8. Wyznaczyć te wartości parametru m, dla którego równanie (m )x 4 (m + 3)x + m + = 0 ma cztery róźne pierwiastki rzeczywiste. 9. Dla jakich wartości parametru k równanie (k + )x + x + = 0 ma dwa pierwiastki różnych znaków. 30. Dla jakich wartości parametru m równanie x + mx + m + 5 4 a) ujemne b) nieujemne = 0 ma dwa różne pierwiastki 3. Rozwiązać równania i nierówności: a) x 9 + x 4 = 5 b) x 5x + 4 x 4 c) x < x d) x 4x = 6 x e) x 3 = 3x 7 f) x 5x + 3 = 3 Zajęcia nr 6 (h) Własności funkcji. 3. Wyznaczyć dziedzinę naturalną funkcji: x + a) f(x) = x b) f(x) = cos x c) f(x) = tg x + ctg x x 33. Dane są funkcje: f(x) = x 9 i g(x) = x. Wyznaczyć dziedzinę naturalną funkcji: a) f(x) g(x) b) f(x) c) (f g)(x) d) (g f)(x) g(x) 34. Zbadać parzystość i nieparzystość funkcji: a) f(x) = sin x tg x b) f(x) = 4 + 3x + x + 4 3x + x 35. Wykazać, że funkcja f(x) = x + jest rosnąca w R 36. Wykazać, że funkcja f(x) = { x dla x 0 x dla x > 0 jest malejąca w R 37. Zbadać różnowartościowość funkcji: a) f(x) = 3x b) f(x) = x x c) f(x) = x + { x dla x x 3 dla x >

Technologia Chemiczna 008/09 Zajęcia wyrównawcze 4 38. Znaleźć okres podstawowy funkcji: a) f(x) = sin(x + ) b) f(x) = tg x c) f(x) = sin π x + cos π x 39. Znaleźć funkcję odwrotną do funkcji: a) f(x) = 3x + b) f(x) = (x ) 3 c) f(x) = x + x 40. Naszkicować wykresy funkcji: a) f(x) = sin(x + π ) b) f(x) = (x 3) + 4 c) f(x) = cos(x π) d) f(x) = x 4 e) f(x) = x + + x f) f(x) = { x x + x x + x x < 0 g) f(x) = cos x h) f(x) = x 4 x i) f(x) = x + x x 0 Zajęcia nr 7 (h) Funkcja liniowa i kwadratowa. 4. Znaleźć wzór funkcji liniowej f, wiedząc że: a) jej wykres przecina oś Oy w punkcie o rzędnej, a miejscem zerowym funkcji f jest 4. b) jej wykres przechodzi przez punkt A(, 8) i jest równoległy do wykresu funkcji g(x) = 3x + 7 c) jej wykres jest nachylony do osi Ox pod kątem 60 i przechodzi przez punkt (, 3) 4. { Wyznaczyć funkcję liniową, taką aby dla każdego x R spełnione były warunki: f(3x) = 3f(x) a) b) f(x) = f(x) + f(x + 3) = f(x) + 9 43. Wyznaczyć funkcję liniową będącą funkcją nieparzystą i taką, dla której f() = 3 44. Wyznaczyć funkcję liniową będącą funkcją parzystą i taką, dla której f() = 3 45. Dla jakich wartości parametru m funkcja f(x) = (m )x + 3 jest a) stała b) rosnąca c) malejąca 46. Wyznaczyć funkcję kwadratową, o której wiemy że: a) f() = f(3) = 0 i funkcja ta osiąga wartość najmniejszą równą b) f(0) = f() = 3 i funkcja ta osiąga wartość największą równą 0 c) parabola, będąca jej wykresem, przechodzi przez punkt A(, 0), a jej wierzchołek ma współrzędne (, 4) d) parabola, będąca jej wykresem, przechodzi przez punkt A(, 8) i jest styczna do osi Ox w punkcie B(4,0) 47. Znaleźć najmniejszą i największą wartość funkcji, osiąganą w przedziale, 4 a)f(x) = x 6x + 5 b)f(x) = x + 8x + 48. Znaleźć parzystą funkcję kwadratową, spełniającą warunki: f(0) = i f() = 3. Czy istnieje nieparzysta funkcja kwadratowa, spaełniająca te warunki? 49. Rozwiązać układ równań: { y = x 4 y = x + x Zajęcia nr 8 (h) Funkcja homograficzna i jej własności 50. Dana jest funkcja f(x) = 5x 6 x 3 a) Znaleźć punkty przecięcia wykresu tej funkcji z osiami układu współrzędnych b) Naszkicować wykres tej funkcji c) Znaleźć ten argument, dla którego funkcja przyjmuje wartość 3

Technologia Chemiczna 008/09 Zajęcia wyrównawcze 5 5. Naszkicować wykres funkcji: a) f(x) = x + x b) f(x) = x + x d) f(x) = x 3x x 4 x e) f(x) = 9 (x + 3) x 4 x + x c) f(x) = x x + x + f) f(x) = x + x 5. Określić dziedzinę naturalną funkcji f(x) = x 4x + 4 x. Naszkicować jej wykres i podać zbiory, w 4 których jest monotoniczna. x + x + 53. Wyznaczyć dziedzinę i narysować wykres funkcji f(x) = x. Rozwiązać algebraicznie i graficznie nierówność f(x) > 3 54. Wyznaczyć wartość najmniejszą i największą funkcji f(x) = x + 3 x 3 w przedziale:, Zajęcia nr 9 (3h) Funkcja wykładnicza i logarytmiczna. 55. Zaznaczyć w układzie ( ) współrzędnych zbiór punktów (x, y), których współrzędne spełniają: x { y a) nierówność y b) układ nierówności: x + y < 3 3 x 56. Wyznaczyć dziedzinę naturalną funkcji a) f(x) = x b) f(x) = x c) f(x) = x 57. Naszkicować wykresy funkcji: a) f(x) = x + b) f(x) = 3 x + c) f(x) = x+ x ( ) x d) f(x) = e) f(x) = x f) f(x) = x x 58. Rozwiązać równania: a) 5 x = ( ) x b) 3 x = 9 4 x c) = 8 x+7 ( ) 5 x d) 7 = 49 e) 3 x = f) 4 x x = 59. Dana jest funkcja f(x) = 3 x + 3 x. a) Sprawdzić, że f(x) jest parzysta b) Zbadać jej monotoniczność na przedziale 0, + ) c) Wyznaczyć najmniejszą wartość tej funkcji. 60. Rozwiązać równanie: 6 x+ 4 x+ 4x 3 3 = 0 6. Dana jest funkcja f(x) = 9 x 0 3 x + 9. Wyznaczyć: a) zbiór wartości tej funkcji b) jej miejsca zerowe. 6. Rozwiązać nierówność: 4 9 x < 4 6 x + 3 4 x 63. Rozwiązać równanie: 3 3x+ 3 3 x + 3 3 x = 3

Technologia Chemiczna 008/09 Zajęcia wyrównawcze 6 64. Obliczyć: a) log 7 7 7 b) log 3 3 7 c) log 9 tg π 6 d) log 3 log 3 4 e) log 3 5 log 5 7 f) log 3 5 5 log 3 65. Wyznaczyć dziedzinę naturalną funkcji: a) f(x) = log (3 x) b) f(x) = log [ log (x 5x+6)] c) f(x) = log x (3 x) 66. Naszkicować wykresy funkcji: a) f(x) = log x + b) f(x) = log ( x) c) f(x) = log 3 (x ) d) f(x) = log 3 x e) f(x) = log x f) f(x) = log ( x) 67. Rozwiązać równania: a) log (9 x ) = 3 x b) log 3(x ) = 9 c) log 3 x = 6 log3 x d) x log 0 x = 00x Zajęcia nr 0 (h) Ciąg arytmetyczny i geometryczny. Ciągi monotoniczne i ograniczone. 68. Zbadać czy podany ciąg jest ograniczony: a) a n = n n + b) a n = n c) a n = n + 69. Zbadać monotoniczność ciągów: a) a n = n + n n b) a n = n!(n)! (3n)! c) a n = n + 3 n + 70. Pierwszy wyraz ciągu arytmetycznego jest równy 7 i jest dwa razy mniejszy od wyrazu szóstego. Wyznaczyć wyraz ogólny tego ciągu. 7. Pierwszy wyraz skończonego ciągu arytmetycznego jest równy 4, a różnica wynosi. Suma wszystkich wyrazów tego ciągu wynosi 89. Obliczyć liczbę wyrazów tego ciąagu. 7. Pierwszy wyraz malejącego ciągu arytmetycznego jest równy 3, a iloczyn wyrazów czwartego i piątego jest równy 5. Obliczyć różnicę ciągu i sumę pierwszych 4 jego wyrazów. 73. Dla jakich x poniższe liczby tworzą (w podanej kolejności) ciąg geometryczny? a), x, 8 b) x, x, 5x 3 4x c) x+ + 9, x +, 74. Pierwszy wyraz ciągu geometrycznego jest równy 6, a iloraz wyrazów dziesiątego i szóstego wynosi 6. Wiedząc, że ciąg ten nie jest monotoniczny wyznaczyć wzór na wyraz ogólny. 75. Iloraz ciągu geometrycznego jest równy 3, a suma jego pięciu początkowych wyrazów wynosi 605. Znaleźć pierwszy wyraz tego ciągu i określić monotoniczność ciągu. 76. Rozwiązać równanie albo nierówność (lewa strona jest sumą wyrazów nieskończonego ciągu geometrycznego): a) + x + 4x +... = b) sin x + sin x + sin 3 x +... = tg x c) + x + x + x 3 +... 4 d) + log x + log x +... < e) 3 x + 3 x + 3 x +... = 3 x+ f) cos x + cos 3 x + cos 4 x... = cos x + 77. Podać wzór na n ty wyraz ciągu a n, jeżeli a) a = 5, a n+ = a n + dla n b) a = 5, a n+ = a n dla n Z +

Technologia Chemiczna 008/09 Zajęcia wyrównawcze 7 Zajęcia nr (h) Twierdzenie o trzech ciągach. Granica ciągu. 78. Dla jakich wartości parametru p ciąg 4n a n = (p )n + 5 a) ma granicę równą b) dąży do + 79. Podać wzory takich ciągów a n i b n, które są zbieżne do zera, natomiast ciąg c n = a n b n a) ma granicę równą 5 b) ma granicę równą 0 c) dąży do + 80. Znaleźć granice (przy n ) ciągów o wyrazie ogólnym a n a) a n = 6n7 n 4 + n 3 n 5 + d) a n = n4 n + + 8n 6 e) a n = g) a n = 4n 5 n 7 b) a n = n5 3n + 3n 5 c) a n = n4 + 3n n 4 n 5 4n + 5n 7 n f) a n = n + n n n h) a n = n + 6 n + n i) a n = n + 3 n 3 n + + n 8. Korzystając z twierdzenia o trzech ciągach policzyć granice: a) a n = n 5 n + 3 n + n b) a n = n + + n + +... + n + n c) a n = n 3 n + n 5 n + 4 n 8. Zbadać istnienie granicy ciągów: a) a n = + ( )n b) a n = n n + 3 sin πn c) a n = n + ( ) n Zajęcia nr (h) Rachunek wektorowy. 83. Dane są punkty: A(, 3), B(3, 7) i C(, 4). a) Obliczyć współrzędne wektorów AB i BA b) Obliczyć długość wektora AB c) Znaleźć taki punkt D, aby AB = CD d) Obliczyć współrzędne środka odcinka AB 84. Punkty A, B, C, D są kolejnymi wierzchołkami równoległoboku. Zapisać wektory AB i AD za pomocą wektorów AC i BD 85. Znaleźć współrzędne końca B wektora AB = [, 5], A(, 3). jeżeli jego początek znajduje się w punkcie 86. Dany jest wektor u = [ 3, 4]. Znaleźć wersor (wektor jednostkowy) równoległy do u o zwrocie przeciwnym do u. 87. Dane są wektory: u = [, ], v = [, ], i w = [6, 4]. Przedstawić wektor w jako kombinację liniową wektorów u i v. 88. W ABC dany jest wierzchołek A(0, 3) i środek S(3, ) boku AB oraz wektor BC = [ 7, 5]. Wyznaczyć współrzędne wektora AC. 89. Dane są wektory a = [3, ], b = [, 4]. Obliczyć a) ( a) b b) ( a b) a 90. Znaleźć A trójkąta ABC o wierzchołkach A(, ), B(3, ) i C(, ).

Technologia Chemiczna 008/09 Zajęcia wyrównawcze 8 9. Dane są wierzchołki czworokąta A(6, ), B(5, ), C(.), i D(, 4). Wykazać, że jego przekątne AC i BD są prostopadłe. 9. Dane są wektory a = [5, 4], b = [k, k + 3]. Dla jakich k wektory te są a) równoległe b) prostopadle? 93. Znaleźć długość wektora a = 3 p q, wiedząc że p =, q =, ( p, q) = π 3. 94. Obliczyć kąt między wektorami a i b, jeśli wektory 3 a + b i b a są prostopadłe oraz a =, b =. 95. Wektory a i b tworzą kąt π 6. Obliczyć kąt między wektorami p i q, jeżeli p = a + b, q = a b, a = 3, b =. 96. Zbadać wzajemne położenie par prostych: Zajęcia nr 3 i 4 (4h) Geometria analityczna R. a) { x = t l : y = + t { b) x = + t l : y = 3t { x = + t l : y = t { c) x = + t l : y = + t { x = + t l : y = 3 + t { x = + t l : y = + t 97. Dla jakich wartości parametru k proste 3kx y + 3 = 0 i x + 4y 3 = 0 są prostopadłe? Znaleźć równania dwusiecznych kątów między tymi prostymi. 98. Znaleźć punkt symetryczny do A(, 9) względem prostej x 3y + 8 = 0. 99. W trójkącie ABC dane są współrzędne wierzchołka B(0, 5) i wektory boków AB = [4, ], CB = [ 8, 7]. Znaleźć równanie wysokości opuszczonej z punktu C na bok AB. 00. Ramiona trójkąta równoramiennego mają równania 7x+y +5 = 0 i x y 3 = 0. Znaleźć równanie podstawy, przechodzącej przez punkt P (0, ). 0. Znaleźć równanie prostej przechodzącej przez punkt P (, 4) i przecinającej proste 3x + y = 0 oraz x y + 4 = 0 w punktach M i N w taki sposób, że P jest środkiem odcinka MN. 0. Narysować w układzie współrzędnych zbiór: a) A = { (x, y) : x + y + x > 0 } b) A = { (x, y) : 3x + 6x + 3y + y + 4 } c) A = { (x, y) : x + y > 4 } d) A = {(x, y) : xy y + x 0} e) A = { (x, y) : 4x y } f) A = {(x, y) : xy } 03. Znaleźć równanie stycznej do okręgu x + y = 5 a) w punkcie A(, ) b) przechodzącej przez punkt B(0, 5) c) równoległej do prostej x y = 0 d) prostopadłej do prostej x y = 0 04. Znaleźć równanie okręgu opisanego na trójkącie o wierzchołkach: A(, 5), B(8, ) i C(9, ). 05. Dwie wysokości trójkąta ABC, gdzie A(, 3), zawarte są w prostych o równaniach x = 0 i x + 3y = 0. Oblicz współrzędne pozostałych wierzchołków tego trójkąta.