Lean Six Sigma Black Belt

Podobne dokumenty
Mariusz Kaszubowski Katedra Statystyki Wydział Zarządzania i Ekonomii Politechnika Gdańska. Statystyka Mariusz Kaszubowski

STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE

MIARY KLASYCZNE Miary opisujące rozkład badanej cechy w zbiorowości, które obliczamy na podstawie wszystkich zaobserwowanych wartości cechy

Podstawowe pojęcia. Własności próby. Cechy statystyczne dzielimy na

Wykład 1. Podstawowe pojęcia Metody opisowe w analizie rozkładu cechy

Statystyka. Wykład 4. Magdalena Alama-Bućko. 13 marca Magdalena Alama-Bućko Statystyka 13 marca / 41

1 Podstawy rachunku prawdopodobieństwa

Statystyka opisowa. Robert Pietrzykowski.

Statystyka opisowa PROWADZĄCY: DR LUDMIŁA ZA JĄC -LAMPARSKA

Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej

Statystyka. Wykład 4. Magdalena Alama-Bućko. 19 marca Magdalena Alama-Bućko Statystyka 19 marca / 33

Ćwiczenia 1-2 Analiza rozkładu empirycznego

Charakterystyki liczbowe (estymatory i parametry), które pozwalają opisać właściwości rozkładu badanej cechy (zmiennej)

Próba własności i parametry

1 n. s x x x x. Podstawowe miary rozproszenia: Wariancja z populacji: Czasem stosuje się też inny wzór na wariancję z próby, tak policzy Excel:

Statystyka. Podstawowe pojęcia: populacja (zbiorowość statystyczna), jednostka statystyczna, próba. Cechy: ilościowe (mierzalne),

Statystyka. Wykład 5. Magdalena Alama-Bućko. 26 marca Magdalena Alama-Bućko Statystyka 26 marca / 40

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)

Statystyka matematyczna. dr Katarzyna Góral-Radziszewska Katedra Genetyki i Ogólnej Hodowli Zwierząt

W1. Wprowadzenie. Statystyka opisowa

Statystyka opisowa. Literatura STATYSTYKA OPISOWA. Wprowadzenie. Wprowadzenie. Wprowadzenie. Plan. Tomasz Łukaszewski

STATYSTYKA OPISOWA. LICZBOWE CHARAKTERYSTYKI(MIARY)

Plan wykładu. Statystyka opisowa. Statystyka matematyczna. Dane statystyczne miary położenia miary rozproszenia miary asymetrii

Miary zmienności STATYSTYKA OPISOWA. Dr Alina Gleska. Instytut Matematyki WE PP. 6 marca 2018

-> Średnia arytmetyczna (5) (4) ->Kwartyl dolny, mediana, kwartyl górny, moda - analogicznie jak

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)

Wskaźnik asymetrii Jeżeli: rozkład jest symetryczny, to = 0, rozkład jest asymetryczny lewostronnie, to < 0. Kwartylowy wskaźnik asymetrii

STATYSTYKA OPISOWA. LICZBOWE CHARAKTERYSTYKI(MIARY)

Parametry statystyczne

KARTA KURSU. (do zastosowania w roku ak. 2015/16) Kod Punktacja ECTS* 4

1. Opis tabelaryczny. 2. Graficzna prezentacja wyników. Do technik statystyki opisowej można zaliczyć:

Pozyskiwanie wiedzy z danych

Statystyka i opracowanie danych W5: Wprowadzenie do statystycznej analizy danych. Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl

Podstawy statystyki - ćwiczenia r.

Po co nam charakterystyki liczbowe? Katarzyna Lubnauer 34

Statystyka i analiza danych Wstępne opracowanie danych Statystyka opisowa. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.pl

Miary w szeregach. 1 Miary klasyczne. 1.1 Średnia Średnia arytmetyczna

Statystyka. Wykład 3. Magdalena Alama-Bućko. 6 marca Magdalena Alama-Bućko Statystyka 6 marca / 28

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2

Statystyka w pracy badawczej nauczyciela Wykład 3: Analiza struktury zbiorowości statystycznej. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.

Statystyka. Opisowa analiza zjawisk masowych

Statystyka. Wykład 7. Magdalena Alama-Bućko. 16 kwietnia Magdalena Alama-Bućko Statystyka 16 kwietnia / 35

Transport II stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny) Studia stacjonarne (stacjonarne / niestacjonarne)

Statystyka opisowa. Robert Pietrzykowski.

Zadanie 2.Na III roku bankowości złożonym z 20 studentów i 10 studentek przeprowadzono test pisemny ze statystyki. Oto wyniki w obu podgrupach.

STATYSTYKA wykłady. L.Gruszczyński Elementy statystyki dla socjologów Dr. Pactwa pon. i wtorek 09:30 11:00 (pok. 217) I. (08.X)

Xi B ni B

Laboratorium 3 - statystyka opisowa

Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski

Opisowa analiza struktury zjawisk statystycznych

W kolejnym kroku należy ustalić liczbę przedziałów k. W tym celu należy wykorzystać jeden ze wzorów:

Graficzna prezentacja danych statystycznych

Zawartość. Zawartość

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI ROZKŁAD EMPIRYCZNY

Statystyka opisowa. Literatura STATYSTYKA OPISOWA. Wprowadzenie. Wprowadzenie. Wprowadzenie. Plan. Tomasz Łukaszewski

Podstawowe funkcje statystyki: informacyjna, analityczna, prognostyczna.

STATYSTYKA IV SEMESTR ALK (PwZ) STATYSTYKA OPISOWA RODZAJE CECH W POPULACJACH I SKALE POMIAROWE

Miary statystyczne w badaniach pedagogicznych

Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki

Inteligentna analiza danych

Krakowska Akademia im. Andrzeja Frycza Modrzewskiego. Karta przedmiotu. obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2013/2014

Policealna Szkoła Handlowa Rok I Wymiar godzin: 30 jednostek dydaktycznych Nr programu nauczania: 341(06)/SP/MEN/ (technik rachunkowości)

Wykład 5. Opis struktury zbiorowości. 1. Miary asymetrii.

STATYSTYKA MATEMATYCZNA

Statystyczne metody analizy danych

Komputerowa analiza danych doświadczalnych

Statystyka. Wykład 8. Magdalena Alama-Bućko. 10 kwietnia Magdalena Alama-Bućko Statystyka 10 kwietnia / 31

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 2 - statystyka opisowa cd

Rok akademicki: 2013/2014 Kod: ZIE n Punkty ECTS: 6. Poziom studiów: Studia I stopnia Forma i tryb studiów: -

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA

Statystyka. Wykład 2. Magdalena Alama-Bućko. 5 marca Magdalena Alama-Bućko Statystyka 5 marca / 34

Statystyka matematyczna i ekonometria

Statystyki opisowe i szeregi rozdzielcze

MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ

Z poprzedniego wykładu

Statystyka opisowa SYLABUS A. Informacje ogólne

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl

Podstawy statystyki dla psychologów. Podręcznik akademicki. Wydanie drugie poprawione. Wiesław Szymczak

Rozkład normalny. Marcin Zajenkowski. Marcin Zajenkowski () Rozkład normalny 1 / 26

Inżynieria Środowiska. II stopień ogólnoakademicki. przedmiot podstawowy obowiązkowy polski drugi. semestr zimowy

Wykład 5: Statystyki opisowe (część 2)

Statystyka opisowa Opracował: dr hab. Eugeniusz Gatnar, prof. WSBiF

Statystyka matematyczna dla leśników

Analiza zróżnicowania, asymetrii i koncentracji

Porównaj płace pracowników obu zakładów, dokonując kompleksowej analizy struktury. Zastanów się, w którym zakładzie jest korzystniej pracować?

Rozkłady zmiennych losowych

Statystyka hydrologiczna i prawdopodobieństwo zjawisk hydrologicznych.

Statystyka. Wydział Zarządzania Uniwersytetu Łódzkiego

STATYSTYKA MATEMATYCZNA

Krakowska Akademia im. Andrzeja Frycza Modrzewskiego. Karta przedmiotu. obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2013/2014

Krakowska Akademia im. Andrzeja Frycza Modrzewskiego. Karta przedmiotu. obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2012/2013

Imię, nazwisko i tytuł/stopień KOORDYNATORA (-ÓW) kursu/przedmiotu zatwierdzającego protokoły w systemie USOS Jacek Marcinkiewicz, mgr

INFORMATYKA W SELEKCJI

Statystyka matematyczna dla leśników

Biostatystyka, # 1 /Weterynaria I/

Spis treści 3 SPIS TREŚCI

Państwowa Wyższa Szkoła Zawodowa w Suwałkach SYLLABUS na rok akademicki 2014/2015

Importowanie danych do SPSS Eksportowanie rezultatów do formatu MS Word... 22

Transkrypt:

14.X.2011

Porządek wykładu Grupowanie i prezentacja danych Analiza struktury Analiza współzależności Rozkłady prawdopodobieństwa

Literatura - Kot, S. (2007), Statystyka podręcznik dla studiów ekonomicznych, Wydawnictwo Difin, Warszawa; - Luszniewicz A., Słaby T., (2008), Statystyka z pakietem komputerowym STATISTICA PL. Teoria i zastosowania, Wydawnictwo C.H.Beck, Warszawa.

Grupowanie i prezentacja danych

Podstawowe pojęcia Populacja generalna (ang. general population) Próba (ang. sample) losowa (ang. random) nielosowa tendencyjna (ang. nonrandom) Jednostka statystyczna Cecha statystyczna zmienna (ang. variable) jakościowa (ang. qualitative) dychotomiczna (ang. bicategorical) wielodzielna(ang. multicategorical) ilościowa(ang. quantitative) skokowa (ang. discrete) ciągła (ang. continous)

Grupowanie typologiczne wariancyjne Szereg danych szereg szczegółowy szereg rozdzielczy punktowy szereg rozdzielczy przedziałowy Prezentacja danych na wykresach dystrybuanta histogram

Zasady poprawnego grupowania R = x x max min k n lub k 1+ 3,322 log n R h = k x = x 0,5 h 01 min x = x + h M 11 01 x = x + ( i 1) h 0i 01 x = x + h 1i 0i i = 2,3,4,..., k liczba obserwacji (n) liczba zalecanych klas 40 60 6 8 60 100 7 10 100 200 9 12 200 500 11 17 500 1500 18 25 ponad 1500 25 k x & i xi 0,5 h i= 1 ni 5

Przykład Stopę bezrobocia rejestrowanego w % wpolsce wg województw na koniec roku 1996 przedstawia następujący szereg szczegółowy (źródło: Rocznik Statystyczny 1997, GUS, tabl. 21(214), s. 141): 4,1; 11,9; 11,7; 9,6; 16,7; 13,1; 19,0; 12,1; 23,4; 10,6; 17,0; 18,2; 14,9; 8,4; 15,2; 17,3; 24,7; 6,1; 14,9; 16,9; 12,0; 11,7; 14,3; 16,2; 12,8; 23,6; 12,9; 17,0; 17,4; 16,8; 16,6; 6,2; 14,2; 17,2; 14,6; 10,7; 12,7; 10,7; 25,7; 24,6; 13,1; 13,9; 12,4; 18,6; 21,7; 21,5; 9,8; 12,4; 15,3. 1. Określ badaną zbiorowość, jednostkę oraz cechę statystyczną. 2. Przeprowadź grupowanie statystyczne. 3. Zaprezentuj graficznie otrzymany szereg.

Rozwiązanie nr 1 Przedział klasowy x x 0i 1i (2,3 ; 5,9 (5,9 ; 9,5 (9,5 ;13,1 (13,1;16, 7 (16,7 ; 20,3 (20,3 ; 23,9 (23,9 ; 27,5 Pomiary z przedziału Liczba jednostek Środek przedziału Średnia z przedziału 4,1 1 4,1 4,1 0 6,1; 6,2; 8,4 3 7,7 6,9 0,8 9,6; 9,8; 10,6; 10,7; 10,7; 11,7; 11,7; 11,9; 12,0; 12,1; 12,4; 12,4; 12,7; 12,8; 12,9; 13,1; 13,1 13,9; 14,2; 14,3; 14,6; 14,9; 14,9; 15,2; 15,3; 16,2; 16,6; 16,7 16,8; 16,9; 17,0; 17,0; 17,2; 17,3; 17,4; 18,2; 18,6; 19,0 n i x& i 17 11,3 11,8 0,5 11 14,9 15,2 0,3 10 18,5 17,5 1 21,5; 21,7; 23,4; 23,6; 4 22,1 22,6 0,5 24,6; 24,7; 25,7 3 25,7 25 0,7 Suma X 49 X X 3,8 x i x& i x i

Rozwiązanie nr 2 k = 49 = 7 k 1+ 3,322 log 49 6, 615 k 6, 615 k = 6 R = 25, 7 4,1 = 21, 6 21,6 h = = 3,6 4 6 x 01 = 4,1 0,5 4 = 2,1 2

Analiza struktury Lean Six Sigma Six Sigma Black Black Belt Belt

Podstawowe pojęcia Miary położenia (tendencji centralnej) Miary dyspersji (rozproszenia) Miary asymetrii Miary koncentracji (spłaszczenia)

Miary tendencji centralnej klasyczne średnia arytmetyczna (ang. arithmetic mean) średnia geometryczna (ang. geometric mean) pozycyjne dominanta, moda(ang. mode) mediana(ang. median) kwartyle(pierwszy, trzeci) (ang. lower and upper quartile) decyle(ang. decile) percentyle(ang. percentile)

Zadanie 1 Poniższy zestaw danych przedstawia wyniki biegu na 60m w sekundach. Wyznacz miary tendencji centralnej (średnia, mediana, dominanta, kwartyl pierwszy i trzeci) dla podanego szeregu szczegółowego. 10, 11, 9, 9, 12, 16, 12, 13, 8, 9, 10, 15 Rozwiązanie 8, 9, 9, 9, 10, 10, 11, 12, 12, 13, 15, 16

Zadanie 2 Poniższy szereg przedstawia zestawienie meczy piłki nożnej Ekstraklasy w rundzie jesiennej 2008/2009 pod względem strzelonych bramek w poszczególnych meczach. Wyznacz miary tendencji centralnej (średnia, mediana, dominanta, kwartyl pierwszy i trzeci) dla podanego szeregu rozdzielczego punktowego.

Rozwiązanie

Wykres ramka wąsy (boxand whiskerplot)

Zadanie 3 Podany szereg przedstawia zestawienie wyników ankiety przeprowadzonej w grupie 50 kobiet w wieku 20-40 lat odnośnie kwoty miesięcznych wydatków w zł na środki pielęgnacyjne. Wyznacz miary tendencji centralnej (średnia, mediana, dominanta, kwartyl pierwszy i trzeci, decyl dziewiąty) dla podanego szeregu rozdzielczego przedziałowego.

Rozwiązanie

Miary dyspersji klasyczne wariancja (ang. variance) odchylenie standardowe (ang. standard deviation) współczynnik zmienności (ang. coefficient of variation) odchylenie przeciętne (ang. mean deviation) pozycyjne rozstęp (ang. range) rozstęp kwartylowy (ang. interquartile range) odchylenie ćwiartkowe współczynnik zmienności (ang. coefficient of variation)

Miary asymetrii klasyczne moment trzeci centralny moment trzeci względny pozycyjne kwartylowywspółczynnik skośności decylowy współczynnik skośności współczynnik asymetrii oparty na średniej i dominancie

Miary spłaszczenia -kurtozy klasyczne moment czwarty centralny moment czwarty względny współczynnik ekscesu pozycyjne nie stosuję się

Zadanie 4 Poniższy szereg rozdzielczy przedstawia dane o zarobkach pracowników pewnej firmy produkcyjnej w skali roku w tysiącach zł. Dokonaj analizy miar położenia, dyspersji, asymetrii i spłaszczenia

Rozwiązanie

Podsumowanie

Analiza współzależności

Podstawowe pojęcia korelacja (ang. correlation) dodatnia, ujemna współczynnik korelacji liniowej Pearsona (ang. Pearson s correlation) współczynnik determinacji (ang. coefficient of determination ) współczynnik korelacji rang (ang. rank correlation) Spearmana, Kendalla

Współczynniki korelacji

Siła i kierunek korelacji

Przykład Na podstawie rocznych danych dotyczących populacji bocianów X oraz ilości urodzeń żywych Y w gminie Z ustalić czy między zmiennymi X i Y istnieje (z punktu widzenia statystycznego) zależność korelacyjna. Jeśli tak, to określić jej siłę i kierunek. Do obliczeń wykorzystaj współczynnik korelacji liniowej Pearsona, współczynnik rang Spearmana oraz rang Kendalla. X 136 132 141 144 152 148 158 163 154 155 Y 12 4 7 11 8 5 14 12 9 7

Przykład Policzyć macierz korelacji pomiędzy następującymi zmiennymi i podaj interpretację obliczonych współczynników.

Rozwiązanie

Regresja liniowa

Przykład Poniższa tabela przedstawia dane odnośnie wieku (w latach) oraz wzrostu (w cm) dla grupy 15 losowo wybranych osób. Określ równanie regresji liniowej opisującej zależność wzrostu od wieku. Oceń dopasowanie funkcji regresji do danych. Za pomocą otrzymanego modelu teoretycznego oszacuj wzrost osoby w wieku 17 lat.

Rozwiązanie Z modelu teoretycznego regresji liniowej wynika, że wzrost wieku o jeden rok powoduje przyrost wysokości o 5,31 cm. Faktycznie zaobserwowany wzrost badanych osób różni się od szacowanego za pomocą funkcji średnio 6,94 cm, co stanowi 4,87% średniego wzrostu. 4% zmienności wzrostu nie jest wyjaśniona przez wiek. 96% zmienności wzrostu jest wyjaśniona przez wiek. Osoba w wieku 17 lat powinna mieć wzrost w granicach od 164,15 cm do 178,03 cm.

200 Wykres rozrzutu wzrost względem wiek wzrost = 80,8227+5,3141*x 180 160 wzrost 140 120 100 80 0 2 4 6 8 10 12 14 16 18 20 22 wiek

Wybrane rozkłady prawdopodobieństwa

Podstawowe pojęcia zmienna losowa - skokowa, ciągła (ang. random variable) rozkład prawdopodobieństwa (ang. distribution) dystrybuanta zmiennej losowej (ang. distribution function) wartość oczekiwana (ang. expected value) wariancja (ang. variance) funkcja gęstości(ang. density function)

Rozkłady zmiennej losowej Zmienna skokowa rozkład Bernouliego rozkład Poissona rozkład geometryczny Zmienna ciągła rozkład normalny rozkład wykładniczy

Parametry rozkładów zmiennych losowych skokowych Wartość oczekiwana Wariancja pi = P( X = xi ) µ = E( X ) = xi pi = m i 2 2 ( ) ( ) ( ) ( ( )) 2 i i E X E X 2 2 σ = D X = x m p = i Odchylenie standardowe Współczynnik zmienności ( ) ( ) D X = D 2 X = σ = σ 2 ( ) ( ) D X σ V ( X ) = 100% = 100% E X m

Parametry rozkładów zmiennych losowych ciągłych Wartość oczekiwana Wariancja ( ) ( ) E X = x f x dx = m 2 2 2 2 ( ) ( ) ( ) ( ) ( ( )) 2 D X = x m f x dx = E X E X = σ Odchylenie standardowe Współczynnik zmienności ( ) ( ) D X = D 2 X = σ = σ 2 ( ) ( ) D X σ V ( X ) = 100% = 100% E X m

Rozkład Bernouliego

Przykład W pomieszczeniu sypialnym domownicy zlokalizowali 10 osobników Culex pipiens (komary). Zastosowano środek owadobójczy o skuteczności 90%. Niech zmienną losową będzie ilość owadów, które przeżyły po zastosowaniu w pomieszczeniu preparatu. Określ parametry rozkładu tej zmiennej losowej oraz oblicz następujące prawdopodobieństwa zdarzeń: a) żaden owad nie przeżyje b) wszystkie owady przeżyją c) dokładnie jeden owad przeżyje d) co najwyżej 3 owady przeżyją e) co najmniej 2 owady przeżyją

Rozwiązanie

Rozkład Poissona

Przykład W pewnej firmie po analizie danych historycznych stwierdzono, że w procesie produkcyjnym występują dziennie, średnio 3,84 wadliwe produkty. Jakie jest prawdopodobieństwo, że losowo wybranych dniu liczba wadliwych produktów wyniesie 5?

Rozkład geometryczny

Przykład Prawdopodobieństwo znalezienia wadliwego produktu wynosi 0,01. Oblicz prawdopodobieństwo, że podczas kontroli dopiero 70-ta sprawdzona sztuka będzie wadliwa oraz prawdopodobieństwo, że musi być sprawdzone ponad 50 sztuk by wykryć pierwszą wadliwą sztukę.

Rozkład normalny Przykłady zmiennych charakteryzujące się rozkładem normalnym wzrost waga poziom IQ temperatura ciała średnia roczna temperatura Przykłady zmiennych, których rozkład nie jest normalny prędkość wiatru długość ciąży kobiet długość dzioba zięby afrykańskiej dobowa temperatura w okresie zimowym

Rozkład normalny

Rozkład normalny standardowy

Krzywa Gaussa 68% wartości cechy leży w odległości od wartości oczekiwanej; 95,5% wartości cechy leży w odległości od wartości oczekiwanej; 99,7% wartości cechy leży w odległości od wartości oczekiwanej. Ostatnie stwierdzenie jest również znane jako reguła trzech sigm

Przykład Ciężar jajek dostarczanych do skupu ma rozkład normalny ze średnią 2 dag i wariancją 0,1. Jajko kwalifikuję się do odpowiedniej klasy w zależności od masy co przedstawia poniższe zestawienie: klasa S klasa M klasa L klasa XL masa <= 1,5 dag 1,5 dag < masa <= 2,1 dag 2,1 dag< masa <= 2,7 dag masa > 2,7 dag Określ parametry rozkładu oraz odpowiedz jaki procent jajek dostarczonych do skupu to jajka klasy a) S, b) M, c) L, d) XL.

Rozwiązanie

Rozkład wykładniczy

Przykład Linia produkcyjna średnio 2 razy wciągu miesiąca jest zatrzymywana z powodu awarii. Oblicz prawdopodobieństwo, że linia produkcyjna zostanie zatrzymana ponownie: a) później niż 15 miesięcy b) wcześniej niż 20 miesięcy c) zatrzymana będzie nie wcześniej niż za 10 i nie później niż za 15 miesięcy