MATURA EUROPEJSKA 2009 MATEMATYKA - CYKL 5 GODZINNY DATA : 8 czerwca 2009 CZAS TRWANIA EGZAMINU: 4 godziny (240 minut) DOZWOLONE POMOCE : Europejski zestaw wzorów Kalkulator (bez grafiki, bez możliwości programowania) UWAGI : Należy rozwiązać 4 zadania obowiązkowe. Należy wskazać dwa zadania wybrane do rozwiązania spośród trzech zadań do wyboru, zaznaczając krzyżykiem właściwe miejsce na dołączonym formularzu. Rozwiązanie każdego zadania należy zapisać na osobnej kartce. Strona 1/8
ZADANIE OBOWIĄZKOWE 1. ANALIZA Dana jest funkcja f określona wzorem : x f( x) xe, x 0. Poniższy rysunek przedstawia wykres funkcji f i prostą przechodzącą przez punkty O i A, gdzie A jest punktem wykresu, w którym funkcja f osiąga maksimum. a) i. Oblicz współrzędne punktu A. ii. Pokaż, że prosta przechodząca przez punkty O i A ma równanie x y. e b) Oblicz pole powierzchni zacieniowanego obszaru. 6 punktów Strona 2/8
ZADANIE OBOWIĄZKOWE 2. ANALIZA Jeden z uczniów zajmuje się badaniem wzrostu populacji pewnych bakterii. Proponuje on przedstawić ten wzrost za pomocą następującego równania różniczkowego: dn dt 0, 25 Nt, gdzie t jest czasem w minutach, jaki upłynął od początku eksperymentu, a N jest liczbą bakterii w chwili t. Realizujemy teraz doświadczenie z początkową liczbą bakterii równą 5000. a) Wyznacz rozwiązanie tego równania różniczkowego przedstawiając N jako funkcję t. b) i. Oblicz liczbę bakterii obecną w doświadczeniu po 4 minutach. ii. Oblicz czas potrzebny do otrzymania liczby bakterii równej 50 000. 6 punktów Strona 3/8
ZADANIE OBOWIĄZKOWE 3. GEOMETRIA W przestrzeni trójwymiarowej, z prostokątnym układem współrzędnych, dana jest płaszczyzna : 4x 3y 12. a) i. Oblicz współrzędne punktów przecięcia płaszczyzny z osiami układu współrzędnych. ii. Przedstaw, w postaci układu równań parametrycznych, prostą będącą częścią wspólną płaszczyzny i płaszczyzny (Oxy). b) i. Oblicz współrzędne punktu P symetrycznego do początku układu O względem płaszczyzny. ii. Napisz równanie ogólne każdej z płaszczyzn równoległych do, których odległość od płaszczyzny jest równa 4. Strona 4/8
ZADANIE OBOWIĄZKOWE 4. PRAWDOPODOBIEŃSTWO W pewnej fabryce zainstalowano system alarmowy, który włącza się natychmiast w momencie wystąpienia awarii w cyklu produkcyjnym. Jeśli alarm się włączy cała produkcja zostaje zatrzymana na resztę dnia. Zdarza się też, że system alarmowy nie działa poprawnie. Wiadomo, że w przypadkowo wybranym dniu : prawdopodobieństwo, że alarm włączy się mimo, że awaria nie nastąpiła jest równe 0,02; prawdopodobieństwo, że alarm nie zadziała mimo, że awaria nastąpiła jest równe 0,2. Wiadomo też, że prawdopodobieństwo wystąpienia awarii w określonym dniu jest równe 0,01. a) i. Oblicz prawdopodobieństwo tego, że w określonym dniu wystąpi awaria i włączy się alarm. ii. Oblicz prawdopodobieństwo tego, że w określonym dniu włączy się alarm. b) i. Wiadomo, że alarm włączył się. Jakie jest prawdopodobieństwo tego, że rzeczywiście wystąpiła awaria? ii. Jakie jest prawdopodobieństwo tego, że alarm włączy się dokładnie w dwóch dniach spośród siedmiu? Strona 5/8
ZADANIE DO WYBORU I. ANALIZA Dana jest funkcja f określona wzorem : 3x ln x gdy 0 x 1 f( x) 1 3x ln x gdy x 1 Niech krzywa F będzie wykresem funkcji f w prostokątnym układzie współrzędnych. a) Uzasadnij, że funkcja f jest ciągła i różniczkowalna w punkcie x 1. b) Zbadaj funkcję f wyznaczając jej miejsce zerowe, obliczając współrzędne punktów, w których funkcja osiąga ekstremum i precyzując rodzaj tych ekstremów oraz obliczając granice f ( x ) dla x i dla x 0. 6 punktów c) Naszkicuj krzywą F. d) Napisz równanie stycznej do F w punkcie przecięcia wykresu z osią Ox. e) i. Wyznacz pole A k obszaru ograniczonego przez F, oś Ox i proste o równaniach x k 0 k 1 oraz x 1. ii. Oblicz A lim A( k). k 0 f) i. Wyznacz pole B( p ) obszaru ograniczonego przez F, oś Ox i proste o równaniach x 1 oraz x p ( p 1). ii. Wyznacz wartość p tak, aby B( p) A. Strona 6/8
ZADANIE DO WYBORU II. PRAWDOPODOBIEŃSTWO Pewien zakład produkuje zabawki. Część zabawek może posiadać wady produkcyjne. Jedna wada dotyczy koloru zabawki, a druga kształtu. Obie wady występują niezależnie jedna od drugiej. W doświadczeniu polegającym wylosowaniu jednej zabawki określamy następujące zdarzenia : A: zabawka ma wadę koloru, B: zabawka ma wadę kształtu, C: zabawka ma przynajmniej jedną z tych dwóch wad. P A 0, i P B 0, 041. Wiadomo, że 052 a) Oblicz PA ( B). b) Oblicz PC ( ). Dla poniższych zadań c) i d) przyjmujemy, iż prawdopodobieństwo, że losowo wybrana zabawka ma przynajmniej jedną z wymienionych wad jest równe 0,09. Zabawki są wybierane losowo i pakowane do pudełek. c) Pewien sklep zakupuje pudełka, z których każde zawiera po 60 zabawek. Niech X będzie zmienną losową, która opisuje liczbę tych zabawek z jednego pudełka, które mają przynajmniej jedną z wymienionych wad. i. Określ typ rozkładu zmiennej losowej X podając wartości parametrów tego rozkładu. 1 punkt ii. Oblicz PX ( 5). iii. Dokonujemy przybliżenia rozkładu zmiennej losowej X według rozkładu Poissona. Oblicz parametr tego rozkładu. iv. Wykorzystując to przybliżenie Poissona oblicz prawdopodobieństwo, że przypadkowo wybrane pudełko zawiera mniej niż 3 zabawki mające przynajmniej jedną z dwóch wymienionych wcześniej wad. 1 punkt d) Inny sklep zakupuje pudła, z których każde zawiera po 500 zabawek. Niech Y będzie zmienną losową, która opisuje liczbę tych zabawek z jednego pudła, które mają przynajmniej jedną z wymienionych wad. i. Uzasadnij użycie rozkładu normalnego jako przybliżenia dla rozkładu zmiennej losowej Y i podaj wartości parametrów tego rozkładu. ii. Oblicz PY ( 50). iii. Oblicz P(20 Y 30). Strona 7/8
ZADANIE DO WYBORU III. GEOMETRIA W przestrzeni trójwymiarowej, z prostokątnym układem współrzędnych, dane są: punkty : P(0, 1,1) i Q(3,0, 3), prosta d : x 2t y t z 2 2t, t R, sfera S : 2 2 2 x y z 2x 2y 2z 6 0 i płaszczyzna : 2x y 4 0. a) Punkt P leży w płaszczyźnie, która zawiera też prostą d. Pokaż, że równanie x 2y 2z 4 0 jest równaniem płaszczyzny. b) Wyznacz współrzędne środka C i promień R sfery S. c) Napisz równanie każdej z dwóch sfer o promieniu r 3 stycznej do płaszczyzny w punkcie P. Sprawdź, że jedną z tych sfer jest S. 6 punktów d) Sprawdź, że płaszczyzny i są wzajemnie do siebie prostopadłe. e) Płaszczyzna przecina sferę S wzdłuż okręgu K. Oblicz współrzędne środka okręgu K i jego promień. f) i. Uzasadnij, że punkt Q należy do sfery S. ii. Prosta m jest styczna do sfery S w punkcie Q i przecina prostą d. Przedstaw prostą m w postaci układu równań parametrycznych. 5 punktów 1 punkt 5 punktów Strona 8/8