Geometria Zadanie 1. Liczba przekątnych pięciokąta foremnego jest równa A. 4 B. 5 C. 6 D. 7 W tym przypadku możemy wykonać szkic pięciokąta i policzyć przekątne: Zadanie. Promień okręgu opisanego na kwadracie o boku 6 wynosi A. B. C. 6 D. 5 Jednak warto znać wzór na liczbę przekątnych wielokąta (n to liczba boków): (n )n (5 ) 5 = = 5 Promień okręgu stanowi połowę przekątnej: Zadanie. Pole kwadratu wpisanego w okrąg o promieniu 7 jest równe A. 14 B. 49 C. 98 D. 196 r = 1 d Wzór na przekątną kwadratu to: d = a d = 6 Wobec tego: r = 1 6 = Skoro promień równy jest 7, zatem przekątna kwadratu ma długość 14. d = 14
Zadanie 4. Podstawa trójkąta równoramiennego ma długość 16, a ramię ma długość 10. Wysokość opuszczona na postawę tego trójkąta ma długość A. 6 B. 41 C. 156 D. 16 Korzystając ze wzoru na przekątną kwadratu obliczmy jego bok: d = a 14 = a a = 14 = 14 = 7 Obliczmy pole: P = a = (7 ) = 49 = 98 Odp. C. Zadanie 5. Punkt O jest środkiem okręgu. Kąt wpisany α ma miarę Z Twierdzenia Pitagorasa: a + b = c 8 + h = 10 64 + h = 100 h = 6 h = 6 Odp. A. Kąt wpisany α jest oparty na tym samym łuku, co kąt środkowy COA. Miara kąta COA (opartego na czerwonym łuku) to: COA = 60 10 = 150 A. 75 B. 80 C. 85 D. 105 Miara kąta α stanowi połowę miary kąta COA. Odp. A. α = 1 150 = 75
Zadanie 6. Długość ramienia trapezu równoramiennego o kącie ostrym 60 i wysokości długości 5 jest równa A. 10 B. 5 C. 10 D. 10 Sporządźmy odpowiedni szkic: Zadanie 7. W trójkącie prostokątnym najkrótszy i najdłuższy bok mają długości odpowiednio i 6. Obwód tego trójkąta jest równy A. 1 B. 1 C. ( + ) D. 9 + 45 Na czerwono naniesiono długości boków w trójkącie o kątach 90, 60, 0. Skoro a jest równe 5, możemy obliczyć wartość a: a = 5 a = 5 = 5 Ramię trapezu ma więc długość: a = 5 = 10 Odp. C. Zadanie 8. Odcinki AB i DE są równoległe. Korzystając z długości odcinków podanych na rysunku wyznacz długość odcinka AB. Korzystając z Twierdzenia Pitagorasa obliczmy b: + b = 6 9 + b = 6 b = 7 b = 7 = 9 = Obwód trójkąta wynosi więc: + + 6 = 9 + Po wyciągnięciu przed nawias otrzymujemy: ( + ) Odp. C.
A. B. C. 4 D. 5 Zadanie 8. Przedstawione poniżej trójkąty są podobne. Wobec tego długości boków x i y są równe odpowiednio A. 4 i 9 B. 9 i 4 C. 1 i D.16 i 6 Zadanie 9. Długość wysokości rombu o boku 8 i kącie ostrym 60 jest równa A. 4 B. 16 C. 4 D. Korzystając z Twierdzenia Talesa ułóżmy proporcję: CD DE = CA AB 1 1 = AB AB = Korzystając z podobieństwa trójkątów ułóżmy proporcję (pamiętając, że boki, których długości sobie odpowiadają, leżą między tymi samymi kątami): x 6 = 1 8 x 6 = x = 18 x = 9 6 y = 1 8 6 y = y = 1 y = 4 Sporządźmy szkic i zaznaczmy na nim długości boków w trójkącie (90, 60, 0 ), bo z takim mamy tu do czynienia:
Zadanie 10. Trójkąt A B C jest podobny do trójkąta ABC w skali k = 1. Jeżeli pole trójkąta ABC jest równe 6, to pole trójkąta A B C wynosi A. 18 B. 7 C. 144 D.9 Zadanie 11. Suma miar kątów: środkowego i wpisanego, opartych na tym samym łuku jest równa 10. Wobec tego miara kąta środkowego jest równa A. 40 B. 60 C. 80 D.100 Zadanie 1. Kąt środkowy AOD ma miarę 10 (patrz: rysunek). Skoro a = 8, to a = 4. Wysokość rombu wynosi więc: h = a = 4 Stosunek pól trójkątów podobnych jest równy kwadratowi skali podobieństwa, czyli: P A B C P ABC = k P A B C 6 P A B C = ( 1 ) = 1 6 4 4P A B C = 6 P A B C = 9 Odp. D. Zakładając, że kąt wpisany oznaczymy jako α, kąt środkowy (oparty na tym samym łuku) jest jego dwukrotnością: α. α + α = 10 α = 10 α = 40 Kąt środkowy: α = 80 Odp. C. Miara kąta α jest równa A. 0 B. 40 C. 50 D.60 Miara kąta środkowego BOD jest równa: BOD = 180 10 BOD = 60 Kąt wpisany α jest oparty na tym samym łuku, co kąt BOD, wiec stanowi jego połowę.
Zadanie 1. W trapezie ABCD kąty DAB i DBC są sobie równe. Mając dane długości boków i przekątnej trapezu jak na rysunku wyznacz jego obwód. α = 1 60 = 0 Odp. A. Trapez i jego przekątna są zawsze częścią dwóch prostych równoległych przeciętych trzecią prostą. Na tej podstawie możemy znaleźć kolejne, równe sobie kąty (czerwone). Nasze trójkąty (ABD i BCD) mają więc dwa kąty równe sobie. Wobec tego trójkąty te muszą być podobne (ponieważ suma kątów w trójkącie jest zawsze równa 180, pozostała para kątów też jest sobie równa). Oznaczmy odpowiadające kąty kolorami: Zadanie 14. Wysokość trójkąta prostokątnego opuszczona na przeciwprostokątną ma długość 5. Oblicz obwód tego trójkąta, wiedząc, że jeden z jego kątów ostrych ma miarę 0. Pozostaje ułożyć proporcje pamiętając, że boki odpowiadające sobie to te leżące pomiędzy kątami w tym samym kolorze: 5 x = 10 14 10x = 70 x = 7 5 10 = 10 y 5y = 100 y = 0 Obwód wynosi: 14 + 5 + 7 + 0 = 46 Odp. Obwód trapezu wynosi 46.
Nanieśmy na wstępny szkic pozostałe kąty i długości boków wynikające z własności trójkąta o kątach 90, 60, 0. Zadanie 15. Krótsza podstawa trapezu prostokątnego ma długość 1, a dłuższa podstawa tego trapezu jest równa jego wysokości. Oblicz długość dłuższej podstawy tego trapezu, wiedząc, że miara jego kąta ostrego to 60. Obliczmy długości boków opisane kolorem czerwonym: a = 5 a = 5 a = 10 Teraz pozostaje obliczyć długości boków opisanych na fioletowo: b = 5 b = 5 b = 5 b = 1 5 b = 10 Obwód: 5 + 10 + 10 + 5 = = 5 + 10 + 15 = = 5 + 10 + 5 = = 10 + 10 Odp. Obwód trójkąta wynosi 10 + 10.
Korzystamy wartości funkcji trygonometrycznych. tg 60 = x x 1 tg 60 = x x 1 = x = (x 1) x = x x x = x(1 ) = x = 1 1 + 1 + (1 + ) x = (1 )(1 + ) x = x = + Odp. Długość dłuższej podstawy to +.